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– To appear in Logique & Analyse –

On Linear Existential Graphs

Francesco Bellucci Xinwen Liu Ahti-Veikko Pietarinen

21 May 2020

Abstract

Peirce’s linear versions of the language of his Existential Graphs (EGs),

presented in 1902, are examined. Differences between standard three-di-

mensional and linear languages are explained by permutational invariance

and type- vs. occurrence-referentiality: Standard EGs are permutationally

invariant with respect to linear EGs, while the Beta part of the system, which

corresponds to the first-order quantificational theory with identity, is occur-

rence-referential. This explanation contrasts with the proposal for linear

Beta graphs that are type-referential. However, occurrence-referentiality

of Beta graphs constitutes a defect of expressivity: since the meaning of

a quantifier is inextricably connected to that of the meaning of the sign of

identity, certain complex assertions arguably cannot be expressed in the lan-

guage of Beta graphs without a new extension of its standard notation.

Keywords: · Existential Graphs · Linear Notations · Type vs. Occurrence-

Referentiality · Quantification and Identity ·

1 Introduction

The linearisation problem of Peirce’s logic of Existential Graphs (EGs) has not

received much attention in the literature. Drawing up a linear version of what

otherwise is the three-dimensional diagrammatic syntax of EGs has attracted

some commentators, most notably Hammer (1995, 2011), to propose a design

for a linear notation for these graphs. Hammer’s focus in particular was the

theory of Alpha graphs, which corresponds to classical propositional calculus

(two-element Boolean algebra, see Ma & Pietarinen 2018c).

An examination of the problem of linearising Alpha and Beta systems has

been undertaken in a couple of articles. By defining the cuts and juxtaposition

as a set of generalised “either not . . . or not (i.e. not both)” of classical proposi-

tional logic, that is, such that “[PR(Q)]” means “either not-P or not-R or not-not-

Q,” Liu (2005) presented a Hilbert-style system for linear Alpha graphs. The
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most important advantage of this system is that both the decision procedure

and the proof of the completeness theorem via counter-model construction are

immediate. Dau (2006) surveyed the work on proofs with Alpha graphs. Af-

ter revisiting his own previous work (Hammer 1995), Hammer also suggested

that “equivalent systems could be constructed by defining the cut as the merge

of parenthetical grouping with a different unary logical operator such as ‘nei-

ther . . .nor’ or ‘not both’ ” (Hammer 2011: 132). However, Hammer left the im-

plementation of this suggestion open. His focus was on finding a linear notation

for that Beta portion of EGs that would be equivalent to a fragment of first-order

logic with identity, and to illustrate how Peirce’s transformation rules for the

Beta graphs could function in the light of that linear notation.

Hammer’s aim was to provide a detailed analysis of the syntax, semantics

and proof theory of the Alpha system, and to address some logical features of

the system such as strong completeness that had not been fully examined before

(see also Hammer 2008). Hammer felt, however, that such linearised graphs

might lose some of the peculiar notational advantages of Peirce’s own notation.

He also noted that the theory of Beta graphs presents a more complicated case:

“[C]ompared to the alpha system, the syntax, semantics, and rules of inference

of Peirce’s beta system are extremely complex. While some of the logic of beta

is studied in Roberts 1973, Sowa 1984, and Zeman 1964, further investigation of

its logic would certainly be worthwhile” (Hammer 1995: 97, fn1).

The present paper responds to these sentiments (i) by precisely defining the

correct linear versions of the Alpha and Beta graphs, and (ii) by providing the

necessary conceptual and notational tools for an analysis of the difference be-

tween linear and non-linear languages for (fragments of) first-order logic with

identity, with a focus on Beta graphs. It also provides a systematic review of the

central historical, notational, logical and conceptual issues involved in the prob-

lem of finding an adequate linearisation of Peirce’s many-dimensional graph-

ical or diagrammatic syntax of the logic of EGs (Peirce 1897, 1911a,b), includ-

ing Peirce’s own attempts at linear notations, some of which have not been no-

ticed in the literature before (Peirce 1903a). The paper is organised as follows.

Section 2 outlines the details of the standard syntax the Alpha and Beta parts

of EGs, following Peirce’s own definitions and remarks. Two analytic notions

are then introduced, namely permutational invariance and the type-referential vs.

occurrence-referential distinction. Sections 3 and 4 apply these notions to the his-

torical and systematic treatment of the linearisation problem of both the Alpha

and the Beta parts, respectively. In particular, Section 4 discusses how Ham-

mer’s suggestion for linearisation of EGs could be better implemented. Sec-

tion 5 then shows how in the occurrence-referential notation of Beta graphs,

the entanglement of the graphical sign for quantifiers (the line of identity) with

that of identity implies a defect of expressivity, which is due to the manner
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in which the line of identity (the sign that stands both for identity and quan-

tification) interacts with the cuts (the sign that stands both for negation and

scope). Details of the proposed system to correctly define linear Beta graphs,

termed linear-Beta⋆, together with its complete axiomatisation, are given in the

Appendix.

2 Alpha and Beta Graphs: The Diagrammatic Syn-

tax

By late 1896, Peirce had invented a new system and notation for logic, first en-

titled “Positive Logical Graphs” (Peirce 1896b) and soon afterwards renamed

as “Existential Graphs” (Peirce 1896a,c). He estimated that this new method

of graphs is his “chef d’œuvre” (Peirce 2019). A good number of systems and

variants of logical graphs are found in his manuscripts and have mostly re-

mained unpublished to date (but see Peirce 2019). Peirce’s goal was to show

the relevance of the graphical method to a number of topics in logic and in

philosophy, including modality, the theory of signs, the doctrine of categories,

the philosophy of mathematics, logic of science, and pragmaticism.1 A brief

description of this method was published in his 1906 paper, “Prolegomena to

an Apology for Pragmaticism” (Peirce 1906a). Only some rather disorganised

selections and fragments concerning EGs were reprinted in Volume 4, Book 2

of the Collected Papers of Charles S. Peirce (Peirce 1933; hereafter CP). EGs were

examined in Roberts (1973), Zeman (1964) and Shin (2002), among others, but

overall the amount of relevant studies has remained modest. Yet Peirce con-

sidered EGs to be the best method to carry out a logical analysis of meanings,

confidence that may be attributed to the unique notational and geometrical ap-

paratus of the proposed systems. In a letter to William James, Peirce writes that

the system of logical graphs “ought to be the Logic of the Future” (25 December

1909; Peirce 2019).

By 1903, Peirce had divided EGs into Alpha, Beta and Gamma parts, which

roughly correspond to propositional logic, fragments of first-order logic with

identity, and modal and higher-order logics, respectively (Peirce 2020a). These

systems exploit two or three-dimensional notations, in which formulas are con-

sidered as projections or images of graphs that in reality are higher-dimensional,

onto the surface termed the sheet of assertion (SA). Conjunction is indicated by

juxtaposing graphs as connected by the blank space of the sheet of assertion.

Negation is typically indicated by enclosing a graph within an oval, which is a

continuous simple closed curve and which Peirce since 1903 calls a “cut”.

1See e.g. Bellucci (2017), Bellucci & Pietarinen (2016a,b,c); Ma & Pietarinen (2017a,b); Bellucci &
Pietarinen 2017; Bellucci, Moktefi & Pietarinen (2018); Pietarinen (2014, 2016, 2020).
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Cuts have two functions: their primary function is to group elements that

occur in the interior area together (and as such they function in the same way

as parentheses, dots, vincula, etc. in other logical notations). Peirce call those

signs that represent such notational function and can have distinct notational

realisations “collectional signs”. The second function of the cuts is to negate the

graphs that occur in that interior area. Cuts thus combine the truth-functional

role (as negations) with the notational role (as groupings). In standard, linear

notation, these two functions are typically represented by distinct notational

realisations, such as “¬” and “(”, “)”.

The SA is, topologically speaking, an isotropic space, i.e. an open-compact

manifold unordered in all directions. The ordering is introduced into the sheet

by the cuts and their nesting. As collectional signs, cuts divide the SA into areas

that may be nested but may not partially overlap. In Fig. 1, for example, the SA

is divided into three areas: the area that is outside the outermost cut, the area

that is inside the outermost cut and outside the innermost cut (the one that has

P on it), and the area that is inside the innermost cut (the one that has Q on it).

P Q

Figure 1.

It is commonplace to take the graph of Fig. 1 to represent a conditional structure.

Indeed the structure in which there is one cut inside the other—often drawn

with one continuous line that has one intersection point: —was termed by

Peirce the scroll.2

Unlike ordinary natural or logical languages, the graphs are not interpreted

from left-to-right or from right-to-left, but what Peirce terms endoporeutically:

the interpretation proceeds inwardly; so that a nest draws in the meaning from

without inwards unto its center, “as a sponge absorbs water” (Peirce 1910). The

endoporeutic interpretation prescribes that the outermost area is interpreted

first, proceeding inwardly to the areas enclosed in whatever cut is placed on

the first, and so on in a recursive fashion. In other words, any enclosed area

depends on, or is in the scope of, the area on which its enclosing cut lies. Thus

the graph in Fig. 1 may be read, in the standard language of sentential calculus,

as “¬(P&¬Q).”

