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Abstract
Investing on behalf of a firm, a trader can feign personal skill by committing fraud
that with high probability remains undetected and generates small gains, but with low
probability bankrupts the firm, offsetting ostensible gains. Honesty requires enough
skin in the game: if two traders with isoelastic preferences operate in continuous time
and one of them is honest, the other is honest as long as the respective fraction of
capital is above an endogenous fraud threshold that depends on the trader’s prefer-
ences and skill. If both traders can cheat, they reach a Nash equilibrium in which the
fraud threshold of each of them is lower than if the other one were honest. More skill,
higher risk aversion, longer horizons and higher volatility all lead to honesty on a
wider range of capital allocations between the traders.
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1 Introduction

The expression “rogue trader” entered popular culture in 1995 when Nicholas
W. Leeson, a trader of an overseas office of Barings Bank in Singapore, made unau-
thorised bullish bets on the Japanese stock market, concealing his losses in an error
account. At first, losses were recovered with a profit, but in the aftermath of the Kobe
earthquake, they reached $1.4 billion (Brown and Steenbeek [7]), forcing the 233
years old bank into bankruptcy. Earlier episodes of rogue trading ante litteram in-
clude the losses of Robert Citron in 1994 for Orange County ($1.7 billion, Jorion
[27]) and of Toshihide Iguchi in 1983–1995 for Daiwa Bank ($1.1 billion, Iguchi
[22, Prologue’]). The earliest case is possibly that involving the law firm of Grant
& Ward in 1884, which embarrassed former president Ulysses S. Grant, one of the
firm’s partners (Krawiec [32]).

Since the demise of Barings Bank, rogue trading episodes have increased in fre-
quency and magnitude. In 2008, Jerome Kerviel, a junior trader at Société Générale
who had been exceeding position limits through fictitious trades to avoid detection,
eventually lost $7.6 billion, the largest rogue trading loss in history. In his defense, he
claimed that colleagues also engaged in unauthorised trading (The New York Times
[41] and Reuters [39]). Most recently, in September 2021, Keith A. Wakefield, the
former head of the fixed income trading desk at the broker–dealer IFS Securities, was
charged by the U.S. Securities and Exchange Commission with unauthorised spec-
ulative trading and creating fictitious trading profits, leading to the closure of IFS
Securities and substantial losses to both IFS Securities and one dozen counter-parties
to the trades (U.S. Securities and Exchange and Commission [42]).

The rise in rogue trading and its threat to both financial institutions and financial
stability is recognised by the Basel Committee as operational risk, defined as “the risk
of loss resulting from inadequate or failed internal processes, people and systems or
from external events” (BCBS [3, Clause 10 of Sect. “Principles for the management
of operational risk”]). The Capital Accord of Basel II – and Basel III, to be enacted
in 2023 – includes provisions for protection from operational losses: while insurance
can cover high-frequency, low-impact events, rogue trading falls squarely in the low-
frequency, high-impact category of uninsurable risks, which incur capital charges.
Such charges are in turn based on standardised approaches or statistical models, due
in part to the absence of consensus on the origin of rogue trading, which is the focus
of this paper.

Our starting point is that “The continued existence of rogue trading [. . . ] presents
a mystery for many scholars and industry observers.” (Krawiec [32]). “Operational
risk is unlike market and credit risk; by assuming more of it, a financial firm can-
not expect to generate higher returns.” (Crouhy et al. [11]). In other words, prima
facie it is hard to reconcile rogue traders’ actions with the optimising behaviour of
sophisticated rational agents.

We propose a model in which rational, self-interested, risk-averse traders delib-
erately engage in fraudulent activity that has zero risk premium. While undetected,
fraud allows a trader to feign superior returns, ostensibly without additional risk. In
reality, higher returns are exactly offset by a higher probability of bankruptcy, thereby
creating no value for the firm. Yet, under some circumstances, fraud may be optimal
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for a trader because while its benefits are personal, potential bankruptcy costs are
shared with other traders. Furthermore, a trader who understands the circumstances
leading to others’ fraud can anticipate them and act accordingly, leading to a dynamic
Nash equilibrium.

In equilibrium, each trader abstains from fraud as long as the respective share of
wealth under management exceeds an endogenous fraud threshold that depends on
both traders’ preferences (risk aversions and average horizon) and investment char-
acteristics (expected returns and volatilities). Thus a trader must have enough skin in
the game to remain honest: when the share of managed assets drops below the fraud
threshold, the marginal utility of fraudulent trades becomes positive, and a trader
cheats as little and as quickly as possible to restore the wealth share to the honesty
region. Importantly, such fraudulent activity does not generate extra volatility; so it
cannot be detected by monitoring wealth before bankruptcy occurs.

These results bring several insights. First, our model suggests that rogue trading
has an important social component: A sole trader investing all the firm’s capital would
not engage in fraud because such a trader would bear in full both the costs and the
benefits of fraudulent activity (Proposition 2.1). Furthermore, the fraud threshold is
higher if a trader knows that nobody else is cheating (Lemma 3.8 and Theorem 3.10).

Second, the model emphasises the risk that traders with relatively small amounts
of capital can pose to a financial institution, due to their insufficient stakes in the
firm. This concern is confirmed by the cases of the junior traders Jerome Kerviel and
Nick Leeson. By reviewing Mr. Leeson’s trading record and the investigation reports
from Singaporean authorities, Brown and Steenbeek [7] suggest that he had excluded
the error account (meant for traders to settle minor trading mismatches) from the
market reports to headquarters and had built up unauthorised speculative positions
since taking the post at Baring’s office in Singapore in 1992.

Third, our comparative statics offer some clues for assessing and mitigating rogue
trading risk. The incidence of fraud is higher in less skilled traders, which means that
emphasis on performance evaluation has the indirect benefit of fraud reduction. Fraud
also declines significantly as risk aversion increases, suggesting that, ceteris paribus,
the most fearless traders are also the ones most tempted by fraud, and that the most
dangerous combination is found in a trader with high risk tolerance and low share of
managed assets. In addition, fraud declines when the horizon is long enough.

Fourth, our model hints at a subtle trade-off between investment performance and
operational risk. Classical portfolio theory implies that diversification can only in-
crease performance; hence the addition of a trader with expertise in a new asset class
always improves the risk–return trade-off. Yet, our results caution that a higher num-
ber of traders, each with a lower share of assets under management, may also increase
the appeal of fraud for each of them, potentially worsening the firm’s risk profile. (The
quantitative analysis of the trade-off between diversification and fraud requires very
different technical tools, hence is deferred to future research.)

This paper offers the first structural model of rogue trading, in which fraud arises
from agency issues between traders and their firms. A priori, it is traders’ hidden ac-
tion that enables fraudulent activity. A posteriori, the traders’ optimal strategies imply
that fraud is both continuous and of finite variation, which makes it hard to detect even
for a hypothetical observer who could continuously monitor traders’ wealth.
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In the interest of both simplicity and relevance, the model assumes that each trader
is compensated with a fraction of trading profits, i.e., contracts are linear. As a result,
the fraudulent activity that arises in the model does not stem from nonlinear incen-
tives that may encourage risk-taking (Carpenter [9]), but merely from the asymmetric
opportunity of taking personal credit from fraudulent gains while sharing bankruptcy
costs. In this sense, each trader’s fraud represents an externality for other traders and
the firm, whence the overall demand for fraud is socially suboptimal (i.e., nonzero).

At the technical level, this paper contributes to the theory of nonzero-sum stochas-
tic differential games with singular controls. A distinctive feature of our model is that
both players are free to perform simultaneous discontinuous actions, a possibility
that is often excluded in the literature for technical convenience. We also provide
a continuous-time formulation of Nash equilibrium with singular controls and con-
struct an equilibrium explicitly through Skorokhod reflection.

The results in the paper also bear a curious analogy with portfolio choice with
proportional transaction costs in that, similar to Davis and Norman [12], the solution
to the present model leads to an inaction region, surrounded by two regions in which
actions are performed as little as necessary to return to the inaction region. Although
the mechanisms underlying the two models are very different, it is worth pointing out
the common feature that leads to the common structure. In both cases (and in many
other singular control problems), an action is performed only in a positive amount
(fraud of either trader in this paper, buying or selling in portfolio choice). As a result,
the inaction region arises when each action is counterproductive for its agent, while
the action regions are visited at their boundaries because costs are linear in the action
performed (bankruptcy probability in this paper, trading costs in portfolio choice).

In the present model, a trader’s marginal value of fraud depends on that trader’s
share of the firm’s wealth. When the wealth share is large enough (skin in the game is
high), the marginal value is negative, hence the optimal amount of fraud is zero. Vice
versa, the marginal value of fraud is positive when the share is low: since fraud yields
a reward proportional to its amount, the optimal amount would be infinite. However,
as fraud (before causing bankruptcy) increases wealth, it occurs in equilibrium only
as the wealth share is at that level for which its marginal value is exactly zero, and
only in the infinitesimal amounts necessary to keep the wealth share at such a level.

The literature on rogue trading is relatively sparse. Most existing works explore the
legal (Krawiec [32, 33]), regulatory (Moodie [36]) and social-psychological (Wexler
[43]) aspects of rogue trading, and offer a number of hypotheses for mechanisms
that may foster malfeasance in trading. Armstrong and Brigo [2] find that common
risk measures are ineffective in preventing excessive risk-taking by traders with tail-
risk-seeking preferences. In a similar vein, Gwilym and Ebrahim [20] argue that po-
sition limits are inadequate in restraining rogue trading. Taking the perspective of
a firm’s management, Xu et al. [38] use stochastic control to minimise operational
risk through preventative and corrective policies, while Kim and Xu [31] design in-
spection policies to manage operational risk losses. Xu et al. [37] review the recent
literature on operational risk.

In contrast to single-agent singular stochastic control problems, which date back
to the finite-fuel problem of Bather and Chernoff [4], research on singular stochas-
tic differential games is relatively recent. Guo and Xu [19] generalise the finite-fuel
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problem to an n-player stochastic game and a mean-field game, in which each player
minimises the distance of an object to the center of N objects, while minimising the
total amount of control applied. Guo et al. [18] extend this analysis to a larger class of
games with potentially moving reflecting boundaries in Nash equilibria. Kwon [34]
analyses the game of contribution to the common good and discovers Nash equilibria
of mixed type, i.e., the strategies in equilibrium consist of both absolutely continuous
and singular components. De Angelis and Ferrari [13] establish a connection between
a class of stochastic games with singular controls and a certain optimal stopping
game, where the underlying state processes differ but the reflecting and exit bound-
aries coincide. Kwon and Zhang [35] and Ekström et al. [16] study optimal stopping
games in which all or one of the players control an exit time that terminates the game.
Note that the fraud in Ekström et al. [16] differs from that considered here in that their
model entails an agent stealing from another one, who seeks to detect fraud and can
terminate the game. In these papers, players are forbidden to execute discontinuous
actions simultaneously, whereas our model does not impose such a restriction. In
addition, the present work provides a structural formulation of Nash equilibrium in
the presence of singular controls. Adopting BSDE techniques, Karatzas and Li [28]
investigate existence and uniqueness of Nash equilibrium in games of control and
stopping, while Hamadène and Mu [21] establish existence for games without exit
but with unbounded drift. Dianetti and Ferrari [14] employ fixed-point methods for
the monotone-follower games with submodular costs.

The rest of this paper is organised as follows. Section 2 describes our model of
rogue trading and its rationale. Section 3 constructs a Nash equilibrium with two
traders and states the main result. Section 4 discusses the interpretation of the re-
sults and their implications. Concluding remarks are in Sect. 5, and all proofs are in
the Appendix.

2 A model of rogue trading

Krawiec [32] offers the following definition: “A rogue trader is a market professional
who engages in unauthorised purchases or sales of securities, commodities or deriva-
tives, often for a financial institution’s proprietary trading account.”

Most episodes of fraudulent trading share some distinctive features. First, they
involve violations of a firm’s internal rules or external regulations. Second, fraud
often remains concealed and results in modest (relative to the firm’s size) gains that
are ascribed to the skill of the perpetrator. Third, fraud generates substantial risk
without expected return for the firm, and is revealed only when catastrophic losses
eventually materialise.

To reproduce these features, it is useful to think of a small fraud as a (forbid-
den) bet that a trader wagers on the whole firm’s capital. With a small chance
(say ε), the bet bankrupts the firm (a return of −100%), but most of the time
(with probability 1 − ε), it results in a return of 1/(1 − ε) − 1 ≈ ε for which the
trader can take credit. Of course, the bet’s overall return for the firm is zero as
(1 − ε) · (1/(1 − ε) − 1) − 1 · ε = 0. Such asymmetric outcomes (likely small gains
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against unlikely large losses) are in fact common in both illicit and licit trading strate-
gies (for example, selling deep out-of-the-money options), and have attracted the la-
bel of “picking up nickels in front of a steamroller” (Duarte et al. [15]).

Thus the dilemma of an unscrupulous but profit-driven and risk-averse trader is to
what degree to engage in fraud, as cheating too little may forego some easy profits,
but cheating too much may result in likely bankruptcy. If one imagines the small
fraud above as the outcome of a (heavily biased) coin-toss, the trader essentially
ponders how many coins to toss. For example, tossing two coins would generate a
likely payoff of (1 − ε)−2, but may also lead to bankruptcy with probability 2ε − ε2.

If the trader is the firm’s sole owner, it is not hard to see that fraud does not pay:
when one bears both gains and losses in full, wagering fair bets on one’s capital
merely replaces a payoff with another one, more uncertain but with the same mean –
an inferior choice by risk aversion.

In this sense, fraud arises from social interactions, both through the incentives im-
plied by traders’ compensation contracts or by each trader’s ability to take risks with
other people’s money (Kay [30, Chap. 2]), with the awareness that colleagues may
also engage in fraud. The present model focuses on the latter motive by assuming
that each trader receives a fixed fraction of individual profits and losses, which is a
common arrangement for bonuses with clawback provisions. The model envisages
multiple traders; each of them has the mandate to invest a share of the firm’s capital
in some risky asset with a positive risk premium and is paid with a fraction of the ter-
minal payoff. Thus except for fraudulent behaviour, each trader’s objective is aligned
with the firm’s. For the sake of tractability and clarity, the paper focuses on the case
of two traders.

The moral hazard stems from the asymmetric effects of fraud on a trader’s reward:
as long as the fraudulent activity is successful, the trader can disguise its revenues
as the fruit of personal skill in performing the investment mandate. In reality, such
additional revenues merely compensate for the fraudulent bets that the trader wagers
on the capital of the whole firm, rather than personal capital (e.g. exceeding risk lim-
its by either collateralising the firm’s asset or assuming excess liabilities). Of course,
such bets are possible exactly because they are fraudulent, and are explicitly for-
bidden by the firm’s regulations; they nonetheless exist, due to “inadequate or failed
internal processes, people and systems” embodied in the definition of operational risk
(BCBS [3, Clause 10 of Sect. “Principles for the management of operational risk”]).

The appeal of fraud – privatising gains while socialising losses – thus varies with a
trader’s share of the firm’s capital: intuitively, the temptation of fraudulently enriching
oneself is much stronger for a small trader, who has little to lose and much to gain
from gambling with others’ wealth, than for a large trader who has significant skin
in the game. For this reason, in the present continuous-time model, each trader can
cheat with varying intensity in response to changes in one’s and others’ wealth.

After this informal description, the precise definition of the model follows.

2.1 Investment and fraud in continuous time

We fix a stochastic basis (�,F ,P) equipped with the natural filtration F = (Ft )t≥0
of an N -dimensional (N ≥ 1) Brownian motion B = (Bt )t≥0, satisfying the usual
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hypotheses of right-continuity and completeness, and set F∞ := σ(
⋃

t≥0 Ft ) ⊆ F .
As all processes considered here are at least right-continuous and P is fixed, we write
“a.s. for all t ≥ 0” for the equivalent properties “for all t ≥ 0, P-a.s.” and “P-a.s., for
each t ≥ 0”.

Assuming a zero safe rate to ease notation, in the absence of fraud, the capital Y i

of the ith trader (1 ≤ i ≤ N ) evolves as

dY
i,x
t = μiY

i,x
t dt + σiY

i,x
t dBi

t , Y
i,x
0 = xi > 0,

reflecting the trader’s average ability μi > 0 to deliver excess returns with the volatil-
ity σi > 0 that the firm’s risk management is willing to accept. For simplicity, assume
that Bi and Bj are independent for i �= j , which means that traders take uncorrelated
risks (for example, one invests in stocks and the other in bonds).

To describe how each trader may engage in fraud by endangering the firm’s capital,
define the class of processes

A := {(At )t≥0 : F-adapted, right-continuous, nondecreasing,A0− = 0}.
For A ∈A, At represents the cumulative amount of “bets” wagered by a trader
on the firm’s capital up to time t . To understand this representation, suppose that
At = ∫ t

0 λsds, which means that in the interval [s, s + ds], the trader wagers a fair
bet that has the probability λsds of bankrupting the firm. Because the fraud is illicitly
wagered on the firm’s capital (thereby exceeding the capital Y i,x that the trader has
been assigned), if bankruptcy does not occur, that fraud yields a profit of YS

s λsds,
where YS,x := ∑N

k=1 Y k,x is the total capital of the firm.
Although this description is intuitive, it has two limitations. First, it encompasses

only the case of fraud with a finite rate λs , excluding bursts of rogue trades at any
instant. Second, the bankruptcy probability cannot incorporate the impact of fraud
over an arbitrary time interval as the value of

∫ t

s
λudu can exceed 1. For these reasons,

a more careful but also more technical description is necessary.
To make precise the intuition that dAs drives the bankruptcy rate, note first that

any A ∈A is right-continuous and of finite variation. Therefore, it has the represen-
tation At = Ac

t + ∑
0≤s≤t �As for any t ≥ 0, where �As = As − As− and Ac is the

continuous part of the process A with Ac
0 = 0. For a set of N traders’ fraud pro-

cesses (A1, . . . ,AN) ∈AN , denote the total fraud process by AS = ∑N
k=1 Ak . The

bankruptcy time is then defined as

τA = inf{t ≥ 0 : AS
t ≥ θ}, (2.1)

where θ is an F -measurable exponential random variable with rate 1, independent
of the filtration F. (Recall the convention that inf∅ = ∞.) Lemma A.3 below shows
that the survival probability satisfies P[τA > t |Ft ] = e−AS

t for all t ≥ 0. At time τA,
the wealth of all agents becomes zero.

Before bankruptcy occurs, the wealth of each trader follows the dynamics

dY
i,x
t = μiY

i,x
t dt + σiY

i,x
t dBi

t + YS
t−dÃi

t , Y
i,x
0− = xi > 0,1 ≤ i ≤ N, (2.2)
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where the integral with respect to Ãi in (2.2) is understood in the Lebesgue–Stieltjes
sense, and Ãi

t := A
i,c
t + ∑

0≤s≤t (e
�Ai

s − 1) reflects the fact that the simple return of
a jump in fraud is not � itself but rather e� − 1. Such a distinction is immaterial with
continuous fraud because e� − 1 ≈ � for � close to zero. The final expression for
wealth, which includes the effect of bankruptcy at τA, is

X
i,x
t = 1{t<τA}Y i,x

t with X
i,x
0− = xi.

Lemma A.2 in Appendix A.1 formally verifies that the pre-bankruptcy wealth in (2.2)
is well defined by showing that Yx = (Y 1,x , . . . , YN,x) is the unique strong solution
to the N -dimensional linear stochastic differential equation (SDE) in (2.2). Upon
bankruptcy on the event {t ≥ τA}, the wealth of all traders vanishes and remains null
thereafter; hence the dynamics of the fraud processes beyond τA is irrelevant for the
model. Effectively, fraud is described by the stopped process (Ai

t∧τA
)t≥0.

Note that the bankruptcy time τA is not an F-stopping time. Thus to accommo-
date the wealth process Xx = (X1,x , . . . ,XN,x), it is necessary to make the mini-
mal enlargement of the filtration F that makes τA a stopping time. To this end, let
H

A = (HA
t )t≥0 be the natural filtration of the indicator process (1{t≥τA})t≥0 and de-

fine the enlarged filtration G
A = (GA

t )t≥0 as GA
t = ⋂

s>t (Fs ∨HA
s ), which is the

smallest right-continuous filtration containing F such that τA is a stopping time.
Such an extension is known as ‘progressive filtration enlargement’ (cf. Jeanblanc
and Le Cam [25] and Jeulin [26, Chap. IV]). Moreover, the bankruptcy time τA is
G

A-predictable if and only if fraud does not occur after time 0 (Lemma A.6).
As wagering bets on one’s own wealth means bearing their risks in full, thereby

earning a zero risk premium, a trader who owns the whole firm (N = 1) has a wealth
process that is a G

A-martingale in the absence of investment skill.1 (See Proposi-
tion A.4, which additionally justifies the choice of the return from jump fraud.)

The goal of each trader is to maximise expected utility over a random horizon τ ,
which is an F -measurable exponential random variable with rate λ > 0, independent
of both F∞ and θ (and hence of the bankruptcy time τA). This random horizon mod-
els a trader with an open-ended contract, whose mandate is to maximise profits in
the long term. The arrival rate λ captures the likelihood that business may end for
exogenous reasons (that is, independently of traders’ performance).

