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Josephson current flowing through a nontrivial geometry: Role of pairing
fluctuations across the BCS-BEC crossover
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A realistic description of the Josephson effect at finite temperature with ultracold Fermi gases embedded in
nontrivial geometrical constraints (typically, a trap plus a barrier) requires appropriate consideration of pairing
fluctuations that arise in inhomogeneous environments. Here, we apply the theoretical approach developed in a
companion paper [Pisani et al., Phys. Rev. B 108, 214503 (2023)], where the inclusion of pairing fluctuations
beyond mean field across the BCS–Bose-Einstein-condensate (BEC) crossover at finite temperature is combined
with a detailed description of the gap parameter in a nontrivial geometry. In this way, we are able to account for
the experimental results on the Josephson critical current, reported both at low temperature for various couplings
across the BCS-BEC crossover and as a function of temperature at unitarity. Besides validating the theoretical
approach of the companion paper, our numerical results reveal generic features of the Josephson effect which
may not readily emerge from an analysis of corresponding experiments with condensed-matter samples owing
to the unique intrinsic flexibility of experiments with ultracold gases.
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I. INTRODUCTION

Most practical applications of superconductors (or, gener-
ically speaking, of fermionic superfluids) require a detailed
consideration of inhomogeneous environments. In this con-
text, the theoretical description based on the Ginzburg-Landau
(GL) equation for the complex order parameter has proved
quite useful [1]. However, the GL equation is valid only close
enough to the critical temperature Tc and for weak interpar-
ticle coupling when the Cooper pair size is much larger than
the interparticle distance. In fermionic superfluids with strong
enough coupling (like ultracold Fermi gases) these restrictions
are in general violated and the GL equation cannot be applied.
In these cases, one may revert to solving the Bogoliubov–de
Gennes (BdG) equations [2], which are equivalent to the inho-
mogeneous version of the BCS theory developed by Gor’kov
[3] and can, in principle, be applied for any coupling across
the BCS–Bose-Einstein-condensate (BEC) crossover, both at
zero [4] and finite [5] temperature.

In practice, the problem with the BdG equations is twofold.
When solving numerically these two-component Schrödinger-
like equations, difficulties arise in storing the large number of
details contained in the single-particle wave functions (from
which the order parameter is eventually obtained through an
averaging procedure that washes out most of these details). In
addition, the BdG equations do not take into account pairing
fluctuations, whose consideration is required away from the
weak-coupling (BCS) limit of the BCS-BEC crossover [6].

In this respect, a first attempt to include exchange and
correlation effects in the BdG equations for spatially inhomo-
geneous superconductors was proposed in Ref. [7] in terms
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of Kohn-Sham-type equations, where the practical challenge
is to include pairing correlations in the exchange-correlation
free-energy functional. It is for this reason that most im-
plementations of this proposal relied on rather pragmatical
semiphenomenological approaches to that functional [8]. By a
related token, a superfluid local density approximation variant
has expressed the energy density functional at low temper-
ature in terms of three phenomenological parameters, that
could be determined only at unitarity [9] and in the weak-
coupling (BCS) limit [10] by exploiting known independent
results. This method has recently been utilized for studying
dissipation effects in the context of the Josephson effect [11].

This paper addresses specifically the question of including
pairing fluctuations in the BdG equations when the coupling
spans the BCS-BEC crossover and the temperature is below
the superfluid critical temperature Tc. This enables us to pro-
vide a detailed theoretical account of the experimental results
reported in Refs. [12,13] for the Josephson effect in ultracold
superfluid Fermi gases.

To this end, we adopt the theoretical approach developed
by us in the companion paper Ref. [14], which is alterna-
tive to the approaches of Refs. [7–11] and enables us to
conveniently deal with spatially inhomogeneous fermionic
superfluids at any coupling across the BCS-BEC crossover
and at any temperature below Tc. Moreover, being based
on the many-body Green’s function theory, this approach
is amenable to further improvements through a “modular”
inclusion of additional diagrammatic contributions, like the
extended Gor’kov–Melik-Barkhudarov (GMB) approach in
the superfluid phase introduced in Ref. [15].