2One manuscript sheet exists (R 1010, undated) in which Peirce proposes scrolls to be unfolded
so that the inloop of the scroll is moved to the outside to form a connected loop with the outloop,
distinguished from the outloop with a dashed boundary.
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Since the SA and any area on it are isotropic spaces, no continuous transfor-

mation that preserves the topological property of “lying within the same area”

produces syntactically distinct graphs. Any such transformation only produces

syntactical variants, or tokens, of one and the same graph type. In other words,

only the juxtaposition of graphs on the same area counts as a syntactically rel-

evant fact, while their position and orientation within an area is syntactically

irrelevant. All positions within an area are equivalent. Thus, each of the Alpha

graphs in Figs. 2(a)–(d) is a distinct token of the same graph-type. By contrast,

formulas in (2a*) and (2b*) are not distinct sentence-tokens of the same sentence-

type but distinct sentence-types (that is, syntactically distinct sentences), which

in ordinary sentential logic are logically equivalent.

P Q Q P
P

Q

Q

P
(a) (b) (c) (d)

Figure 2.

(2a*) P & Q

(2b*) Q & P

The reason for this divergence is that while the notation in which (2a*) and (2b*)

are written is linear, and thus any permutation of elements in a string of charac-

ters results in a syntactically distinct string (whether logically equivalent to the

permuted string or not), the Alpha graphs are non-linear in that any mutation

of the position and orientation of graphs lying on the same area (since all such

areas are isotropic spaces) results in distinct graph tokens of the same graph

type. So the Alpha graphs in Fig. 2 do not differ in the manner in which (2a*)

and (2b*) differ, but only in the trivial, typographical manner in which two or

more notational variants of the same sentence, say, P&Q and P & Q, may

be taken to differ.

Another way of stating the same thing is that while any statement of equiv-

alence of the kind ‘(2a*) is equal to (2b*)’, is a statement of a logical equivalence

(that is, two distinct sentence types are said to have the same truth-conditions),

any statement of equivalence of the kind ‘The graph in Fig. 2(a) is equal to the

graph in Fig. 2(b)’ (or ‘is the same as’) is a statement of syntactical equivalence

(that is, a statement in which two distinct graphs tokens are said to be tokens

of one and the same graph type). 3

3See Bellucci & Pietarinen (2020).
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The property of permutational invariance distinguishes EGs from custom-

ary logical languages. In particular, the fact that a graph can freely be scribed

at any position in an area makes the inferential system of the graphs a true

manifestation of what in the proof-theoretic literature is known as deep inference

(Brünnler 2004, Schütte 1977). Indeed Peirce made the following observation,

in 1901, concerning permutational invariance:

Operations of commutation, like xy ∴ yx, may be dispensed with by not

recognizing any order of arrangement as significant. Associative transfor-

mations, such as (xy)z ∴ x(yz), which is a species of commutation, will be

dispensed with in the same way; that is, by recognizing an equiparant as

what it is, a symbol of an unordered set. (CP 4.374; DPP: 640).

Indeed associativity follows from a complete commutativity. The property of

permutational invariance of Alpha graphs has been remarked upon in Dipert

(1996) and Hammer (1996).

The system of Beta graphs adds to the syntax of Alpha the device of the line

of identity (LI). LIs represent individuals occurring in the universe of discourse.

But LIs also represent co-reference, which in first-order logic is represented by

an equality sign, as in “x = y.’ By drawing a line from one position on SA

to another position, we assert the identity of the individuals denoted by the

two extremities of the line. In standard notation, this would be expressed by

“∃x∃y(x = y)”. Thus the line also asserts the existence of the individual objects

denoted by its extremities, branches, or outermost portions. So the line func-

tions as an existential quantifier. A LI written on the SA unattached to any spot

is a well-formed graph: Fig. 3 expresses what in standard notation, given its

linear ordering, would be expressed by any of “∃x∃y(x = y)”, “∃y∃x(x = y)”,

“∃x∃y(y = x)” or “∃y∃x(y = x)”.

Figure 3.

Since the SA and any area marked by the cuts are isotropic, no continuous

transformation of a graph-type produces a syntactically distinct graph-type.

Continuous transformations of a graph-token only produce distinct graph-tokens

of the same type. The same applies to LIs: no shortening, stretching, or curving

of a LI changes its syntactical identity. Thus the LI in Fig. 3 is the same LI-type

(homotopy) as any of (a–d) in Fig. 4. None of (a–d) is a distinct LI-type; there is

only one LI-type, of which (a–d) are distinct tokens.
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(a) (b) (c) (d)

Figure 4.

A spot is Peirce’s term for the graphical representation of what in the stan-

dard notation of first-order predicate logic is a predicate term followed by a

list of variables as its arguments. Instead of variables, a spot has hooks, namely

connectors at which LIs can be anchored. Thus a spot with a certain number

of hooks corresponds to a predicate with that number of variable-places. The

arity of a spot is the number of its hooks. When a LI is attached to a hook of

a spot, this attachment represents existential quantification that relates specifi-

cally to that hook of the spot. No hook can be occupied by more than one end

of a line. A complex line (a branching line, line that abuts a cut) is termed by

Peirce a ligature. A ligature that crosses a cut is not a well-formed graph.

The Beta graph in Fig. 5(a) is obtained by attaching a LI to the single hook of

the monadic spot “P”, thus existentially quantifying in that position (“∃xPx”).

The Beta graph in Fig. 5(b) is obtained by attaching two distinct LIs to the two

hooks of the dyadic spot “L”, thus existentially quantifying in both of those po-

sitions (“∃x∃yLxy”). The Beta graph in Fig. 5(c) is obtained by attaching three

distinct LIs to the three hooks of the triadic spot “G”, thus existentially quanti-

fying in those three positions (“∃x∃y∃zGxyz”). It is clear that the LI is a sign of

identity, existence, and predication, at once. It is not possible to scribe a well-

formed spot on the SA without attaching a dot or a LI to it. Any well-formed

Beta graph is a closed formula, or sentence.

P L G

(a) (b) (c)

Figure 5.

This notational invention of LIs makes Beta graphs an occurrence-referential

notation, as opposed to the more commonplace type-referential notations. We

define these two properties as follows. A type-referential notation is a lan-

guage in which the identity of individuals is represented by the identity of the

variable-type, each occurrence of the (unrenameable) variable-type referring to
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the same individual.4 Thus, for example, in (6a) the fact that the variable x in

“Fx” refers to the same entity as the variable x in “Gx” is expressed by the

sameness of the sign for that variable, namely “x”, which cannot be renamed

without a change in the truth-conditions of the formula in question. One the

other hand, in (6b) the possible difference between the individuals referred to

by the two variables in “Lxy” is expressed by the difference of the sign for those

variables, namely“x” and “y”.

(6a) ∀x(Fx & Gx)

(6b) ∀x∃yLxy

Beta graphs are not type-referential, because in each graph it is the occur-

rence, and not the type, of a LI that represents an individual. In the graph

of Fig. 7(a) the two occurrences of LI may represent two distinct individuals

(“∃x∃y(Px&Qy)”), while in the graph of Fig. 7(b) the two occurrences are joined,

thus becoming one single LI, which refers to one individual (“∃x(Px&Qx)”).

Thus, let an occurrence-referential notation mean a language in which the

identity of individuals is represented by the identity of the occurrence of the

variable-type, and in which each occurrence of the type refers to a possibly dis-

tinct individual.5

P

Q

P

Q

(a) (b)

Figure 7.

Given the double role of the cuts (their truth-functional and collection-functional

roles), in Beta graphs cuts acquire one more role: they show the logical priority

between different ligatures. Consider the following two sentences:

(8a) ∀y∃xLxy

(8b) ∃x∀yLxy

4Or a name, individual constant, etc. We forego such semantic differences in the interpretation
of quantifiers for the moment. By “unrenameable” it is meant that one cannot rename a variable in
a formula because it is bound by a quantifier that also has another variable in its binding scope with
the same name. The formula is called rectified when no such renaming of variables can take place in
it, that is, no variable occurs both bound and free and all quantifiers refer to different variables. The
type- vs. occurrence-referential distinction also combines with the distinction between the inclusive
and exclusive interpretations of variables; see Bellucci & Burton (2020).

5An occurrence has to be conceptually distinguished from a token: two tokens of one and the same
formula are not two occurrences of it; an occurrence is such in reference to a sentential context (cf.
Wetzel 1993); the sype- vs. occurrence-referentiality distinction was adumbrated in Stenning (2000).
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The formulas (8a) and (8b) are two distinct sentences with different truth-conditions.

Their difference is a difference in the logical dependence of the quantifiers,

which is expressed by the linear ordering of them from left-to-right. Since EGs

have abandoned linearity, they must find another means of expressing such re-

lations of dependence. In the propositional language of Alpha graphs, the cuts

are both signs of negation and collectional signs. When in the quantificational

Beta part cuts interact with LIs, they also express the logical dependence rela-

tions between the ligatures composed of those LIs. The only syntactically rele-

vant fact about the logical dependence of ligatures is the topological property

of “lying within the same area” of their outermost extremities. In other words,

a ligature is considered to be as much enclosed within cuts as its outermost

portion is.

For example, in Fig. 9(a) the outermost portion of the ligature on the left of

the spot is enclosed within one cut, while the outermost portion of the ligature

on the right of the spot is enclosed within two cuts; thus, given the endopore-

utic principle of interpretation, the first ligature has logical precedence over

the second. The graph in Fig. 9(a) corresponds to (8a), that in Fig. 9(b) to (8b).