A trader’s attitude to risk is represented by a utility function of power type

Ui(xi) = x
1−γi

i

1 − γi

with 0 < γi < 1.

In particular, the relative risk aversion parameter γi is below one so that the utility is
finite also upon bankruptcy (xi = 0), and the problem is nontrivial. If γi were greater
or equal to one, then zero wealth would be completely unacceptable (Ui(0) = −∞)
and fraud would disappear. In fact, as shown below (Remark 3.11), fraud does vanish
as γi converges to one.

1In principle, one could consider the case of fraud with a negative risk premium. Our model focuses on
the parsimonious case of zero risk premium, which maximises the propensity for a trader to cheat. If the
risk premium were positive, the bet would be a legitimate investment opportunity, for which the label of
“fraud” may not be justified.
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As anticipated in the description, an important implication of this model is that a
rational and strictly risk-averse trader abstains from fraud if no other trader is present.
Its significance is to confirm that in this model, fraud stems from the ability to share
losses but not gains, and hence disappears when such sharing disappears.

Proposition 2.1 Let N = 1, κ ≥ 0 and τ be an F -measurable, a.s. finite random hori-
zon independent of F∞ and θ such that

E[e((1−γ1)(μ1−γ1σ
2
1 /2)−κ)τ ] < ∞.

If the sole trader maximises

E[e−κτU1(X1,x1
τ )]

over all fraud processes A1 ∈A, then A1,� is optimal if and only if A
1,�
t = 0 a.s. for

all t ≥ 0 such that P[τ ≥ t] > 0. In particular:
(i) If τ is unbounded, then A

1,�
t = 0 a.s. for all t ≥ 0.

(ii) If τ ≤ T 1 a.s. for some T 1 > 0, then A
1,�

T 1− = 0. If P[τ = T 1] > 0, then also

A
1,�

T 1 = 0 a.s.

Note that for this result, the assumption of an exponential horizon made in the rest
of the paper can be dropped. Note also that Proposition 2.1 fails if N ≥ 2 because
the coupling term Y

S,x
t− in (2.2) rescinds the martingale property (Proposition A.4)

for each trader’s wealth in the absence of drift (μi = 0). For example, if all but the
ith trader abstain from fraud, then Xi,x can become a submartingale if the ith trader
cheats; in this case, the wealth processes of other traders become supermartingales
as they share the bankruptcy risk from the ith trader’s actions. As shown in Sect. 3,
engaging in fraud may be optimal, depending on traders’ shares of capital, risk aver-
sions, drifts and volatilities.

3 Main result

While the presentation in the previous section considered an arbitrary number N

of traders, the main result in this section focuses on two traders to simplify both
the exposition and the proofs. (A model with N traders implies that relative wealth
shares follow an (N − 1)-dimensional diffusion, which reduces to a scalar diffusion
for two traders.) Thus henceforth N = 2, and for clarity, the indices {a, b} replace
{1,2} to identify traders. The wealth processes are denoted by either Xx(Aa,Ab)

or Xx (respectively, Yx(Aa,Ab) or Yx ), depending on the need to specify the fraud
process (Aa,Ab) in context.

3.1 Definition of Nash equilibrium

For any i, j in {a, b} with i �= j (henceforth abbreviated as ‘for any i �= j ∈ {a, b}’),
the goal of trader i is to maximise expected utility over a random horizon τ as the
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other trader j chooses the respective fraud process Aj , i.e.,

J i(x;Ai,Aj ) := E
[
e−κτUi

(
Xi,x

τ (Ai,Aj )
)]

,

over Ai ∈A. Here κ ≥ 0 is the discount rate and the random horizon τ is indepen-
dent of F and θ and exponentially distributed with rate λ (meaning that 1

λ
represents

traders’ average horizon). Let thus

V i(x;Aj) := sup
Ai∈A

J i(x;Ai,Aj ) (3.1)

be the value function for the ith trader for trader j ’s fraud process Aj and initial
wealth x ∈ R

2++. The next assumption concerning minimum risk aversion and max-
imum skill stands throughout the paper and ensures that the optimisation problem
is well posed.

Assumption 3.1 Let λκ = κ + λ and assume that λκ > (1 − γa ∧ γb)(μa ∨ μb).

The value function V i satisfies the following basic properties.

Lemma 3.2 For any i �= j ∈ {a, b}, x ∈R
2++ and (Ai,Aj ) ∈A2, we have:

(i) 0 < V i(x;Aj) ≤ λUi(xa + xb)

λκ − (1 − γi)(μa ∨ μb)
.

(ii) J i(x;Ai,Aj ) = λE

[∫ ∞

0
e−λκ t−AS

t Ui
(
Y

i,x
t (Ai,Aj )

)
dt

]

.

(iii) For any c > 0, J i(cx;Ai,Aj ) = c1−γi J i(x;Ai,Aj ).

Most importantly, Lemma 3.2 (i) ensures that under Assumption 3.1, the value
function (3.1) is finite, rendering a well-posed optimisation problem. Furthermore,
(ii) reveals that we only need to use the pre-bankruptcy wealth Yx as the state pro-
cesses of the optimisation problem, as the random horizon τ is exponentially dis-
tributed. Finally, (iii) reveals the scale-invariance of the value function, which allows
reducing the resulting Hamilton–Jacobi–Bellman (HJB) equations to ordinary differ-
ential equations (see Appendix B).

At time t , the ith trader observes the history of personal wealth (Y
i,x
s )s∈[0,t) and

personal fraud (Ai
s)s∈[0,t), as well as the wealth history of the other trader j , i.e.,

(Y
j,x
s )s∈[0,t], so that trader i can respond to trader j ’s instant wealth change �Y

j,x
t .

Formally, for t ≥ 0, let D+([0, t]) denote the set of R++-valued càdlàg functions on
[0, t] with a left limit at t = 0. Let D↑([0, t]) be the set of R+-valued nondecreasing,
right-continuous functions on [0, t] with zero left limit at t = 0. The sets D+([0, t))

and D↑([0, t)) are defined analogously. For any process (Zt )t≥0 with left limit at
0, Z[0,t) (resp. Z[0,t]) denotes the restrictions of the paths of Z to the interval [0, t)

(resp. [0, t]). Denote by H+
t , H+

t− and H↑
t− the smallest σ -algebras generated by

all F-adapted processes with trajectories in D+([0, t]), D+([0, t)) and D↑([0, t)),
respectively.

To construct a Nash equilibrium of closed-loop form, we consider a special class of
fraud strategies that constitute a trader’s possible responses to the fraudulent activities
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of the other trader, but depend on the latter only through the wealth of both traders
and one’s own strategy.

Definition 3.3 Let i �= j ∈ {a, b}. The set �i is the collection of maps  = (t )t≥0

which are for any t ≥ 0 of the form

t : D+
([0, t)

) ×D+
([0, t]) ×D↑([0, t)

) →R+ H+
t− ⊗H+

t ⊗H↑
t−-measurable

such that for any x = (xi, xj ) ∈R
2++ and any Aj ∈A, there exists a unique Ai ∈ A

satisfying

Ai
t = t(Y

i,x
[0,t), Y

j,x

[0,t],A
i
[0,t)) a.s. for all t ≥ 0, (3.2)

where (Y i,x, Y j,x) is the pre-bankruptcy wealth associated with (Ai,Aj ).

Lemma A.2 (i) yields a unique strong solution (Y i,x, Y j,x) to the SDE (2.2) for a
given pair of fraud processes (Aa,Ab) and initial wealth x ∈ R

2++.
We are now ready to define Nash equilibria in the context of this paper. See

Carmona [8, Sect. III.5] for an overview of Nash equilibria in stochastic settings
with absolute continuous controls.

Definition 3.4 A pair (�,a,�,b) ∈ (�a,�b) is a Nash equilibrium if for any ini-
tial capital x ∈R

2++, there exists a unique pair (Aa,�,Ab,�) ∈A2 such that for any
i �= j ∈ {a, b},

(i) A
i,�
t = 

�,i
t (Y

i,x,�
[0,t) , Y

j,x,�

[0,t] ,A
i,�
[0,t)) a.s. for all t ≥ 0, where (Y a,x,�, Y b,x,�) de-

notes the wealth associated with (Aa,�,Ab,�);
(ii) non-cooperative optimality holds, that is, for any Ai ∈A, the response Aj

satisfying (3.2) with j = �,j makes Ai sub-optimal, i.e.,

J i(x;Ai,Aj ) ≤ J i(x;Ai,�,Aj,�).

The pair (Aa,�,Ab,�) is referred to as equilibrium fraud processes.

Remark 3.5 A Nash equilibrium (�,a,�,b) ∈ (�a,�b) does not necessarily yield
best-response maps: It is not necessarily true that for any i �= j ∈ {a, b} and Ai ∈A,

J j (x;Aj,′ ,Ai) = sup
Aj ∈A

J j (x;Aj ,Ai),

with the response map A
j,′
t = 

�,j
t (Y

j,x

[0,t), Y
i,x
[0,t],A

j,′
[0,t)) for all t ≥ 0 satisfying (3.2).

In other words, the response �,j of trader j need not be optimal for any fraud
process of trader i, but merely sufficient to deter the other trader from deviating from
Ai,�. For the specific equilibrium fraud process Ai,� of trader i, (3.3) holds true in
view of Definition 3.4, condition (ii).
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3.2 Construction of Nash equilibrium

In the Nash equilibrium described below, each trader cheats as little as necessary
to keep the personal share of wealth above a certain threshold. To rigorously define
this behaviour, it is necessary to recall the notion of Skorokhod reflection. For any
x = (xa, xb) ∈ R

2++ and any i ∈ {a, b}, define ri(x) = xi

xa+xb
. Then ri(Y

x
t ) is trader i’s

share of the firm’s capital at time t . (See Lemma A.9 for the SDE identification
of ri(Y

x).) Define by W
i,wi
t (Ai,Aj ) = ri(Y

x
t (Ai,Aj )) for any t ≥ 0 with the initial

wealth share W
i,wi

0− (Ai,Aj ) = ri(x) = wi .

Definition 3.6 Let i �= j ∈ {a, b} and mi ∈ (0,1). A function i,mi ∈ �i solves the
(one-sided) Skorokhod reflection problem (henceforth SPi

mi+) if for any Aj ∈A and
any x ∈ R

2++, the pair (Ai, Y x) associated to i,mi is the unique pair satisfying

(i) mi ≤ W
i,wi
t (Ai,Aj ) < 1 a.s. for all t ≥ 0;

(ii)
∫
R+ 1{Wi,wi

t (Ai ,Aj )>mi }dAi
t = 0 a.s.

By (i), W
i,wi
t (Ai,Aj ) ≥ mi a.s. for all t ≥ 0, while (ii) means that as Ai increases,

Wi,wi (Ai,Aj ) can reach mi but without spending any positive amount of time at
this point. Because Wi,wi = 1 − Wj,1−wi for any i �= j ∈ {a, b}, Wi,wi is reflected
upward at mi if and only if the other trader’s fraction of wealth Wj,1−wi is reflected
downward at 1 − mi . Moreover, the solution to SPi

mi+ is unique in that it identifies a
unique pair (Ai, Y x).

For any i �= j ∈ {a, b}, let mi ∈ (0,1) and define i,mi ∈ �i as follows. For all
t ≥ 0 and (yi

[0,t), y
j

[0,t], a
i
[0,t)) ∈ D+([0, t)) ×D+([0, t]) ×D↑([0, t)), set


i,mi
t (yi

[0,t), y
j

[0,t], a
i
[0,t))

:= 1

1 − mi

(

sup
s∈[0,t]

(
mi − wi−

s + (1 − mi)a
i,c
s +

∑

0≤u<s

(mi − wi−
u )+

)+

−
∑

0≤s≤t

(mi − wi−
s )+

)

+
∑

0≤s≤t

(

ln

(

1 + wi−
s−

1 − mi

( mi

wi−
s

− 1
)))+

, (3.3)

where wi−
t := ri(y

i
t−, y

j
t ) for t ≥ 0 and ai,c denotes the continuous part of ai . The

first and second term on the right-hand side of (3.3) govern the continuous and discon-
tinuous components of the path t �→ 

i,mi
t (yi

[0,t), y
j

[0,t], a
i
[0,t)), respectively. Proposi-

tion A.10 in Appendix A.5 proves that i,mi is the solution to SPi
mi+. It also estab-

lishes conditions under which the separate Skorokhod reflections can be combined to
form a two-sided Skorokhod reflection, which ultimately yields a Nash equilibrium.

At this point, it is necessary to introduce some notation.
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Definition 3.7 For any i �= j ∈ {a, b}, define the threshold

ŵi := −αi(1 − γi)

γi − αi

, (3.4)

where

αi := 1

σ 2

(
ki −

√
k2
i + 2σ 2pi

)
, σ 2 := σ 2

a + σ 2
b ,

pi := λκ − (1 − γi)

(

μj − γiσ
2
j

2

)

, ki := μj − μi − γiσ
2
j + σ 2

2
.

Furthermore, set

qi := λκ − (1 − γi)

(

μi − γiσ
2
i

2

)

, ai := 1 − γi − αi,

βi := 1

σ 2

(
ki +

√
k2
i + 2σ 2pi

)
, bi := 1 − γi − βi.

Let � := {(wa,wb) ∈ (0,1)2 : wa + wb < 1} and for any i �= j ∈ {a, b}, define the
map F i : � → R by

F i(wi,wj ) := ai

(
αi(1 − γi − wi) + γiwi

)
(wj − bi)

(
wi

1 − wi

)bi
(

wj

1 − wj

)−βi

− bi

(
βi(1 − γi − wi) + γiwi

)
(wj − ai)

(
wi

1 − wi

)ai
(

wj

1 − wj

)−αi

+ (ai − bi)
(
wi(αi + βi − 1) − αiβi

)
w

γi

j (1 − wj)
1−γi .

Note that F i implicitly depends on the rate λ of the exponentially distributed ran-
dom horizon (through αi and βi ) and on the parameters of both traders’, except trader
j ’s risk aversion γj . The next result identifies the fraud thresholds used in Theo-
rem 3.9 below to construct the Nash equilibrium.

Lemma 3.8 There exists (w̃a, w̃b) ∈ � such that

Fa(w̃a, w̃b) = Fb(w̃b, w̃a) = 0.

Moreover, any such pair (w̃a, w̃b) satisfies w̃k < ŵk for all k ∈ {a, b}.

Theorem 3.9 For (w̃a, w̃b) as in Lemma 3.8, the pair (a,w̃a ,b,w̃b ) is a Nash equi-
librium. In particular, for any i �= j ∈ {a, b}, trader i cheats, if necessary, at time 0 so
as to bring the wealth share instantly to w̃i . Thereafter, the trader minimally cheats
to keep that share above w̃i (the no-fraud region). The corresponding game values
satisfy, for any i �= j ∈ {a, b} and x ∈ R

2++,

V i(x;Aj,�) = λ(xa + xb)
1−γi ϕi

(
ri(x)

)
,
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where (Aa,�,Ab,�) is the equilibrium fraud process and

ϕi(w) =

⎧
⎪⎨

⎪⎩

ci
0(1 − w)−γi , w ∈ (0, w̃i),

ci
1w

αi (1 − w)ai + ci
2w

βi (1 − w)bi + Ui(w)
qi

, w ∈ [w̃i,1 − w̃j ),

ci
3w

−γi , w ∈ [1 − w̃j ,1),

with the constants

ci
0 = −aibi(1 − w̃i)

γi U i(w̃i)

qi((αi + βi − 1)w̃i − αiβi)
> 0,

ci
1 = −biw̃

ai

i (1 − w̃i)
−ai (γiw̃i + (1 − γi − w̃i)βi)

(1 − γi)qi(βi − αi)((αi + βi − 1)w̃i − αiβi)
> 0,

ci
2 = aiw̃

bi

i (1 − w̃i)
−bi (γiw̃i + (1 − γi − w̃i)αi)

(1 − γi)qi(βi − αi)((αi + βi − 1)w̃i − αiβi)
< 0,

ci
3 = (1 − w̃j )

γi

(

ci
1(1 − w̃j )

αi w̃
ai

j + ci
2(1 − w̃j )

βi w̃
bi

j + Ui(1 − w̃j )

qi

)

> 0.

For the purpose of comparative statics, it is also useful to consider the case when
only one trader can commit fraud. Indeed, depending on circumstances, access to
fraud may be uneven. For instance, Nick Leeson was able to conceal his unauthorised
trades because he was allowed to settle his own trades (controlling both the front-
and the back-office), a privilege that other traders of the firm did not share. In this
regard, assuming that one of the two traders cannot cheat, the other trader maximises
expected utility by cheating in a similar way, but with a different fraud threshold.

Theorem 3.10 For any i �= j ∈ {a, b}, if Aj ≡ 0, the optimal fraud process for trader
i is A

i,�
t = 

i,ŵi
t (Y

i,x
[0,t), Y

j,x

[0,t),A
i,�
[0,t)) for all t ≥ 0, and the corresponding value func-

tion satisfies

V i(x;0) = λ(xa + xb)
1−γi ϕ̂i

(
ri(x)

)

for any x ∈ R
2++, where

ϕ̂i (w) =
{

si
0(1 − w)−γi , w ∈ (0, ŵi),

si
1w

αi (1 − w)ai + Ui(w)
qi

, w ∈ [ŵi,1),

with

si
0 = ai(1 − ŵi)

γi

qi(ŵi − αi)
Ui(ŵi) > 0, si

1 = 1 − γi − ŵi

(1 − γi)qi(ŵi − αi)

(
ŵi

1 − ŵi

)ai

> 0.

Remark 3.11 Because ŵi > w̃i (Lemma 3.8), a rogue trader who knows that the other
is honest has a higher cheating threshold than one who knows that the other can also
cheat. The fraud region of trader i is indeed smaller in the Nash equilibrium, where
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both cheat as little as necessary (Theorem 3.9) to keep their proportion of wealth
above w̃i . Furthermore, limγi↑1 ŵi = 0 follows by (3.4), and then limγi↑1 w̃i = 0 due
to ŵi > w̃i , which shows that fraud disappears with log-utility for both solo and dual
rogue traders, as bankruptcy becomes unacceptable.

4 Discussion

This section brings to life the theoretical results in Sect. 3.2 by examining the prop-
erties of the Nash equilibrium for concrete parameter values.

4.1 Comparative statics

A trader’s fraud threshold is relatively insensitive to the profitability of personal in-
vestments (Fig. 1, upper left), even as that profitability increases from 10% to 60%.

Fig. 1 Fraud thresholds for trader a (blue) and b (red), in view of trader a’s share of wealth (vertical
axis), in Nash equilibrium (solid line), and when the other trader is honest (dashed line), against trader
a’s expected return (upper left, 0% ≤ μa ≤ 60%), volatility (upper right, 0% < σa ≤ 100%), risk aver-
sion (bottom left, 0 < γa < 1) and average horizon (bottom right, 0 < 1/λ ≤ 20). Other parameters are
μa = μb = 10%, σa = σb = 20%, γa = γb = 0.5, λ = 1/3, κ = 10%
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Fig. 2 Equilibrium average fraud, up to horizon or bankruptcy, of traders a (blue) and b (red), and
bankruptcy probability (orange) against trader a’s expected return (upper left, 0% ≤ μa ≤ 60%), volatility
(upper right, 0% < σa ≤ 100%), risk aversion (bottom left, 0.1 < γa < 0.9) and average horizon (bottom
right, 0 < 1/λ ≤ 20). Results obtained from the simulation of 104 paths, each with step size 5 · 10−4. Other
parameters are μa = μb = 10%, σa = σb = 20%, γa = γb = 0.5, wa = wb = 0.5, λ = 1/3, κ = 10%

The flatness of the threshold, however, does not imply the flatness of average fraud,
which instead declines rapidly as profitability increases (Fig. 2, upper left). The ex-
planation of this phenomenon lies in the dynamics of relative wealth shares: when
one trader’s profitability is high, that trader’s wealth share tends to increase over
time, thereby reaching the fraud threshold less often, hence generating lower fraud.

By contrast, the fraud threshold of the other trader (whose profitability remains
constant) rapidly shifts upwards; hence this trader cheats when the respective wealth
share falls below a lower threshold. Again, this does not imply a decline in the amount
of personal fraud, because that trader’s typical wealth share also tends to decline.
In fact, Fig. 2 shows that the amount of fraud first increases up to μa ≈ 40%, at
which insolvency risk peaks, and then decreases: The initial rise is understood as a
short-term appropriation, whereby the less skilled trader’s higher fraud pilfers the
other’s profits. The subsequent decline is more akin to a long-term appropriation:
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the less skilled trader recognises that the other’s skill is so high that it is overall
more profitable to limit the amount of fraud per unit of time so as to let the other’s
wealth grow faster, and that future fraud can be even more profitable. Put differently,
the less skilled trader establishes a sort of parasite–host relationship with the more
skilled trader, thereby avoiding excessive cheating, lest the host perish. Note also
that the threshold of the more skilled trader is more sensitive to the honesty (or lack
thereof) of the other trader, while the less skilled trader becomes indifferent to the
other’s honesty when the profitability is sufficiently high. Furthermore, the equality
of traders’ skills corresponds to a local minimum for bankruptcy risk, but the global
minimum (approximately 2%) is achieved when one trader markedly outperforms the
other one (μa = 80% versus μb = 10%).