II. THEORETICAL APPROACH AND METHODS

The present approach includes pairing fluctuations on
top of a simplified version of the BdG equations, thereby
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overcoming the difficulties described in the Introduction.
Specifically, the present approach succeeds in merging (i)
the coarse-graining procedure on the BdG equations intro-
duced in Ref. [16], which results in the local phase density
approximation (LPDA) differential equation for the complex
gap parameter �(r), and (ii) a local version of the t-
matrix approximation for fermionic superfluids implemented
in Ref. [17]. The merging of (i) and (ii) eventually transforms
the LPDA approach of Ref. [16] into the modified local phase
density approximation (mLPDA) approach of Ref. [14], and
yields expressions for the local density and current that take
into account beyond-mean-field pairing fluctuations in the
presence of spatial inhomogeneities. These expressions have
the property to evolve with continuity from a fermionic to a
bosonic two-fluid model when the coupling spans the BCS-
BEC crossover. Following the procedures utilized in Ref. [18]
for the LPDA equation, the ensuing mLPDA equation will
explicitly be solved for the Josephson effect in the presence
of nontrivial geometrical constraints, like those utilized ex-
perimentally in Refs. [12,13].

The LPDA equation for �(r) reads [16][
m

4πaF
+ I0(r) + I1(r)

(∇2

4m
− i

A(r)

m
· ∇

)]
�(r) = 0 (1)

where h̄ = 1 and the expressions of the (highly nonlinear)
coefficients I0(r) and I1(r) are reported in the Appendix.
In the context of the BCS-BEC crossover, the scattering
length aF of the two-fermion problem that enters Eq. (1) is
combined with the Fermi wave vector kF = (3π2n)1/3 with
density n, to obtain the dimensionless coupling (kF aF )−1.
This coupling ranges from (kF aF )−1 � −1 in the weak-
coupling (BCS) regime when aF < 0, to (kF aF )−1 � +1 in
the strong-coupling (BEC) regime when aF > 0, across the
unitary limit (kF aF )−1 = 0 when |aF | diverges [6]. In this
context, the LPDA equation recovers both the GL equation in
the BCS limit close to Tc and the Gross-Pitaevskii (GP) equa-
tion in the BEC limit at low temperature [16]. In addition, in
the presence of a steady supercurrent, in Eq. (1) one identi-
fies A(r) → −Q0 where the wave vector Q0 contributes the
phase 2Q0 · r to the gap parameter �(r) in a homogeneous
environment [2].

When solving numerically the LPDA differential equa-
tion in the presence of a Josephson barrier, in Ref. [18] the
imaginary part of the LPDA equation (1) was conveniently
replaced by the constraint for the supercurrent to be every-
where uniform. To satisfy this constraint, an additional local
phase 2φ(r) adds to 2Q0 · r, whose spatial profile acts to
compensate for the local variation of the magnitude |�(r)|
close to the barrier. Correspondingly, the expressions for the
local density and current read [14]

n(r) = 2

β

∑
n

eiωnη

∫
dk

(2π )3
G11(k, ωn; q|r), (2)

j(r) = 1

m
[Q0 + ∇φ(r)]n(r)

+ 2

β

∑
n

eiωnη

∫
dk

(2π )3

k
m

G11(k, ωn; q|r). (3)

Here, β = (kBT )−1 is the inverse temperature (kB being the
Boltzmann constant), η is a positive infinitesimal, m is the

fermion mass, ωn = (2n + 1)π/β (n integer) is a fermionic
Matsubara frequency [19], and k is a three-dimensional wave
vector. In addition, G11(k, ωn; q|r) is the diagonal (“normal”)
single-particle Green’s function in the superfluid phase [20],
which has now to be consistently obtained in the presence of
the supercurrent such that q → Q0 + ∇φ(r) in Eqs. (2) and
(3) (where the implicit dependence on r originates from the
barrier) [21].

