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Maximal regularity, analytic semigroups, and

dynamic and general Wentzell boundary conditions

with a diffusion term on the boundary

Gisele Ruiz Goldstein, Jerome Goldstein, Davide Guidetti, Silvia Romanelli

Abstract

We show maximal regularity results concerning parabolic systems with dynamic boundary condi-

tions and a diffusion theorem on the boundary in the framework of Lp spaces, 1 < p < ∞. Analyticity

results can be derived for the semigroups generated by suitable classes of uniformly elliptic operators

with general Wentzell boundary conditions having diffusion terms on the boundary.

1 Introduction

The main aim of this paper is the study of parabolic systems with dynamic boundary conditions in the
form







































Dtu(t, x) = Au(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

Dtγu(t, ·) = Lγu(t, ·) + γEu(t, ·) + h(t, ·), t ∈ (0, T )

u(0, x) = u0(x), x ∈ Ω,

(γu)(0) = v0.

(1.1)

Here A is a linear, strongly elliptic, second order differential operator in the open bounded subset Ω
of Rn, L is a second order strongly elliptic operator in ∂Ω, E is a first order differential operator and γ
is the trace operator in ∂Ω. A typical example of (1.1) is























Dtu(t, x) = α(x)∆u(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

Dtu(t, x
′)− a(x′)∆LBu(t, x

′) + b(x′)∂u∂ν (t, x
′)− c(x′)u(t, x′) = h(t, x′), (t, x′) ∈ (0, T )× ∂Ω,

u(t, x) = u0(x), (t, x) ∈ Ω

(1.2)

where we have indicated with ∆LB the Laplace-Beltrami operator in ∂Ω, with ∂·
∂ν the unit normal

derivative, pointing outside Ω, and α and a are positively valued. Strictly connected with (1.1) and (1.2)
are, respectively,







































Dtu(t, x) = Au(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

Au(t, x′)− Lγu(t, ·)− γEu(t, ·) = h(t, ·), t ∈ (0, T )

u(0, x) = u0(x), x ∈ Ω,

(γu)(0) = v0.

(1.3)
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and






















Dtu(t, x) = α(x)∆u(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

α(x′)∆u(t, x′)− a(x′)∆LBu(t, x
′) + b(x′)∂u∂ν (t, x

′)− c(x′)u(t, x′) = h(t, x′), (t, x′) ∈ (0, T )× ∂Ω,

u(t, x) = u0(x), (t, x) ∈ Ω
(1.4)

in the framework of Lp spaces, both in Ω and in ∂Ω. Here Ω is an open, bounded subset of Rn, with
suitably smooth boundary ∂Ω, α and a are positively valued and ∆LB is the Laplace-Beltrami operator
in ∂Ω. We shall call boundary conditions in the form of (1.3) general Wentzell boundary conditions.

In our knowledge problems (1.2) and (1.4) seem to have been introduced and discussed (from the
physical point of view) in [18]. These systems contain a diffusion term of the boundary, given by a
strongly elliptic operator in ∂Ω (for example, the Laplace-Beltrami operator). Similar systems without
this term were studied, in different functional settings, in [13], [6], [1], [9], [4], [14], [10], [12].

Systems in the form (1.1)-(1.2) seem to have been considered only recently. The first paper where a
problem in the form (1.2) is really studied seems to be [7]. In it, it was considered the system























Dtu(t, x) = Au(t, x) = ∇ · (a(x)∇u)(t, x), (t, x) ∈ [0, T ]× Ω,

Au(t, x′) + β(x′)DνA
u(t, x′) + γ(x′)− q∆LBu(t, x

′) = 0, (t, x′) ∈ [0, T ]× ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(1.5)

with A strongly elliptic in divergence form, β(x′) > 0 in ∂Ω, DνA
conormal derivative, q ∈ [0,∞). It is

proved that, if 1 ≤ p ≤ ∞, then the closure of a suitable realization of the problem in the space Lp(Ω×∂Ω)
(1 ≤ p ≤ ∞) gives rise to an analytic semigroup (not strongly continuous if p = ∞). The continuous
dependence on the coefficients had already been considered in [3]. The case of a non symmetric elliptic
operator has been recently discussed in [8].

In [23] the author considered the case of a domain Ω with merely Lipschitz boundary, with a strongly
elliptic operator A (independent of t). It was shown that a realisation of A with the general boundary
condition (Au)|∂Ω − γ∆LBu+DνA

u+ βu = g in ∂Ω generates a strongly continuous compact semigroup

in C(Ω).
In the paper [22] the authors treated (2.6) in the particular case A(t, x,Dx) = ∆x, f ≡ 0, h ≡ 0,

L(t) = l∆LB with l > 0 and B(t, x′, Dx) = kDν , where k may be negative (in contrast with the previously
quoted literature). They showed that, if the initial datum u0 is in H1(Ω) and u0|∂Ω ∈ H1(∂Ω), then
(2.6) has a unique solution u in C([0,∞);H1(Ω)) ∩ C1((0,∞);H1(Ω)) ∩ C((0,∞);H3(Ω)), with u|∂Ω in
C([0,∞);H1(∂Ω)) ∩ C1((0,∞);H1(∂Ω)) ∩ C((0,∞);H3(∂Ω)).

In [11] (1.1) and (1.2) are studied in the setting of spaces of Hölder continuous functions. Results
of maximal regularity are proved. Here also the operator E may be essentially arbitrary in the class of
linear partial differential operators of order not exceeding one (apart some regularity of the coefficients).

Finally, we discuss some content of [4]. In this paper the authors prove maximal regularity results for
very general classes of mixed parabolic problems. Even systems in the form (1.1) are considered. In this
particular case, they find necessary and sufficient conditions in order that there exists a unique soluzione

(u, ρ), with ρ = γu, with u ∈ W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)), ρ ∈ W
3

2
− 1

2p ,p(0, T ;Lp(∂Ω)) ∩

Lp(0, T ;W 3− 1

p ,p(∂Ω)).
In the present paper we discuss (1.1) from several points of view. We begin (Section 2) by considering

the strongly elliptic problem depending on the complex parameter λ

λg − Lg = h

in a compact smooth manifold Γ (without boundary) and the corresponding parabolic problem







Dtv(t, x
′) = Lv(t, x′) + h(t, x′),

v(0, x′) = v0(x
′)
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We find necessary and sufficient conditions on h and v0, in order that there exists a unique solution v in
W 1,p(0, T ;Lp(Γ)) ∩ Lp(0, T ;W 2,p(Γ)) (p ∈ (1,∞)). These results are essentially well known, but we are
not aware of an exposition of them fitting our needs.