The difference in quantificational dependencies, which in linear notation is ex-

pressed by the linear ordering of the quantifiers, in Beta graphs is expressed by

means of the interaction of ligatures and cuts.

L L

(a) (b)

Figure 9.

In graphs involving somewhat more complex quantificational patterns, this

interaction gives rise to an unexpected feature which is discussed in Section 4.

3 Linear Alpha Graphs

In 1902, Peirce published an article “Symbolic Logic” in the Dictionary of Phi-

losophy and Psychology (Peirce 1902a, 2020b). There he uses, instead of the two-

dimensional sheet and graphs projected on it, what looks like a linear, one-

dimensional notation. Peirce intended this alternative notation to carry out the

same tasks as two-dimensional graphs do, intending the two kinds of represen-

tations, linear and non-linear, to amount to expressively equivalent systems.
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A snippet from the published version shows what Peirce’s notation and the

idea of the translation of Alpha graphs into this linear format look like (Peirce

1902a: 647):

Figure 10.

The qualification that “the arrangement is without significance” means that the

order of representing graphs in different positions in the same area is immate-

rial. This, we have seen, is a crucial feature of the standard diagrammatic syntax

of EGs. Peirce meant this feature to be preserved in the version of the notation

of the graphs published in this dictionary entry.

Motivation for creating some simplified, linearised versions of graphs was

largely dictated by the need to control the costs that the setting of new types

would incur. The editor of the dictionary, James Mark Baldwin, had commis-

sioned Peirce and his former student Christine Ladd-Franklin to write an entry

on symbolic logic, but Baldwin was reluctant to include graphs in the entry, the

reason being the complexity of printing curved lines and the space-consuming,

two-dimensional format. Fabian Franklin (Christine’s husband and also one of

Peirce’s former students and colleagues from the Johns Hopkins University in

the early 1880s), whom Peirce had earlier sent a draft entry on “Exact Logic”

for comment, sided with Baldwin in instructing Peirce that dictionary articles

should not be used to promote new ideas and topics with no established role in

the extant literature. The irony of his advice is that this entry is not only the first

but in fact the only widely published article that ever emanated from Peirce’s

hand that presents the essentials of EGs, both the Alpha and Beta parts, in a

sufficiently detailed and accessible manner.6

6The 1906 “Prolegomena” paper of The Monist, in contrast, charges EGs with many additional
and tangential tasks, including the promised “proof of pragmaticism”, and is much less successful
in introducing the theory of logical graphs than the Dictionary entry. But getting the ideas across
even in the Dictionary article was somewhat of an ordeal. Peirce revealed the editorial discussions
that went on in the background to Royce on January 19, 1902: “As for my article on Symbolic Logic,
Baldwin would allow no notation to be used not approved by Mrs. Franklin, and the rules laid
down have had the effect of effectually preventing the expression of my doctrines. In fact, I could
not go into the algebra at all, but only speak generally concerning it. I was not allowed to give
my reasons for preferring one notation over another. I was not allowed even to introduce Euler’s
diagrams. I offered to supply the types for a few formulæ of my own; but this was not permitted”
(R L 386, 1902). On the other hand, the 23-page pamphlet Syllabus of Certain Topics of Logic that
Peirce wrote for his 1903 Lowell Lectures contained the basic conventions and definitions of EGs,
but it was printed in at most 100 copies (Peirce 2020a).
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In the linearised EG notation, cuts are indicated by matching pairs of paren-

theses, with brackets and braces added for convenience and readability. In

Peirce’s words, the common “habit is to cut [a graph] off from the main sheet

by enclosing it within an oval line; but in order to facilitate the printing, we

will here enclose it in square brackets” (Peirce 1902a: 646). For example, the

Alpha graph presented in Fig. 1 is linearised as “[P(Q)]”, which represents the

conditional sentence “If P then Q”.

Regarding the seemingly straightforward idea of linearising Alpha graphs

in the fashion that the above snippet suggests, Hammer (2011) writes:

For the alpha portion, cuts will be indicated in linear notation by matching

parentheses. So “(P)” is equivalent to “not P,” and “(P (Q))” is equivalent

to “if P then Q” (rewritten as always into a combination of conjunction and

negation). Observe that this is the same graph as “((Q) P)” because order

is syntactically irrelevant. The two graphs are different tokens of the same

graph. Juxtaposition and enclosure are the only relevant syntactic oper-

ations, and graphs are equivalent up to those two operations. (Hammer

2011: 130)

In this explanation, the graphs “[P (Q)]” and “[(Q)P ]” are not different (i.e.,

syntactically distinct) graphs. They are, in our terminology, graph-tokens of the

same graph-type. As noticed, this idea comes directly from Peirce—that “the

arrangement is without significance” (Peirce 1902a: 647).

However, is such “syntactical irrelevance” of the arrangement really possi-

ble in a linear notation? Hammer—and the Peirce of the linear EGs—must think

that it is. One could argue that even in a linear language, the possibility remains

of stipulating that, while permutation of the elements of a string generally yields

distinct string-types, yet in some cases, e.g. in the case of symmetric relations or

operations (i.e., in those cases in which permutation would not alter the logical

value), permutation only yields distinct string-tokens of the same type. In the

case of linear Alpha graphs, one could say that while permutation of the ele-

ments of a linear graph generally yields distinct graph-types (for example, per-

muting ‘P ’ and ‘Q’ in ‘[P(Q)]’), yet when the permuted elements are enclosed

within the same number of parentheses (for example, ‘P ’ and ‘Q’ in ‘[P Q(R)]’)

the permutation only yields distinct graph-tokens of the same type. In this way,

‘[P (Q)]’ and ‘[Q(P )]’ would not be the same graph-type, as is required by their

logical difference, while ‘[PQ(R)]’ would be the same graph-type as ‘[QP (R)]’,

as required by their logical equivalence.

Hammer’s proposal for linear Alpha graphs is implicitly based on this ar-

rangement. However, it is open to the following objection. Let us construct a

language with a symmetric relation or operator (♠) and another, anti-symmetric
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relation or operation (♥). Thus, the idea is that one could stipulate that in such a

language (11a) and (11b) are distinct formula-tokens of the same formula-type,

while (12a) and (12b) are distinct formula-types.

(11a) ξ ♠ ζ

(11b) ζ ♠ ξ

(12a) ξ ♥ ζ

(12b) ζ ♥ ξ

Such stipulation would yield a notation with a dis-homogeneous syntax: one

and the same syntactical operation (permutation of elements in a string) would

not invariably yield the same syntactical result: with ♠, permutation would

yield distinct tokens of the same type, while with ♥, it would yield distinct

types. The difference is semantic: the outcome of the permutation of the ele-

ments flanking ♠ and the outcome of the permutation of the elements flanking

♥ differ because of the meaning of ♠ and ♥ (the former is symmetric and the

latter anti-symmetric).

The proposed notation would be the outcome of a systematic conflation be-

tween syntax and semantics, and in particular a conflation of the well-defined

concepts of syntactic equivalence and logical equivalence. In order to avoid

this conflation, one only needs to recognise that in any linear notation whatever,

permutation always yields distinct types, and that such rules of logical equivalence

are introduced that distinguish the outcome of the permutation of the elements

flanking ♠ (distinct types which are logically equivalent) from the outcome of

the permutation of the elements flanking ♥ (distinct types which are not logi-

cally equivalent). To say that in a linear notation permutation sometimes yields

only distinct tokens is to say that rules of commutation are introduced into the

system (which are rules of logical equivalence).

If this objection is sound, then Peirce’s and ipso facto Hammer’s linear Al-

pha graphs are linear in the full sense of the term, because the permutation

of elements in a string always yields distinct string-types and never distinct

string-tokens of the same string-type. To say that in linear Alpha graphs the ar-

rangement is without significance does not make those graphs less linear than

the standard notation does. It only amounts to the implicit adoption of a gen-

eralised commutation rule, which is precisely what is done explicitly in linear

languages with respect to symmetric relations or operations.

Let us consider two further remarks on the syntax of the linearised logical

graphs by Hammer (2011):
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One problem of using parenthetical grouping to also serve as a unary log-

ical operator concerns definitions. [. . . ] The problem with trying to define

a new logical operator such as disjunction within the alpha system is that

a second parenthetical grouping syntactic mechanism becomes necessary,

and the result is a step backwards in terms of visual power and elegance.

Lost is the simplicity and power of odd and even areas of the graph. Also

lost is the original iconicity of the system. (Hammer 2011: 132)

Another issue raised by the linear notation is what makes Peirce’s graphi-

cal notation diagrammatic/iconic, and whether all or some of that iconicity

is lost in the linear notation. I believe that part of the iconic, graphical as-

pect of the existential graphs, the thing that gives them the visual power

they have, is that typically separate syntactic elements are combined into

a single dual-purpose syntactic element, resulting in substantial notational

simplicity. (Hammer 2011: 139)

What is the kind of iconicity referred to in these passages which is presumably

lost in linear Alpha graphs? Hammer is correct to observe that introducing a

new logical operator by fiat in order to represent disjunction in linear Alpha

would require the introduction of a new collectional sign as well. This is be-

cause parentheses, being already invested with the meaning of negation, cannot

perform this collectional office alone, without at once also bearing the meaning

of a truth-operation. It is evident, however, that no more than one single kind

of collectional signs can be adopted in any system whatever, for otherwise one

should stipulate the relations of dependence or interaction between the two or

more kinds of collectional signs, which would amount to nothing else than the

adoption of a single yet more complex system of collectional signs.