In the LPDA approach of Ref. [18], the Green’s function
G11 was taken at the mean-field level. As a consequence, the
results obtained therein cannot confidently be extended to the
BEC side of the crossover, especially at finite temperature.
Here, we go beyond mean field and include pairing-fluctuation
corrections in the expression of G11, in order to span the whole
BCS-BEC crossover successfully. To this end, we resort to the
t-matrix approximation for the self-energy in the superfluid
phase, in the form introduced in Ref. [17] but now modified
so as to account for the presence of a supercurrent. Once this
new expression of G11 (obtained in Ref. [14] and also reported
in the Appendix) is utilized in Eqs. (2) and (3), the LPDA
approach of Ref. [16] evolves into the mLPDA approach as
proposed in Ref. [14]. At the same time, the beyond-mean-
field value of the chemical potential correctly ranges from the
Fermi energy EF = k2

F /(2m) in the BCS limit to (half) the
binding energy of the dimers that form in the BEC limit [6].

The t-matrix approximation was originally considered by
Galitskii [22] for a repulsive dilute Fermi gas with kF aF � 1,
by summing a whole series of ladder diagrams to replace
the strength of the (contact) interparticle interaction by the
scattering length aF > 0. Soon after, GMB applied this treat-
ment to the case of an attractive interparticle interaction for
which aF < 0, albeit still in the BCS limit where kF |aF | � 1
[23]. More recently, Nozières and Schmitt-Rink extended to
the whole BCS-BEC crossover the range of validity of this
(non-self-consistent) t-matrix approximation for an attractive
Fermi gas, although only in the normal phase above Tc [24].
Several degrees of self-consistency for the t matrix in the
normal phase have since been considered and compared with
each other [25]. Extensions of the t matrix in the superfluid
phase below Tc have also been implemented, in both partially
self-consistent [17] and fully self-consistent [26] versions.
Here, we adopt the t-matrix approach of Ref. [17], also be-
cause it fits well with the beyond-t-matrix project, that was set
up for a homogeneous superfluid in Ref. [15] and preliminary
extended to the presence of inhomogeneous environments in
Ref. [14].

The LPDA differential equation (1) can be solved with
reasonable numerical efforts even in the presence of nontriv-
ial geometrical constraints in which the fermionic superfluid
is embedded. Here, we describe the experimental geometry
setup of Refs. [12,13], which is utilized to obtain the numeri-
cal results presented in Sec. V.

III. GEOMETRICAL CONSTRAINTS

In addition to a reliable account of the dynamics of pairing
fluctuations in terms of the theoretical approach described
above, what is needed for a correct interpretation of the ex-
perimental results of Refs. [12,13] is a detailed inclusion of
the geometrical constraints there involved. The experimental
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(a)
(b)

(c)

(d)

FIG. 1. (a) Atomic cloud (purple) with two walls (dark blue) near
its edges and a barrier (light blue) at its center. Contour maps of the
number density, (b) at the position xw of the wall (red circle), and
(c) at the barrier center (green circle). (d) Left: Density profile in
the absence of the barrier. Center: Typical shape of the barrier here
considered. Right: Density profile in the presence of the barrier.

geometry utilized in these references is conveniently summa-
rized in Fig. 1, which provides details of the atomic cloud, the
contour map of the number density, and the density profiles
both in the absence and in the presence of the Josephson
barrier. In the following, we shall refer to this figure when
identifying the inhomogeneous environment in which the
Fermi superfluid is embedded.