In Section 3 we prove a theorem of maximal regularity for (1.1), giving necessary and sufficient
conditions in order that there exists a unique solution u in W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)), with
γu in W 1,p(0, T ;Lp(∂Ω)) ∩ Lp(0, T ;W 2,p(∂Ω))(p ∈ (1,∞) \ { 3

2}). So we prove a maximal regularity
result in a class of functions which is larger that the one considered in [4]. As in [11], E is essentially
an arbitrary linear partial differential operator of order not exceeding one. The argument of the proof is
quite simple: we begin by studying the case E = 0 and employ the results of Section 2, together with
classical results for mixed parabolic problems with Dirichlet boundary conditions (see [16]). The general
case can be treated by a perturbation argument.

In Section 4 we show that, for any p in (1,∞), the unbounded operator Gp defined as follows:







D(Gp) := {(u, γu) : u ∈W 2,p(Ω), γu ∈W 2,p(∂Ω)},

Gp(u, γu) := (Au, Lγu+ γEu).

is the infinitesimal generator of an analytic semigroup in Lp(Ω)× Lp(∂Ω).
Finally, in Section 5 we establish the following precise relation between problems (1.1) and (1.3). We

introduce the operator Mp defined as follows:







D(Mp) := {(u, γu) : u ∈ C2(Ω), γAu− Lγu− γEu = 0},

Mp(u, γu) = (Au, γAu) = (Au,Lγu+ γEu).

and show that, if the coefficients and the boundary of Ω are suitably regular, Mp is closable in Xp =
Lp(Ω) × Lp(∂Ω) and its closure coincides with Gp. The closure of Mp is precisely the main operator
studied in [7] and [8], as we explain more in detail in Section 5.

In conclusion of this introduction, we precise some notation. N will indicate the set pf positive
integers; BC(A) is the class of complex valued continuous and bounded functions with domain A; if
A ⊆ R

n, BUC(A) will be the class of complex valued uniformly continuous and bounded functions with
domain A.

Given the Banach spaces X0, X1, X, with X1 →֒ X →֒ X0, and α ∈ (0, 1), we shall write X ∈
Jα(X0, X1) to indicate that there exists M positive, such that, for any x in X1,

‖x‖X ≤M‖x‖1−α
X0

‖x‖αX1
.

The symbol γ will be employed to indicate the trace operator.

2 Elliptic problems depending on a parameter and parabolic

problems in a differentiable manifold.

We introduce the following assumptions:

(A1) Γ is a compact, smooth differentiable manifold of class C2 and dimension m (m ∈ N).

(A2) L is a second order, partial differential operator in Γ. More precisely: for every local chart
(U,Φ), with U open in Γ and Φ C2− diffeomorphism between U and Φ(U), with Φ(U) open in R

m, for
any v ∈ C2(Γ), if x′ ∈ U ,

Lv(x′) =
∑

|α|≤2

lα,Φ(x
′)Dα

y (v ◦ Φ
−1)(Φ(x′)); (2.6)

we suppose, moreover, that, if |α| ≤ 2, lα,Φ ∈ L∞
loc(U), if |α| = 2, lα,Φ ∈ C(U) and is real valued, for any

x′ ∈ U there exists ν(x′) > 0 such that, ∀η ∈ R
m,

∑

|α|=2

lα,Φ(x
′)ηα ≥ ν(x′)|η|2.
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We consider the elliptic system depending on the parameter λ ∈ C

λg(x′)− Lg(x′) = h(x′), x′ ∈ Γ. (2.7)

We prove the following

Theorem 2.1. Suppose that (A1) and (A2) hold. Let p ∈ (1,∞). Then:
(I) there exists ω in R such that, if λ ∈ C, Re(λ) ≥ ω and h ∈ Lp(Γ), (2.7) has a unique solution g

in W 2,p(Γ); moreover, there exists C0 > 0 such that

|λ|‖g‖Lp(Γ) + ‖g‖W 2,p(Γ) ≤ C0‖h‖Lp(Γ).

(II) As a consequence, the operator Lp : W 2,p(Γ) → Lp(Γ), Lpu = Lu is the infinitesimal generator
of an analytic semigroup in Lp(Γ).

Proof. We follow the argument in [11], proof of Theorem 2.1.
We take an arbitrary x0 ∈ Γ and consider a local chart (U,Φ) around x0, with U open subset of Γ and

Φ diffeomorphism between U and Φ(U), open subset in R
m. We introduce in Φ(U) the strongly elliptic

operator L♯,
L♯v(y) := L(v ◦ Φ)(Φ−1(y)), y ∈ Φ(U). (2.8)

By shrinking U (if necessary), we may assume that the coefficients of L♯ are in BC(Φ(U)) and are
extensible to elements lβ in BUC(Rm), in such a way that the operator which we continue to call
L♯ =

∑

|α|≤2 lβ(y)D
β
y is uniformly strongly elliptic in R

m. Now we consider the problem

λv(y)− L♯v(y) = k(y), y ∈ R
m, (2.9)

with k ∈ Lp(Rm). Then, (see [17, Chapter 3.1.2]), there exists ω(x0) ∈ R, such that, if λ ∈ C and
Re(λ) ≥ ω(x0), then (2.9) has a unique solution v in W 2,p(Rm); moreover, there exists C(x0) > 0 such
that

2
∑

j=0

|λ|1−j/2‖v‖W j,p(Rm) ≤ C(x0)‖k‖Lp(Rm).

Now we fix U1 open subset of U , with U1 contained in U , x0 ∈ U1 and φ ∈ C2(Γ), with compact support
in U , φ(x) = 1 for any x ∈ U1. Given h ∈ Lp(Γ), we indicate with k the trivial extension of (φh) ◦ Φ−1

to R
m. If λ is such that (2.9) is uniquely solvable for every k in Lp(Rm), we set

[S(x0, λ)h](x) := φ(x)v(Φ(x)), x ∈ Γ, (2.10)

with v solving (2.9). We observe that
(α1) S(x

0, λ)h ∈W 2,p(Γ);
(α2)

2
∑

j=0

|λ|1−j/2‖S(x0, λ)h‖W j,p(Γ) ≤ C1(x
0)‖h‖Lp(Γ);

(α3) (λ− L)S(x0, λ)h = h in U1;
(α4): if (2.7) is satisfied, for h ∈ Lp(Γ), by some g ∈ W 2,p(Γ) and g vanishes outside U1, then

g = S(x0, λ)h;
in fact, the trivial extension of g ◦ Φ−1 solves (2.9), with k trivial extension of h ◦ Φ−1.
Now we fix, for every x ∈ Γ, neighbourhoods U(x), U1(x) of x as before. As Γ is compact, there exist

x1, . . . , xN in Γ such that Γ = ∪N
j=1U1(xj).