What Hammer says of linear Alpha graphs is also true of standard Alpha

graphs: the cut functions both as a collectional sign and as a sign of negation. It

would be impossible to introduce a new logical operator to represent disjunc-

tion, because this would require the introduction of a distinct collectional sign,

and this is impossible. But then, the introduction of a new logical operator in

Alpha graphs is not a loss in iconicity; it is no iconicity at all: due to the nature

of the merging of collectional function and truth-function, no such introduc-

tion is possible at all. Nor is the presumed loss in iconicity due, as Hammer

thinks, to the merging in one single syntactic device of a collectional function

and a truth-function. This is precisely what happens in the linearised version of

the graphs: just like the cuts of standard EGs, the parentheses fulfill both these

functions to perfection.

What is actually lost in the linearised version of Alpha graphs is the permu-

tational invariance that characterises the standard diagrammatic syntax of the

graphs. But Hammer cannot see this because he considers linear Alpha graphs
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as permutation-invariant relative to elements enclosed within the same num-

ber of parentheses. This, we have argued, would conflate syntactical and logical

equivalence and has to be rejected: Hammer’s linear Alpha graphs are linear

just as any other linear notation is. Therefore, the only feature that distinguishes

the standard Alpha graphs from Hammer’s linearised version is that in linear

Alpha graphs the permutational invariance that characterises standard Alpha

graphs is lost.

This difference can also be expressed by saying that the translation func-

tion from linear Alpha graphs to Alpha graphs is a many-one (non-injective,

surjective) function: every Alpha graph-type corresponds to a class of logically

equivalent linear Alpha graph-types which merely differ in the linear ordering

of those elements that in the corresponding Alpha graph-type lie on the same

area. For example, to each of the linear Alpha graph-types (13a–f) there corre-

sponds the unique Alpha graph type in Fig. 14:

(13a) [PQ(R)]

(13b) [QP (R)]

(13c) [(R)PQ]

(13d) [(R)QP ]

(13e) [P (R)Q]

(13f) [Q(R)P ]

P

Q
R

Figure 14.

Of this type, infinitely many distinct tokens may be produced.

4 Linear Beta Graphs

In this section, we compare Hammer’s linearisation of Beta graphs with a lin-

earisation in which quantification is merged with the cut operator. The lineari-

sation of Beta graphs builds upon the principles of the linearisation of Alpha

graphs. LIs and ligatures are connectors drawn both above and below one-

dimensional, concatenated strings of punctuation marks and letters. Again,

Peirce’s motivation in proposing such compressed format for Beta expressions

was to facilitate printing graphs in a more economical fashion, only requiring

oversetting multiple lines over character types.

The proposal for the linear Beta notation is presented in the same Dictionary

article (Fig. 15, from Peirce 1902a: 649):
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Figure 15.

LIs are indicated by heavy lines; according to Peirce this “very iconoidal way

of representing that there is one quasi-instant at which both A and B are true”

is A B (Peirce 1902a: 648). For example, the linearised Beta graphs [A B]and

[(A)(B)] express “whatever A there may be is B” and “everything is either A or

B”, respectively. “In taking account of relations”, he then states, “let l be taken in

such a sense that X l Y means ‘X loves Y’,. . . if m means something is a man,

and w means something is a woman, m l w will mean ‘Some man loves some

woman’; m [( l ) w] means ‘Some man loves all women’; [( m l )w ] means

‘Every woman is loved by some man’, etc.” (Peirce 1902a: 649).

In order to incorporate these two basic elements of Beta graphs into linear

notation, namely to match variables with the LIs and to mark the area with

the outmost portion of LIs in order to indicate quantifier scope, Hammer intro-

duces the standard existential quantifier ‘∃x’, together with a modification of

the idea that is derived from Peirce’s use of matching variables which he calls

“selectives”, similar to proper names (Pietarinen 2010) and substituting charac-

ters for the LIs and ligatures:

[T]here is an unavoidable intersection of two lines of identity. In such a case,

and indeed in any case in which the lines of identity become too intricate to

be perspicuous, it is advantageous to replace some of them by signs of a sort

that in this system are called selectives. A selective is very much of the same

nature as a proper name; for it denotes an individual and its outermost

occurrence denotes a wholly indesignate individual of a certain category

(generally a thing) existing in the universe, just as a proper name, on the

first occasion of hearing it, conveys no more. (CP 4.460)
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Accordingly, the Beta graph in Fig. 16 is represented in Hammer’s linear Beta

as “∃x(Ax)”:

A

Figure 16.

In contexts that give rise to no ambiguities, that is, in contexts in which there is

no need for a separate symbol for universal quantification (as may be required

in intuitionistic Beta graphs, for example, see Bellucci, Chiffi & Pietarinen 2020),

there is no reason to use any symbol such as “∃” to express existential quantifi-

cation. Since the only office of “∃x” is to mark the binding scope of quantifica-

tion, this is perfectly achieved by writing “x” rather than “∃x”. Thus, Hammer’s

Beta formula “∃x(Ax)” may be simplified to “x(Ax)” without loss of expressiv-

ity (one should notice that Geach 1981 and Soames 1983 exploit similar tech-

niques in their version of a Tractarian first-order logic). The crux of the matter

is that once there is a means to represent the identity of individuals, the only

other thing is to spell out how to represent scope.

Hammer provides some definitions for linear notation:

The definition of an open graph and subgraph is as follows. (1) ‘∃x’ is an

open graph for any variable ‘x’. (2) Rx1 . . . xi is an open graph for any

relation R and i variables. (3) Given graphs ‘G’ and ‘H ’ their concatena-

tion/juxtaposition ‘GH ’ is an open graph and ‘G’ and ‘H ’ are subgraphs

of it. (4) Given any open graph ‘G’, its enclosure within a cut, ‘(G)’ is an

open graph and ‘G’ is a subgraph of it. (5) Given any open graph ‘G’ and

variable ‘x’ the graph ‘∃xG’ is an open graph and ‘G’ is a subgraph of it.

The definition of a graph, scope and free are as follows. (i) The scope of

a quantifier ‘∃x’ is any subgraph contained within all graphs in which ‘∃x’

falls. (ii) A variable x occurs free within a graph if it does not fall within the

scope of a quantifier ‘∃x’. (iii) A graph or closed graph is any open graph

in which no variable occurs free. (Hammer 2011: 134)

However, Hammer does not reveal how to represent the following graph in his

linear notation, which corresponds to “¬∃x(Px ∧Qx)” in first-order logic:

P

Q

Figure 17.
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The correct representation is “(xPxQx)”, or just simply “(PxQx)”, because the

scope of a quantifier is defined only in relation to the cut.

The graph of Fig. 17 is the only example in Hammer (2011) that involves a

simultaneous application of the LI and juxtaposition. By it, Hammer intends

to shows how variables can be substituted for LIs, linking them by the same

variable name use:

xP

xQ

Figure 18.

But what does the graph in Fig. 18 say? Does it say that “it is not the case that

something is both Px and Qx” or that “it is not the case that there exists both an

x such that Px and an x such that Qx”? Hammer does not provide an explana-

tion. This imperfection also obscures the definition of an open graph. Accord-

ing to his definition, the result obtained from items (3) and (5) cannot be well-

formed: for how could we combine the juxtaposition “GH” of two open graphs

with the quantifier “∃x” with the matching parentheses used as both negation

and actually as the scope of their juxtaposition? “∃xGH” in Hammer’s linear

notation means the classical first-order formula “(∃xGx) ∧ H”, but “∃x(GH)”

means “∃x¬(Gx ∧Hx)”. The trouble comes from his introducing “other types

of definitions well within the system, such as collapsing a subgraph into an ab-

breviation ‘G’ ” (Hammer 2011: 132), namely the subgraph “GH” abbreviated

as a single letter which could attach to the quantifier “∃x” according to the item

(5) of the definition.

Adding the double-cut around “GH” will repair the problem. We will thus

make such a modification to Hammer’s notation. The details and an axiomatic

system for the notation resulting from this change is presented in the Appendix.

To see how this improvement works, let us begin with the following Beta graph:

P

Q

Figure 19.

In Hammer’s notation, the graph in Fig. 19 is represented as “∃x(PxQx)”, which

in the ordinary language of predicate logic is “∃x¬(Px ∧ Qx)”. We will delete

the unnecessary symbol “∃” in “∃x(PxQx)” and move x into the parentheses.

Thus we will get
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(x; PxQx).

Figure 20.

The semicolon indicates that in the same pair of parentheses the scope of the

quantified x to the left of the semicolon is the sequence of graphs to the right

of it.

How do we now distinguish between “∃x¬(Px∧Qx)” and “¬∃x(Px∧Qx)”?

In Hammer’s linear Beta, these are, respectively, “∃x(PxQx)” (or better, “x(PxQx)”)

and “(∃xPxQx)” (or better, “(xPxQx)”). Moving “∃x” or “x” inside the paren-

theses changes the scope of quantification, and for that reason we denote the

difference between the two formulas “∃x¬(Px ∧Qx)” and “¬∃x(Px ∧Qx)” as

the difference between “x(PxQx)” and “(xPxQx)”.