As the volatility of a trader’s investments increases (upper right, Figs. 1 and 2),
that trader’s fraud threshold recedes aggressively, but total fraud and hence the prob-
ability of bankruptcy increase significantly. Increased volatility is qualitatively sim-
ilar to lower skill, which makes the trader more reliant on fraud to generate profits.
Vice versa, the other trader can still rely on a personal payoff with lower volatility,
which would be significantly degraded by the additional asymmetry generated by
more fraud.

Risk aversion (lower left, Figs. 1 and 2) has a major impact on the propensity to
fraud. Holding the opponent’s risk aversion constant at 0.5, as a trader’s risk aver-
sion increases from zero to one, the fraud threshold declines very rapidly from one
(incessant fraud) to zero (no fraud). Note that as one fraud threshold declines, the
other threshold also declines, not to zero, but to the threshold that assumes the other’s
honesty. Put differently, a fearless trader’s propensity to fraud forces the other, more
prudent trader to withdraw from fraud as the overall risk is already too high. The
implication is that when the two traders have very different risk aversions but sim-
ilar investment opportunities, it is the least risk-averse (in particular, if it is below
0.5) that has the most potential for fraud. Vice versa, when risk aversions are similar,
the overall potential for fraud is evenly distributed between traders. Note that the in-
solvency probability is insensitive to the risk aversion when it is above 0.5 because
the reduction of fraud from the more risk-averse trader is offset completely by the
increase of fraud from the other trader with risk aversion 0.5.

Fraud completely disappears with unit risk aversion (i.e., logarithmic preferences).
In this case, the dread of bankruptcy is so high that traders abstain from fraud regard-
less of its potential rewards. Note that this phenomenon stems from the fraud’s in-
herent discontinuity, which always implies a probability, however small, that wealth
may vanish. Put differently, for the logarithmic investor, the marginal utility of any
amount of fraud is infinitely negative, regardless of expected profits.

The average horizon is also an important determinant of fraud (lower right, Figs. 1
and 2). Fraud thresholds recede as the horizon increases (λ decreases) and with it the
expected reward for delaying fraud. In fact, the average amount of fraud increases
sharply, up to a horizon of about five years, climbing steadily thereafter and eventu-
ally stabilising. The implication is that while a longer horizon helps in reducing fraud
per unit of time, it does not reduce overall fraud, which in fact increases the most in
the medium term – the typical turnover of traders in financial institutions.
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Fig. 3 Distribution of the
bankruptcy time τA in Nash
equilibrium, conditionally on
bankruptcy occurring before the
terminal horizon τ against time
(0 ≤ t ≤ 20) with a bin size of
half a year (blue). The
probability of survival (red)
P[τA > τ ] is ≈ 95%. Results are
obtained from the simulation of
105 paths, each with step size
5 · 10−4. Other parameters are
μa = μb = 10%,
σa = σb = 20%, γa = γb = 0.5,
wa = wb = 0.5, λ = 1/3,
κ = 10%

4.2 Bankruptcy

Figures 1 and 2 demonstrate the dependence of the fraud thresholds on model pa-
rameters, the average amount of fraud of each trader and the bankruptcy probability.
A direct application of the Doob–Meyer decomposition (Lemma A.5) reveals that in
the Nash equilibrium, the bankruptcy probability satisfies

P[τa ≤ τ ] =

⎧
⎪⎨

⎪⎩

E[Aa,�
τ∧τA

+ A
b,�
τ∧τA

] − ln 1−wa

1−w̃a
+ w̃a−wa

1−wa
, wa < w̃a,

E[Aa,�
τ∧τA

+ A
b,�
τ∧τA

], w̃a ≤ wa < 1 − w̃b,

E[Aa,�
τ∧τA

+ A
b,�
τ∧τA

] − ln 1−wb

1−w̃b
+ w̃b−wb

1−wb
, wa ≥ 1 − w̃b,

showing that the bankruptcy probability is the sum of the (stopped) fraud processes
and an extra term if the initial share of wealth is in the fraud region. In Fig. 2, the
initial share of wealth is 50%, which lies in the fraud-free region [w̃a,1 − w̃b], except
for falling into the personal fraud region (0, w̃a] when trader a’s risk aversion is
below 0.26.

Figure 3 depicts the distribution of the bankruptcy time τA conditionally on the
event that bankruptcy occurs before the random horizon τA, assuming the traders are
identical in risk aversion, skill and initial wealth. The distribution is skewed to the
right: more than half of the insolvencies occur within the first 3 years (coinciding with
the average time horizon E[τ ] = 1

λ
= 3 years), reaching the peak of approximately

30% in the second year and quickly decreasing below 2% after the sixth year. The
survival probability (red bar) is approximately 95%.

4.3 Welfare

Figure 4 compares trader a’s expected utility in three scenarios: (i) both traders ab-
stain from fraud, (ii) only trader a commits fraud, and (iii) both commit fraud in a
Nash equilibrium. Once becoming the solo rogue trader, trader a’s utility increases
dramatically when the share of wealth is low; in contrast, that increment is insignif-
icant when the share is high. The presence of the additional rogue trader b reduces
the value function of the sole cheater across the span of the initial wealth share. This
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Fig. 4 Value functions of trader a in the absence of fraud (black), when trader a is the sole cheater (red)
with fraud threshold ŵa (dashed line in green) as in Theorem 3.10, and in the Nash equilibrium (blue)
with fraud threshold w̃a (dashed line in cyan) and trader b’s fraud threshold in view of trader a’s wealth
share 1 − w̃b (dashed line in purple) as in Theorem 3.9, against the initial share of the wealth of trader
a (0% < wa < 100%). Other parameters are μa = μb = 10%, σa = σb = 20%, γa = γb = 0.5, λ = 1/3,

κ = 10%, xa + xb = λ−(1−γa)−1

reduction is most significant when trader a has the most skin in the game (which co-
incides in this example with the fraud zone of trader b). Near the 50% wealth share,
both traders are better off abstaining completely from fraud and even the prospect of
solitary fraud yields little benefit. Thus in the case of two traders with similar ability,
an equal allocation of managed wealth mitigates the potential for fraud.

4.4 Uncertain opponent’s skill

In practice, a trader may not have perfect information about the other’s investment
skill and portfolio risk, but may be able to estimate them. Volatility can be determined
rather precisely from frequent (say daily) observations of wealth history; indeed, in
the model, volatility follows directly from the quadratic variation of the logarithmic
wealth process, which is insensitive to fraud (which is a finite-variation process).

The situation is more delicate for the skill μj . As Theorem 3.9 proves that a ratio-
nal trader cheats only when the respective wealth share drops below some boundary
(and spends approximately zero time at that boundary), the cumulative return of the
opponent satisfies

dY
j
t

Y
j
t

= μjdt + σjdB
j
t + dUt , Y

j

0 > 0,

where the continuous, nondecreasing process (Ut )t≥0 (reflecting the contribution of
fraud to returns) increases only on the set {(t,ω) : rj (Y x

t (ω)) = wj }, where wj is the
fraud threshold. Thus the opponent’s return includes the contributions of both skill
and fraud, but the latter can be removed by excluding the returns that take place near
the minimum of rj . In practice, if the discrete-time observations are (Y

j
tk
)0≤k≤n, the
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trader calculates the minimum r = min1≤k≤n rj (Y
x
tk−1

) and then estimates the oppo-
nent’s skill μj from the returns as

μ̂j = 1

m

∑

rj (Y x
tk−1

)>r+ε

(
Y

j
tk

Y
j
tk−1

− 1

)

, where m = #{1 ≤ k < n : rj (Y x
tk−1

) > r + ε}

and the parameter ε is chosen so that the probability that rj (Y
x) reaches r be-

tween rj (Y
x
tk−1

) and rj (Y
x
tk
) is negligible; therefore the estimator of μj is approx-

imately unbiased. Indeed, the probability that an Itô process with diffusion coeffi-
cient σ moves from x > y to z > y in time �t without reaching y is approximately
e−2(x−y)(z−y)/(σ 2�t) (cf. Borodin and Salminen [6, 1.2.8 in Part II, Sect. 2.1]). Thus
choosing x − y, z − y ≈ 2σ

√
�t , this probability is about e−8 ≈ 0.03%, which cor-

responds for daily observations to a frequency of less than one day in ten years
(0.03% · 252 · 10 ≈ 0.8). Hence a reasonable choice for ε is two standard deviations
of the daily change in wealth share.

The large-sample distribution of μ̂j is close to normal, but the trader recognises
that the exact normal distribution is ill-suited to estimate the skill μj which is as-
sumed to be positive and to satisfy Assumption 3.1. Instead, a viable alternative distri-
bution that is close to normal while preserving positivity is the binomial distribution,
so that trader i can more plausibly posit that

μj ∼ Bin(nj ,pj ),

where the parameters nj and pj are identified by the first two moments njpj = μ̂j

and njpj (1 − pj ) = v̂j , and v̂j is the variance associated to the opponent’s skill.
(A frequentist trader who estimates the variance only from returns would choose v̂j to

be their sample variance, i.e., 1
m−1

∑
rj (Ytk−1 )>r+ε(Y

j
tk
/Y

j
tk−1

− 1 − μ̂j )2. A Bayesian

trader may use different estimators for μ̂j and v̂j , depending on the relative weight
of the prior on the opponent’s skill.) Then the trader can choose a personal cheating
threshold that maximises the expected utility for an uncertain opponent’s skill with
the prescribed distribution.

Figure 5 highlights the impact of uncertainty on the opponent’s skill on fraud.
The left panel displays the probability mass function of the drift estimator, while the
right panel displays the dependence of the average amount of fraud of each trader
on the estimation error, holding the opponent’s estimator of the trader’s drift con-
stant with mean 10% and error 5%. As a trader’s estimation error of the opponent’s
skill increases from 1% to 10% (horizontal axis), fraud reduces significantly (approx-
imately 10% with the chosen parameters), while the opponent’s behaviour remains
nearly constant.

This phenomenon arises because when the opponent’s skill is uncertain, a hypo-
thetical high skill implies a significant reduction in fraud, while a hypothetical low
skill has little effect on fraud (cf. upper left panels in Figs. 1 and 2). This asymme-
try implies that uncertainty on the opponent’s skill is akin to its overestimation and
partially mitigates fraud: traders who are unsure of each other’s abilities behave as if
their peers were more skilled than they actually are on average.
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Fig. 5 (Left) Probability mass function of trader a’s estimator μ̂a
b

with mean 10% and standard deviation
εa
b

(3%, 5% and 7%, from top to bottom). (Right) Equilibrium average fraud (vertical axis) with estimated
drifts, up to horizon or bankruptcy, of traders a (blue) and b (red) against trader a’s estimation error
(1% ≤ εa

b
≤ 10%). Results obtained from the simulation of 104 paths, each with step size 5 · 10−4. Other

parameters are μa = μb = 10%, σa = σb = 20%, γa = γb = 0.5, wa = wb = 0.5, λ = 1/3, κ = 10% and
μ̂b

a has mean 10% and standard deviation εb
a = 5%

4.5 The shareholders’ problem

Suppose that if no bankruptcy occurs, each trader receives at the terminal horizon τ

a fixed portion p ∈ (0,1) of wealth, with the remainder 1 − p distributed to share-
holders. (Up to subtracting the initial wealth, this formulation is equivalent to (more
realistically) rewarding traders with a fraction of gains rather than wealth. As an addi-
tive constant does not change the optimisation problem but complicates the notation,
we do not discuss this variant.) For traders, the individual objective function is

E
[
e−κτUi

(
pXi,x

τ (Ai,Aj )
)] = p1−γi

1 − γi

E
[
e−κτUi

(
Xi,x

τ (Ai,Aj )
)]

.

The Nash equilibrium strategies of Theorem 3.9 remain unchanged under such con-
stant scaling, while the game values are obtained by multiplying V i (as in Theo-

rem 3.9) with the constant p1−γi

1−γi
.

If shareholders are risk-neutral (as is customary in the corporate finance literature,
in view of their ability to diversify investments across a multitude of assets), their
objective is to maximise

J (x;Aa,Ab) := E[e−κτ (1 − p)XS,x
τ (Ai,Aj )] (4.1)

over all (Aa,Ab) ∈A2. Denote by J S(x;Aa) := E[e−κτ (1 − p)Xa,x
τ (Aa)] the value

of a sole trader’s cheating strategy Aa .

Proposition 4.1 Let λκ > μa ≥ μb .
(i) If μa = μb , then a pair (Aa,Ab) ∈A2 maximises the value in (4.1) if and only

if it satisfies �Aa
t �Ab

t = 0 a.s. for all t ≥ 0.
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(ii) If μa > μb , then for any (xa, xb) ∈R
2++ and Aa ∈ A \ {0}, we have

J
(
(xa, xb);0,0

)
< J

(
(xa, xb);Aa,0

)
, (4.2)

with the inequality reversing if μa < μb. Moreover, the value function coincides with
the value of a sole trader’s cheating strategy, that is, for any (xa, xb) ∈R

2++,

sup
(Aa,Ab)∈A2

J
(
(xa, xb);Aa,Ab

) = J S(xa + xb;Aa) for any Aa ∈A.

However, the value function is unattainable in A2.

In Proposition 4.1, (i) states that unless there are simultaneous jumps of the fraud
processes, shareholders are indifferent to any fraud. This is in particular the case for
the Nash equilibrium in Theorem 3.9, where the only jumps may arise at inception,
albeit not simultaneously.

By (ii), for shareholders, fraud of the more skilled trader is preferable to no fraud
at all, which is in turn preferable to fraud by the less skilled trader. Prima facie, such
a result is counterintuitive as fraud risk does not carry any premium. However, the
fraud of the more highly skilled, accidentally rewarded as skill, helps in reducing the
wealth share managed by the less skilled trader, thereby increasing the return on the
firm’s capital.

However, due to the final statement of (ii), the optimisation problem is ill posed.
Nevertheless, the above intuition can be strengthened by including an additional con-
trol, which represents the initial share of assets under the management of trader a, to
make the problem well posed. Let this control be wa ∈ [0,1], where the firm recruits
only trader a whenever wa = 1 and only trader b whenever wa = 0. Then by choos-
ing wa = 1, the supremum of J ((xa, xb);Aa,Ab) is indeed attained. Note that if the
firm employs only a sole trader (say trader a), risk-neutral shareholders are indiffer-
ent to fraud as wagering bets with one’s own capital has zero (rather than negative)
risk premium, because wealth from only rogue trading (i.e., without legitimate invest-
ment) Xa

t = 1{t<τA}eAa
t , t ≥ 0, is a G

A-martingale. However, shareholders would be
averse to fraud if it carried a negative risk premium because wealth would be a true
supermartingale. To see this, modify the bankruptcy time (2.1) as

τ ε
A = inf{t ≥ 0 : (1 + ε)AS

t ≥ θ} (4.3)

for some constant ε ≥ 0 representing the unit cost of fraud. Then fraud is indeed un-
desirable for risk-neutral shareholders because (1{t<τA}eAa

t ) is a true supermartingale
for ε > 0. Indeed, by viewing (1 + ε)Aa as the fraud process, Proposition A.4 (i)
implies that (1{t<τε

A}e(1+ε)Aa
t ) is a G

A-martingale, whence

1{s<τε
A}eAa

s = E
[
1{t<τε

A}eAa
t +ε(Aa

t −Aa
s )

∣
∣Gs

] ≥ E
[
1{t<τε

A}eAa
t
∣
∣Gs

]

for any 0 ≤ s < t < ∞, where the inequality is strict if and only if P[Aa
t > Aa

s ] > 0.
Denoting by J S,ε the reward function corresponding to the modified bankruptcy

time and with only trader a, it follows that for ε > 0,

sup
Aa∈A

J S,ε(xa + xb;Aa) = J S,ε(xa + xb;0)
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and for any Aa �= 0 in A,

J S,ε(xa + xb;Aa) < JS,ε(xa + xb;0).

Since the survival processes satisfy 1{t<τε
A} ≤ 1{t<τA} a.s. for all t ≥ 0 with equal-

ity if and only if AS ≡ 0, then J ε((xa, xb);Aa,Ab) ≤ J ((xa, xb);Aa,Ab) for any
(Aa,Ab) ∈A2 and J S(xa + xb;0) = J S,ε(xa + xb;0). By (ii), it follows that

sup
(Aa,Ab)∈A2,wa∈[0,1]

J ε
(
(xa, xb);Aa,Ab

) = J S,ε(xa + xb;0).

Therefore, using the model modification (4.3), the optimal policy for risk-neutral
shareholders is to recruit only the more skilled trader a who, being alone, will then
abstain from fraud (Proposition 2.1).

5 Conclusion

This paper develops a structural model of rational rogue trading. Self-interested, risk-
averse traders can deliberately engage in fraudulent trading activity that can be con-
cealed as superior performance while successful, but may lead to a firm’s bankruptcy
if unsuccessful. Traders abstain from fraud when they have sufficient skin in the
game, suggesting that effective mitigation of rogue trading episodes should not focus
on large traders alone.

Appendix A

A.1 Wealth of rogue traders

Recall the definition of the stochastic exponential (Jacod and Shiryaev [24, Eq. I.4.62])
of a general semimartingale.

Definition A.1 For any R-valued semimartingale S with S0− ∈ R, the stochastic ex-
ponential of S is the process

E(S)t := exp

(

St − S0− − 1

2
[Sc]t

) ∏

0≤s≤t

e−�Ss (1 + �Ss), t ≥ 0,

where E(S)0− = 1 and Sc denotes the continuous local martingale part of S.

All stochastic exponentials in this article are a.s. strictly positive because the jump
sizes are bounded away from −1 (cf. [24, Theorem I.4.61 (c)]. If the total variation
of the jumps of S is finite, recall that

St = Sc
t +

∑

0≤s≤t

�Ss
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a.s. for all t ≥ 0. Therefore the stochastic exponential then simplifies to

E(S)t = exp

(

Sc
t − 1

2
[Sc]t

) ∏

0≤s≤t

(1 + �Ss)

for S0− = 0. The following result shows that the pre-bankruptcy wealth (2.2) is well
defined and provides an expression in terms of a stochastic exponential.

Lemma A.2 For any k ∈ {1, . . . ,N}, let rk(x) = xk∑N
i=1 xi

for any x ∈R
N++. Then:

(i) There exists a unique strong solution Yx = (Y 1,x , . . . , YN,x) of (2.2), and for
all 1 ≤ i ≤ N , P[Y i,x

t > 0 for all t ≥ 0] = 1.

(ii) For all 1 ≤ i ≤ N and any t ≥ 0, we have a.s. with ÃS = ∑N
k=1 Ãk that

Y
i,x
t = xiE

(

μi · +σiB
i· +

∫

[0,·]
ri(Y

x
s−)−1dÃi

s

)

t

,

Y
S,x
t =

( N∑

k=1

xk

)

E
( N∑

k=1

(∫ ·

0
μkrk(Y

x
s )ds +

∫ ·

0
σkrk(Y

x
s )dBk

s

)
+ ÃS·

)

t

. (A.1)

Proof Denote by IN the N × N identity matrix. The SDE (2.2) can be written in
vector form as

dY x
t = diag(Yt )dRt + trace

(
diag(Yt−)

)
INdÃt , Y0− = x ∈R

N++, (A.2)

where we define the process R = (R1, . . . ,RN) by Ri
t = μit + σiB

i
t for 1 ≤ i ≤ N

and set Ã = (Ã1, . . . , ÃN ). The linearity of the coefficients of (A.2) implies uniform
Lipschitz-continuity, hence the existence and uniqueness of a strong solution (cf.
Cohen and Elliott [10, Theorem 16.3.11]).

For any 1 ≤ i ≤ N , let Zi
t = Ri

t + Ãi
t and Hi

t = xi + ∫
[0,t]

∑N
j �=i Y

j
s−dÃi

s for all

t ≥ 0, with Zi
0− = 0 and Hi

0− = xi . Rewriting (2.2) yields

Y i
t = Hi

t +
∫

[0,t]
Y i

s−dZi
t .