Let λ ∈ C. We show that, if g ∈ W 2,p(Γ), it solves (2.7) with h ≡ 0 and Re(λ) sufficiently large,
then g ≡ 0. In fact, let (φj)

N
j=1 be a C2− partition of unity in Γ, with supp(φj) ⊆ U1(xj), for each

j ∈ {1, . . . , N}. Observe that
(λ− L)(φjg) = [φj ;L]g,

4



where we have indicated with [φj ;L] the commutator φjL − L(φj ·), which is a differential operator of
order one. As (φjg)(x) = 0 outside U1(xj), we deduce from (α4), if Re(λ) is sufficiently large,

φjg = S(xj , λ)([φj ;L]g).

So, from (α2),

‖g‖W 1,p(Γ) ≤
N
∑

j=1

‖φjg‖W 1,p(Γ) ≤ C1|λ|
−1/2

N
∑

j=1

‖[φj ;L]g‖Lp(Γ) ≤ C2|λ|
−1/2‖g‖W 1,p(Γ),

implying g ≡ 0 if Re(λ) is sufficiently large.
Next, we show that, if |λ| is large enough,then (2.7) is solvable for every h ∈ Lp(Γ). This time we fix,

for each j ∈ {1, . . . , N}, ψj ∈ C2(Γ), vanishing outside U1(xj) and such that
∑N

j=1 ψj(x)
2 = 1 for any x

in Γ. We look for g in the form

g =

N
∑

j=1

ψjS(xj , λ)(ψj h̃),

for some h̃ ∈ Lp(Γ). Again observing that ψjS(xj , λ)(ψj h̃) vanishes outside U1(xj) and that

(λ− L)[ψjS(xj , λ)(ψj h̃)] = ψ2
j h̃+ [ψj ;L][S(xj , λ)(ψj h̃)],

we deduce

(λ− L)g = h̃+

N
∑

j=1

[ψj ;L][S(xj , λ)(ψj h̃)].

So, we have to choose h̃ in such a way that

h̃+

N
∑

j=1

[ψj ;L][S(xj , λ)(ψj h̃)] = h. (2.11)

This is uniquely possible if Re(λ) is sufficiently large, because

‖

N
∑

j=1

[ψj ;L][S(xj , λ)(ψj h̃)]‖Lp(Γ) ≤ C0

N
∑

j=1

‖S(xj , λ)(ψj h̃)]‖W 1,p(Γ) ≤ C1|λ|
−1/2‖h̃‖Lp(Γ).

So, if C1|λ|
−1/2 ≤ 1

2 , we deduce from (2.11)

‖h̃‖Lp(Γ) ≤ 2‖h‖Lp(Γ),

which, together with (α2), implies (I).
(II) follows from (I). Observe also that, as W 2,p(Γ) is dense in Lp(Γ), the domain of Lp is dense in

Lp(Γ).

Corollary 2.2. Suppose that (A1)-(A2) are satisfied. Let 1 < p < ∞, ǫ ∈ R
+, g0 ∈ W 2,p(Γ), T ∈ R

+,
f ∈ Cǫ([0, T ];Lp(Γ)). Then the problem







u′(t)− Lpu(t) = f(t), t ∈ [0, T ],

u(0) = g0.

(2.12)

has a unique solution u in C1([0, T ];Lp(Γ)) ∩ C([0, T ];W 2,p(Γ)) and

u(t) = etLpu0 +

∫ t

0

e(t−s)Lpf(s)ds, (2.13)

with (etLp)t≥0 analytic semigroup generated by Lp.
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The following ”maximal regularity” result holds also:

Proposition 2.3. Let p ∈ (1,∞). Consider the problem (2.12). Then the following conditions are neces-
sary and sufficient in order that there exists a unique solution u in W 1,p(0, T ;Lp(Γ))∩Lp(0, T ;W 2,p(Γ)):

(a) f ∈ Lp(0, T ;Lp(Γ));
(b) g0 ∈W 2−2/p,p(Γ)
If (a)-(b) hold, this unique solution is given by (2.13).

Proof. (a) is obviously necessary. The necessity of (b) follows from the fact that

{v(0) : v ∈W 1,p(0, T ;Lp(Γ)) ∩ Lp(0, T ;W 2,p(Γ))} = (Lp(Γ),W 2,p(Γ))1−1/p,p =W 2−2/p,p(Γ) (2.14)

(see [17], Chapter 2.2.1 and Theorem 3.2.3).
On the other hand, suppose that (a)-(b) hold. It is well known that the only possible solution of

(2.12) is (2.13). So the solution with the desired properties is, if it exists, unique. It is known that, if
v(t) = etLpu0, v ∈ W 1,p(0, T ;Lp(Γ)) ∩ Lp(0, T ;W 2,p(Γ)) (see [17], Chapter 2.2.1). Assume that u0 = 0.
In this case, we deduce, for any t ∈ [0, T ], as W 1,p(Γ) ∈ J1/2(Lp(Γ);W 2,p(Γ)), if u is given by (2.13),

‖u(t)‖W 1,p(Γ) ≤ C0

∫ t

0

(t− s)−1/2‖f(s)‖Lp(Γ)ds

so that, by Young’s inequality,

‖u‖Lp(0,T ;W 1,p(Γ)) ≤ C1‖f‖Lp(0,T ;Lp(Γ)). (2.15)

Suppose now that f ∈ Cǫ([0, T ];Lp(Γ)). Then u really solves (2.12) (by Corollary 2.2). We fix a local
chart (U,Φ) and take φ ∈ C2(Γ)), with support in U . Then, if

uφ(t, x) := φ(x)u(t, x),

we get






Dt(uφ)(t, x)− Lp(uφ)(t, x) = φ(x)f(t, x) + ([φ;Lp]u)(t, x), (t, x) ∈ [0, T ]× Γ,

uφ(0, x) = 0, x ∈ Γ.