Hammer suggests that “equivalent systems could be constructed by defin-

ing the cut as the merge of parenthetical grouping with a different unary logi-

cal operator such as ‘neither. . .nor’ or ‘not both’ ” (Hammer 2011: 132). In fact,

we can go further and take the “cut plus juxtaposition” as a single operator,

namely as the joint denial of an n-ary conjunction. The resulting Alpha graphs

are equivalent to the propositional N-operator that Wittgenstein presented in

the Tractatus (see Cheung 1999, Fogelin 1982, Geach 1981, Rogers & Wehrmeier

2012, Soames 1983). In fact, these Alpha graphs fulfill Wittgenstein’s “nota-

tional ideal” to have just one operator to represent all possible truth-functions

of elementary propositions.

As far as the linearisation of Beta graphs is concerned, we can take the “not

both” approach of Hammer and go one step further so as to merge the quanti-

fier “∃x” into this unary operator. This is significant, since the resulting unary

operator is what Bimbò (2011) has presented as the first of the four Schönfinkel–

Bimbò (S–B) operators (S–B1 below). The general result is that any one of these

four operators is expressive enough alone to build up a first-order language.

In the language of Beta graphs, these four operators have a particularly con-

venient, symmetrical representation, shown in Fig. 21:

P Q

(a) (S-B1)

¬∃x(Px ∧Qx)

P Q

(b) (S-B2)

∃x(¬Px ∧ ¬Qx)

P Q

(c) (S-B3)

∃x¬(Px ∧Qx)

P Q

(d) (S-B4)

¬∃x(¬Px ∧ ¬Qx)

Figure 21.
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Moreover, we can generalise the corresponding graph of Fig. 21(c), namely “(x;PxQx)”,

in linear notation. Details of such formal syntax, semantics, and an axiomatic

treatment of such new version of linear Beta, termed linear-Beta⋆, are presented

in the Appendix.

Remark 1 A note on Peirce’s “line-feed” notation of R 510. Peirce experimented

also on another, a kind of quasi-linear notation, for his planned second edition

of the Syllabus of his 1903 Lowell Lectures (R 478; Peirce 2020a). Among the

worksheets of R 510 (with a couple of additional loose sheets in R 278), Peirce

is seen to suggest an algorithm to rewrite Beta graphs to a format that has got-

ten rid of the junctures (LIs) by substituting selectives for them and using line

skips, indentations and other common types to denote enclosure nesting etc. In

the resulting “line-feed” notation, graphs grouped within different juxtaposed

cuts are sorted in parallel columns and polarities between positive and negative

areas denoted by single large parentheses and braces, respectively, with inden-

tation to ease the recognition of which graphs rest on positive and which on

negative areas:

[i] A selective, or capital letter, is to be substituted for each least enclosed

juncture, a juncture not being within a cut unless it is wholly within it.

[A]nd this is to be repeated until all the junctures are abolished. [ii] Junc-

tures evenly enclosed are to be replaced [by] early letters of the alphabet A

to L, [iii] junctures oddly enclosed by late letters Z to M.

The entire graph is to be transcribed, [iv] more enclosed spots being

scribed lower down in the same columns and [v] spots enclosed in cuts

within the same cut to be in parallel columns, the columns being split by

braces.

[vi] In place of each evenly enclosed cut is to be placed a single large

parenthesis mark to the left and [vii] in place of each oddly enclosed cut is

to be placed a single large square bracket to the left. [viii] Oddly enclosed

spots are to be put a little further to the right than evenly enclosed spots in

the same column. (Peirce 1903a)

The result of an application of this transcription method is a juncture-free no-

tation which in 1903 would have been possible to be typeset without the com-

positor having to draw complex diagrams with curved lines or to set up some

entirely new and expensive types. Peirce provides a couple of examples of this

translation, but other than that, the method seems to have remained an incom-

plete and under-utilised suggestion on these worksheets. As those quasi-linear

graphs were never printed anywhere, he seems to have left the idea aside after

1903.

Coming back to the 1902 linear notation of Peirce’s Dictionary article, consider

next Hammer’s remark:
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Peirce has merged syntactic elements in at least two different cases. First,

the mechanism for negation has been merged with the mechanism for group-

ing as discussed previously—by enclosing a graph within a cut one is also

thereby grouping the contents. Second, the mechanism for associating vari-

ables, the line of identity, also serves as the quantifier, so identity is merged

with quantification. (Hammer 2011: 134)

The first kind of merging is the merging of the collectional function with nega-

tion in the cut, as discussed in Section 2. The second kind of merging is the

merging of the sign of identity of reference (“associating variables”) and the

sign of quantification (quantifier). Since only the existential quantifier is used

in this system of linearised Beta, there is no need to separately represent which

of the two quantifiers is meant. Thus the sign of quantification is simply the

sign that denotes the scope of quantification.

Hammer imparts that the merging of these two functions is lost in his linear

version of Beta, given that the “linear notation presented forces the separation

of correlating variables from quantifying over the variables, and so this case

of merging logical concepts is lost when moving to linear notation” (ibidem).

This is true, but it is not the only loss that linear Beta graphs have with respect

to standard Beta graphs. Hammer’s Beta graphs not only force the separation

of correlating variables from quantification; they also force the separation of

variables themselves. That is, they represent, by distinct occurrences of the

same variable type, the identity of the object denoted by that type. In our termi-

nology, Hammer’s linear Beta graphs are type-referential, while standard Beta

graphs, as well as the “linearised” Beta graphs of Peirce’s Dictionary entry, are

occurrence-referential.

The next section shows how this second kind of merging, which is lacking in

Hammer’s account, is brought to its perfection in the theory of Beta graphs. But

now a hitherto unnoticed aspect of Beta graphs is seen to arise, which has to be

taken into consideration in analysing meanings of certain complex sentences

and their quantificational structures. The final question to be resolved thus

concerns the precise workings of the interaction between lines and cuts. We

next argue that one needs to extend the notation of ordinary Beta graphs by

introducing “bridges”.

5 Identity and Quantification in the Diagrammatic

Syntax of Beta Graphs

A closer look at the implications of the assimilation of quantification and iden-

tity under one and the same notational device reveals a previously unnoticed
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aspect of EGs. That aspect comes to be masked in standard linear notations, but

can be explained by appealing to the distinction between notations, type- and

occurrence-referential. It is only in occurrence-referential systems that distinct

logical operations, such as existence and identity, may be subsumed under one

and the same logical sign.

The job description of the sign for the identity of reference (such as Ham-

mer’s “associating variables”) is not only to reuse the same variable names and

then binding their tokens. One also needs to be able to use the LI as the true

sign of equality, in the sense in which linear notations express it by the iden-

tity sign in clauses such as “x = x”, “x = y”, and so on. We will now observe

that the meaning of quantification that is connected to the meaning of identity

requires a change in the usual definition of the language of Beta graphs.

The question is: Can all first-order formulas with identity7 in fact be repre-

sented in the language of Beta graphs, as it is commonly defined in the litera-

ture? In the literature Beta graphs have been taken to be expressively equivalent

to a fragment of first-order logic with identity, with a (non-bijective) translation

between them. However, a suspicion arises from a closer scrutiny of the pro-

posed subsumption of the functions of identity and that of quantification under

the behavior of one and the same logical sign, namely the LI.

An example that prompts such a suspicion was originally contemplated

by Peirce himself, and is found in an unpublished manuscript written for his

Minute Logic book proposal (Peirce 1902b) in the same year as the publication

of his Dictionary article “Symbolic Logic”. In fact, Peirce not only noticed the

general nature of the emerging problem, but also outlined some original pro-

posals to fix it.

Peirce’s version of this quantification cum identity problem is, in brief, as

follows. Peirce asked how the following sentence is to be represented in the

language of Beta graphs:8

(22) Any man there may be is born of something, X; and any man there may

be is coexistent with a woman who is that X. (Peirce 1902b, 2019; R 430)

In the standard first-order notation with identity, we could try to represent this

sentence as follows (M1,M2: “is a man”; Bxy: “is born of”; Czu: “coexists

with”; Wu: “is a woman”):

(23) ∀x∃y∀z∃u((M1x → Bxy) ∧ (M2z → (Wu ∧ Czu)) ∧ (y = u)).

7For simplicity, we assume a restriction of formulas to a fragment of FOL with only symmetric
relations and without function and constant symbols in the signature of that fragment.