Specifically, the experimental geometry of Refs. [12,13] is
reproduced schematically in Fig. 1(a), where an atomic cloud
initially with a strongly elongated ellipsoidal shape (purple) is
affected by the raising of two walls (dark blue) near its edges
(thus making the ellipsoid almost resemble a cylinder) and
of a barrier (light blue) at the center. Both the trap and the
barrier contribute to the external potential Vext (r) that enters
the local chemical potential μ(r) = μ − Vext (r). In addition,
Figs. 1(b) and 1(c) show the contour maps of the ensuing
number density profiles, respectively, at the positions of the
walls (red circle) and at the barrier center (green circle), thus
showing how the presence of the barrier strongly reduces the
density locally. Finally, Fig. 1(d) shows at the left the density
profile integrated along the y coordinate in the absence of the
barrier, at the center the shape of the experimental barrier, and
at the right the corresponding density profile in the presence of
the barrier centered at x = 0, shown for symmetry only along
the positive side of the barrier (these plots cover only 1/7 of
the distance from the barrier center to the wall at positive x,
where the density profiles recover their asymptotic values).

All these profiles are calculated by the mLPDA approach of
Ref. [14].

The trapping potential of Fig. 1(a) has the standard form of
an anisotropic harmonic potential

Vtrap(x, y, z) = 1
2 m

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
, (4)

with experimental values ωx,y,z = 2π (12, 165, 140) Hz in
Ref. [12] and ωx,y,z = 2π (17, 300, 290) Hz in Ref. [13]. In
both cases ωx � ωy � ωz, such that the particle density ac-
quires the cigar-shaped form shown in Fig. 1(a).

In addition, in the above experiments two walls were raised
at positions ±xw along the major axis of the ellipsoid [as
shown in Fig. 1(a)], where kt

F xw = 187.1 [12] and 253.3 [13]
in units of the trap Fermi wave vector kt

F = √
2mEt

F associ-
ated with the trap Fermi energy Et

F = ω0(3N )1/3, where ω0

is the average trap frequency and N is the total number of
fermionic (6Li) atoms before the raising of the walls (we set
h̄ = 1 throughout).

As a consequence, in both cases the total external potential,
acting on the fermionic atoms before the subsequent raising of
the Josephson barrier, can be taken of the form

Vext (x, y, z) =Vtrap(x, y, z) + 1.2 × 103Et
F

{
θ
[
(kt

F (x − xw)
]

+ θ [−(kt
F (x + xw)]

}
. (5)

Here, the prefactor multiplying the unit step functions is cho-
sen large enough that the atoms cannot leak through the walls.
In this way, the total number of fermionic trapped atoms is
reduced from N = 2.6 × 105 [12,27] and 3.0 × 105 [13,27]
before the raising of the walls, to Nw = (1.0 ÷ 1.4) × 105

[12,27] and 1.6 × 105 [13,27] after the raising of the walls.
These values of Nw are reported in Figs. 3 and 4 below.

Finally, a Josephson barrier, raised at the center of the
major axis of the ellipsoid [see Fig. 1(d)], adds to Vext (x, y, z)
of Eq. (5). This barrier is Gaussian along x, is uniform along
y, and decays with a linear power law for large z:

Vbarrier (x, y, z) = V0(z) exp

(
−2

x2

w(z)2

)
(6)

with

V0(z) = V0√
1 +

(
z
zR

)2
(7)

and

w(z) = w0

√
1 +

(
z

zR

)2

. (8)

In the experiments, the three parameters (V0, zR,w0) take
the following values: V0/Et

F = (0.38, 0.455, 0.53) [12] (cor-
responding to the panels of Fig. 3 below) and 0.411 [13];
kt

F zR = 14.24 [12] and 26.07 [13]; and kt
F w0 = 2.54 [12] and

3.44 [13].

IV. JOSEPHSON CONDITIONS

We now consider the specific treatment of the Josephson
effect, whereby a steady current impinges on the fixed barrier
of Fig. 1(d), say, from negative x.
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FIG. 2. The local Josephson characteristics for the current den-
sity are shown for three filaments with transverse coordinates y and z,
with the trap coupling parameter (kt

F aF )−1 = −0.52 and temperature
T/T t

F = 0.06 where T t
F is the trap Fermi temperature corresponding

to Et
F . The inset shows the corresponding global Josephson charac-

teristic for the total current. The local jF = kF (xw, y, z)n(xw, y, z)/m
normalizes the current density j for each filament (m being the
fermion mass), while the global It

F = kt
F

∫
dydz n(xw, y, z)/m nor-

malizes the total current I (needed when comparing with the
experimental data).