Setting
v(t, y) := uφ(t,Φ

−1(y)), (t, y) ∈ [0, T ]× Φ(U),

and identifying v with its trivial extension to [0, T ]× R
m, we get







Dtv(t, y)− L♯v(t, y) = φ(Φ−1(y))f(t,Φ−1(y)) + ([φ;Lp]u)(t,Φ
−1(y)), (t, y) ∈ [0, T ]× R

m,

v(0, y) = 0, y ∈ R
m,

where we have employed again the operator L♯ introduced in (2.8). From well known maximal regularity
results in R

m (which can be deduced, for example, from [15], Theorem 6.8), we obtain

‖uφ‖W 1,p(0,T ;Lp(Γ)) + ‖uφ‖Lp(0,T ;W 2,p(Γ))

≤ C1(‖v‖W 1,p(0,T ;Lp(Rm)) + ‖v‖Lp(0,T ;W 2,p(Rm)))

≤ C2(‖f‖Lp(0,T ;Lp(Γ) + ‖u‖Lp(0,T ;W 1,p(Γ)))

≤ C3‖f‖Lp(0,T ;Lp(Γ)),

by (2.15). From this estimate, it follows immediately that

‖u‖W 1,p(0,T ;Lp(Γ)) + ‖u‖Lp(0,T ;W 2,p(Γ)) ≤ C‖f‖Lp(0,T ;Lp(Γ)).

This implies the conclusion, taking a sequence (fk)k∈N in (say) C1([0, T ];Lp(Γ)) and converging to f in
Lp(0, T ;Lp(Γ)).
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Example 2.4. We show an example of an operator fulfilling conditions (A1)-(A2). Let Γ be a smooth
compact Riemannian manifold with dimension m and class C2. For every x in Γ, we indicate with Tx(Γ)
the tangent space and with Tx(Γ) + iTx(Γ) its complexification. The real scalar product (·, ·)x in Tx(Γ)
can be extended in a natural way to a complex scalar product, which we continue to indicate with (·, ·)x
(for these elementary facts, see [19], Chapter 6.5). We shall indicate with T (Γ)+ iT (Γ) the disjoint union
of the spaces Tx(Γ) + iTx(Γ) (x ∈ Γ), which is naturally equipped with a structure of m−dimensional
complex vector bundle on Γ.

If f : Γ → C is of class C1, we indicate with ∇f(x) the gradient of f in x, which belongs to
Tx(Γ)+ iTx(Γ). ∇ is a first order differential operator, mapping smooth complex valued functions defined
in Γ into sections of T (Γ) + iT (Γ). We recall that ∇f(x) is the element of Tx(Γ) + iTx(Γ) such that, for
every v ∈ Tx(Γ),

(∇f(x), v)x = v(f)

(see, for example, [2], Chapter V). Suppose that we fix a local chart (U,Φ) in Γ. We indicate with ∂
∂xj

(1 ≤ j ≤ m) the field in U such that

∂f

∂xj
(x) =

∂(f ◦ Φ−1)

∂yj
(Φ(x)), x ∈ U,

where we have indicated by y1, . . . , ym the standard coordinates in R
m. Moreover, we set

g(x) = ((
∂

∂xi
(x),

∂

∂xj
(x))x)1≤i,j≤m.

It is easily seen that the matrix g(x) is symmetric and positive definite. We introduce also its inverse

G(x) := g(x)−1,

again symmetric and positive definite. Then it is not difficult to check that, in local coordinates,

∇f(x) =

m
∑

i=1

m
∑

j=1

Gij(x)
∂f

∂xj
(x)

∂

∂xi
(x). (2.16)

Now we assume that, for any x ∈ Γ, B(x) is a linear operator from Tx(Γ) into itself, Hermitian and
positive definite with respect to (·, ·)x, that is, ∀ξ, η ∈ Tx(Γ),

(B(x)ξ, η)x = (ξ, B(x)η)x

and, if v ∈ Tx(Γ) \ {0},
(B(x)v, v)x > 0.

We suppose also that B(x) depends smoothly on x. This is equivalent to prescribe that, for every local
chart (U,Φ),h the following conditions are satisfied:

(a) for each i ∈ {1, . . . ,m}, B(x)( ∂
∂xi

(x)) =
∑m

j=1Bij(x)
∂

∂xj
(x), with Bij ∈ C1(U);

(b) if we set, for any x in U , B(x) := (Bij(x))1≤i,j≤m, the product B(x)g(x) is symmetric and positive
definite.

Observe that (a)-(b) imply that ,for any x in U , even G(x)B(x) is symmetric and positive definite.
In fact,

(G(x)B(x))T = B(x)TG(x) = G(x)(g(x)B(x)T )G(x)

= G(x)(B(x)g(x))TG(x) = G(x)B(x)g(x)G(x) = G(x)B(x).

Moreover, if ξ ∈ R
m \ {0},

(G(x)B(x)ξ) · ξ = (B(x)g(x)G(x)ξ) ·G(x)ξ > 0.

We indicate by σ the measure induced by the Riemannian metric in Γ and by −div the adjoint
operator of ∇. So, if u : Γ → C and v is a smooth vector field,

∫

Γ

(∇u(x), v(x))xdσ = −

∫

Γ

u(x)div(v)(x)dσ.
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It is not difficult to check that, if (U, φ) is the usual chart, and if ρ : Φ(U) → R
+ is such that, for every

measurable subset A of U

σ(A) =

∫

Φ(A)

ρ(y)dy,

for every smooth vector field X =
∑m

k=1Xk
∂

∂xk
in U , one has

div(X)(x) = (∇ ·X)(x) =
m
∑

k=1

∂

∂xk
((ρ ◦ Φ)Xk)(x). (2.17)

We introduce now the operator
Lu(x) := div(B(x)∇xu) (2.18)

Observe that, if B(x) = ITx(Γ) for any x in Γ, B is nothing but the Laplace-Beltrami operator. We show
that it satisfies the conditions (A1)-(A2). In fact, if f : U → C is sufficiently smooth and x ∈ U , we have,
on account of (2.16),

B(x)∇f(x) =
∑m

i=1

∑m
j=1Gij(x)

∂f
∂xj

(x)B(x)( ∂
∂xi

(x))

=
∑m

i=1

∑m
j=1

∑m
k=1Gij(x)

∂f
∂xj

(x)Bik(x)
∂

∂xk
(x) =

∑m
j=1

∑m
k=1(G(x)B(x))jk

∂f
∂xj

(x) ∂
∂xk

(x),

so that, by (2.18),

Lf(x) =

m
∑

k=1

m
∑

j=1

∂

∂xk
[(ρ ◦ Φ)(x)(G(x)B(x))jk

∂f

∂xj
(x)].

or

Lf(x) =

m
∑

k=1

m
∑

j=1

∂

∂yk
[ρ(y)(GB)jk(Φ

−1(y))
∂(f ◦ Φ−1)

∂yj
(y)](Φ(x)).

The principal part of the operator is

m
∑

k=1

m
∑

j=1

ρ(Φ(x))(GB)jk(x)
∂2(f ◦ Φ−1)

∂yk∂yj
(Φ(x)).

and the matrix ρ(Φ(x))(GB)(x) is symmetric and positive definite.
So L, defined in (2.18), satisfies the conditions (A1)-(A2).