By Jacod [23, Theorem 6.8], it follows that

Y i
t = E(Zi)t

(

xi +
∫

[0,t]
E(Zi)−1

s−dH̄ i
s

)

, (A.3)

where

H̄ i
t = Hi

t −
∑

0≤s≤t

�Hi
s �Ãi

s

1 + �Ãi
s

= H
i,c
t +

∑

0≤s≤t

�Hi
s

1 + �Ãi
s

= xi +
∫

[0,t]

N∑

j �=i

Y
j
s−dĀi

s (A.4)
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and Āi
t = A

i,c
t + ∑

0≤s≤t
�Ãi

s

1+�Ãi
s

with Āi
0− = 0. Substituting (A.4) into (A.3) yields

Y i
t = E(Zi)t

(

xi +
∫

[0,t]
E(Zi)−1

s−
N∑

j �=i

Y
j
s−dĀi

s

)

. (A.5)

Define the exit time τ0 = inf{t ≥ 0 : min1≤k≤N Y k
t ≤ 0}. Suppose for a contradic-

tion that P[0 ≤ τ0 < ∞] > 0. Then for any ω ∈ {ω ∈ � : 0 ≤ τ0(ω) < ∞}, there exists
1 ≤ q ≤ N such that Y

q

τ0(ω)(ω) ≤ 0 and Y
q

τ0(ω)−(ω) ≥ 0 because Yq is a càdlàg pro-

cess. Since xq > 0, (A.5) implies that
∑N

j �=q Y
j
s (ω) < 0 for some s < τ0(ω) which

contradicts the definition of τ0, thereby completing the proof of (i).
Thus rewrite (2.2) and the firm’s total pre-bankruptcy wealth YS as

dY i
t

Y i
t−

= dRi
t + YS

t−
Y i

t−
dÃi

t , Y i
0− = xi,

dY S
t

Y S
t−

=
N∑

k=1

Y k
t

Y S
t−

dRk
t + dÃS

t , Y S
0− =

N∑

k=1

xk.

An application of [23, Theorem 6.8] yields (ii). �

The following lemma characterises the conditional probability of bankruptcy in
relation to total fraud.

Lemma A.3 The following hold a.s. for all t ≥ 0:

P[τA > t |Ft ] = e−AS
t , (A.6)

P[τA > t |F∞] = P[τA > t |Ft ]. (A.7)

Proof First, we show that

{t < τA} = {AS
t < θ}. (A.8)

On the one hand, {t < τA} ⊆ {AS
t < θ} by the definition of τA. On the other hand,

let ω ∈ � be such that AS
t (ω) < θ(ω). If τA(ω) < ∞, then θ(ω) ≤ AS

τA(ω)(ω). Hence

t < τA(ω) because AS
t (ω) < AS

τA(ω)(ω) and AS is nondecreasing. If we have instead
τA(ω) = ∞, then trivially t < τA(ω).

As θ is independent of F∞, and exponentially distributed with unit mean, (A.8)
implies that

P[τA > t |F∞] = P[AS
t < θ |F∞] = e−AS

t .

Because AS is F-adapted and by the tower property of conditional expectations, (A.6)
and (A.7) follow. �
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We next show that the treatment of jumps in the definition of Ã is the only one
consistent with the martingale property for wealth in the absence of skill.

Proposition A.4 Let N = 1, μ1 = 0 and A
g
t := A

1,c
t + ∑

0≤s≤t g(�A1
s ), where the

function g :R+ → R+ is measurable with g(0) = 0. Let Ȳ be the solution of the SDE

dȲ
1,x
t = Ȳ

1,x
t− (σ1dB1

t + dA
g
t ), Ȳ

1,x
0− = x1 > 0,

and

X̄
1,x
t := 1{t<τA}Ȳ 1,x

t with X̄
1,x
0− = x1.

Then:
(i) If A1

t = A
1,c
t a.s. for all t ≥ 0 or if g(a) = ea − 1, then X̄1,x1 is a G

A-mar-
tingale.

(ii) If X̄1,x1 is a G
A-martingale for any A1 ∈A, then g(a) = ea − 1 for any a ≥ 0.

Proof (i) By Aksamit and Jeanblanc [1, Lemma 3.8], (A.7) implies the immersion
property, i.e., any F-martingale remains a martingale in the enlarged filtration G

A. It
then follows by Lévy’s characterisation theorem that B1 remains a Brownian motion
in G

A. Lemma A.2 (ii) and Cohen and Elliott [10, Corollary 15.1.9] yield that

X
i,x
t = xi1{t<τA}E(σ1B

1 + Ã1)t = xi1{t<τA}E(Ã1)tE(σ1B
1)t

a.s. for all t ≥ 0. If A1 has a.s. continuous paths or g(a) = ea − 1, then E(Ag)t = eA1
t ,

and (1{t<τA}eA1
t ) is a G

A-martingale by Bielecki and Rutkowski [5, Lemma 5.1.7].

Because the covariation between (1{t<τA}eA1
t ) and E(σ1B

1) is zero and X
1,x1
t = X

1,x1
t∧τA

a.s. for all t ≥ 0, it follows that Xi,x is a G
A-martingale.

(ii) Consider the family Aξ of strategies indexed by ξ ≥ 0, defined for t ≥ 0
by A

ξ
t = 1{t≥1}ξ . By construction, Aξ ∈A for all ξ ≥ 0. Denote the corresponding

wealth by X̄1,x1,ξ . By assumption, this is a G
A-martingale for any ξ ≥ 0. One can

factorise it as X̄1,x1,ξ = MU , where for any t ≥ 0,

Mt = x11{t<τA}eA1
t E(σ1B

1)t , (A.9)

Ut =
∏

0≤s≤t∧τA

e−�A1
s
(
1 + g(�A1

s )
) = 1{t<1} + e−ξ

(
1 + g(ξ)

)
1{t≥1}.

Note that M is a G
A-martingale and by Lemma A.5, the finite-variation process U is

G
A-predictable. Integration by parts (cf. [1, Proposition 1.16]) yields

X̄
1,x1
t = MtUt = x +

∫

[0,t]
UsdMs +

∫

[0,t]
Ms−dUs.

The process (
∫ t

0 UsdMs)t≥0 is a G
A-local martingale. By Jacod and Shiryaev [24,

Proposition I.3.5], the process (
∫ t

0 Ms−dUs)t≥0 inherits the GA-predictability and the
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finite-variation property from its integrator U . Because X̄1,x1,ξ is a G
A-martingale,

(
∫ t

0 Ms−dUs)t≥0 is a G
A-local martingale. Then by [10, Lemma 10.3.9], the process

(
∫ t

0 Ms−dUs)t≥0 is constant. Since M1− > 0 with positive probability and

∫ t

0
Ms−dUs =

{
0, t < 1,

M1−(e−ξ (1 + g(ξ)) − 1), t ≥ 1,

it follows that e−ξ (1 + g(ξ)) = 1 for all ξ ≥ 0. Note that in (A.9), all quantities except
for the indicator function are strictly positive and P[τA ≥ 1] > 0 because in view of
(A.8), 0 < P[Aξ

1 < θ ] ≤ P[⋂ε∈(0,1){A1−ε < θ}] = P[⋂ε∈(0,1){τA > 1 − ε}]. �

A.2 Proof of Proposition 2.1

By Lemma A.2, trader 1’s wealth is of the form

X
1,x1
t = 1{t<τA}x1e

A1
t +(μ1−σ 2

1 /2)t+σ1B
1
t , t ≥ 0.

Hence by Lemma A.3,

E[U1(X
1,x1
t )|Ft ] = E[1{t<τA}U1(Y

1,x1
t )|Ft ] = e−A1

t U1(Y
1,x1
t )

= x
1−γ1
1

1 − γ1
e−γ1A

1
t +(1−γ1)((μ1−σ 2

i /2)t+σ1B
1
t ) ≤ x

1−γ1
1

1 − γ1
e(1−γ1)((μ1−σ 2

i /2)t+σ1B
1
t ).

Therefore, by the tower property of conditional expectations,

E[U1(X
1,x1
t )] ≤ x

1−γ1
1

1 − γ1
e(1−γ1)(μ1−γ1σ

2
1 /2)t (A.10)

and

E[U1(X
1,x1
t )] = x

1−γ1
1

1 − γ1
e(1−γ1)(μ1−γ1σ

2
1 /2)t if and only if A1

t = 0 a.s. (A.11)

Let Pτ be the law of τ , i.e., Pτ [U ] = P[τ ∈ U ] for any Borel-measurable set U ⊆ R+.
Then by the law of total probability and the independence of τ from B and θ ,

E[e−κτU1(X1,x1
τ )] =

∫ ∞

0
E[e−κτU1(X1,x1

τ )|τ = t]dPτ (dt)

=
∫ ∞

0
e−κt

E[U1(X
1,x1
t )]dPτ (dt). (A.12)

Thus (A.10) implies that

E[e−κτU1(X1,x1
τ )] ≤ x

1−γ1
1

1 − γ1

∫ ∞

0
e((1−γ1)(μ1−γ1σ

2
1 /2)−κ)t

Pτ [dt]

= x
1−γ1
1

1 − γ1
E[e((1−γ1)(μ1−γ1σ

2
1 /2)−κ)τ ], (A.13)
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and due to (A.11) and (A.12),

E[e−κτU1(X1,x1
τ )] = x

1−γ1
1

1 − γ1
E[e((1−γ1)(μ1−γ1σ

2
1 /2)−κ)τ ]

if and only if P[A1
t = 0] = 1 for all t > 0 for which P[τ ≥ t] > 0. In fact, suppose that

on the contrary, there exists some t0 ≥ 0 for which P[τ ≥ t0] > 0, but P[A1
t0

> 0] > 0.
Because A1 is nondecreasing a.s., we have P[A1

t ≥ A1
t0

> 0] = P[A1
t0

> 0] > 0 for
t ≥ t0 and so (A.11) implies that

E[U1(X
1,x1
t )] <

x
1−γ1
1

1 − γ1
e(1−γ1)(μ1−γ1σ

2
1 /2)t , t ≥ t0.

As P[τ ≥ t0] > 0, integration (cf. (A.12)) yields the strict inequality in (A.13). �

A.3 Doob–Meyer decomposition

Let ĀS
t = A

S,c
t + ∑

0≤s≤t (1 − e−�AS
s ) for all t ≥ 0 and note that ĀS ∈A. In the

absence of fraud jumps, the total fraud process AS is the G
A-compensator of the

bankruptcy time τA. However, in the presence of jumps, the compensator is in
fact ĀS .

Lemma A.5 The process MA defined as

MA
t = 1{t≥τA} − ĀS

t∧τA
, t ≥ 0, (A.14)

is a uniformly integrable G
A-martingale. Furthermore, (ĀS

t∧τA
)t≥0 is the unique

G
A-predictable, integrable and nondecreasing process B such that (1{t≥τA} −Bt)t≥0

is a G
A-martingale and B0− = 0.

Proof The nondecreasing process (1{t≥τA})t≥0 is a GA-submartingale. Define the pro-
cess (Zt )t≥0 by Zt := P[t < τA|Ft ]. Because F⊆ G

A and all F-martingales are con-
tinuous by the martingale representation theorem (Karatzas and Shreve [29, Theo-
rem 3.4.2]), the dual F-predictable projection of (1{t≥τA})t≥0 is 1 − Z by Aksamit
and Jeanblanc [1, Proposition 3.9 (b)]. It follows by [1, Proposition 2.15] that the
G

A-compensator of τA is the process (
∫
[0,t∧τA] Z

−1
s−d(1 − Zs))t≥0. So by Lemma A.3

and the Itô formula, we get a.s. for all t ≥ 0 that

∫

[0,t∧τA]
Z−1

s−d(1 −Zs) =
∫

[0,t∧τA]
eAS

s−d(−e−AS
s−) = A

S,c
t∧τA

+
∑

0≤s≤t∧τA

(1 − e−�AS
s ).

�

Lemma A.6 The bankruptcy time τA is GA-predictable if and only if AS
t∧τA

= AS
0 a.s.

for all t ≥ 0.



Rogue traders 567

Proof Suppose τA is a G
A-predictable stopping time. It follows that the process

(1{t≥τA})t≥0 is GA-predictable. Lemma A.5 implies that the G
A-martingale MA de-

fined by (A.14) is G
A-predictable. A predictable martingale of finite variation must

be constant; hence MA
t = MA

0 a.s. for all t ≥ 0. It follows that for any t ≥ 0,

1{t≥τA} − 1{0=τA} = ĀS
t∧τA

− ĀS
0 a.s.

On the event {0 < τA < ∞}, for any t < τA, ĀS
t∧τA

− ĀS
0 = 0 and thus �ĀS

τA
= 1 a.s.,

which contradicts �ĀS
t = 1 − e−AS

t < 1. Hence P[0 < τA < ∞] = 0. However, on
the events {τA = 0} and {τA = ∞}, it is clear that ĀS

t∧τA
= ĀS

0 and thus AS
t∧τA

= AS
0

a.s. for all t ≥ 0.
Conversely, let AS

t∧τA
= AS

0 a.s. for all t ≥ 0. Then the definition (2.1) of bank-
ruptcy implies that τA ∈ {0,∞} a.s. As the events {τA = 0} and {τA = ∞} are in GA

0 ,
the increasing sequence (τn) of GA-stopping times defined by

τn = 1{τA=0} + n1{τA=∞}

announces τA. �

Remark A.7 The preceding result implies that the bankruptcy time is announced by a
strictly increasing sequence of stopping times if and only if either all traders abstain
from fraud or all fraudulent trades are performed at the initial time t = 0.

A.4 Value function (Proof of Lemma 3.2)

Lemma A.8 For any p ∈ (0,1) and t ≥ 0,

E[(XS,x
t )p] ≤

( N∑

k=1

xk

)p

ept max1≤k≤N μk .

Proof Using the expression of YS,x in (A.1), since the covariation between the terms
inside E(·) in (A.1) is zero, it follows by [10, Corollary 15.1.9] that

Y
S,x
t =

( N∑

k=1

xk

)

E(ÃS· )tE
( N∑

k=1

μk

∫ ·

0

Y
k,x
s

Y
S,x
s

ds

)

t

E
( N∑

k=1

σk

∫ ·

0

Y
k,x
s

Y
S,x
s

dBk
s

)

t

and, rearranging terms,

Y
S,x
t E(ÃS· )−1

t

=
( N∑

k=1

xk

)

E
( N∑

k=1

μk

∫ ·

0

Y
k,x
s

Y
S,x
s

ds

)

t

E
( N∑

k=1

σk

∫ ·

0

Y
k,x
s

Y
S,x
s

dBk
s

)

t

≤
( N∑

k=1

xk

)

E
((

max
1≤k≤N

μk

) N∑

k=1

∫ ·

0

Y
k,x
s

Y
S,x
s

ds

)

t

E
( N∑

k=1

σk

∫ ·

0

Y
k,x
s

Y
S,x
s

dBk
s

)

t

=
( N∑

k=1

xk

)

e(max1≤k≤N μk)tE
( N∑

k=1

σk

∫ ·

0

Y
k,x
s

Y
S,x
s

dBk
s

)

t

. (A.15)
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For any 1 ≤ k ≤ N and any t ≥ 0,

exp

(
σ 2

k

2

∫ t

0

(Y
k,x
s

Y
S,x
s

)2
ds

)

≤ exp
(σ 2

k

2
t
)

< ∞ a.s.

Hence Novikov’s condition is satisfied and

E
( N∑

k=1

σk

∫ ·

0

Y
k,x
s

Y
S,x
s

dBk
s

)

t≥0

is a true martingale. By taking expectations on both sides of (A.15),

E[YS,x
t E(ÃS· )−1

t ] ≤
( N∑

k=1

xk

)

e(max1≤k≤N μk)t . (A.16)

The stochastic exponential E(ÃS) satisfies

E(ÃS)t = eÃS
t

∏

0≤s≤t

(1 + �ÃS
s )e−�ÃS

s = eA
S,c
t

∏

0≤s≤t

(

1 +
N∑

k=1

(e�Ak
s − 1)

)

≤ eA
S,c
t

∏

0≤s≤t

e
∑N

k=1 �Ak
s = eAS

t , (A.17)

where the inequality (A.17) holds due to the inequality

e
∑N

k=1 yk − 1 ≥
N∑

k=1

(eyk − 1)

for any (y1, . . . , yN) ∈ R
N++. By Lemma A.3 (i), for any t ≥ 0,

E[XS,x
t ] = E[1{t<τA}YS,x

t ] = E
[
Y

S,x
t E[1{t<τA}|Ft ]

] = E[e−AS
t Y

S,x
t ]. (A.18)

Using (A.18) and the estimate (A.17), one obtains

E[XS,x
t ] ≤ E[YS,x

t E(ÃS· )−1
t ]. (A.19)

Finally, for any 0 < p ≤ 1, Jensen’s inequality, (A.16) and (A.19) yield

E[(XS,x
t )p] ≤ (E[XS,x

t ])p ≤
( N∑

k=1

xk

)p

ept max1≤k≤N μk .
�
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Proof of Lemma 3.2 The independence of τ and F∞ ∨ σ(θ), the tower property
of conditional expectations and Lemma A.3 yield for any i �= j ∈ {a, b} and
Ai,Aj ∈A that

E
[
e−κτUi

(
Xi,x

τ (Ai,Aj )
)] = E

[
E

[
e−κτUi

(
Xi,x

τ (Ai,Aj )
)∣
∣F∞ ∨ σ(θ)

]]

= E

[∫ ∞

0
λe−λκ tU i

(
X

i,x
t (Ai,Aj )

)
dt

]

= λE

[∫ ∞

0
e−λκ t

E[1{t<τA}|Ft ]Ui
(
Y

i,x
t (Ai,Aj )

)
dt

]

= λE

[∫ ∞

0
e−λκ t−AS

t Ui
(
Y

i,x
t (Ai,Aj )

)
dt

]

which establishes (ii).
By Lemma A.2 (ii), the processes Y i,cx and cY i,x are indistinguishable and thus

the scale-invariance (iii) holds. Finally, Tonelli’s theorem and Lemma A.8 yield

J i(x;Ai,Aj ) = λ

1 − γi

∫ ∞

0
e−λκ t

E
[(

X
i,x
t (Ai,Aj )

)1−γi
]
dt

≤ λ(xa + xb)
1−γi

1 − γi

∫ ∞

0
e−λκ t+(1−γi )(μa∨μb)t dt

= λUi(xa + xb)

λκ − (1 − γi)(μa ∨ μb)
.

Taking the supremum over Ai ∈A, (i) follows. �

A.5 Skorokhod reflection

Assume for the rest of this chapter that there are N = 2 traders. First, we study the
SDE that identifies the fractions of the wealth of each trader. For any i �= j ∈ {a, b},
define the coefficient functions (of a single variable)

b̄i (w) := w(1 − w)
(
σ 2

j (1 − w) − σ 2
i w + μi − μj

)
,

σ̄i(w) :=
{

(σaw(1 − w),−σbw(1 − w)) if i = a,

(−σaw(1 − w),σbw(1 − w)) if i = b.

Introduce also the processes (Q̃i
t )t≥0 given by Q̃i

t = A
i,c
t + ∑

0≤s≤t qi(�Ãs), where
qi :R2+ → R+ is defined as qi(a1, a2) = ai

1+a1+a2
.



570 H. Dong et al.

Lemma A.9 (i) For any i �= j ∈ {a, b} and x ∈R
2++, the trader’s share of wealth

ri(Y
x) is the unique strong solution of the SDE

W
i,wi
t = wi +

∫ t

0
b̄i (W

i,wi
s )ds +

∫ t

0
σ̄i (W

i,wi
s )dBs

+
∫

[0,t]
(1 − W

i,wi
s− )dQ̃i

s −
∫

[0,t]
W

i,wi
s− dQ̃

j
s , (A.20)

with wi = ri(x).
(ii) For all t ≥ 0 and wi ∈ (0,1), W

i,wi
t ∈ (0,1) a.s.

Proof For (i), an application of Itô’s formula shows that the fractions ri(Y
x) sat-

isfy the SDE (A.20), and uniqueness follows by the local Lipschitz-continuity of its
coefficients (cf. [10, Theorem 16.3.11]). Furthermore, the strict positivity of the pre-
bankruptcy wealth Yx (Lemma A.2) proves (ii). �

The next result constructs the solution to the Skorokhod reflection problem SPi
mi+.

Proposition A.10 Let i �= j ∈ {a, b} and mi ∈ (0,1). The mapping i,mi ∈ �i with


i,mi
t = 

i,c,mi
t + 

i,d,mi
t :D+

([0, t)
) ×D+([0, t]) ×D↑([0, t)

) → R+

given by


i,c,mi
t (yi

[0,t), y
j

[0,t], a
i
[0,t))

= 1

1 − mi

(

sup
s∈[0,t]

(
mi − wi−

s + (1 − mi)a
i,c
s +

∑

0≤u<s

(mi − wi−
u )+

)+

−
∑

0≤s≤t

(mi − wi−
s )+

)

and


i,d,mi
t (yi

[0,t), y
j

[0,t], a
i
[0,t)) =

∑

0≤s≤t

(

ln

(

1 + wi−
s−

1 − mi

( mi

wi−
s

− 1
)))+

,

where wi−
t := ri(y

i
t−, y

j
t ) for all t ≥ 0 and ai,c denotes the continuous part of ai ,

solves SPi
mi+. In particular, for any Aj ∈A and x ∈ R

2++, the response map i,mi

defines the response Ai with associated wealth Yx of the form

A
i,c,′
t = 

i,c,mi
t (Y

j

[0,t), Y
j

[0,t],A
i,′
[0,t)),

�A
i,′
t = �

i,d,mi
t (Y

j

[0,t), Y
j

[0,t],A
i,′
[0,t))

=
(

ln

(

1 + ri(Y
i
t−, Y

j
t−)

1 − mi

( mi

ri(Y
i
t−, Y

j
t )

− 1
)))+

. (A.21)
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Furthermore, if ma + mb < 1, there exists a unique tuple (Y x,Ai,′ ,Aj,′) such that
Y i,x is the unique strong solution of the SDE (2.2) with

A
i,′
t = 

i,mi
t (Y i

[0,t], Y
j

[0,t],A
i,′
[0,t)), A

j,′
t = 

i,mj

t (Y
j

[0,t], Y
i
[0,t],A

j,′
[0,t))

for all t ≥ 0 (known as two-sided Skorokhod reflection problem). In this case, the

expression of �A
k,′
t simplifies to 1{t=0}(ln 1−wk

1−mk
)+ for all k ∈ {a, b}.