To mimic what occurs in the experimental setups of
Refs. [12,13], where the atomic cloud is at rest and the bar-
rier steadily moves across it, we impose the condition that
no current flows in the transverse (y and z) directions. We
have obtained this information from an independent numerical
simulation performed in the BEC limit of the crossover with
the time-dependent Gross-Pitaevskii equation [28], whereby
the current flow lines are seen not to bend away from the
longitudinal (x) axis. With this provision, the current flow can
be treated as locally uniform for given values of the transverse
coordinates y and z. This enables us to apply the methods
developed in Ref. [18] to deal with the Josephson effect
for a system which is fully homogeneous in the directions
transverse to the current flow (with the essential difference,
however, that we now include explicitly pairing fluctuations
over and above the approach of Ref. [18]).

In practice, owing to the negligible value of the density
in the outer edge of the truncated ellipsoid of Fig. 1(a), we
further neglect the slight transverse bulge and assimilate the
truncated ellipsoid to a cylinder. This cylinder is then parti-
tioned into a bundle of (at most 441) tubular filaments, in each
one of which the approach of Ref. [18] is locally implemented,
with boundary conditions specified by the local values of the
gap parameter and density at the positions of the walls in
Fig. 1(a). Finally, by fixing the difference δφ of the phase of
the gap parameter between the walls in Fig. 1(a), which is due
to the presence of the barrier, the “local” Josephson character-
istics j vs δφ for the current density are calculated for each
tubular filament and then integrated over all filaments across
the transverse directions. This procedure yields eventually the
“global” Josephson characteristic I (δφ) for the total current I .

A typical example of the above procedure is shown in
Fig. 2 for the value −0.52 of the trap coupling param-
eter (kt

F aF )−1 on the BCS side of the crossover and the
temperature T/T t

F = 0.06, with the barrier corresponding to

FIG. 3. Critical current Ic (in units of of It
F ) vs the trap cou-

pling (kt
F aF )−1, for three barriers with the same width and different

heights. The experimental data from Ref. [12] (dots with error bars)
are compared with the theoretical results obtained by solving both
LPDA and mLPDA equations. The theoretical results are obtained
for different temperatures and different values of the total number
of atoms Nw contained in the atomic cloud after raising the walls,
which correspond to the experimental ranges of temperature and Nw

[12,27]. Consideration of these ranges gives rise to the shaded areas
spanned by the numerical calculations. On the BEC side, where the
GP equation applies [30], results obtained with bosonic scattering
lengths aB = 2.0aF (magenta triangles) and aB = 0.6aF (green trian-
gles) are reported. In panel (a), the filled and empty black diamonds
correspond to a simplified version of the extended GMB approach
(see the text).

Fig. 3 below. Three different local Josephson characteristics
are shown, corresponding to the filaments specified by the
transverse coordinates y and z reported in the figure, which
have been selected in order to differentiate the corresponding
Josephson characteristics as much as possible. In addition, the
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dashed lines correspond to the universal fitting function for
the Josephson characteristics given by Eq. (14) of Ref. [18],
which is of help in drawing the “right” branches of the Joseph-
son characteristics (known to be unstable—see Sec. V of
Ref. [4]). Recall that not only the heights and widths of the
barrier but also the local Fermi wave vectors associated with
the local density n(xw, y, z) are different for each filament
[where xw is the coordinate specified in Fig. 1(a) above].
Changes of these quantities from an inner to an outer filament
are expected to have different effects on the shape of the local
Josephson characteristics.