8This question of the limitations of the expressivity of Beta graphs takes place in R 430 within
the larger context of the question of the operation of rules of transformations in Beta graphs and the
enlisting of a number of different functions (“offices”) that the ovals (the cuts) have in the system.
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But how to represent this sentence in the language of Beta graphs? In R 430,

Peirce seems to have recognised the troubles that arise from the application of

ordinary Beta graphs to the cases that involve logical analysis of complex quan-

tificational natural-language statements with anaphora.9 First, Peirce notices

that the graph in Fig. 24(a) does not do, since it lacks the continuous lines that

would be needed in order to represent the identities of the values of the two

tokens of Xs in (22) (namely the identity of that X which any man is being born

of and the X which is a woman).

man is born of

man woman

Figure 24(a). (Peirce 1902b)

On the other hand, the graph in Fig. 24(b), which now does represent the de-

sired identity by a continuous line, fails in another respect: that line has to pass

through the space outside the cuts (the sheet of assertion), but in doing so the

line’s outermost extremity rests on that positive space (the sheet of assertion)

and is not within the scope of any other line. According to the Beta conventions,

this means that the individual identity (the existential quantifier) denoted by

that line has wider scope than the two universal quantifiers. But this is not

what is meant by (22), in which the relative dependence between the two pairs

of quantifiers is the other way round. Indeed the trouble is the separate expres-

sion of equality of the two existentially quantified variables, which cannot be

directly represented in standard Beta graphs.

man is born of

man woman

Figure 24(b). (Peirce 1902b)

The sentence in (22) mentions the relation of coexistence. As Peirce repeatedly

argues (and proves), the relation of coexistence is represented by the blank. Two

loose ends of the LI occupying positions in the same area, but which do not

9Similar hunches antedate R 430: see e.g. Peirce’s The Peripatetic Talks of 1898 (Peirce 2019) on
sentences that gave him pause when he attempted to represent them in the two-dimensional lan-
guage of graphs. All of these are examples of the complications that arise from the attempted logical
analyses of the meaning of anaphora in English sentences, and resemble complex Donkey anaphora
and cumulative quantification, among others (Peirce 2019; Pietarinen 2015).
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otherwise connect to each other, are in such relation of coexistence with each

other. In 1903, Peirce explains this as follows: “Of dyadic relations of second

intention four are prominent: [First,] [t]he relation which everything bears to

everything else, expressed by [. . . ] the blank” (R 492, Alt.). In Beta graphs, the

relation of coexistence can be, instead of the blank, explicitly expressed at the

first-order level by the spot “ is co-existent with ”.

In the graphical representation of the conditional de inesse (the scroll), there

is no such blank between the antecedent (the outloop) and the consequent (the

inloop) areas. Coexistent are only those propositions that are “scribed simul-

taneously on the sheet” (R 430). Hence a separate dyadic relation “ is co-

existent with ”, which expresses the co-existence of the man and the woman

and which is not represented in Peirce’s examples of graphs such as Figs. 24(a)

and 24(b), needs to be included in the graphical representation of (22).

In other words, a conditional alone does not suffice to represent coexistence.

To say that “If something is a man, then something is a woman” does not in-

volve the meaning of the relation of coexistence between the two predicates.

This is shown in the scroll notation (namely ) not by the absence of a con-

tinuous blank between the two quantified lines but, more pronouncedly, as the

disruption of any blank that would otherwise constitute coexistence (or non-

coexistence) by the innermost cut encircled around the expression “something

that is a woman”. There is no blank that could connect the two loose ends of the

line in the scrolls of these graphs. Thus the relation of coexistence needs to be

explicitly graphically represented, in the same manner as in the formalisation

of (22) as (23), by the sign of identity.

Peirce provides four more attempts to solve the puzzles of anaphora and

coreference in manuscript R 430 (Peirce 1902b; Peirce 2019). The first is to add

two more cuts around the original graph, which would extend the lines (univer-

sal quantification) so that the wide-scope portion of the line (existential quan-

tification) in the graph of Fig. 24(b) would now remain within the scope of the

top-most universal quantifier (the graph of Fig. 24(c) below). This proposal also

fails, however, and as Peirce rightly notices, the resulting graph now changes

the meaning of the sentence to one in which the indefinite (“some woman that

is coexistent with that man”) is within the scope of both universal LI that con-

nect to the predicate “man”, that is, is also within the scope of the top universal

line (as it is nested within the context created by these additional cuts between

which there is the loose end of the universally quantifier line). But this is not

what the original sentence in (22) means. It does not say that “a woman who is

that X” varies with (or is functionally dependent on) “any man there may be”

of the first clause of (22).
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man born of

man woman

Figure 24(c). (Peirce 1902b)

Figure 24(d). (Peirce 1902b, in Peirce’s hand)

One might nevertheless attempt to argue that the graph Peirce gave in Fig. 24(c)

is in fact the right or intended representation of (22), and that, consequently,

there exists an elementary, first-order formula corresponding to it which is ex-

pressible in the received syntax of Beta graphs. For such argument to hold,

however, one must assume that the relation of coexistence is captured by the

implicational structure, and that any relation of coexistence can accordingly be

dispensed with. If that were to be the case, one could represent the graph of

Fig. 24(c) in terms of the first-order formula (24c′):

(24c′) ∀x∃y∀z∃u((M1x → Bxy) ∧ (M2z → Wu) ∧ (y = u)).

The question is: does the implicational structure “M2z → Wu” analyse the

relation of coexistence? When this structure is quantified (as it needs to be),

“∀z∃u(M2z → Wu)” is equivalent to “∃zM2z → ∃uWu”. This asserts an im-

plicational relation between being a man and being a woman. That is, if the

former has a value that makes the antecedent true, then the latter has a value

that makes the consequent true.

Since now—given the absence of the binding relation of coexistence between

the two variables z and u—both existential quantifiers can reside within the

priority scopes of both universal quantifiers, the translation of the graph of

Fig. 24(c) to a first-order logic can take the form of (24c′′):

(24c′′) ∀x∀z∃y∃u((M1x → Bxy) ∧ (M2z → Wu) ∧ (y = u)).
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One can then move the quantifier for z inside in the formula to precede the

antecedent of the second implicational structure, because z does appear in any

relations with any other variable. This yields the following equivalent formula:

(24c′′′) ∀x∃y∃u((M1x → Bxy) ∧ (∃zM2z → Wu) ∧ (y = u)).

From the point of view of Peirce’s graph in Fig. 24(c), this equivalence means

(from (24c′′) to (24c′′′) direction) that the bottom-most line can be cut on where

it trespasses the positive area, and the remaining loose segment of the line can

be erased (by an axiom of the Beta system). Conversely, a piece of line may be

inserted in the outermost negative area and then iterated inwards until it meets

the line connecting to the man in the negative area. After that, the branch that

had a loose end in the positive area may be retracted.

There is an objection to this recasting of Peirce’s graph and the reading of

(22) along the lines of the above argument, however. As already noted, the

implicational structure is not tantamount to the creation of the appropriate re-

lation of coexistence. Now it is true that an explicit spot that would represent

such relation is missing from Peirce’s own example (it transpires in the linguis-

tic example (22) only, as “is coexistent with”). But the reason for this is that in

that context Peirce is not concerned with the expressivity in Beta graphs in gen-

eral, or the expressivity of sentence (22) in Beta graphs in particular. In order to

express the relation of coexistence, either a continuous blank or an explicit re-

lation of coexistence need to be present. Since there is no continuous blank that

could connect the two lines of the predicate “man” and the predicate “woman”

in an implicational structure, a genuine relation of coexistence is needed. But

the above argument (24c′)–(24c′′′) dispenses with any such relation. In conclu-

sion, then, since a relation of coexistence is needed, when added to the graph

of Fig. 24(c) (namely, added to the consequent area of the lower implicational

structure and connected to the line of the predicate ‘man’ on the antecedent of

that structure and to the line of the predicate ‘woman’ on the consequent of that

structure), it blocks the possibility of reading it in terms of standard first-order

formulas with identity, namely any of (24c′)–(24c′′′).

Peirce then proposes, secondly, a modification to the syntax that would al-

low cuts to touch each other from the outside, without overlapping. There is

only one example of this among the Peirce papers (see Fig. 24(d)), the one in

which the inner line is taken to traverse between the two spots and presum-

ably without making contact with the sheet of assertion. If this could be done,

then the existentially quantified line would no longer have wider scope than

the universal lines: the former line would not have its outermost portion on the

SA.

However, this is an ad hoc modification to the diagrammatic syntax, and

moreover appears to be accompanied with some unintended consequences.
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When the cuts connect from the outside, according to Convention 9 of the the-

ory of Beta graphs (see e.g. Roberts 1973: 54; Peirce 1903b), the line that meets

the boundary of the cut from the inside is interpreted to be outside that cut

(the cut is “outside its own close”, CP 4.501). The extremal point of the line

that terminates at the boundary would then be interpreted as belonging to the

area outside the enclosure formed by the cut and its area. That is, the polarity

of such a line would be that of the polarity of the area immediately outside the

cut. But that area would be the area immediately inside the other cut which

the previous cut meets, and vice versa. When the two boundaries meet as in

Fig. 24(d), the two ends of the two segments of the ligature that abut at the same

boundary point at which the two cuts make contact are, according to Conven-

tion 9, both outside their respective enclosures. Thus not only the line retains

its continuity and hence its signification as an assertion of identity, but also its

outermost portion can no longer lie inside the cuts. The intersection point of

the two colliding cuts would behave like a double negation and cancel the effect

of the cut as a disruption of the continuity of the ligature. In sum, the proposed

second solution would necessitate changing Convention 9, which in turn would

fundamentally change the way the lines of identity are interpreted in the theory

of Beta graphs.

As to the last two solutions, Peirce’s proposals are equally innovative. First,

he proposed to add a “nodule” to the lines to create direction. This is shown

in the graph depicted in Fig. 24(e) in Peirce’s hand, where the nodule added

towards one extremity of the line is intended to cancel the customary, endo-

poreutic interpretation. Hence the intended scope of that line would not derive

from the outermost portion of that line but from the extremity on which that

nodule is placed. One might well accept this as an appropriate modification. (It

also has some further merits such as adding to the expressive power of logical

graphs, see Pietarinen 2015.) This new piece of notation necessitates redefining

the language of Beta graphs, however, as in Beta EGs ligatures have direction

only as prescribed by the ordering of the SA by the nesting of cuts.