3 Maximal regularity

Now we consider the following classical Cauchy-Dirichlet parabolic problem























Dtu(t, x) = Au(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

γu(t, ·) = g(t, ·), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,

(3.1)

with the following conditions:

(B1) Ω is an open, bounded subset of Rn, lying on one side of its boundary Γ, which is a submanifold
of Rn of class C2.

(B2) A =
∑n

i,j=1 aij(x)Dxixj
+

∑n
j=1 bj(x)Dxj

+ c(x), with aij , bj , c ∈ C(Ω) (1 ≤ i, j ≤ n); the

functions aij are real valued and there exists ν ∈ R
+ such that

∑n
i,j=1 aij(x)ξiξj ≥ ν|ξ|2, for any x ∈ Ω,

ξ = (ξ1, . . . , ξn) ∈ R
n.

The following classical result holds (see [16], Theorem 9.1):
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Theorem 3.1. Suppose that (B1)-(B2) hold. Let p ∈ (1,∞)\{ 3
2}. Then the following conditions are nec-

essary and sufficient, in order that (3.1) has a unique solution u in W 1,p(0, T ;Lp(Ω))∩Lp(0, T ;W 2,p(Ω)):
(I) f ∈ Lp(0, T ;Lp(Ω));
(II) g ∈W 1−1/(2p),p(0, T ;Lp(Γ)) ∩ Lp(0, T ;W 2−1/p,p(Γ));
(III) u0 ∈W 2−2/p,p(Ω);
(IV) in case p > 3

2 , γu0 = g(0).

Remark 3.2. Observe that, as u ∈ Lp(0, T ;W 2,p(Ω)), the second equation in (3.1) is assumed to be
satisfied only almost everywhere in (0, T ).

However, the identity (2.14) and the analogous identity obtained by replacing Γ with Ω imply that

W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;Lp(Ω)) ⊆ C([0, T ];W 2−2/p,p(Ω)),

W 1,p(0, T ;Lp(Γ)) ∩ Lp(0, T ;Lp(Γ)) ⊆ C([0, T ];W 2−2/p,p(Γ)).

If p > 3
2 , 2 −

2
p >

1
p , so that γu ∈ C([0, T ];Lp(Γ)) then the second equation in (3.1) can be assumed to

be satisfied for every t ∈ [0, T ]. This explains the necessity of (IV) in this case. Observe also that, as
1− 1

2p >
1
p , (II) implies that g ∈ C([0, T ];Lp(Γ)).

Now we consider the problem























Dtu(t, x) = Au(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

Dtγu(t, ·) = Lγu(t, ·) + h(t, ·), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,

(3.2)

with L as in (2.6).
We consider first the case p > 3

2 :

Proposition 3.3. Let p ∈ ( 32 ,∞). Consider problem (3.2). Suppose that (B1)-(B2) hold and L is as in
(2.6). Then the following conditions are necessary and sufficient in order that (3.2) has a unique solution
u in W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) with γu ∈W 1,p(0, T ;Lp(Γ)) ∩ Lp(0, T ;W 2,p(Γ)):

(I) f ∈ Lp(0, T ;Lp(Ω));
(II) h ∈ Lp(0, T ;Lp(Γ));
(III) u0 ∈W 2−2/p,p(Ω), γu0 ∈W 2−2/p,p(Γ).

Proof. (I)-(II) are obviously necessary. The belonging of u0 to W 2−2/p,p(Ω) follows from Theorem 3.1.
From what we have observed in Remark ??, if we set v := γu, the identity v(t) = γ[u(t)] can be intended
pointwise. We deduce that v(0) must coincide with γu0. So from Proposition 2.3 we deduce the necessity
of (III).

On the other hand, suppose that (I)-(III) hold. We consider the system







Dtv(t, ·) = Lv(t, ·) + h(t, ·), t ∈ (0, T )

v(0, ·) = γu0.

(3.3)

Then, by Proposition 2.3, (3.3) has a unique solution v in W 1,p(0, T ;Lp(Γ))∩Lp(0, T ;W 2,p(Γ)). Now we
consider the solution u to























Dtu(t, x) = Au(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

γu(t, ·) = v(t, ·), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,

By Theorem 3.1, such u is the unique solution to (3.2).
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Now we consider the case p < 3
2 . In this case, (3.2) is underdetermined. It is more convenient to

consider the problem







































Dtu(t, x) = Au(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

Dtγu(t, ·) = Lγu(t, ·) + h(t, ·), t ∈ (0, T )

u(0, x) = u0(x), x ∈ Ω,

(γu)(0) = v0.

(3.4)

The following result holds:

Proposition 3.4. Let p ∈ (1, 32 ). Consider problem (3.4). Suppose that (B1)-(B2) hold and L is as in
(2.6). Then the following conditions are necessary and sufficient in order that (3.4) has a unique solution
u in W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) with γu ∈W 1,p(0, T ;Lp(Γ)) ∩ Lp(0, T ;W 2,p(Γ)):

(I) f ∈ Lp(0, T ;Lp(Ω));
(II) h ∈ Lp(0, T ;Lp(Γ));
(III) u0 ∈W 2−2/p,p(Ω), v0 ∈W 2−2/p,p(Γ).

Proof. The necessity of (I)-(III) follows immediately from Proposition 2.3 and Theorem 3.1. The proof
of the sufficiency is the same as in Proposition 3.3.

Remark 3.5. As already observed in Remark ??, if v(t) = γu(t), the identity should be intended to be
satisfied only for almost every t. In our case v should be extensible to an element of C([0, T ];Lp(Γ)), but
v(0) should not necessarily coincide with γu0; by the way, as u0 ∈ W 2−2/p,p(Ω) and 2− 2

p <
1
p if p < 3

2 ,
u0 does not necessarily admit a trace on Γ.

It is convenient to reformulate together the results of Propositions 3.3 and 3.4:

Proposition 3.6. Let p ∈ (1,∞) \ { 3
2}. Consider problem (3.4). Suppose that (B1)-(B2) hold and L is

as in (2.6). Then the following conditions are necessary and sufficient in order that (3.4) has a unique
solution u in W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) with γu ∈W 1,p(0, T ; Γ) ∩ Lp(0, T ;W 2,p(Γ)):

(I) f ∈ Lp(0, T ;Lp(Ω));
(II) h ∈ Lp(0, T ;Lp(Γ));
(III) u0 ∈W 2−2/p,p(Ω), v0 ∈W 2−2/p,p(Γ) and, in case p > 3

2 , γu0 = v0.

We proceed with some useful estimates.