As it was shown in Fig. 5 of Ref. [18], where the effects
on the Josephson characteristics due to changes of the barrier
height and width were disentangled from each other, an in-
crease of either the barrier height or width shifts the maximum
of the Josephson characteristics to the right, while changes
of the Fermi wave vector do not provide clear indications to
where this maximum would shift. This is even more so in the
present trapped case, where the values of the local Fermi wave
vector and the barrier height are maximum at the trap center
and decrease away from it, while the width of the barrier is
minimum at the trap center and increases away from it. To the
extent that it is not possible to disentangle these effects from
each other, only the overall shape of the global Josephson
characteristic for the total current is physically meaningful.
This global Josephson characteristic is what is shown in the
inset of Fig. 2.

V. COMPARISON WITH EXPERIMENTS

Quite generally, an important piece of information that can
be extracted from the Josephson characteristics is the value
of the critical current Ic, which corresponds to the maximum
value of the supercurrent that is able to flow across a given
barrier. The experiments reported in Refs. [12,13] have ob-
tained values of Ic, respectively, at low temperature for several
barriers and various couplings across the BCS-BEC crossover
and as a function of temperature at unitarity. We are now in
a position to compare in detail the experimental values for
the critical current given in Refs. [12,13] with our numerical
results for Ic, obtained by calculating the Josephson character-
istics for the total current which adds the contributions from
the local currents carried by the tubular filaments as described
above. This comparison will enable us to obtain a stringent
test on our theoretical approach.

Figure 3 shows an extensive comparison between the
coupling dependence of the critical current Ic obtained exper-
imentally in Ref. [12] and theoretically by solving the LPDA
and mLPDA equations, that is, without and with the inclu-
sion of beyond-mean-field pairing fluctuations, respectively
[29]. Here, we have followed the convention of Ref. [12] and
identified the coupling in terms of the Fermi wave vector
kt

F = √
2mEt

F associated with the trap Fermi energy Et
F =

ω0(3N )1/3, where N is the total number of atoms and ω0 is the
average trap frequency associated with the ellipsoidal-shaped
atomic cloud before the walls are raised (see Fig. 1 above).
Correspondingly, It

F is the global current defined in terms of
kt

F and the total particle density integrated over the spatial di-
rections transverse to the current flow (see Fig. 2 above). This
comparison is reported at low temperature for three barriers

with increasing height and for several couplings from the BCS
to the BEC side of unitarity.

The overall agreement, obtained over a quite extended
range of coupling, between the results of the mLPDA calcu-
lations and the experimental data appears rather remarkable.
It points out, in particular, the crucial role played by pair-
ing fluctuations in the crossover region, thereby explicitly
validating the mLPDA approach over wide physical con-
ditions. Figure 3 also shows the results obtained by an
independent calculation with the GP equation for compos-
ite bosons in the BEC limit of the crossover, to which
both the LPDA and mLPDA equations reduce in this limit,
by considering either the exact value aB = 0.6aF of the
bosonic scattering length [31] or its Born approximation value
aB = 2.0aF [30].

A distinctive feature of many-body diagrammatic ap-
proaches (like the one we adopt here) is that, being modular in
nature, they are amenable to improvement by adding diagram-
matic terms relevant to the physics of the problem at hand
(provided, of course, they can be implemented with reason-
able numerical efforts). In the present context, these diagrams
are related to the extended GMB approach of Ref. [15], whose
importance has recently been certified in different experimen-
tal contexts, both at low temperature in the superfluid phase
[32] and at the critical temperature [33]. Full implementation
of the extended GMB approach, however, would not only
require us to include in the LPDA equation (1) (a local version
of) the bosoniclike self-energy terms identified in Ref. [15],
but also to calculate them in the presence of a supercurrent.
This program exceeds the objectives of the present paper.
Nevertheless, we give here a proof of principle for the role
played by the extended GMB approach in the present context,
by adopting the simplified procedure described in Sec. IV D of
Ref. [14]. The ensuing numerical results are shown in Fig. 3(a)
by the position of the black filled and empty diamonds, which
delimit the experimental data better than the original red filled
and empty diamonds obtained by the mLPDA approach, thus
improving the comparison with the experiment.