Proof Fix x ∈R
2++ and let wi = ri(x). If Ai ≡ 0, then the process Wi,wi (0,Aj ) with

W
i,wi

0− (0,Aj ) = wi ∈ (0,1) satisfies

W
i,wi
t (0,Aj ) = wi +

∫ t

0
b̄i

(
Wi,wi

s (0,Aj )
)
ds +

∫ t

0
σ̄i

(
Wi,wi

s (0,Aj )
)
dBs

−
∫

[0,t]
W

i,wi
s− (0,Aj )dĀ

j
s . (A.22)

Now, slightly generalise the SDE (A.22) by adding a process P i ∈ A to get

W
i,wi
t (P i,Aj ) = wi +

∫ t

0
b̄i

(
Wi,wi

s (P i,Aj )
)
ds +

∫ t

0
σ̄i

(
Wi,wi

s (P i,Aj )
)
dBs

−
∫

[0,t]
W

i,wi
s− (P i,Aj )dĀ

j
s + P i

t . (A.23)

Note that Wi,wi (P i,Aj ) is not necessarily bounded above by 1 (this depends on the
process P i ). By De Angelis and Ferrari [13, Lemma 2.2], there exists a unique pair
(Wi,w,(P i,′ ,Aj ),P i,′) such that Wi,w,(P i,′ ,Aj ) is the unique strong solution to the
SDE (A.23) with P i,′ ∈A given by

P
i,′
t = sup

0≤s≤t

(

mi − wi −
∫ t

0
b̄i

(
Wi,wi

s (P i,′ ,Aj )
)
ds −

∫ t

0
σ̄i

(
Wi,wi

s (P i,′ ,Aj )
)
dBs

+
∫

[0,t]
W

i,wi
s− (P i,′ ,Aj )dĀ

j
s

)+

= sup
0≤s≤t

(
mi − Wi,wi

s (P i,′ ,Aj ) + P i,′
s

)+ (A.24)

a.s. for all t ≥ 0 satisfying

(i) mi ≤ W
i,wi
t (P i,′ ,Aj ) < 1 a.s. on the event {0 ≤ t < τ1} for all t ≥ 0,

(ii)
∫
[0,τ1)

1{Wi,wi
t (P i,′ ,Aj )>mi }dP

i,′
t = 0 a.s.,

with the exit time τ1 = inf{t ≥ 0 : Wi,wi
t (P i,′ ,Aj ) ≥ 1}.

Let P i,c,′ denote the continuous part of the process P i,′ . Then there exists a unique
process (A

i,c,′
t )t≥0 ∈ A with continuous paths such that

P
i,c,′
t =

∫ t

0

(
1 − Wi,wi

s (P i,′ ,Aj )
)
dAi,c,′

s (A.25)
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or, equivalently,

A
i,c,′
t

=
∫ t

0

(
1 − Wi,wi

s (P i,′ ,Aj )
)−1

dP i,c,′
s

=
∫ t

0

(
1{Wi,wi

s (P i,′ ,Aj )>mi } + 1{Wi,wi
s (P i,′ ,Aj )=mi }

)(
1 − Wi,wi

s (P i,′ ,Aj )
)−1

dP i,c,′
s

= P
i,c,′
t

1 − mi

, (A.26)

where the third equality follows by condition (ii) above. Notice that for any t ≥ 0,
the jumps satisfy �W

i,wi
t (P i,′ ,Aj ) = �P

i,′
t − W

i,wi
t− (P i,′ ,Aj )�Ā

j
t a.s. Condition

(ii) implies that if �P
i,′
t (ω) > 0 for some ω ∈ �, then W

i,wi
t (P i,′ ,Aj )(ω) = mi for

any t ∈ [0, τ1(ω)), which in turn implies that

�P
i,′
t (ω) = mi − e−�A

j
t (ω)W

i,wi ,
′

t− (P i,′ ,Aj )(ω) > 0.

Otherwise, if �P
i,′
t (ω) = 0 for some ω ∈ �, then W

i,wi
t (P i,′ ,Aj )(ω) ≥ w̃i . Hence

�P
i,′
t = (

mi − e−�A
j
t W

i,wi ,
′

t− (P i,′ ,Aj )
)+ a.s. for all t ≥ 0. (A.27)

Let pi,j (ai, aj ,w) = ai (1+aj −w)

(1+aj )(1+ai+aj )
for (ai, aj ,w) ∈R

2+ × (0,1). Because the

mapping ai �→ pi,j (ai, aj ,w) is strictly increasing, there exists for any t ≥ 0 a unique

random variable �A
i,′
t such that

�P
i,′
t = pi,j

(
�Ã

i,′
t ,�Ã

j
t ,W

i,wi
t− (P i,′ ,Aj )

)
(A.28)

or, equivalently,

�Ã
i,′
t = �P

i,′
t (�Ã

j
t + 1)

1 − �P
i,′
t − (�Ã

j
t + 1)−1W

i,wi
t− (P i,′ ,Aj )

= 1

1 − mi

(
mie

�A
j
t − W

i,wi
t− (P i,′ ,Aj )

)+
, (A.29)

where the second equality follows by (A.27).
Defining the process (Ã

i,′
t )t≥0 by Ã

i,′
t = A

i,c,′
t + ∑

0≤s≤t �Ã
i,′
s and substituting

(A.25) and (A.28) into (A.23) shows that the process Wi,wi (P i,′ ,Aj ) solves the SDE
(A.20). Hence we can set W

i,wi
t (Ai,′ ,Aj ) = W

i,wi
t (P i,′ ,Aj ) for all t ≥ 0. As the so-

lution to the SDE (A.20) with initial data wi ∈ (0,1) never leaves the interval (0,1)

for any (Ai,Aj ) ∈ A2 with probability 1 (Lemma A.9 (ii)), it follows that τ1 = ∞.
Lemma A.2 (i) implies that there exists a unique strong solution Yx(Ai,′ ,Aj ) to

the SDE (2.2), and Lemma A.9 (i) implies that ri(Y
x(Ai,′ ,Aj )) and Wi,wi (Ai,′ ,Aj )
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are indistinguishable. Let W
i−,wi
t (Ai,′ ,Aj ) = ri(Y

i,x
t− , Y

j
t ) for all t ≥ 0 and note that

W
i−,wi
t (Ai,′ ,Aj ) = Y

i,x
t−

Y
i,x
t− + Y

j
t

= Y
i,x
t−

Y
i,x
t− + Y

j
t−

e−�A
j
t

= W
i,wi
t− (Ai,′ ,Aj )e−�A

j
t (A.30)

a.s. for all t ≥ 0. Also, it follows by (A.23) that

W
i,wi
t− (Ai,′ ,Aj ) − P

i,′
t− = wi +

∫ t

0
b̄i

(
Wi,wi

s (Ai,′ ,Aj )
)
ds

+
∫ t

0
σ̄i

(
Wi,wi

s (Ai,′ ,Aj )
)
dBs

−
∫

[0,t)

W
i,wi
s− (Ai,′ ,Aj )dĀ

j
s , (A.31)

and subtracting W
i,wi
t− (Ai,′ ,Aj )�Ā

j
t from both sides of (A.31) yields by (A.30) that

W
i−,wi
t− (Ai,′ ,Aj ) − P

i,′
t− = wi +

∫ t

0
b̄i

(
Wi,wi

s (Ai,′ ,Aj )
)
ds

+
∫ t

0
σ̄i

(
Wi,wi

s (Ai,′ ,Aj )
)
dBs

−
∫

[0,t]
W

i,wi
s− (Ai,′ ,Aj )dĀ

j
s

= W
i,wi
t (Ai,′ ,Aj ) − P

i,′
t (A.32)

a.s. for all t ≥ 0. By substituting (A.32) into (A.24), it follows that

P
i,′
t = sup

s∈[0,t]
(
mi − Wi−,wi

s (Ai,′ ,Aj ) + P
i,′
s−

)+

a.s. for all t ≥ 0, which in turn yields

P
i,c,′
t +

∑

0≤s≤t

�P i,′
s = sup

s∈[0,t]

(

mi − Wi−,wi
s (Ai,′ ,Aj ) + P i,c,′

s +
∑

0≤u<s

�P i,′
u

)+
.

(A.33)

The equality (A.30) implies

�P
i,′
t = (

mi − W
i−,wi ,

′
t (P i,′ ,Aj )

)+
, (A.34)

and together with (A.29), it follows a.s. for all t ≥ 0 that

�Ã
i,′
t = W

i−,wi
t− (Ai,′ ,Aj )

1 − mi

(
mi

W
i−,wi
t (Ai,′ ,Aj )

− 1

)+
.
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To complete the proof, substituting (A.26) and (A.34) into (A.33) yields

A
i,c,′
t = 

i,c,mi
t

(
Y

j

[0,t)(A
i,′ ,Aj ), Y

j

[0,t](A
i,′ ,Aj ),A

i,′
[0,t)

)

a.s. for all t ≥ 0, and due to �Ã
i,′
t = e�A

i,′
t − 1, it follows that

A
i,d,′
t = 

i,d,mi
t

(
Y

j

[0,t)(A
i,′ ,Aj ), Y

j

[0,t](A
i,′ ,Aj ),A

i,′
[0,t)

)
.

For the second part of the claim, consider for any processes P i , P j ∈ A the SDE

W
i,wi
t (P i,P j ) = wi +

∫ t

0
b̄i

(
Wi,wi

s (P i,P j )
)
ds +

∫ t

0
σ̄i

(
Wi,wi

s (P i,P j )
)
dBs

+ P i
t − P

j
t . (A.35)

By Tanaka [40, Theorem 4.1], there exists for any wi ∈ (mi,1 − mj) a unique triplet
(Wi,wi (P i,′ ,P j,′),P i,′ ,P j,′) with continuous paths such that Wi,wi (P i,′ ,P j,′) is the
unique strong solution to (A.35) with (P i,′ ,P j,′) ∈ A2, and a.s. for all t ≥ 0, we have

(a) mi ≤ W
i,wi
t (P i,′ ,P j,′) < 1 − w̃j ,

(b)
∫
R+ 1{Wi,wi

t (P i,′ ,P j,′ )>mi }dP
i,′
t = 0,

(c)
∫
R+ 1{Wi,wi

t (P i,′ ,P j,′ )<1−mj }dP
j,′
t = 0.

Therefore, define a unique pair (Ai,c,′ ,Aj,c,′) ∈A2 with continuous paths such that

P
i,′
t =

∫ t

0

(
1 − Wi,wi

s (P i,′ ,P j,′)
)
dAi,c,′

s = (1 − mi)A
i,c,′
t , (A.36)

P
j,′
t =

∫ t

0
Wi,wi

s (P i,′ ,P j,′)dA
j,c,′
s = (1 − mj)A

j,c,′
t . (A.37)

Substituting (A.36) and (A.37) into (A.35) reveals that the process Wi,wi (P i,′ ,P j,′)
satisfies the SDE (A.20) with Ak = Ak,c,′ for any k ∈ {a, b}. For any wi ∈ (0,1), de-

fine A
i,′
t = A

i,′,c
t + (ln 1−wi

1−mi
)+ and A

j,′
t = A

j,′,c
t + (ln 1−wi

mj
)+. Note that (A

i,′
0 ,A

j,′
0 )

are the unique functions of wi such that

W
i,wi

0 (Ai,′ ,Aj,′) ∈ [mi,1 − mj ],
A

i,′
0 1{Wi,wi

0 (Ai,′ ,Aj,′ )>mi } = 0 and A
j,′
0 1{Wi,wi

0 (Ai,′ ,Aj,′ )<1−mj } = 0.

The properties (a)–(c), Lemma A.2 (i) and Lemma A.9 (i) imply that

A
i,′
t = 

i,mi
t

(
Y i

[0,t)(A
i,′ ,Aj,′), Y j

[0,t](A
i,′ ,Aj,′),Ai,′

[0,t)

)

for any i �= j ∈ {a, b}. As �A
k,′
t = 0 for any k ∈ {a, b} and a.s. for all t ≥ 0, the ex-

pression of (A.21) simplifies to 1{t=0}(ln 1−wk

1−mk
)+. �
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Fig. A.1 The implicit curves
f a(wb) and f b(wa) in
Lemma A.11 that satisfy
Fa(f a(wb),wb) = 0 for any
0 < wb < 1 (vertical axis) and
Fb(wa,f b(wa)) = 0 for any
0 < wa < 1 (horizontal axis)
such that wa + wb < 1 with
parameters γa = γb = 0.5,
μa = μb = 10%,
σa = σb = 20% and λκ = 1/3

A.6 Cheating thresholds (Lemma 3.8)

For any i �= j ∈ {a, b}, let �̂i = {(wi,wj ) ∈ (0,1)2 : wi < min(ŵi ,1 − wj)} ⊆ �.
The following result proves the existence of fraud thresholds.

Lemma A.11 The following hold for any i �= j ∈ {a, b}:
(i) αi < 0, ai > 1 − γi , βi > 1 − γi , bi < 0 and ŵi ∈ (0,1 − γi).
(ii) There exists a function f i whose graph satisfies

{(
f i(wj ),wj

) : wj ∈ (0,1)
} ⊆ �̂i

and

{(wi,wj ) ∈ � : F i(wi,wj ) = 0} = {(
f i(wj ),wj

) : wj ∈ (0,1)
}
. (A.38)

(iii) f i is differentiable.
(iv) limwj ↑1 f i(wj ) = 0 and limwj ↓0 f i(wj ) = ŵi .
(v) There exists (w̃a, w̃b) ∈ � such that

Fa(w̃a, w̃b) = Fb(w̃b, w̃a) = 0. (A.39)

Moreover, any such pair (w̃a, w̃b) satisfies w̃k < ŵk for k ∈ {a, b}.
Figure A.1 displays the functions f a , f b and the solution (w̃a, w̃b) to (A.39),

where one can observe that f a and f b satisfy (ii)–(iv). In this case, the pair (w̃a, w̃b)

satisfying (v) is unique.

Proof of Lemma A.11 Starting with (i), Assumption 3.1 implies that

pi > (1 − γi)

(

(μi − μj )
+ + γiσ

2
j

2

)

,

qi > (1 − γi)

(

(μj − μi)
+ + γiσ

2
i

2

)

, (A.40)
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and the inequality (A.40) yields

αi <
1

σ 2

(
ki −

√
k2
i + σ 2(1 − γi)

(
2(μi − μj )+ + γiσ

2
j

))
< 0, ai > 1 − γi,

βi >
1

σ 2

(
ki +

√
k2
i + σ 2(1 − γi)

(
2(μi − μj )+ + γiσ

2
j

)) =: β̂i (γi),

ŵi < 1 − γi.

Note that ki also depends on γi . Because (β̂i(γi) − (1 − γi))
′ > 0 for 0 < γi < 1, it

follows that β̂i (γi) − (1 − γi) ≥ β̂i (0) − 1 ≥ 0, whence βi > 1 − γi and bi < 0.
(ii) First, we show the inclusion ‘⊇’ in (A.38). For any wj ∈ (0,1),

lim
wi↓0

F i(wi,wj ) = lim
wi↓0

αiai(1 − γi)

(
1 − wj

wj

)βi
(

1 − wi

wi

)−bi

(wj − bi)

= −∞ (A.41)

and

lim
wi↑1−wj

F i(wi,wj ) = −aibi(ai − bi)γi

(
1 − wj

wj

)1−γi

> 0.

Next, to show that

F i(ŵi ,wj ) > 0 for any wj < 1 − ŵi, (A.42)

decompose F i as

F i(ŵi,wj ) =
αibi(ai − bi)(

wj

1−wj
)−αi

(1 − αi)(γi − αi)
�i(wj ),

where

�i(wj ) = (1−wj)(1−αi)
2
(

wj

1 − wj

)γi+αi

−(1−γi)
2(ai −wj)

(
γi(1 − αi)

−αi(1 − γi)

)γi+αi

.

Note that
αibi (ai−bi )(

wj
1−wj

)−αi

(1−αi)(γi−αi)
> 0 so that sgn(F i(ŵi,wj )) = sgn(�i(wj )). The first

and second derivatives of �i are

�i
wj

(wj ) = (αi − 1)2w−1
j (αi + γi − wj)

(
wj

1 − wj

)γi+αi

+ (1 − γi)
2
(

γi(1 − αi)

−αi(1 − γi)

)γi+αi

,

�i
wj wj

(wj ) = −ai(γi + αi)(αi − 1)2

w2
j (1 − wj)

(
wj

1 − wj

)γi+αi

≥ 0 if and only if αi + γi ≤ 0. (A.43)
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We now distinguish two cases. If αi + γi ≤ 0, it follows by (A.43) that

�i
wj

(wj ) ≤ �i
wj

(1 − ŵi) = −aiγ
−1
i (γi − αi)

2
(

γi(1 − αi)

−αi(1 − γi)

)γi+αi

< 0,

and therefore

�i(wj ) > �i(1 − ŵi) = ai(1 − γi)(γi − αi)

(
γi(1 − αi)

−αi(1 − γi)

)γi+αi

> 0.

If αj + γj > 0, then

lim
wj ↓0

�i(wj ) = 0.

The concavity of �i (implied by (A.43)) in combination with �i(1 − ŵi) > 0 yields

�i(wj ) > 0 for wj < 1 − ŵi ,

whence (A.42) follows.
Due to (A.41) and (A.42), the intermediate value theorem implies that for any

wj ∈ (0,1), there exists ui ∈ min(ŵi ,1 − wj) such that F i(ui,wj ) = 0. Thus there
exists a function f i with its graph in �̂i such that the inclusion ‘⊇’ in (A.38) holds.

To prove the inclusion ‘⊆’ in (A.38), we first show that for any fixed wj ∈ (0,1), if
ui ∈ (0,min(ŵi ,1 − wj)) satisfies F i(ui,wj ) = 0, then F i

wi
(ui,wj ) > 0. The equa-

tion F i(ui,wj ) = 0 expands to

ai

(
αi(1 − γi − ui) + γiui

)
(wj − bi)

(
1 − ui

ui

)−bi
(

1 − wj

wj

)βi

= −(ai − bi)
(
ui(αi + βi − 1) − αiβi

)
w

γi

j (1 − wj)
1−γi

+ bi

(
βi(1 − γi − ui) + γiui

)
(wj − ai)

(
ui

1 − ui

)ai
(

wj

1 − wj

)−αi

, (A.44)

and differentiating F i with respect to wi yields for any (wi,wj ) ∈ � that

− (1 − wi)wiF
i
wi

(wi,wj )

= ai(wj − bi)
(
γiwi(wi − bi − 1) + biγiαi + (1 − wi)(wi − bi)αi

)

×
(

1 − wi

wi

)−bi
(

1 − wj

wj

)βi

− bi(ai − wj)
(
γiwi(1 + ai − wi) − aiγiβi − (1 − wi)(wi − ai)βi

)

×
(

wi

1 − wi

)ai
(

wj

1 − wj

)−αi

− (ai − bi)(αi + βi − 1)(1 − wi)wi(1 − wj)
1−γi w

γi

j . (A.45)
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Substituting (A.44) into (A.45) yields

sgn
(
∂wi

F i(ui,wj )
) = sgn

(
ρi(ui,wj )�

i(ui)
)
,

where

ρi(wi,wj ) = −(1 − γi − wi)(ai − wj)

(
wi

1 − wi

)ai
(

wj

1 − wj

)ai

+ (wi − αi)wj

and

�i(wi) = −(1 − γi)αiβi + (
αiβi + γi(1 − αi − βi)

)
wi

for wi ∈ (0,min(ŵi ,1 − wj)). If αiβi + γi(1 − αi − βi) ≥ 0, then �i(ui) > 0; if in-
stead αiβi + γi(1 − αi − βi) < 0, then by the inequality ui < ŵi ,

�i(ui) >
αi(αi − 1)(1 − γi)γi

γi − αi

> 0.

Hence we get

sgn
(
∂wi

F i(ui,wj )
) = sgn

(
ρi(ui,wj )

)
.