Lemma 3.7. Consider problem (3.4). Suppose that (B1)-(B2) hold and L is as in (2.6). Let p ∈ (1,∞)\
{ 3
2}, T0 ∈ R

+, 0 < T ≤ T0. Suppose that f ∈ Lp(0, T ;Lp(Ω)), h ∈ Lp(0, T ;Lp(Γ)), u0 ∈ W 2−2/p,p(Ω),

v0 ∈W 2−2/p,p(Γ) and, in case p > 3
2 , γu0 = v0. Then there exists C(T0) in R

+ such that

‖Dtu‖Lp(0,T ;Lp(Ω)) + ‖u‖Lp(0,T ;W 2,p(Ω)) + ‖Dtγu‖Lp(0,T ;Lp(Γ)) + ‖γu‖Lp(0,T ;W 2,p(Γ))

≤ C(T0)(‖f‖Lp(0,T ;Lp(Ω)) + ‖h‖Lp(0,T ;Lp(Γ)) + ‖u0‖W 2−2/p,p(Ω) + ‖v0‖W 2−2/p,p(Γ)).

Proof. We set, for t ∈ (0, T0),

F (t, ·) =







f(t, ·) if t ∈ (0, T ),

0 if t ∈ [T, T0),

H(t, ·) =







h(t, ·) if t ∈ (0, T ),

0 if t ∈ [T, T0),
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and consider the problem







































DtU(t, x) = AU(t, x) + F (t, x), (t, x) ∈ (0, T0)× Ω,

DtγU(t, ·) = LγU(t, ·) +H(t, ·), t ∈ (0, T0)

U(0, x) = u0(x), x ∈ Ω,

(γU)(0) = v0.

(3.5)

By Proposition 3.6, (3.5) has a unique solution U in W 1,p(0, T0;L
p(Ω)) ∩ Lp(0, T0;W

2,p(Ω)) with γU ∈
W 1,p(0, T0;L

p(Γ)) ∩ Lp(0, T0;W
2,p(Γ)), which is clearly an extension of u. We deduce

‖Dtu‖Lp(0,T ;Lp(Ω)) + ‖u‖Lp(0,T ;W 2,p(Ω)) + ‖Dtγu‖Lp(0,T ;Lp(Γ)) + ‖γu‖Lp(0,T ;W 2,p(Γ))

≤ ‖DtU‖Lp(0,T0;Lp(Ω)) + ‖U‖Lp(0,T0;W 2,p(Ω)) + ‖DtγU‖Lp(0,T0;Lp(Γ)) + ‖γU‖Lp(0,T0;W 2,p(Γ))

≤ C(T0)(‖F‖Lp(0,T ;Lp(Ω)) + ‖H‖Lp(0,T ;Lp(Γ)) + ‖u0‖W 2−2/p,p(Ω) + ‖v0‖W 2−2/p,p(Γ))

= C(T0)(‖f‖Lp(0,T ;Lp(Ω)) + ‖h‖Lp(0,T ;Lp(Γ)) + ‖u0‖W 2−2/p,p(Ω) + ‖v0‖W 2−2/p,p(Γ)).

Lemma 3.8. Suppose that the assumptions of Lemma 3.7 are fulfilled. Suppose that u0 = 0 and let
θ ∈ [0, 2]. Then there exists C(T0, θ) > 0 such that

‖u‖Lp(0,T ;W θ,p(Ω))

≤ C(T0)T
1−θ/2(‖f‖Lp(0,T ;Lp(Ω)) + ‖h‖Lp(0,T ;Lp(Γ)) + ‖v0‖W 2−2/p,p(Γ)).

Proof. Consider first the case θ = 0. Then, as u0 = 0, u = 1 ∗Dtu. It follows from Young’s inequality
and Lemma 3.7 that

‖u‖Lp(0,T ;Lp(Ω)) ≤ T‖Dtu‖Lp(0,T ;Lp(Ω))

≤ C(T0)T (‖f‖Lp(0,T ;Lp(Ω)) + ‖h‖Lp(0,T ;Lp(Γ)) + ‖v0‖W 2−2/p,p(Γ)).

In general, there exists C(θ) > such that, for any z ∈W 2,p(Ω),

‖z‖W θ,p(Ω)) ≤ C(θ)‖z‖
1−θ/2
Lp(Ω))‖z‖

θ/2
W 2,p(Ω)).

As W θ,p(Ω) coincides with the real interpolation space (Lp(Ω),W 2,p(Ω))θ/2,p in case θ 6= 1, with the

complex interpolation space (Lp(Ω),W 2,p(Ω))[ 1
2
] in case θ = 1

2 (see [21]), we deduce that

‖u‖Lp(0,T ;W θ,p(Ω)) ≤ C(θ)(
∫ T

0
‖u(t)‖

p(1−θ/2)
Lp(Ω) ‖u(t)‖

pθ/2
W 2,p(Ω)dt)

1/p

≤ C(θ)‖u‖
1−θ/2
Lp(0,T ;Lp(Ω))‖u‖

θ/2
Lp(0,T ;W 2,p(Ω)).

So the conclusion follows from the case θ = 0 and Lemma 3.7.

Now we introduce an operator E of order not exceeding one, with coefficients in C1(Ω):

Eu(x) =

n
∑

j=1

ej(x)Dxj
u(x) + e0(x)u(x) (3.6)

and the following system:
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Dtu(t, x) = Au(t, x) + f(t, x), (t, x) ∈ (0, T )× Ω,

Dtγu(t, ·) = Lγu(t, ·) + γEu(t, ·) + h(t, ·), t ∈ (0, T )

u(0, x) = u0(x), x ∈ Ω,

(γu)(0) = v0.

(3.7)

We show the following

Theorem 3.9. Let p ∈ (1,∞) \ { 3
2}. Consider problem (3.7). Suppose that (B1)-(B2) hold, L is as

in (2.6) and E is as in (3.6) with coefficients in C1(Ω). Then the following conditions are necessary
and sufficient in order that (3.7) has a unique solution u in W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) with
γu ∈W 1,p(0, T ;Lp(Γ)) ∩ Lp(0, T ;W 2,p(Γ)):

(I) f ∈ Lp(0, T ;Lp(Ω));
(II) h ∈ Lp(0, T ;Lp(Γ));
(III) u0 ∈W 2−2/p,p(Ω), v0 ∈W 2−2/p,p(Γ) and, in case p > 3

2 , γu0 = v0.

Proof. The fact that (I)-(III) are necessary can be shown with the same arguments as in the proofs of
Propositions 3.3 and 3.4.