Finally, Fig. 4 compares the temperature dependence of
the critical current Ic obtained experimentally at unitarity in
Ref. [13] with the theoretical results of the mLPDA equation.
This comparison is shown over the full temperature range,
from low temperature up to the trap critical temperature T t

c .
Here, for internal consistency the theoretical value of T t

c is cal-
culated like in Ref. [34], while, lacking a reliable experimental
estimate for T t

c , the temperatures of the experimental data
are normalized to the value of T t

c obtained by the fully self-
consistent t-matrix calculation of Ref. [35] Even in this case,
the agreement between the experimental data and the results
of the mLPDA approach appears extremely good. A feature
to be emphasized is the linear trend of the theoretical results,
which appears to be consistent with the experimental data.
In Ref. [14] this linear behavior is shown to be intermediate
between a (slightly) convex behavior in the BCS regime and
a (slightly) concave behavior in the BEC regime. In addition,
the inset of Fig. 4 shows that a linear temperature behavior
is shared by the critical velocity of superfluid 4He, as taken
from Fig. 12 of Ref. [36]. The similarity between the behavior
of the unitary Fermi gas and 4He has been repeatedly noted
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FIG. 4. Temperature dependence (in units of the trap critical tem-
perature T t

c ) of the critical current Ic (in units of Et
F ) at unitarity. The

theoretical results obtained by the mLPDA approach with Nw = 160k
(green diamonds) are compared with the experimental data, taken
both from the main text (blue dots with error bars) and from the
supplemental material (red squares with error bars) of Ref. [13]. The
inset shows the critical velocity of superfluid 4He (normalized to its
zero-temperature value), as extracted from Fig. 12 of Ref. [36].

over the years, ranging from the superfluid fraction [37] to the
sound propagation [38].

VI. CONCLUSIONS

In this paper, we have considered the so far unsettled issue
of combining the many-body dynamics of beyond-mean-field
pairing fluctuations, which is relevant to a fermionic super-
fluid undergoing the BCS-BEC crossover, with the presence
of nontrivial geometrical constraints that may substantially
affect the superfluid flow. In the case of the Josephson effect,
we have succeeded in dealing with these two aspects on the
same footing, by implementing the mLPDA approach devel-
oped in Ref. [14]. The favorable comparison of our numerical
results, with the recently available experimental data in ul-
tracold Fermi gases under a variety of circumstances, should
accordingly be regarded as a stringent test for the validity of
the approach of Ref. [14]. In addition, this approach, being
based on the many-body Green’s functions theory, offers fur-
ther perspectives for improvement, by adding diagrammatic
contributions over and above those explicitly considered in
Ref. [14]. A preliminary test along these lines has already
provided promising results.
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APPENDIX: SHORT SUMMARY OF THE LPDA
AND MLPDA APPROACHES

The LPDA differential equation for the (complex) gap pa-
rameter �(r) was introduced in Ref. [16]. It reads[

m

4πaF
+ I0(r) + I1(r)

(∇2

4m
− i

A(r)

m
· ∇

)]
�(r) = 0

(A1)

where m is the fermion mass, aF is the fermionic scattering
length, A(r) is the vector potential, and

I0(r) =
∫

dk
(2π )3

{
1 − 2 fF (EA

+ (k|r))

2 E (k|r)
− m

k2

}
(A2)

and

I1(r) = 1

2

∫
dk

(2π )3

{
ξ (k|r)

2 E (k|r)3
{1 − 2 fF [EA

+ (k|r)]}

+ ξ (k|r)

E (k|r)2

∂ fF [EA
+ (k|r)]

∂EA+ (k|r)

− k · A(r)

A(r)2

1

E (k|r)

∂ fF [EA
+ (k|r)]

∂EA+ (k|r)

}
. (A3)

In these expressions, ξ (k|r) = k2

2m − μ̄(r), E (k|r) =√
ξ (k|r)2 + |�(r)|2, and EA

+ (k|r) = E (k|r) − k·A(r)
m ,

where the local chemical potential μ̄(r) = μ − Vext (r) −
A(r)2/(2m) accounts for the presence of an external potential
Vext (r).