The last solution is depicted in Fig. 24(f). Peirce now proposes a special kind

of selective, the Virgo, to carry out the job by mediating the information between

the two ends of the lines, without any sign having to pass through the interme-

diate space between the lines connected to these selectives. This is what selec-

tives in graphical notation and variables flagged to identity symbols in linear

notations do. The drawback is that the occurrence-referential character of the

notation is now lost, since selectives introduce an identity based on types and

not on occurrences: two occurrences of the same selective denote the same in-

dividual.
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Figure 24(e) (Peirce 1902b. In Peirce’s hand).

man born of `

man ` woman

Figure 24(f) (Peirce 1902b).

How then one is to scribe the graph to logically analyse the sentence (22) with

an explicit relation of coexistence? Representing quantification cum identity re-

quires the ability to represent complex strings of quantifiers and identities that

depend on other quantifiers in their context. Just as the notation of first-order

logic might be made more expressive in terms of, say, non-linear, partially-

ordered quantificational structures (Enderton 1970, Henkin 1961, Pietarinen

2004), so do Beta graphs, when scribed in two dimensions, face geometrical

limitations.10

As these limitations concern the planar structure of the SA, they can be over-

come by taking the sheet to be a many-dimensional manifold. This is a natural

solution: the SA in logical graphs serves the same role as the ambient space

does in topology.

The resolution for the problem of expressing the sentence (22) and similar

ones involving complex quantification and phenomenon such as cross-prono-

minal anaphora in the language of Beta graphs can take various forms. Our

solution follows the previous lines of thought but is really nothing else than a

generalisation of the features that are already present in Beta graphs. For in Beta

graphs, LI may have to depart from the planar surface and escape to the third di-

mension. A minimal example is three spots with three hooks and three branch-

ing lines that connect all three spots: in FOL, “∃x∃y∃z(P1xyz∧P2xyz∧P3xyz)”

(with non-symmetric relations, one quaternary spot will do: “∃x∃yPxyxy”).

Beta graphs—just as their pseudo-linear forms as presented in Peirce’s Dic-

tionary article—are projections of graph-instances that live on in three dimen-

sions. Now for such situations, Peirce had introduced the convention of bridges,

10On some other, non-classical forms of EGs, see e.g. Bellucci, Chiffi & Pietarinen 2017; Chiffi &
Pietarinen 2018, 2019 on Assertive Graphs (AGs); Ma & Pietarinen 2017b on modal graphs; Ma &
Pietarinen 2018a on sub-propositional Alpha graphs; and Ma & Pietarinen 2018b on intuitionistic
Alpha graphs.
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which are routinely resorted to in order to represent lines that cross each other

without joining:

--

Figure 25. A bridge for two lines of identity (Convention 12, R 450, R 492).

The presence of bridges means that the standard diagrammatic syntax for Beta

graphs is readily three-dimensional. The general modification required to the

language of Beta graphs is then only the following. Just as bridges are applied

to prevent lines that have to cross each other to join into one another, one can

apply bridges to prevent lines that cross cuts to be cut by them. That is, lines can

overpass (or underpass) the cuts as well. This can be notated by applying the

bridge as in Fig. 26.

man is born of

man woman

Figure 26. A bridge for the line that overpasses the cuts.

This extension calls for no new signs to be added to the language of Beta graphs.

The blue (or grey in B/W) tracks in Fig. 26 represent a bridge not only for the

lines to cross other lines but also for the lines to cross cuts without being cut

by them (for the sake of perspicuity, one can add another kind of bridge for the

latter cases). Nor does this extension of the applicability of the bridge result in

anything more expressive than what the relevant fragment of first-order logic

with identity already is; it merely designates a necessary qualification to an

already extant convention, which is needed in order to match the expressive

power of Beta graphs with that of a fragment of first-order logic with identity.

This qualification is thus nothing else than an extension of the application of an

already existing piece of notation, the bridge, which now applies it not only to

the crossing of lines but also to the crossing of lines and cuts.11

11One potential hazard is that as soon as the line leapfrogging cuts escapes into the third dimen-
sion, in which it will be undisturbed by those cuts and hence by the polarity counters that those
cuts effect. What is the polarity signature of those lines then? What if the two extremities of the line
that rest on the sheet of assertion are of opposite polarities? What is the polarity of the line in that
case? The answer is that the signification of cut-leapfrogging lines is defined by the endoporeutic
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This extension of the applicability of the bridge is required to express certain

sentences in the language of graphs that can readily be expressed and analysed

in linear languages that possess the equality sign. The graph in Fig. 26 is an

example of such graphical representation of a sentence (22), which in terms of

the representation in the language of first-order logic with the equality sign can

be given in terms of the sentence (23).12

There is a wider lesson to be learned from such an expanded notation. The

full meaning of a quantifier has to also include the meaning of identity, because

there obviously can and must be such crossings of cuts by lines unaffected by

those cuts. Yet no one between Peirce and the present paper has pointed out the

real need for what is nothing but a modest expansion of Beta graphs. It merely

takes the point that elementary graphs are not two- but three-dimensional ob-

jects into its inevitable consequences.13

Another point concerns the nature of the lines that cross the cuts with these

bridges: cut-crossing lines remain lines, not ligatures. They are not ligatures

(complexes of LIs), which without bridges they would be, because these lines

do not abut the cuts and do not interact with them.

In sum, when quantification and identity are both represented in an occurrence-

referential notation, some non-trivial consequences emerge regarding the no-

tion of scope. One office of the cuts, analogous to parentheses in linear notation,

is that they impose ordering on the sheet of assertion. This ordering shows,

among others, the logical scope of quantifiers: the less-enclosed extremity of

a ligature is logically prior to the ligature whose outermost extremity resides

deeper in the nest of the graph, that is, is enclosed within a greater number of

interpretation, excluding the portion of the line that rests in the third dimension. The part of the line
that is in the air is not part of the signification of the line. Then the polarity of these leapfrogging
lines is unambiguously defined in terms of the least-enclosed outermost portions of the lines; that
is, the ‘outermost portion’ refers to the collection of all those non-loose end-points and portions
of the line that rest on the two-dimensional sheet of assertion, taking those points and portions to
be connected by the line as usual. We thank the reviewer for raising this issue, which points at an
important distinction between the meaning, on the one hand, of the line as a continuity between its
connections and loose extremities and, on the other, of the line as a type of quantification inferred
from its interaction with the enclosures in occurrence-referential notations. This distinction reflects
that of the binding and priority scopes of quantifiers in type-referential notations.

12The graph in Fig. 26, just as in Peirce’s own proposals for the graphical representation of (22)
given above, is assumed to contain the relation of coexistence “ is coexistent with ” within
its lower implicational structure. This poses no complications and is omitted merely to avoid clut-
tering the graph.

13A reviewer raises the following point: Are we sure that adding a third dimension will com-
pletely contain the problem? That is, might there be (admittedly convoluted) cases which would
demand adding still further dimensions? Right now we are inclined to answer No and Yes, re-
spectively. We know how complex anaphoric meanings can be (take Geach–Kaplan sentences, for
example). And we know that non-linear formulas are needed to analyse certain sentences involv-
ing branching quantification, for example. Then take a graphical representation of such branching
quantification (Pietarinen 2004), and imagine that there is a complex cross-pronominal anaphora in
which it becomes necessary that not only one-dimensional lines but also two-dimensional planes of
identity would have to leapfrog cuts. Then we are at once talking about those planes escaping into
the fourth dimension. And if cuts are in fact projections of spheres, lines and planes that escape
them might require the ambient space having five dimensions.
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cuts in the same nest.But the two offices of the lines, the binding of variables

as denoted by the continuity of the line, and the nestedness of their outermost

portions, need not go hand in hand. Since in the ordinary, linear notation these

two offices need not be considered separately, the real logical differences that

they bear may be easily lost in occurrence-referential languages such as EGs.

6 Conclusions

The occurrence-referential logical graphs scribed in three-dimensions testifies

to the inseparability of the meanings of quantification and identity. This phe-

nomenon is easily masked in linear, type-referential notations. Alternative and

non-standard logical notations are thus important to be developed and anal-

ysed as they suggest that this inseparability is not only inevitable but also that

it is only through assimilating the two notions also at the notational level that

we see how the cuts (as expressing logical scopes) and lines (as expressing quan-

tification and identity) interact.

As far as linear notations are concerned, it is not obvious what is gained

and what is lost by moving from multi-dimensional to one-dimensional lin-

ear notation. To examine this question, a linear Beta⋆ system is precisely de-

fined, correcting the defects of Hammer (2011), who proposed a linear version

of Peirce’s Beta graphs. In the present paper, it was shown that the distinctions

between permutational invariance and the type- vs. occurrence-referentiality

can explain the principal, if not the only, difference between EGs and their lin-

earised versions, as presented in the Alpha and Beta parts of EGs in Peirce’s

Dictionary entry as well as in Hammer (2011). First, standard EGs are permu-

tationally invariant with respect to linear EGs. Second, the Beta component

of the system is occurrence-referential while Hammer’s linear Beta graphs are

type-referential. When occurrence-referentiality constitutes a defect in expres-

sivity (such as when quantification and identity are represented by the same

sign and when some complex assertions cannot be expressed in the standard

notation of Beta graphs), the standard notation of logical graphs, as has been

argued in the present paper, has to be modified by expanding the application

of Peirce’s bridge-notation.14

14The distinctions of occurrence-referential vs. type-referential notations and non-linear vs. linear
notations, together with permutational invariance and the necessary widening of the coverage of
the extant notations of EGs, are useful analytical devices by which one could gain new insights
into Wittgenstein’s conclusion that “the identity sign is not an essential part of logical notation”
(Tr. 5.533). That is, “Identity of the object I express by identity of the sign and not by means of a
sign of identity” and “Difference of the objects I express by difference of the signs” (Tr. 5.53). We
leave a closer analysis of this Wittgensteinian tracing of the Peircean paths for a future occasion.
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(1) “Rx1 . . . xk” is an (atomic) graph for any relation “R” and variables “xi”.