We show that they are also sufficient. We fix θ ∈ (1 + 1
p , 2). We observe that, by classical trace

theorems, u→ γEu belongs to L(W θ,p(Ω), Lp(Γ)). We take τ ∈ (0, T ] and consider the system






































Dtu(t, x) = Au(t, x) + f(t, x), (t, x) ∈ (0, τ)× Ω,

Dtγu(t, ·) = Lγu(t, ·) + γEU(t, ·) + h(t, ·), t ∈ (0, τ),

u(0, x) = u0(x), x ∈ Ω,

(γu)(0) = v0.

(3.8)

with U ∈ Lp(0, τ ;W θ,p(Ω)). By Proposition 3.6, (3.8) has a unique solution u = S(U) inW 1,p(0, τ ;Lp(Ω))∩
Lp(0, τ ;W 2,p(Ω)) with γu ∈ W 1,p(0, τ ; Γ) ∩ Lp(0, τ ;W 2,p(Γ)). If Uj ∈ Lp(0, τ ;W θ,p(Ω)) (j ∈ {1, 2}), we
set uj := S(Uj). Then u1 − u2 solves the system







































Dt(u1 − u2)(t, x) = A(u1 − u2)(t, x), (t, x) ∈ (0, τ)× Ω,

Dtγ(u1 − u2)(t, ·) = Lγ(u1 − u2)(t, ·) + γE(U1 − U2)(t, ·), t ∈ (0, T ),

(u1 − u2)(0, x) = 0, x ∈ Ω,

γ(u1 − u2)(0) = 0.

(3.9)

We deduce from Lemma 3.8 the estimate

‖u1 − u2‖Lp(0,T ;W θ,p(Ω))

≤ C(T )τ1−θ/2‖γE(U1 − U2)‖Lp(0,τ ;Lp(Γ)) ≤ C1(T )τ
1−θ/2‖U1 − U2‖Lp(0,τ ;W θ,p(Ω)).

So, if we choose τ so small that C1(T )τ
1−θ/2 < 1, S has a unique fixed point in Lp(0, τ ;W θ,p(Ω)). We de-

duce that (3.8) has a unique solution u inW 1,p(0, τ ;Lp(Ω))∩Lp(0, τ ;W 2,p(Ω)) with γu inW 1,p(0, τ ;Lp(Γ))∩
Lp(0, τ ;W 2,p(Γ)). Observe that τ can be chosen independently of f, h, u0, v0.

Now we show that, in case f ≡ 0, h ≡ 0, u0 = 0, v0 = 0, the unique solution u in W 1,p(0, T ;Lp(Ω))∩
Lp(0, T ;W 2,p(Ω)) with γu in W 1,p(0, T ;Lp(Γ))∩Lp(0, T ;W 2,p(Γ)) is u ≡ 0. This is true (by the unique-
ness of the fixed point for S), if we replace T by τ sufficiently small. Assume that there exists a nontrivial
solution u in (0, T ). We set

σ := inf{t ∈ [0, T ] : u(t, ·) 6= 0}.
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As u ∈ C([0, T ];W 2−2/p,p(Ω)) and u(0, ·) = 0, σ ∈ [0, T ) and u(σ, ·) = 0. Moreover, γu(t, ·) = 0 for
almost every t in [0, σ). As γu ∈ C([0, T ];W 2−2/p,p(Γ)) we deduce that (γu)(σ, ·) = 0. So, if τ > 0, and
σ + τ ≤ T , w(t) := u(σ + t) solves the system







































Dtw(t, x) = Aw(t, x), (t, x) ∈ (0, τ)× Ω,

Dtγw(t, ·) = Lγw(t, ·) + γEw(t, ·), t ∈ (0, τ),

w(0, x) = 0, x ∈ Ω,

(γw)(0) = 0.

If τ is sufficiently small, we deduce w(t, ·) = 0 for any t ∈ [0, τ ], so that u(t, ·) = 0 for any t ∈ [0, σ + τ ],
in contradiction with the definition of σ.

Finally, we show the existence of a global solution. We have already proved the existence of a solution
z in some interval [0, τ ], independent of the data. Suppose that τ < T . We extend the solution to
[0, (2τ) ∧ T ]. We have that z(τ, ·) ∈W 2−2/p,p(Ω), (γz)(τ) ∈W 2−2/p,p(Γ). In case p > 3

2 we have also

γ[z(τ)] = (γz)(τ).

So we consider the system






































Dtw(t, x) = Aw(t, x) + f(τ + t, x), (t, x) ∈ (0, τ ∧ (T − τ))× Ω,

Dtγw(t, ·) = Lγw(t, ·) + γEw(t, ·) + h(τ + t, ·), t ∈ (0, τ ∧ (T − τ))

w(0, x) = z(τ, x), x ∈ Ω,

(γw)(0) = (γz)(τ).

(3.10)

(3.10) has a unique solution w in W 1,p(0, τ ∧ (T − τ);Lp(Ω)) ∩ Lp(0, τ ∧ (T − τ);W 2,p(Ω)), with γw in
W 1,p(0, τ ∧ (T − τ);Lp(Γ)) ∩ Lp(0, τ ∧ (T − τ);W 2,p(Γ)). If we set

u(t, ·) :=







z(t, ·) if t ∈ (0, τ ],

w(t− τ, ·) if t ∈ (τ, τ ∧ (T − τ)],

it is easily seen that u ∈ W 1,p(0, (2τ) ∧ T ;Lp(Ω)) ∩ Lp(0, (2τ) ∧ T ;W 2,p(Ω)), with γu in W 1,p(0, (2τ) ∧
T ;Lp(Γ))∩Lp(0, (2τ)∧ T ;W 2,p(Γ)). and solves (3.7) , if we replace T with (2τ)∧ T . In case 2τ < T , we
iterate the argument extending the solution to (3τ) ∧ T . It is clear that in a finite number of steps we
reach the conclusion.

Remark 3.10. It is easily seen that the conclusion of Theorem 3.9 still holds if we replace γE with an
arbitrary operator F which is bounded from W θ,p(Ω) to Lp(Γ), for some θ in [0, 2).

4 Generation of an analytic semigroup

Now we prove a result of generation of an analytic semigroup.