The LPDA equation (1) has to be supplied by the expres-
sions for the local number density n(r) and current density
j(r). They read [16]

n(r) =
∫

dk
(2π )3

{
1 − ξA(k|r)

EA(k|r)

{
1 − 2 fF [EA

+ (k|r)]
}}

(A4)

and

j(r) = 1

m
[∇φ(r) − A(r)] n(r) + 2

∫
dk

(2π )3

k
m

fE [EA
+ (k|r)].

(A5)

In these expressions,

ξA(k|r) = k2

2m
− μ(r) + 1

2m
[∇φ(r) − A(r)]2,

EA(k|r) =
√

ξA(k|r)2 + |�(r)|2,

EA
+ (k|r) = EA(k|r) + k

m
· [∇φ(r) − A(r)] (A6)

where now μ(r) = μ − Vext (r) contains only the external po-
tential and 2φ(r) is the phase of the gap parameter such that
�(r) = |�(r)|ei2φ(r).

For the Josephson effect of concern in the present paper,
A(r) → −Q0 where Q0 accounts for the superfluid flow be-
fore a barrier is raised to split the fermionic superfluid in two
(left and right) parts [18]. In this case, φ(r) → Q0 · r + φ(r)
in the phase of the gap parameter, where φ(r) at the right side
is now the additional phase contributed by the presence of the
barrier.

The expressions (A4) and (A5) hold within a mean-
field decoupling. They can, however, be modified to include
pairing fluctuations (PF superscript) beyond mean field.
This can conveniently be done by introducing a local ver-
sion GPF

11 (k, ωn; q|r) of the diagonal (normal) single-particle
Green’s function GPF

11 (k, ωn; q), which has, in turn, to ac-
count in a consistent way for the presence of a superfluid
flow specified by the wave vector q. This Green’s function
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reads [14]

GPF
11 (k, ωn; q) = 1

iωn − ξ (k + q) − SPF
11 (k, ωn; q) − �2

q

iωn+ξ (k−q)+SPF
11 (k,−ωn;q)

(A7)

with the diagonal (normal) single-particle self-energy

SPF
11 (k, ωn; q) = −

∫
dQ

(2π )3

1

β

∑
ν

11(Q,�ν ; q)GMF
11 (Q − k,�ν − ωn; q). (A8)

In these expressions, ξ (k) = k2/(2m) − μ, β = (kBT )−1 is
the inverse temperature (kB being the Boltzmann constant),
ωn = (2n + 1)π/β (n integer) and �ν = 2νπ/β (ν integer)
are fermionic and bosonic Matsubara frequencies [19] re-
spectively, and �q is the associated magnitude of the gap
parameter. In addition, 11(Q,�ν ; q) is the diagonal element
of the particle-particle ladder in the broken-symmetry phase,
which has also to take into account the presence of a superfluid
flow [14].

With a suitable prescription to obtain from the form (A7) of
GPF

11 (k, ωn; q) its local version GPF
11 (k, ωn; q|r) (for the details

of which we refer to the companion paper [14]), the expres-
sions for the local particle density and current that include
pairing fluctuations beyond mean field read

n(r) = 2

β

∑
n

eiωnη

∫
dk

(2π )3
GPF

11 (k, ωn; q|r), (A9)

j(r) = 1

m
[Q0 + ∇φ(r)]n(r)

+ 2

β

∑
n

eiωnη

∫
dk

(2π )3

k
m

GPF
11 (k, ωn; q|r), (A10)

η being a positive infinitesimal. These expressions reduce to
the LPDA results (A4) and (A5) when the self-energy (A8) is
set to zero in the expression (A7) of the Green’s function.

The mLPDA approach, introduced in Ref. [14] and utilized
in the present paper to account for the experimental results
of Refs. [12,13], is obtained by supplementing the LPDA
differential equation (1) with the expressions (A9) and (A10)
for the local particle density and current, in the place of the
expressions (A4) and (A5) that were originally used in the
LPDA approach in Ref. [16].
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