It is clear that ρi(ui,wj ) > 0 if wj ≥ ai . Thus assume wj < ai . Since wj + ui < 1,
wj ≥ ai is satisfied if and only if wj < min{ai,1 − ui}. Note that

lim
wj ↓0

ρi(ui,wj ) = 0 (A.46)

and

ρi
(
ui,min(ai,1 − ui)

) =
{

ai(wi − αi) > 0 if ai < 1 − ui,

γiai > 0 if ai ≥ 1 − ui,
(A.47)

and ρi
wj wj

(ui,wj ) has the same sign as

− (ai − 1)ai(1 − γi − ui)(ai + wj)

(
ui

1 − ui

)ai
(

wj

1 − wj

)ai

≤ 0 if and only if ai ≥ 1.

If ai ≥ 1, then the concavity of ρi , (A.46) and (A.47) yield

ρi(ui,wj ) ≥ ρi(ui,min{ai,1 − ui})
min{ai,1 − ui} wj > 0.

If ai < 1, then (
ui

1−wj
)ai >

ui

1−wj
and (

wj

1−ui
)ai >

wj

1−ui
give

ρi(ui,wj ) > −(1 − γi − ui)(ai − wj)
ui

1 − ui

wj

1 − wj

+ (ui − αi)wj

= wj ρ̂(ui,wj )

(1 − ui)(1 − wj)
,
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where for any wi ∈ (0,min(ŵi,1 − wj)),

ρ̂i (wi,wj ) := −wi(1 − γi − wi)(ai − wj) + (1 − wi)(1 − wj)(wi − αi).

Taking the partial derivatives with respect to wi yields

ρ̂i
wi

(ui,wj ) = (1 − ai)(2 − γi − 2ui − wj) > 0.

(The inequality follows from ui + wj < 1 and ui < ŵi < 1 − γi .) Thus

∂wi
F i(ui,wj ) > 0 (A.48)

for any ui ∈ (0,min(ŵi ,1 − wj)) such that F i(ui,wj ) = 0. Define f i via

f i(wj ) = inf
{
wi ∈ (

0,min(ŵi,1 − wj)
) : F i(wi,wj ) = 0

}
,

which is the minimal zero of wi �→ F i(wi,wj ). Suppose by contradiction that there
exists wi > f i(wj ) such that F i(wi,wj ) = 0 and let

vi = inf
{
wi ∈ (

f i(wj ),min(ŵi ,1 − wj)
) : F i(wi,wj ) = 0

}
, (A.49)

which is the first zero of wi �→ F i(wi,wj ) after f i(wj ). Then by (A.48), we obtain
F i

wi
(f i(wj ),wj ) > 0 and F i

wi
(vi,wj ) > 0. The smoothness of F i implies that there

exists ε ∈ (0,
vi−f i(wj )

2 ) such that F i(f i(wj ) + ε,wj ) > 0 and F i(vi − ε,wj ) < 0.
However, the intermediate value theorem implies that there must exist some point
zi ∈ (f i(wj ) + ε, vi − ε) with F i(zi,wj ) = 0, which is impossible in view of the
definition (A.49).

To establish the claim, it remains to show that f i(wj ) is the unique solution in
the larger domain (0,1 − wj) ⊇ (0,min(ŵi ,1 − wj)) such that F i(f i(wj ),wj ) = 0.
This fact follows by showing that there does not exist (wi,wj ) ∈ �\�̂i such that
F i(wi,wj ) = 0. Note that �\�̂i = {(wi,wj ) ∈ � : wi ≥ ŵi}. By virtue of (A.42), it
suffices to consider wi ∈ (ŵi,1).

Differentiating F i with respect to wj reveals that F i
wj

(wi,wj ) has the same
sign as

ai

(
biβi + (1 − wj − βi)wj

)(
(1 − γi − wi)αi + γiwi

)
(

1 − wj

wj

)βi
(

1 − wi

wi

)−bi

− bi

(
aiαi + wj(1 − wj − αi)

)(
γiwi + (1 − γi − wi)βi

)
(

wj

1 − wj

)−αi
(

wi

1 − wi

)ai

− (ai − bi)
(
γ + (1 − 2γi)wj

)(
(αi + βi − 1)wi − αiβi

)
(1 − wj)

1−γi w
γi

j . (A.50)

Take (ui, uj ) ∈ � with F i(ui, uj ) = 0. Putting F i(wi, uj ) = 0 into (A.50) yields

sgn
(
F i

wj
(ui, uj )

) = sgn
(
Gi(ui, uj )

)
, (A.51)
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where for any (wi,wj ) ∈ �,

Gi(wi,wj )

:= (γi + αi)
(
βi(1 − γi − wi) + γiwi

)

− (γi + βi)
(
αi(1 − γi − wi) + γiwi

)
(

1 − wi

wi

)βi−αi
(

1 − wj

wj

)βi−αi

. (A.52)

Note that αi(1 − γi − wi) + γiwi > 0 for any wi ∈ (ŵi ,1), and it follows that

sgn
(
Gi

wj
(wi,wj )

) = sgn
(
αi(1 − γi − wi) + γiwi

)
> 0. (A.53)

Fix wi ∈ (ŵi,1) and suppose by contradiction that there exists uj ∈ (0,1 − wi) such
that F i(wi, uj ) = 0. Let vj be the smallest uj , i.e.,

vj = inf{uj ∈ (0,1 − wi) : F i(wi, uj ) = 0}. (A.54)

Then by (A.51) and (A.53), we obtain F i
wj

(wi, vj ) > 0, implying that there exists an

ε ∈ (0, vj ) such that F i(wi, vj − ε) < 0. Because for any wi ∈ (ŵi ,1), we have

lim
uj ↓0

F i(wi, uj ) = ∞,

there hence exists an intermediate point zj ∈ (0, vj − ε) such that F i(wi, zj ) = 0,
which contradicts the definition (A.54) and shows the non-existence of a solution in
�\�̂i , hence the inclusion in (A.38).

(iii) For any (w0
i ,w

0
j ) ∈ � with w0

i < min(ŵi ,1 − w0
j ) and F i(w0

i ,w
0
j ) = 0, the

implicit function theorem (whose assumption is satisfied due to (A.48)) implies that
in a neighbourhood of (w0

i ,w
0
j ), there exists a unique smooth (in fact, analytic) func-

tion f i
0 (wj ) satisfying f i

0 (w0
j ) = w0

i and such that

f i
0 (wj ) ∈ (

0,min(ŵi,1 − wj)
)

and F i
(
f i

0 (wj ),wj

) = 0.

Suppose by contradiction that f i is not analytic. Then there exists w0
j ∈ (0,1) where

the local function f i
0 (w0

j ) �= f i(w0
j ). But this implication contradicts uniqueness, and

thus wj �→ f i(wj ) is indeed analytic on the open domain (0,1).
(iv) Since 0 < f i(wj ) < 1 − wj for all wj ∈ (0,1), we get limwj ↑1 f i(wj ) = 0.

Moreover, for any wi ∈ (0, ŵi),

lim
wj ↓0

F i(wi,wj ) = −∞,

lim
wj ↑1−wi

F i(wi,wj ) = −γiaibi(ai − bi)

(
wi

1 − wi

)1−γi

> 0.

Thus by the intermediate value theorem, for any wi ∈ (0, ŵi), there exists uj < 1 − wi

with F i(wi, uj ) = 0, and so there exists a function gi : (0, ŵi) → (0,1) such that

{(
wi,g

i(wi)
) : wi ∈ (0, ŵi)

} ⊆ {(wi,wj ) ∈ �̂i : F i(wi,wj ) = 0}.



Rogue traders 581

Property (ii) yields

{(
wi,g

i(wi)
) : wi ∈ (0, ŵi)

} ⊆ {(
f i(wj ),wj

) : wj ∈ (0,1)
}
,

which implies supwj ∈(0,1) f
i(wj ) ≥ ŵi or, equivalently,

max
wj ∈(0,1)

f i(wj ) ≥ ŵi or lim
wj ↓0

f i(wj ) ≥ ŵi .

On the other hand, f i(wj ) < ŵi for all wj ∈ (0,1) implies maxwj ∈(0,1) f
i(wj ) < ŵi ,

and by the continuity of f i , limwj ↓0 f i(wj ) ≤ ŵi . Thus limwj ↓0 f i(wj ) = ŵi .
(v) First we establish the existence of a point (w̃a, w̃b) ∈ � satisfying the equation

Fa(w̃a, w̃b) = Fa(w̃b, w̃a) = 0. For any i �= j ∈ {a, b}, by using (iv), we extend f i

continuously to the boundary 0 by setting f i(0) = limwj ↓0 f i(wj ) = ŵi , and to 1
by setting f i(1) = limwj ↑1 f i(wj ) = 0. Define the set D = (0,1)2 and the func-
tion H : D̄ → D̄ by H(wa,wb) := (f a(wb), f

b(wa)). Property (ii) implies for any
wj ∈ [0,1] that f i(wj ) ∈ [0, ŵi] ⊆ [0,1]. Therefore H is well defined. Since D̄ is
compact and H is continuous due to (iii), Brouwer’s fixed point theorem implies
the existence of a point (w̃a, w̃b) ∈ D̄ with (f a(w̃b), f

b(w̃a)) = (w̃a, w̃b). Next, we
show that (w̃a, w̃b) /∈ ∂D. Note that ∂D = Da,b

1 ∪Db,a
1 ∪Da,b

2 ∪Db,a
2 , where

Da,b
1 = {0} × [0,1], Db,a

1 = [0,1] × {0},
Da,b

2 = {1} × [0,1], Db,a
2 = [0,1] × {1}.

For i �= j ∈ {a, b}, we have f i(f j (0)) = f i(ŵj ) �= 0 on Di,j

1 as f i(wj ) ∈ (0, ŵi)

for any wj ∈ (0,1); and f i(f j (1)) = f i(0) �= 1 on Di,j

2 because f i(0) = ŵi . Hence
(w̃a, w̃b) /∈ ∂D and so (w̃a, w̃b) ∈ D. Finally, (ii) implies that for any i �= j ∈ {a, b},
we have w̃i = f i(w̃j ) < 1 − w̃j and thus (w̃a, w̃b) ∈ �.

To conclude the proof, notice that if a pair (w̃a, w̃b) ∈ � satisfies the equality
Fa(w̃a, w̃b) = Fa(w̃b, w̃a) = 0, then (w̃a, w̃b) = (f a(w̃b), f

b(w̃a)) is in �̂a ∩ �̂b

by (ii), meaning that w̃k < ŵk for any k ∈ {a, b}. �

In the following result, we first obtain some properties of the function Gi (given by
(A.52)); then we find that the function f i is strictly decreasing. (For an illustration,
see Fig. A.2 below.)

Lemma A.12 The following statements hold for any i �= j ∈ {a, b}:
(i) If αi < −γi , then
(a) there exists a function gi : (0,

1+γi

2 ) → (0, ŵi) such that

{(wi,wj ) ∈ �̂i : Gi(wi,wj ) = 0} =
{
(
gi(wj ),wj

) : wj ∈
(

0,
1 + γi

2

)}

;
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Fig. A.2 The function
f i : (0,1) → (0, ŵi ) of
Lemma A.11 satisfies
F i(f i (wj ),wj ) = 0 (blue); and
the function
gi : (0,

1+γi
2 ) → (0, ŵi ) of

Lemma A.12 satisfies
Gi(gi (wj ),wj ) = 0 (green)
with the domain in dashed
horizontal line in green. The
parameters are γi = 0.3,
γj = 0.5, μa = μb = 10%,
σa = σb = 20%, λ = 1/3 and
κ = 10%

(b) for any (wi,wj ) ∈ �̂i ,

Gi(wi,wj )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> 0 if wj ≥ 1+γi

2 , (A.55a)

> 0 if wj <
1+γi

2 and wi < gi(wj ), (A.55b)

< 0 if wj <
1+γi

2 and wi > gi(wj ); (A.55c)

(c) gi is differentiable and
dgi(wj )

dwj
< 0 for all wj ∈ (0,

1+γi

2 );

(d) for any wj ∈ (0,
1+γi

2 ), we have gi(wj ) >
1−γi

2 with limwj ↓0 gi(wj ) = ŵi and

lim
wj ↑ 1+γi

2
gi(wj ) = 1−γi

2 .

(ii) f i is strictly decreasing on (0,1).
(iii) Denote by f i,−1 the inverse of f i . For any (wi,wj ) ∈ �̂i ,

F i(wi,wj )

{
> 0 if wj > f i,−1(wi),

< 0 if wj < f i,−1(wi).

Proof (i)(a) and (i)(b) Note that αi < −γi if and only if ŵi >
1−γi

2 . A direct calcula-
tion reveals that

lim
wi↓0

Gi(wi,wj ) = ∞, (A.56)

lim
wi↑ŵi

Gi(wi,wj ) = (γi + αi)
(
βi(1 − γi − wi) + γiwi

)

< 0 if wj ∈ (0,1 − ŵi), (A.57)

lim
wi↑1−wj

Gi(wi,wj ) = γi(αi − βi)(1 + γi − 2wj)

< 0 if wj ∈
(

1 − ŵi,
1 + γi

2

)

, (A.58)
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lim
wi↑1−wj

Gi(wi,wj ) = γi(αi − βi)(1 + γi − 2wj)

≥ 0 if wj ∈
[

1 + γi

2
,1

)

, (A.59)

and Gi has the partial derivative

Gi
wi

(wi,wj ) = (αi + γi)(βi + γi)

+ (γi + βi)
(
αi − γi + (βi − αi)

(
γiwi + (1 − γi − wi)αi

))

×
(

(1 − wi)(1 − wj)

wiwj

)βi−αi

< 2γi(αi − βi) < 0, (A.60)

where the inequality follows from wi < 1 − wj and γiwi + (1 − γi − wi)αi < 0,
which in turn follows from wi < w̃i .

If wj ≥ (1 + γi)/2, strict monotonicity by (A.60) and the limits (A.56) and
(A.59) of equal sign imply (A.55a). If wj < (1 + wi)/2, the map wi �→ Gi(wi,wj )

changes sign on (0,min(ŵi,1 − wj)) due to (A.56) and (A.57) resp. (A.58). Strict
monotonicity by (A.60) guarantees the existence of a unique ui = gi(wj ) lying
in (0,min(ŵi,1 − wj)) such that Gi(ui,wj ) = 0, and therefore also (A.55b) and
(A.55c) must hold. This settles the proof of both (i)(b) and of (i)(a).

(i)(c) The differentiability follows by similar arguments as in the proof of
Lemma A.11 (iii). To check monotonicity, note that the implicit function theorem
implies for any wj ∈ (0,

1+γi

2 ) that

dgi(wj )

dwj

= −Gi
wj

(wi,wj )

Gi
wi

(wi,wj )

∣
∣
∣
∣
∣
wi=f i(wj )

.

Checking the partial derivative Gi
wj

and recalling that wi < ŵi , it follows that

sgn
(
Gi

wj
(wi,wj )

) = sgn
(
γiwi + (1 − γi − wi)αi

)
< 0,

which together with (A.60) yields

sgn

(
dgi(wj )

dwj

)

= sgn

(

− Gi
wj

(wi,wj )

Gi
wi

(wi,wj )

∣
∣
∣
∣
∣
wi=f i(wj )

)

< 0.

(i)(d) First, wi = 1−γi

2 satisfies wj < 1 − wi = 1+γi

2 which implies

Gi

(
1 − γi

2
,wj

)

= 1 − γi

2
(γi + αi)(γi + βi)

(

1 −
(1 + γi

1 − γi

)βi−αi
(1 − wj

wj

)βi−αi
)

> 0.
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By the monotonicity of wi �→ Gi(wi,wj ) (see (A.60)), it follows that gi(wj ) >
1−γi

2 .
The continuity of gi and the inequality gi(wj ) < min(ŵ,1 − wj) from (i)(a) imply
that lim

wj ↑ 1+γi
2

gi(wj ) = 1−γi

2 . Finally, for any wi ∈ (
1−γi

2 , ŵi), we have

lim
wj ↓0

Gi(wi,wj ) = ∞,

lim
wj ↑1−wi

Gi(wi,wj ) = γi(βi − αi)(1 − γi − 2wi) < 0.

By the intermediate value theorem, there hence exists for any wi ∈ (
1−γi

2 , ŵi) some

uj ∈ (0,1 − wi) ⊆ (0,
1+γi

2 ) such that Gi(wi, uj ) = 0. By the inclusion “⊆” in

(i)(a), gi(uj ) = wi . Take a sequence (wn
i )n∈N in (

1−γi

2 , ŵi) such that wn
i ↑ ŵi as

n → ∞. Then there exists a sequence (un
j )n∈N in (0,

1+γi

2 ) such that gi(un
j ) = wn

i ,

and by letting n → ∞, gi(un
j ) → ŵi . By (i)(a), gi is strictly bounded from above

by ŵi ; hence sup
wj ∈(0,

1+γi
2 )

gi(wj ) = ŵi . By (i)(c), gi is strictly decreasing; hence

limwj ↓0 gi(wj ) = ŵi .
(ii) The implicit function theorem yields

df i(wj )

dwj

= −F i
wj

(wi,wj )

F i
wi

(wi,wj )

∣
∣
∣
∣
∣
wi=f i(wj )

. (A.61)

Hence (A.48), (A.51) and (A.61) yield

sgn

(
df i(wj )

dwj

)

= −sgn
(
Gi

(
f i(wj ),wj

))
. (A.62)

Next, to show that f i(wj ) is strictly decreasing, we distinguish two cases.
If αi ≥ −γi , then by Lemma A.11 (i), the first term of G in (A.52) is positive

as ŵi < 1 − γi and βi > 1 − γi > 0. Furthermore, because βi > 1 − γi > 0, also
γi + βi > 0, and since wi < ŵi (see (3.4) for the definition of ŵi ), it follows that
αi(1 −γi −wi)+γiwi < 0; hence the second term of G, and thus also G, is positive.
By Lemma A.11 (ii), the graph of f i satisfies {(f i(wj ),wj ) : wj ∈ (0,1)} ⊆ �̂i , and

so it follows by (A.62) that
df i (wj )

dwj
< 0 for all wj ∈ (0,1).

If αi < −γi , then Gi(wi,wj ) > 0 on {(wi,wj ) ∈ �̂i : wj ≥ 1+γi

2 } by (A.55a), and
Lemma A.11 (ii) implies that

{
(
f i(wj ),wj

) : wj ∈
[

1 + γi

2
,1

)}

⊆
{

(wi,wj ) ∈ �̂i : wj ≥ 1 + γi

2

}

.

Hence by (A.62),
df i (wj )

dwj
< 0 for any wj ∈ [ 1+γi

2 ,1). It remains to check the mono-

tonicity of f i on the interval (0,
1+γi

2 ) (which coincides with the whole domain of gi ).

We show that zi(wj ) := f i(wj ) − gi(wj ) ≤ 0 for all wj ∈ (0,
1+γi

2 ). Note that

since f i(wj ) < 1 − wj for any wj ∈ (0,1), we have f i(
1+γi

2 ) <
1−γi

2 . Then by (i)(d),
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it follows that

lim
wj ↑ 1+γi

2

zi(wj ) = f i

(
1 + γi

2

)

− lim
wj ↑ 1+γi

2

gi(wj ) < 0.

Suppose by contradiction that there exists vj ∈ (0,
1+γi

2 ) such that zi(vj ) > 0. Then

the intermediate value theorem implies that there exists wj ∈ (vj ,
1+γi

2 ) such that
zi(wj ) = 0. Let w�

j be the first such point, i.e.,

w�
j = inf

{

wj ∈
(

vj ,
1 + γi

2

)

: zi(wj ) = 0

}

.

Note that this definition implies that

zi(wj ) > 0 for any wj ∈ (vj ,w
�
j ). (A.63)

By the mean value theorem, there exists u�
j ∈ (vj ,w

�
j ) such that

dzi(wj )

dwj

∣
∣
∣
∣
wj =u�

j

=
(

df i(wj )

dwj

− dgi(wj )

dwj

)∣
∣
∣
∣
wj =u�

j

< 0.

Then by (i)(c), it follows that

df i(wj )

dwj

∣
∣
∣
∣
wj =u�

j

<
dgi(wj )

dwj

∣
∣
∣
∣
wj =u�

j

< 0,

and (A.62) implies Gi(f (u�
j ), u

�
j ) > 0, which in turn by (A.55b) yields the inequality

f (u�
j ) < gi(u�

j ), in contradiction to (A.63). Hence zi(wj ) ≤ 0 for all wj ∈ (0,
1+γi

2 ).

Next, we show that zi(wj ) < 0 almost everywhere (a.e.) on (0,
1+γi

2 ). Suppose by

contradiction that there exists an interval (a, b) ⊆ (0,
1+γi

2 ) such that zi(wj ) = 0 for
any wj ∈ (a, b) or, equivalently,

f i(wj ) = gi(wj ) on (a, b). (A.64)

By (i)(a), it follows that Gi(f i(wj ),wj ) = 0 for any wj ∈ (a, b). Then (A.62) yields
that f i is constant on (a, b), which by (A.64) in turn implies that gi is constant on
(a, b), an impossibility due to (i)(c). Hence f i(wj ) < gi(wj ) almost everywhere on

(0,
1+γi

2 ). By (A.55b) and (A.62), it follows that
df i (wj )

dwj
< 0 a.e. also on (0,

1+γi

2 ),
completing the proof.