(2) Givenn (n ≥ 0) graphs “G0”. . . “Gn−1” andm (m ≥ 0) variables “x0”. . . “xm−1”,

we get the graph “(x0 . . . xm−1;G0 . . .Gn−1)”, of which Gi are subgraphs.

Thus, when m = n = 0, we get the blank cut “( )” as a graph (Peirce’s

“pseudo-graph”). When m = 0 and n = 1, we get the negation “(G0)” of the

graph “G0”. And when m = 0, we get the Alpha graph “(G0 . . .Gn−1)” as well

as “G0”. . . “Gn−1” as direct subgraphs of it, of which we highlight a special kind

of graphs called atomic nand graphs: “Gi” is “( )”, some atom, or its negation.

Sometimes we need individual parameters standing at the place of the hooks

at the periphery of the spots of the Beta graphs: the graph “G{x/a}” means the

result of substituting the individual parameter a for the individual variable x

in the graph “G”. Similarly we have the graph “G{x0/a0, . . . , xm−1/am−1}”.

Hammer (1998) defined a Tarskian semantics for EGs, and the following se-

mantics is of this kind.15 A model for the Beta graphs (and similarly for the Al-

pha graphs) is a pair U = 〈D, I〉, in which the non-empty set D is the domain of

U , and the function I interprets every individual variable xi as some individual

in the domain. The only complex item in the semantics is about the Beta graph

“(x0 . . . xm−1;G0 . . .Gn−1)”: the model U satisfies “(x0 . . . xm−1;G0 . . .Gn−1)”,

if and only if there exist u0, . . . , um−1 ∈ U such that the interpretation I[x0 −

u0, . . . xm−1 − um−1] makes some graph “Gi” false. Truth-in-a-model, valid

graph, satisfiability of a set of graphs, and logical consequence are all defined

as usual.

A.2 Axiomatics

Two axiom-schemata are as follows:

Axiom 1 Atomic nand-graphs with ( ) as its direct subgraph.

Axiom 2 Atomic nand-graphs with “Rx1 . . . xk” and “(Rx1 . . . xk)” as its direct

subgraphs.

For notational convenience, we introduce a new set of variables{a0, . . . , am−1, . . .}

to be called parameters, distinct from the variables of quantification {x0, . . . , xm−1, . . .}.

The rules of inference for the Beta graphs of the language of linear-Beta⋆ are

called the rules of the tree construction. Informally, a tree consists of branches that

grow upward from the conclusion of the rules to the premise(s). The graph that

15An alternative is Game-Theoretic Semantics (GTS), which comes close—closer than the Tarski-
type semantics—to Peirce’s own intended, “endoporeutic interpretation” of EGs.
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all of the branches begin with is called the root of the tree. A branch stops grow-

ing whenever it meets an application of an axiom, otherwise the tree continues

to grow. The tree with the graph “G” as its root is called its deduction tree. The

two rules of the tree construction are as follows:

Rule 1 From n graphs

“((G0{x0/a0, . . . , xm−1/am−1})H)”,. . . ,

“((Gn−1{x0/a0, . . . , xm−1/am−1})H)”

we construct the graph “((x0 . . . xm−1;G0/Gn−1)H)”, in which a0, . . . , am−1

are new in the tree, and m ≥ 0, n ≥ 1.

Rule 2 From the graph

“(G0{x0/a0, . . . , xm−1/am−1}. . .Gn−1{x0/a0, . . . , xm−1/am−1}H)”

we construct the graph “(((x0 . . . xm−1;G0/Gn−1))H)”, in which a0, . . . , am−1

are not used in the branch yet, and m,n ≥ 0.

The rule of Modus Ponens does not hold in general: in the rules of the tree

construction, the conclusion is longer than its premise(s).

A.3 Soundness and Completeness

The soundness and completeness theorem together assert the equivalence of

provability with validity. The following proof method is in the spirit of Kanger

(1957).

All the axioms are valid graphs and the rules of the tree construction pre-

serve validity. Therefore, if every branch terminates in an axiom, the graphs

proven at the root are valid. For the completeness, we call the branch in the de-

duction tree that does not terminate in an axiom a bad branch. Subgraphs of any

graph in one bad branch might all be true. Hence, if some branch does not ter-

minate in an axiom, we can use that branch as a source of a counterexample for

the candidate, namely as a source of an assignment of values to the parameters

which make it come out false.

Call a branch B of the deduction tree of graph “G” a full normal branch, only

if: “G” is the first member “G1” of the branch B, and for the rest of the graphs

“Gi” (i ≥ 1) of the branch B:

(1) If the graph “Gi” is an atomic nand graph, then “Gi” is the terminal graph

of B;
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(2) If “Gi” is of the form “(GkH)”, in which “Gk” is not “( )”, “Rx1 . . . xk”,

or “(Rx1 . . . xk)”,

then:

(i) If “Gk” is “(x0 . . . xm−1;G0 . . .Gn−1)”, then for 0 ≥ j ≥ n− 1, Gk+1 is

((Gj{x0/a0, . . . , xm−1/am−1})H),

and

(ii) If “Gk” is “(x0 . . . xm−1;G0 . . .Gn−1)”, then Gk+1 is

(G0{x0/a0, . . . , xm−1/am−1} . . .Gn−1{x0/a0, . . . , xm−1/am−1}H).

That a graph “G” is a direct subgraph of a branch B means that “G” is a direct

subgraph of some graph in B.

If a branch B is a full normal branch of the deduction tree of a graph “G”,

and B does not terminate in an axiom, then, if the negation “(A)” of an atomic

graph “A” is a direct subgraph of B then “A” is not a direct subgraph of B. The

reason is as follows. The branch B is a bad branch since it does not terminate in

an axiom. No step growing upward in a bad branch from “G” leaves out atom

or its negation, and in every graph “(GlH)” of the bad branch they are “Gl”, or

the subgraph of “H”. Thus, if “(A)” occurs as a direct subgraph in some graph

of the branch B, and in some subsequent graph of the branch B “A” occurs as

a direct subgraph, then graphs “(A)” and “A” will occur as direct subgraphs

in the termination graph of the branch B so that the termination graph is an

axiom. This is a contradiction.

Moreover, let B be a full normal branch that does not terminate in an axiom.

Then from the definition of full normal branch we have:

(i) If “(x0 . . . xm−1;G0 . . . Gn−1)” is a direct subgraph of the branch B, then

for some i, 0 ≥ i ≥ n − 1, “(Gi{x0/a0, . . . , xm−1/am−1})” is also a direct

subgraph of B.

(ii) If “((x0 . . . xm−1;G0 . . . Gn−1))” is a direct subgraph of the branchB, then

for some i, 0 ≥ i ≥ n − 1, “Gi{x0/a0, . . . , xm−1/am−1}” is also a direct

subgraph of B.

Suppose that there is a bad branch B in the deduction tree of the graph “G”.

Based on B we can construct a model U = 〈D, I〉 as follows:

(1) D = {0, 1, 2, . . . , n, . . .}.
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(2) Interpretation function I assigns natural numbers i (i = 0, 1, . . . ω) to ev-

ery parameter ai.

(3) For every relation R, we assign the following natural function:

(i) Mapping 〈i1, . . . , in〉 to the value true only if “Ra0 . . . Ran−1” is a di-

rect subgraph of B.

(ii) Mapping 〈i1, . . . , in〉 to the value false only if “(Ra0 . . . Ran−1)” is a

direct subgraph of B.

In order to show the completeness we observe that if a branch B of the de-

duction tree of graph “G” is fully normal and does not terminate in an axiom,

then the above model will make every direct subgraph of B true, and thus it

will make “G” false. The proof of this is straightforward. Suppose that all the

direct subgraphs with length less than n of B are true. Let us prove that all the

direct subgraphs are true as follows:

(1) If “Ra0 . . . Ran−1” is a direct subgraph of B, then it is assigned the value

true. If “(Ra0 . . . Ran−1)” is a direct subgraph of B, then “Ra0 . . . Ran−1”

is not a direct subgraph of B and thus is assigned the value false, which

means that “(Ra0 . . . Ran−1)” is true.

(2) If “(x0 . . . xm−1;G0 . . . Gn−1)” is a direct subgraph of B, then for some i,

“(Gi{x0/a0, . . . , xm−1/am−1})” is false. And so “(x0 . . . xm−1;G0 . . . Gn−1)”

is true.

(3) If “((x0 . . . xm−1;G0 . . .Gn−1))” is a direct subgraph of B, then for all i,

“Gi{x0/a0, . . . , xm−1/am−1}” is true. So “((x0 . . . xm−1;G0 . . . Gn−1))” is

true. �
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