(iii) The strict monotonicity in (ii) shows that the inverse function f i,−1 of
f i is well defined and differentiable. By Lemma A.11 (ii), f i,−1(wi) is for any
wi ∈ (0, ŵi) the unique point in (0,1 − wi) such that F i(wi, f

i,−1(wi)) = 0. Note that
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lim
wj ↓0

F i(wi,wj ) = −∞,

lim
wj ↑1−wi

F i(wi,wj ) = −γiaibi(ai − bi)
wi

1 − wi

1−γi

> 0.

Suppose that there exists uj ∈ (0, f i,−1(wi)) (resp. uj ∈ (f i,−1(wi),1 − wi)) such
that F i(wi, uj ) > 0 (resp. F i(wi, uj ) < 0). Then the intermediate value theorem im-
plies that there exists

vj ∈ (0, uj ) ⊆ (
0, f i,−1(wi)

) (
resp. vj ∈ (uj ,1 − wi) ⊆ (

f i,−1(wi),1 − wi

))

such that F i(wi, vj ) = 0, contradicting the uniqueness of f i,−1(wi) which is a zero
of the map wj �→ F i(wi,wj ). Hence F i(wi,wj ) < 0 for any wj ∈ (0, f i,−1(wi)),
and F i(wi,wj ) > 0 for any wj ∈ (f i,−1(wi),1 − wi). �

A.7 Proof of Proposition 4.1

First, by Lemma A.2 and Fubini’s theorem,

J (x;Aa,Ab) ≤ (1 − p)λ(xa + xb)E

[∫ ∞

0
e−λκ tZtdt

]

(A.65)

= (1 − p)λ(xa + xb)

∫ ∞

0
e−λκ t

E[Zt ]dt,

where

Zt := E
( ∑

k∈{a,b}

(∫ ·

0
μkrk(Y

x
s )ds +

∫ ·

0
σkrk(Y

x
s )dBk

s

))

t

,

and the inequality is strict if and only if �Aa
t �Ab

t = 0 a.s. for some t ≥ 0. Moreover,

since E[e 1
2

∫ t
0 σkrk(Y

x
s )ds] < e

1
2

∫ t
0 σkds < ∞, Z satisfies the Novikov condition.

(i) As μa = μb , it follows that E[Zt ] = eμat for any (Aa,Ab) ∈A2. Hence equal-
ity holds in (A.65) and it follows that

J (x;Aa,′ ,Ab,′) = sup
(Aa,Ab)∈A2

J (x;Aa,Ab)

for any Aa,′ ,Ab,′ such that �A
a,′
t �A

b,′
t = 0 a.s. for all t ≥ 0.

(ii) Consider first the case μa > μb . The assumption Aa �= 0 implies that for some
s ≥ 0, P[Aa

s > 0] > 0. The difference Q := Ya(Aa,0) − Ya(0,0) satisfies

dQt = μaQtdt + σaQtdBa
t + YS

t−dÃa
t with Q0− = 0.
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By Jacod [23, Theorem 6.8], it follows that

Qt = E(μa · +σaB
b· )t

∫

[0,t]
E(μa · +σaB

b· )−1
u Y

S,x
u− dĀa

u,

where Āa
t = A

a,c
t + ∑

0≤s≤t
�Ãa

s

1+�Ãa
s

with Āa
0− = 0. The expression of Q reveals that

Qt ≥ 0 a.s. for all t ≥ 0 and P[Qt > 0] > 0 for all t > s. Furthermore, the fact that
Yb does not depend on Aa implies that ra(Y

x
t (Aa,0)) ≥ ra(Y

x
t (0,0)) a.s. and

P[ra(Y x
t (Aa,0)) > ra(Y

x
t (0,0))] > 0

for all t > 0. Therefore,

J
(
(xa, xb);Aa,0

)

= (1 − p)λ(xa + xb)E

[∫ ∞

0
e−λκ tE

(

μb · +(μa − μb)

∫ ·

0
ra

(
Yx

s (Aa,0)
)
ds

)

t

dt

]

> (1 − p)λ(xa + xb)E

[∫ ∞

0
e−λκ tE

(

μb · +(μa − μb)

∫ ·

0
ra

(
Yx

s (0,0)
)
ds

)

t

dt

]

= J
(
(xa, xb);0,0

)
,

establishing (4.2). For μa < μb, the last inequality is obviously reversed.
Next, the expectation of Z satisfies the ODE

dE[Zt ] =
∑

k∈{a,b}
μkE[rk(Y x

t )Zt ]dt = μbE[Zt ]dt + (μa − μb)E[ra(Y x
t )Zt ]dt.

As ra(Y
x
t ) < 1 a.s. for all t ≥ 0 and for any (Aa,Ab) ∈A2, Gronwall’s inequality

yields E[Zt ] < eμat , whence we get the upper bound

J (x;Aa,Ab) <
(1 − p)λ(xa + xb)

λκ − μa

= J S(xa + xb;Aa). (A.66)

Let Aa,w be the fraud process associated to the function a,w for some constant
w ∈ (0,1). Then Proposition A.10 yields

dE[Zt ] ≥ μbE[Zt ]dt + (μa − μb)wE[Zt ]dt = (
μb + (μa − μb)w

)
E[Zt ]dt,

and Gronwall’s inequality implies that for all t > 0,

E[Zt ] ≥ e(μb+(μa−μb)w)t ,

which in turn yields

J (x;Aa,w,0) ≥ (1 − p)λ(xa + xb)

λκ − (μb + (μa − μb)w)
. (A.67)
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Finally, consider a sequence (wn)n∈N ⊆ (0,1) with limn→∞ wn = 1. As J (x;Aa,wn)

is bounded from above by the right-hand side of (A.66) and from below by the right-
hand side of (A.67) and the bounds agree in the limit n → ∞,

lim
n→∞J (x;Aa,wn,0) = J S(xa + xb;Aa) = sup

(Aa,Ab)∈A2
J
(
(xa, xb);Aa,Ab

)
,

which is not attainable by any (Aa,Ab) ∈ A2 due to (A.66). �

Appendix B: Derivation of the HJB equation

This section contains a heuristic derivation of the HJB equations (B.10)–(B.14). By
the linear dependence of the SDE (2.2) on the fraud processes (the controls), we
conjecture a singular-type Nash equilibrium in which each trader prevents the wealth
process from leaving a region. For any i �= j ∈ {a, b}, let Cj ⊆ R

2++ be an open set
and C̄j := Cj ∪ ∂Cj its closure in R

2++. Let j ∈ �j be such that for any Ai ∈ A,
the pair (Aj ,Y x) associated to j (where Aj is the response given by (3.2)) is the
unique pair satisfying a.s. for all t ≥ 0 that

(i) Yx
t (Ai,Aj ) ∈R

2++\Cj ;

(ii)
∫
R+ 1{Yx

t (Ai ,Aj )∈∂Cj }dA
j
t = 0.

In this way, trader j keeps the personal wealth inside the region R
2++\Cj at any time

t ≥ 0 and for any trader i’s fraud process Ai ∈A. Moreover, if x ∈ Cj , then trader j

cheats instantly so as to bring the wealth at time 0 to ∂Cj , and if the wealth is at
∂Cj , trader j cheats as little as necessary to keep the wealth process in the interior of
R

2++\Cj . Hence C̄j is called the fraud region of trader j .
Suppose that in a Nash equilibrium, given trader j ’s strategy j , the optimal fraud

process Ai,� ∈ A of trader i satisfies that

�A
i,�
t �A

j,�
t = 0 a.s. for all t ≥ 0 (B.1)

(i.e., the equilibrium fraud processes Ai,� and Aj,� do not jump simultaneously) and
that the value function x �→ V i(x;Aj,�) is smooth on R

2++. Properties (i) and (ii)

imply that for any x = (xa, xb) ∈ Cj , A
j,�

0 > 0 is such that Yx
0 ∈ ∂Cj . By (B.1) and

Lemma 3.2 (ii), the game value satisfies for any x ∈ Cj and 0 ≤ α ≤ A
j,�

0 that

V i
(
(xi, xj );Aj,�

)

= e−α
E

[

λ

∫ ∞

0
e−λκ t−A

S,�
t U i(Y

i,x
t )dt

∣
∣
∣
∣x = (

xi, xj + (xa + xb)(e
α − 1)

)
]

= e−αV i
((

xi, xj + (xa + xb)(e
α − 1)

);Aj,�
)
,

where A
S,�
t := A

a,�
t + A

b,�
t . Since

lim
α↓0

e−αV i((xi, xj + (xa + xb)(e
α − 1));Aj,�) − V i((xi, xj );Aj,�)

α
= 0,
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it follows that

(xa + xb)V
i
xj

− V i = 0 on Cj . (B.2)

Define the associated differential operator (this is the infinitesimal generator of the
uncontrolled pre-bankruptcy process Yx(0,0))

Lφ(x) =
∑

k∈{a,b}
μkxk∂xk

φ(x) + 1

2

∑

k∈{a,b}
σ 2

k x2
k ∂2

xkxk
φ(x)

for any φ ∈ C2(R2++). For any x ∈R
2++\Cj , the problem of trader i becomes an opti-

mal (singular) control problem. Treating the triplet (Ai,Aj ,Y x) as the state process,
the dynamic programming principle (see e.g. Fleming and Soner [17, Sect. VIII.2])
suggests the quasi-variational inequality

max
R

2++\Cj
{LV i − λκV i + Ui, (xa + xb)V

i
xi

− V i} = 0, (B.3)

and verification theorems (cf. Fleming and Soner [17, Chap. VIII, Theorem 4.1])
suggest that the set

C̄i = {x ∈R
2++\Cj : (xa + xb)V

i
xi

− V i = 0} (B.4)

corresponds to the fraud region of Ai,�, so that the optimal cheating strategy for
trader i is to only cheat in a region Ci ⊆ R

2++ and prevent the wealth process from
leaving the region R

2++\Ci at any time t ≥ 0. More formally, and similarly to Aj,�,
Ai,� is such that a.s. for all t ≥ 0,

(i) Yx
t (Ai,�,Aj,�) ∈R

2++\(Cj ∪ Ci );

(ii)
∫
R+ 1{Yx

t (Ai,�,Aj,�)∈∂Ci}dA
i,�
t = 0.

Here R
2++\(Cj ∪ Ci ) is the common no-fraud region. Note that Condition (B.1) im-

plies that Ci ∩ Cj = ∅, that is, the traders’ fraud regions do not intersect.
Substituting (B.4) into (B.3), it follows that for any x ∈R

2++\Cj ,

LV i − λκV i + Ui = 0 on R
2++\(Ci ∪ Cj ), (B.5)

LV i − λκV i + Ui < 0 on Ci , (B.6)

(xa + xb)V
i
xi

− V i < 0 on R
2++\(Ci ∪ Cj ). (B.7)

Let Li be the differential operator acting on ϕ ∈ C2(R++) and given by

Liϕ(w) = (1 − γi)

(

μiw + μj (1 − w) − γi

2

(
σ 2

i w2 + σ 2
j (1 − w)2)

)

ϕ(w)

+
(
μi − μj + γi

(
σ 2

j (1 − w) − σ 2
i w

))
w(1 − w)ϕw(w)

+ σ 2
i + σ 2

j

2
w2(1 − w)2ϕww(w).
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Now, conjecture that for both traders k ∈ {a, b}, the fraud regions in a Nash equilib-
rium are of the form

Ck = {x ∈R
2++ : rk(x) < mk}, (B.8)

where mk ∈ (0,1) is such that 0 < ma + mb < 1. In other words, by cheating, traders
prevent their fraction of wealth from going below their respective critical threshold mk .
Note that due to ri(x) + rj (x) = 1 for any x ∈ R

2++, the condition ma + mb < 1
is equivalent to Ci ∩ Cj = {x ∈ R

2++ : ri(x) < mi and ri(x) > 1 − mj } = ∅. Hence
the equilibrium fraud processes (Aa,�,Ab,�) and the pre-bankruptcy wealth process
Yx(Aa,�,Ab,�) are precisely the processes associated with the response maps k,mk

which solve SPmk+ for k ∈ {a, b} (see Definition 3.6). The scale-invariance prop-
erty from Lemma 3.2 (iii) is inherited by the value function, meaning that we have
V i(cx;Aj,�) = c1−γi V i(x;Aj,�) for any c > 0; so ϕi(w) = V i((w,1 − w);Aj,�) for
any w in (0,1). Thus Lemma 3.2 (ii) implies that V i is of the form

V i(x;Aj,�) = λ(xa + xb)
1−γi ϕi

(
ri(x)

)
. (B.9)

Let ri(x) = w and substitute (B.9) and (B.8) into (B.5), (B.6), (B.4), (B.7) and (B.2).
This yields the HJB equations

Liϕi(w) − λκϕi(w) + Ui(w) = 0 on (mi,1 − mj), (B.10)

Liϕi(w) − λκϕi(w) + Ui(w) < 0 on (0,mi), (B.11)

(1 − w)ϕi
w(w) − γiϕ

i(w) = 0 on (0,mi), (B.12)

(1 − w)ϕi
w(w) − γiϕ

i(w) < 0 on (mi,1 − mj), (B.13)

wϕi
w(w) + γiϕ

i(w) = 0 on (1 − mj ,1) (B.14)

which are the starting point for the verification approach.

Appendix C: Proofs of the main results

The following result establishes the link between the HJB equations (B.12)–(B.14)
and the optimisation problem.

Lemma C.1 Let (ma,mb) ∈ �. For any i �= j ∈ {a, b}, let ϕi ∈ C1((0,1)) be an
R++-valued function satisfying (B.12)–(B.14). For any α ≥ 0 and w ∈ (0,1), set

f̃ j (α,w) :=
(

ln
(

1 + 1

1 − mj

(
mje

α − (1 − w)
))

)+
(C.1)

and

h̃i (α,w) := e−α−f̃ j (α,w)(eα + ef̃ j (α,w) − 1)1−γi ϕi

(
eα − (1 − w)

eα + ef̃ j (α,w) − 1

)

. (C.2)

Then:
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(i) f̃ j (α,w) > 0 if and only if one of the following two conditions holds:
(a) w > 1 − mj , or (b) w ≤ 1 − mj and α > ln 1−w

mj
.

(ii) If (α,w) is such that f̃ j (α,w) > 0, then ∂αh̃i(α,w) < 0.
(iii) For any α ≥ 0 and all w ∈ (0,1),

h̃i (α,w) − ϕi(1 − w) ≤ 0, (C.3)

and equality in (C.3) holds precisely in the following two cases:

α = 0 and w ∈ (mi,1),

α ≤ ln
1 − w

1 − mi

and w ∈ (0,mi].

Proof (i) We show the equivalent statement that we have f̃ j (α,w) = 0 if and only
if w ≤ 1 − mj and α ≤ ln 1−w

mj
. Note that f̃ j (α,w) = 0 if and only if eα ≤ 1−w

mj
. If

eα ≤ 1−w
mj

, then 1−w
mj

≥ 1 because eα ≥ 1, which together with eα ≤ 1−w
mj

implies that

α ≤ ln 1−w
mj

. The converse implication follows from the monotonicity of the exponen-

tial function, applied to α ≤ ln 1−w
mj

.

(ii) If f̃ j (α,w) > 0, then

eα − (1 − w)

eα + ef̃ j (α,w) − 1
= 1 − mj ,

and thus h̃i (defined in (C.2)) simplifies to

h̃i (α,w) = 1 − (1 − w)e−α

w + (eα − 1)mj

(
1 − mj

eα − (1 − w)

)γi

ϕi(1 − mj).

Differentiating h̃i with respect to α and recalling that ϕi is strictly positive, it follows
that ∂αh̃i(α,w) has the same sign as

gi(α,w) = (1 − w)(w − mj) − e2α(1 + γi)mj + eα
(
2(1 − w)mj − γi(w − mj)

)
.

As ∂αgi(α,w) ≤ eα(−γi(w + mj) − 2wmj) < 0, it follows that

gi(α,w) ≤ gi(0,w) = −w
(
γi + mj − (1 − w)

)
< 0.

Hence ∂αh̃(α,w) < 0.
(iii) All classical solutions of the linear ODEs (B.12) and (B.14) are of the form

w �→ C(1 − w)−γi and w �→ Dw−γi , C,D ∈R,

respectively. As ϕi is positive,

ϕi(w) =
{

C0(1 − w)−γi for w ∈ (0,mi), (C.4a)

C1w
−γi for w ∈ (1 − mj ,1), (C.4b)

where C0 > 0 and C1 > 0. Distinguish now three cases:
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(1) w ∈ (1 − mj ,1): By (i), we have f̃ i (α,w) > 0 for any α ≥ 0, and thus by
(ii), it follows that h̃i (α,w) ≤ h̃i (0,w), with equality if and only if α = 0. Thus in
conjunction with (C.4b), we get

h̃i (α,w) − ϕi(w) ≤ h̃i (0,w) − ϕi(w) =
(

1 − mj

w

)γi

ϕi(1 − mj) − ϕi(w) = 0,

where equality holds if and only if α = 0.
(2) w ∈ (mi,1 − mj ]: If α > ln 1−w

mj
, then f̃ i (α,w) > 0 by part (i). So by (ii),

we have ∂αh̃i(α,w) < 0 and thus h̃i (α,w) < h̃i(ln 1−w
mj

,w) for any α > ln 1−w
mj

. If

instead α ≤ ln 1−w
mj

, then f i(α,w) = 0 by (i) and h̃i reduces to

h̃i (α,w) = e−γiαϕi
(
1 − (1 − w)e−α

)
.

By (B.13),

∂αh̃i(α,w) = −γih̃
i(α,w) + e−(1+γi )α(1 − w)ϕi

w

(
1 − (1 − w)e−α

)

≤ −γih̃
i(α,w) + γie

−(1+γi )α(1 − w)ϕi
(
1 − (1 − w)e−α

)

= γie
−γiα(e−α − 1)ϕi

(
1 − (1 − w)e−α

) ≤ 0,

where equality holds if and only if α = 0. Hence for any α ≥ 0,

h̃i (α,w) − ϕi(w) ≤ h̃i (0,w) − ϕi(w) = 0,

with equality if and only if α = 0.
(3) w ∈ (0,mi]: If α > ln 1−w

mj
, then (i) and (ii) imply that

h̃i (α,w) < h̃i

(

ln
1 − w

mj

,w

)

for α > ln 1−w
mj

. If α ≤ ln 1−w
mj

, then property (i) implies that f i(α,w) = 0, and hence

h̃i (α,w) = e−γiαϕi
(
1 − (1 − w)e−α

)
.

If α ∈ (ln 1−w
1−mi

, ln 1−w
mj

], we get 1 − (1 − w)e−α ∈ [mj ,1 − mi). Using (B.13), it

analogously follows that ∂αh̃i(α,w) < 0 and thus

h̃i

(

ln
1 − w

mj

,w

)

< h̃i

(

ln
1 − w

1 − mi

,w

)

.
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Finally, if α ≤ ln 1−w
1−mi

, then 1 − (1 − w)e−α ∈ [1 − mi,1) and (C.4a) implies that

h̃i (α,w) − ϕi(w) = e−γiαϕi
(
1 − (1 − w)e−α

) − ϕi(w)

= C0e
−γiα

(
(1 − w)e−α

)−γi − C0(1 − w)−γi = 0. �

The following result verifies that the solutions to the HJB equations (B.10)–(B.14)
are indeed the value functions (up to homogeneity in total firm’s wealth).

Theorem C.2 Let (ma,mb) ∈ � be fraud boundaries. For any i �= j ∈ {a, b}, let
the R++-valued function ϕi ∈ C1([0,1]) ∩ C2((0,1 − mj)) be such that ϕi

w is also
Lipschitz-continuous on (0,1) and satisfies the HJB equations (B.10)–(B.14). De-
fine two functions by φk(x) := λ(xa + xb)

1−γkϕk(rk(x)) for x ∈R
2++ and k ∈ {a, b}.

Then the pair (a,ma ,b,mb) is a Nash equilibrium and (φa,φb) are the correspond-
ing game values, i.e., for any i �= j ∈ {a, b},

φi(x) = V i(x;Aj,�).

Proof Let i �= j ∈ {a, b}. We first show that

φi(x) ≥ sup
Ai∈A

J i(x;Ai,Aj ), x ∈R
2++, (C.5)

where Aj satisfies (3.2) with j = j,mj . To this end, extend ϕi to R by setting
ϕi(w) := ϕi(0) for w < 0 and ϕi(w) := ϕi(1) for w > 1. Let ξ ∈ C∞(R) be a non-
negative function, compactly supported in [−1,1] and such that

∫
R

ξ(x)dx = 1. For

any m ≥ 1, let ξm(w) := ξ(mw)
m

. By convolution, the function

ϕi,m(w) :=
∫

R

ϕi(y)ξm(w − y)dy

is infinitely differentiable. Since supp(ξm) ⊆ [−1/m,1/m], ϕi,m(w) depends only
on the values of ϕi(w) where w ∈ [w0 − 1/m,w0 + 1/m]. Since ϕi is continuous
on R, ϕi,m converges to ϕi as m → ∞ uniformly on any compact subset of R. More-
over, as ϕi

w ∈ C([0,1]), also ϕi,m
w converges to ϕi

w on any compact subset of R (cf.
the argument in Fleming and Soner [17, Appendix C]). For r > 0, define the disk
Dr(x) := {x ∈ R

2 : |x| < r} and set Rm,r := Rm ∩ Dr(0), where

Rm :=
{

x ∈R
2++ : min{xi, xj } >

1

m

}

.

Define the exit time τm,r := inf{t ≥ 0 : Yx
t /∈ Rm,r} and the function

φi,m(x) := λ(xa + xb)
1−γi ϕi,m

(
ri(x)

)
.
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Applying Itô’s formula to e
−λκ (t∧τm,r )−AS

t∧τm,r φi,m(Y x
t∧τm,r

), we obtain upon taking

expectations (using the abbreviation Yx
t = Yx

t (Ai,Aj )) that

λ−1φi,m(x)

= λ−1
E

[
e
−λκ (t∧τm,r )−AS

t∧τm,r φi,m(Y x
t∧τm,r

)
]

−E

[∫ t∧τm,r

0
e−λκ s−AS

s (Y x,S
s )1−γi

(
Liϕi,m(Wi,wi

s ) − λκϕi,m(Wi,wi
s )

)
ds

]

−E

[∫ t∧τm,r

0
e−λκ s−AS

s (Y x,S
s )1−γi

× (
(1 − Wi,wi

s )ϕi,m
w (Wi,wi

s ) − γiϕ
i,m(Wi,wi

s )
)
dAi,c

s

]

+E

[∫ t∧τm,r

0
e−λκ s−AS

s (Y x,S
s )1−γi

× (
Wi,wi

s ϕi,m
w (Wi,wi

s ) + γiϕ
i,m(Wi,wi

s )
)
dA

j,c
s

]

−E

[ ∑

0≤s≤t∧τm,r

e−λκ s−AS
s−(Y

x,S
s− )1−γi

×
(
e−�AS

s (e�Ai
s + e�A

j,�
s − 1)1−γi ϕi,m(Wi,wi

s ) − ϕi,m(W
i,wi
s− )

)]

,

(C.6)

where W
i,wi
t = ri(Y

x
t ) for any t ≥ 0, with W

i,wi

0− = ri(x) = wi .

Since j,mj solves SPj
mj +, Proposition A.10 implies that 0 < W

i,wi
t ≤ 1 − mj

a.s. for all t ≥ 0, and the continuity of Liϕi on (0,1 − mj) implies the convergence
limm→∞ Liϕi,m(w) = Liϕi(x) for any w ∈ (0,1 − mj). Also, since ϕi

w is Lipschitz-
continuous on (0,1), there exists for any r > 0 some M > 0 such for any m ∈ N and
x ∈ Rm,r , we have

∣
∣(xi + xj )Liϕi,m

(
ri(x)

)∣
∣ < M.

As limm→∞ τm,r = τr := inf{t ≥ 0 : Yx
t /∈ R

2++ ∩ Dr(0)}, dominated convergence
implies that

lim
m→∞

∫ t∧τm,r

0
e−λκ s−AS

s (Y x,S
s )1−γiLiϕi

m(Wi,wi
s )ds

=
∫ t∧τr

0
e−λκ s−AS

s (Y x,S
s )1−γiLiϕi(Wi,wi

s )ds

a.s. for all t ≥ 0. Using (B.14) and the fact that Aj,c increases only at 1 − mj , letting
m → ∞ and r → ∞ in (C.6) and noting that limr→∞ τr → ∞ a.s. because ∂R2++ is
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unattainable for Yx when x ∈R
2++, we obtain

λ−1φi(x)

= λ−1
E

[
e−λκ t−AS

t φi(Y x
t )

]

−E

[∫ t

0
e−λκ s−AS

s (Y x,S
s )1−γi

(
Liϕi(Wi,wi

s ) − λκϕi(Wi,wi
s )

)
ds

]

(C.7)

−E

[∫ t

0
e−λκ s−AS

s (Y x,S
s )1−γi

× (
(1 − Wi,wi

s )ϕi
w(Wi,wi

s ) − γiϕ
i(Wi,wi

s )
)
dAi,c

s

]

(C.8)

−E

[ ∑

0≤s≤t

e−λκ s−AS
s−(Y

x,S
s− )1−γi

×
(
e−�AS

s
(
e�Ai

s + e�A
j,�
s − 1

)1−γi ϕi(Wi,wi
s ) − ϕi(W

i,wi
s− )

)]

. (C.9)

Note that by Lemma A.10 and (A.30), we have �A
j
t = f̃ j (�Ai

t ,W
i,wi
t− ) a.s. for all

t ≥ 0, where f̃ j is given by (C.1). Hence Lemma C.1 (iii) yields

h̃i
(
�Ai

t , ri(Y
x
t )

) − ϕi
(
wi(Y

x
t−)

)

= e−�AS
t (e�Ai

t + e�A
j
t − 1)1−γi ϕi

(
ri(Y

x
t )

) − ϕi
(
ri(Y

x
t−)

) ≤ 0

a.s. for all t ≥ 0, where h̃i is given by (C.2). Together with the HJB equations
(B.10)–(B.14) and the fact that (xi + xj )

1−γi U i(ri(x)) = Ui(xi) for x ∈R
2++, it fol-

lows that for any t ≥ 0,

λ−1φi(x) ≥ E
[
e−λκ t−AS

t (Y
x,S
t )1−γi ϕi

(
ri(Y

x
t )

)]

+E

[∫ t

0
e−λκ s−AS

s Ui(Y i,x
s )ds

]

. (C.10)

Lemma A.3 implies E[e−AS
t (Y

x,S
t )1−γi ] = E[(1{t<τA}Yx,S

t )1−γi ]. Using the bounded-
ness of ϕi , Lemma A.8, (A.17) and Jensen’s inequality, we obtain

E
[
e−AS

t (Y
x,S
t )1−γi ϕi

(
ri(Y

x
t )

)] ≤ ME[1{t<τA}Yx,S
t ]1−γi ≤ M(xi + xj )e

μa∨μb(1−γi )t ,

where M = max0≤w≤1 |ϕi(w)|. Assumption 3.1 implies that

lim
t→∞E

[
e−λκ t−AS

t (Y
x,S
t )1−γi ϕi

(
ri(Y

x
t )

)] = 0.

For t ≥ 0, let Zt := ∫ t

0 e−λκ s−AS
s Ui(Y

i,x
s )ds ≤ Z∞ since the integrand is nonnega-

tive a.s. Furthermore, Z∞ is in L1 due to Lemma 3.2 (i), whence
limt→∞ E[Zt ] = E[Z∞] by dominated convergence, which establishes (C.5).
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Next, we show that equality holds in (C.5). If trader i employs the cheating strat-
egy i,mi , then by Proposition A.10, mi < ri(Y

x
t (Ai,�,Aj,�)) < 1 − mj a.s. for al-

most every t ≥ 0, where A
i,�
t = i,mi (Y

i,x
[0,t), Y

j,x

[0,t),A
i,�
[0,t)) a.s. for all t ≥ 0. The pro-

cess Ai,c,� increases only when Wi,wi is at mi ; hence the term (C.8) vanishes by
(B.12). The jump �A

i,�
t = 1{t=0}(ln 1−wi

1−mi
)+ is nonzero only when ri(x) < mi , and

such a jump brings W
i,wi

0 to mi ; thus by Lemma C.1 (iii), the term (C.9) vanishes.
Therefore using (B.10) for the term (C.7) leads to equality in (C.10).

Finally, letting t converge to infinity yields

φi(x) = J i(x;Ai,�,Aj ) = sup
Ai∈A

J i(x;Ai,Aj,�). �

C.8 Proof of Theorem 3.9

Lemma C.3 (i) The constants ci
k (k = 0,1,2,3) in Theorem 3.9 are strictly positive.

(ii) Let c > 0, w� ∈ (0, ŵi] and suppose f �(w) := c(1 − w)−γi satisfies

Lif �(w) − λκf �(w) + Ui(w) = 0, w ∈ [w�, ŵi]. (C.11)

Then Lif �(w) − λκf �(w) + Ui(w) < 0 for any w ∈ (0,w�).

Proof First, we show that (αi + βi − 1)w − αiβi > 0 for any w ∈ (0, ŵi]. Indeed,
if αi + βi − 1 > 0, then clearly (αi + βi − 1)w − αiβi > 0. On the other hand, if
αi + βi − 1 < 0, the inequalities w < ŵi and βi > 1 − γi (see Lemma A.11 (i)) give

(αi + βi − 1)w − αiβi > (αi + βi − 1)ŵi − αiβi

= −αi(1 − αi)(βi − (1 − γi))

γi − αi

> 0. (C.12)

Since w̃i < ŵi by Lemma A.11 (v), it follows by (C.12) that ci
0, ci

1 and ci
2 are strictly

positive, which in turn implies ci
3 > 0. This finishes the proof of (i).

(ii) For any w ∈ (0,w�), Lif �(w) − λκf �(w) + Ui(w) has the same sign as

�(w) := w1−γi (1 − w)γi − c(1 − γi)

(

pi −
(σ 2

2
− ki

)
w

)

= w1−γi (1 − w)γi − σ 2

2
c(1 − γi)

(
(αi + βi − 1)w − αiβi

)
. (C.13)

The condition (C.11) implies �(w�) = 0, and we have

lim
w↓0

�(w) = 1

2
c(1 − γi)σ

2αiβi < 0, (C.14)

�ww(w) = −γi(1 − γi)w
−1−γi (1 − w)−2+γi < 0. (C.15)

Suppose for a contradiction that supw∈(0,w�) �(w) > �(w�) = 0. By (C.14) and the
strict concavity in (C.15), it follows that the maximum of � is attained at some
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z ∈ (0,w�), i.e., supw∈(0,w�) �(w) = �(z). Thus

�w(z) = z−γi (1 − z)γi−1(1 − γi − z) + σ 2

2
c(1 − γi)(1 − αi − βi) = 0. (C.16)

As z < ŵi < 1 − γi by Lemma A.11 (i), plugging (C.16) into (C.13) yields

�(z) = c(1 − γi)σ
2

2(1 − γi − z)

(
(αi − 1)γiz + (

γiz + (1 − γi − z)αi

)
βi

)

<
c(1 − γi)σ

2

2(1 − γi − z)
(αi − 1)γiz < 0,

which contradicts �(z) > 0. Hence supw∈(0,w�) �(w) ≤ 0, and since � is a nonpositive
strictly concave function with �(w�) = 0, it must be strictly negative on (0,w�). �

Proof of Theorem 3.9 To establish the theorem, it suffices to prove that the conditions
of Theorem C.2 are satisfied. By construction, for any i �= j ∈ {a, b}, the function ϕi

satisfies the ODEs (B.10), (B.12) and (B.14), as well as the smooth pasting conditions

ϕi(w̃i−) = ϕi(w̃i+), (C.17)

ϕi
w(w̃i−) = ϕi

w(w̃i+),

ϕi
ww(w̃i−) = ϕi

ww(w̃i+). (C.18)

As F i(w̃i, w̃j ) = 0, we also have

ϕi
(
(1 − w̃j ) − ) = ϕi

(
(1 − w̃j ) + )

, (C.19)

ϕi
w

(
(1 − w̃j ) − ) = ϕi

w

(
(1 − w̃j ) + )

. (C.20)

By construction, ϕi is in C2((0, w̃i)) ∩ C2((w̃i ,1 − w̃j )) ∩ C2((1 − w̃j ,1)). The
equalities (C.17) and (C.18) therefore imply that ϕi ∈ C2(0,1 − w̃j ), and the equal-
ities (C.19) and (C.20) yield ϕi ∈ C1(0,1). Because we have limw↓0 ϕi(w) = ci

0,
limw↑1 ϕi(w) = ci

3, limw↓0 ϕi
w(w) = γic

i
0 and limw↑1 ϕi(w) = −γic

i
3, we may extend

the function ϕi to an element in C1([0,1]). Moreover, in view of the finite limits

lim
w↓0

ϕi
ww(w) = ci

0γi(1 + γi),

lim
w↑1

ϕi
ww(w) = ci

3γi(1 + γi),

ϕi
ww

(
(1 − w̃j ) + ) = ci

3γi(1 + γi)(1 − w̃j )
−2−γi ,

ϕi
ww

(
(1 − w̃j ) − ) = w−2(1 − w)−2

×
(
ci

1w
αi (1 − w)ai

(
α2

i − (1 − 2γiw)αi − (1 − γi)γiw
2)

+ ci
2w

βi (1 − w)bi
(
β2

i − (1 − 2γiw)βi − (1 − γi)γiw
2)

)

− γi

qiw1+γi

∣
∣
∣
∣
w=1−w̃j
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and the continuity of ϕi
ww on the intervals (0,1 − w̃j ) and (1 − w̃j ,1), it follows that

supw∈(0,1) |ϕi
ww(w)| < ∞, whence ϕi

w is Lipschitz-continuous.
Now (B.11) follows from w̃i < ŵi in conjunction with Lemma C.3 (i) and

(ii). To check (B.13), first note that (1 − w)ϕi
w(w) − γiϕ

i(w) has on the interval
(w̃i ,1 − w̃j ) the same sign as

(wj − γi)F
i(w̃i ,wj ) + γiaibi�

i(wj ) =: hi(wj ),

where wj := 1 − w so that wj ∈ (w̃j ,1 − w̃i), and

�i(wj ) := (
γiw̃i + (1 − γi − w̃i)βi

)
(

wj

1 − wj

)−αi
(

w̃i

1 − w̃i

)ai

− (
γiw̃i + (1 − γi − w̃i)αi

)
(

1 − wj

wj

)βi
(

1 − w̃i

w̃i

)−bi

.

As w̃i < ŵi implies γiw̃i + (1 − γi − w̃i)αi < 0, it follows that �i(wj ) > 0.
Next, Lemma A.11 (ii) and Lemma A.12 (ii) yield

(w̃i, w̃j ) ∈ {(
wi,f

i,−1(wi)
) : wi ∈ (0, ŵi)

}
.

It follows that f i,−1(w̃i) = w̃j , and Lemma A.12 (iii) yields that

F i(w̃i ,wj ) > 0 for any wj ∈ (w̃j ,1 − w̃i). (C.21)

If wj ≤ γi , then Lemma A.11 (i) and (C.21) imply that hi(wj ) < 0. For wj > γi ,

factoring out (
1−wj

wj
)1−γi from hi yields

sgn
(
hi(wj )

) = sgn
(
h̄i (wj )

)
,

where

h̄i (wj ) := ai(wj − bi − γi)
(
γiw̃i + (1 − γi − w̃i)αi

)
(

1 − w̃i

w̃i

)−bi
(

1 − wj

wj

)−bi

+ bi(ai + γi − wj)
(
γiw̃i + (1 − γi − w̃i)βi

)
(

w̃i

1 − w̃i

)ai
(

wj

1 − wj

)ai

+ (ai − bi)(wj − γi)
(
w̃i(αi + βi − 1) − αi

)
.

It follows from wj > γi and Lemma A.11 (i) that

wj − γi − bi > 0,

γiw̃i + (1 − γi − w̃i)αi < 0,

ai + γi − wj > 1 − wj > 0.
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The inequalities 1−w̃i

wj
> 1 and

1−wj

w̃i
> 1 imply that

h̄i (wj ) < ai(wj − bi − γi)
(
γiw̃i + (1 − γi − w̃i)αi

)

+ bi(ai + γi − wj)
(
γiw̃i + (1 − γi − w̃i)βi

)

+ (ai − bi)(wj − γi)
(
w̃i(αi + βi − 1) − αiβi

)

= aibi(1 − w̃i − wj)(βi − αi) < 0.

Therefore (1 − w)ϕi
w(w) − γiϕ

i(w) < 0 for w ∈ (w̃i ,1 − w̃j ), and we get (B.13).
�

C.9 Proof of Theorem 3.10

The proof of the following auxiliary statement is similar to (but shorter than) that of
Lemma C.1 (iii). We skip its proof.

Lemma C.4 For any i �= j ∈ {a, b} and any mi ∈ (0,1), let ϕi ∈ C1((0,1)) be an
R++-valued function satisfying (B.12) and (B.13). Then for any α ≥ 0 and w ∈ (0,1),
the function

ĥi (α,w) := e−αγi ϕi
(
1 − e−α(1 − w)

)

satisfies

ĥi (α,w) − ϕi(1 − w) ≤ 0,

where equality holds if and only if one of the following two conditions holds:

α = 0 and w ∈ (mi,1),

α ≤ ln
1 − w

1 − mi

and w ∈ (0,mi].

Proof of Theorem 3.10 A direct calculation reveals that ϕ̂i satisfies

Li ϕ̂i (w) − λκϕ̂i(w) + Ui(w) = 0, w ∈ (ŵi ,1), (C.22)

(1 − w)ϕ̂i
w(w) − γiϕ̂

i(w) = 0, w ∈ (0, ŵi), (C.23)

and

ϕ̂i (ŵi−) = ϕ̂i (ŵi+), (C.24)

ϕ̂i
w(ŵi−) = ϕ̂i

w(ŵi+), (C.25)

ϕ̂i
ww(ŵi−) = ϕ̂i

ww(ŵi+). (C.26)
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As ϕ̂i ∈ C2((0, ŵi)) and ϕ̂i ∈ C2((ŵi ,1)), (C.24)–(C.26) imply the twice-differen-
tiability across (0,1), i.e., ϕ̂i ∈ C2((0,1)). Moreover, Lemma A.11 (i) implies that
si

0 > 0 and si
1 > 0. Hence by Lemma C.3 (ii),

Li ϕ̂i (w) − λκϕ̂i(w) + Ui(w) < 0, w ∈ (0, ŵi). (C.27)

Next, we prove that

(1 − w)ϕ̂i
w(w) − γiϕ̂

i(w) < 0, w ∈ (ŵi ,1). (C.28)

To this end, note that for any w ∈ (ŵi ,1),

sgn
(
(1 − w)ϕ̂i

w(w) − γiϕ̂
i(w)

) = sgn
(
�i(w)

)
,

where

�i(w) = 1 − γi − w

(1 − γi)qi

− si
1

(
1 − w

w

)ai

(w − αi).

Also,

lim
w↓ŵi

�i(w) = lim
w↓ŵi

�i
w(w) = 0, lim

w↑1
�i(w) = − γi

(1 − γi)qi

< 0

and

sgn
(
�i
ww(w)

) = sgn
(
(γ − αi)w + αi(1 + ai)

)
.

As w ∈ (ŵi ,1), it follows that

(γ − αi)w + αi(1 + ai) ∈ (
(1 − αi)αi, (1 − αi)(γi + αi)

)
.

We now distinguish two cases. If γi + αi ≤ 0, then �i
ww(w) < 0 and hence

�i
w(w) < lim

w↓ŵi

�i
w(w) = 0.

Therefore, an ODE comparison argument yields that �i < 0 on (ŵi ,1). If γi + αi > 0,
then �i

ww(w) ≤ 0 on (ŵi,
−αi(1+ai )

γi−αi
] and it follows again by an ODE comparison

argument that �i(w) < 0 for any w ∈ (ŵi ,
−αi(1+ai )

γi−αi
]. As �i is strictly convex on

the interval (
−αi(1+ai )

γi−αi
,1) and below 0 at its boundaries, i.e., �i(

−αi(1+ai )
γi−αi

) < 0 and

limw↑1 �i(w) < 0, it follows that �i < 0 on (
−αi(1+ai )

γi−αi
,1).

In summary, this proves (C.28). We now apply Itô’s formula to e−λκ t−Ai
t φ̂i (Y x

t )

and omit the dependence of Yx and Wi,wi on (Ai,0) for the sake of brevity. This



Rogue traders 601

yields, upon taking expectations, that

λ−1φ̂i(x) = λ−1
E

[
e−λκ t−Ai

t φ̂i (Y x
t )

]

−E

[∫ t

0
e−λκ s−Ai

s (Y x,S
s )1−γi

(
Li ϕ̂i (W i,wi

s ) − λκϕ̂i(W i,wi
s )

)
ds

]

−E

[

a

∫ t

0
e−λκ s−Ai

s (Y x,S
s )1−γi

× (
(1 − Wi,wi

s )ϕ̂i
w(Wi,wi

s ) − γiϕ̂
i(W i,wi

s )
)
dAi,c

s

]

−E

[ ∑

0≤s≤t

e−λκ s−Ai
s−(Y

x,S
s− )1−γi

× (
e−γi�Ai

s ϕ̂i(W i,wi
s ) − ϕ̂i (W

i,wi
s− )

)
]

. (C.29)

By Lemma C.4, as well as (C.23) and (C.28), the last expectation in (C.29) is non-
negative. Using (C.22), (C.23) and (C.27), (C.28), similar arguments as in the proof
of Theorem C.2 yield

φ̂i(x) ≥ sup
Ai∈A

J i(x;Ai,0) for x ∈ R
2++. (C.30)

Finally, using the properties of i,ŵi in Proposition A.10, the equality in (C.30) fol-
lows. �
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