Theorem 4.1. Suppose that the conditions (B1)-(B2) hold, L is as in (2.6) and E is as in (3.6), with
coefficients ej in C1(Ω) (0 ≤ j ≤ n). Let p ∈ (1,∞). Consider the space Xp := Lp(Ω)×Lp(Γ) and define
the following operator Gp acting on Xp:







D(Gp) := {(u, γu) : u ∈W 2,p(Ω), γu ∈W 2,p(Γ)},

Gp(u, γu) := (Au, Lγu+ γEu).
(4.1)

Then Gp is the infinitesimal generator of an analytic semigroup in Xp.
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In the proof we shall employ the following

Lemma 4.2. For any p ∈ [1,∞] there exists a linear operator P :W 2,p(Γ) →W 2,p(Ω) such that γPg = g

for any g ∈W 2,p(Γ) and, for some C > 0, independent of g,

‖Pg‖Lp(Ω) ≤ C‖g‖Lp(Γ), ‖Pg‖W 2,p(Ω) ≤ C‖g‖W 2,p(Γ).

Proof. Firstly, P can be constructed in the particular case Ω = R
n−1 ×R

+, Γ = R
n−1 × {0}, setting, for

g ∈W 2,p(Γ),
Pg(x′, xn) := g(x′, 0)φ(xn),

with φ ∈ C2([0,∞)), φ(t) = 1 if 0 ≤ t ≤ 1, φ(t) = 0 if t ≥ 2. The general case can be reduced to this
one, employing partitions of unity and changes of variable.

Remark 4.3. It can be easily seen that P can be extended to a linear bounded operator from Lp(Γ) to
Lp(Ω), for any p in [1,∞], and from Cα(Γ) to Cα(Ω) for any α in [0, 2].

Proof of Theorem 4.1. Let λ ∈ C, Re(λ) ≥ 0. We shall show that the problem

λ(u, γu)−Gp(u, γu) = (f, h) (4.2)

has a unique solution (u, γu) inD(Gp) if |λ| is sufficiently large. Moreover, there exists C > 0, independent
of λ and (f, h), such that

‖(u, γu)‖Xp ≤ C|λ|−1‖(f, h)‖Xp .

Observe that (4.2) is equivalent to






λu(x)−Au(x) = f(x), x ∈ Ω,

λγu(x′)− Lγu(x′)− γEu(x′) = h(x′), x′ ∈ Γ.
(4.3)

We begin by considering the particular case E = 0, that is,






λu(x)−Au(x) = f(x), x ∈ Ω,

λγu(x′)− Lγu(x′) = h(x′), x′ ∈ Γ.
(4.4)

By Theorem 2.1, there exists R1 positive such that, if |λ| ≥ R1, the equation

λv(x′)− Lv(x′) = h(x′), x′ ∈ Γ

has a unique solution v in W 2,p(Γ). Moreover, for some C1 positive, independent of λ and h,

|λ|‖v‖Lp(Γ) + ‖v‖W 2,p(Γ) ≤ C1‖h‖Lp(Γ).

Now we consider the system






λu(x)−Au(x) = f(x), x ∈ Ω,

γu(x′) = v(x′), x′ ∈ Γ.
(4.5)

By [20], Chapter 3.8, there exists R ≥ R1 such that (4.5) has a unique solution u in W 2,p(Ω). Moreover,
for some C2 > 0 independent of λ and f , for any V ∈W 2,p(Ω) such that γV = v,

|λ|‖u‖Lp(Ω) + ‖u‖W 2,p(Ω) ≤ C2(‖f‖Lp(Ω) + ‖V ‖W 2,p(Ω) + |λ|‖V ‖Lp(Ω)).

Choosing V = Pv, with P as in Lemma 4.2, we deduce

|λ|‖u‖Lp(Ω) + ‖u‖W 2,p(Ω) ≤ C2(‖f‖Lp(Ω) + ‖Pv‖W 2,p(Ω) + |λ|‖Pv‖Lp(Ω))

≤ C3(‖f‖Lp(Ω) + ‖v‖W 2,p(Γ) + |λ|‖v‖Lp(Γ))

≤ C4(‖f‖Lp(Ω) + ‖h‖Lp(Γ)).

(4.6)
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Now we consider the general case E 6= 0. For any θ ∈ [0, 2], it follows from (4.6) that

‖u‖W θ,p(Ω) ≤ C(θ)|λ|θ/2−1(‖f‖Lp(Ω) + ‖h‖Lp(Γ)). (4.7)

Now we fix θ ∈ (1 + 1
p , 2) and, for U ∈W θ,p(Ω), we consider the system







λu(x)−Au(x) = f(x), x ∈ Ω,

λγu(x′)− Lγu(x′) = γEU(x′) + h(x′), x′ ∈ Γ.
(4.8)

If |λ| is sufficiently large, there exists a unique solution u = u(U) inW 2,p(Ω). We shall think of U → u(U)
as an operator from W θ,p(Ω) into itself. If uj = u(Uj) (j ∈ {1, 2}), we have







λ(u1 − u2)(x)−A(u1 − u2)(x) = 0, x ∈ Ω,

λγ(u1 − u2)(x
′)− Lγ(u1 − u2)(x

′) = γE(U1 − U2)(x
′), x′ ∈ Γ,

so that, by (4.7),

‖u1 − u2‖W θ,p(Ω) ≤ C(θ)|λ|θ/2−1‖γE(U1 − U2)‖Lp(Γ)) ≤ C1(θ)|λ|
θ/2−1‖U1 − U2‖W θ,p(Ω).

We deduce that U → u(U) is a contraction if |λ| is sufficiently large. We conclude that, for such choice
of λ, (4.3) has a unique solution u. Moreover, from (4.7),

‖u‖W θ,p(Ω) ≤ C(θ)|λ|θ/2−1(‖f‖Lp(Ω) + ‖h‖Lp(Γ) + ‖γEu‖Lp(Γ))

≤ C1|λ|
θ/2−1(‖f‖Lp(Ω) + ‖h‖Lp(Γ) + ‖u‖W θ,p(Ω)),

implying
‖u‖W θ,p(Ω) ≤ C2(‖f‖Lp(Ω) + ‖h‖Lp(Γ))

if |λ| is sufficiently large. We deduce that

|λ|‖u‖Lp(Ω) + ‖u‖W 2,p(Ω) + |λ|‖γu‖Lp(Γ) + ‖γu‖W 2,p(Γ)

≤ C3(‖f‖Lp(Ω) + ‖h‖Lp(Γ) + ‖u‖W θ,p(Ω))

≤ C4(‖f‖Lp(Ω) + ‖h‖Lp(Γ)).

The proof is complete.
�

Remark 4.4. Here also the assertion of Theorem 4.1 holds replacing γE with any operator F which is
bounded from W θ,p(Ω) to Lp(Ω), for some θ in [0, 2).

Remark 4.5. We have chosen to prove Theorem 4.1 estimating directly the resolvent (λ − Gp)
−1. In

fact, the result can be obtained quite quickly, applying Theorem 3.1 together with a nice theorem by G.
Dore (see [5]).

5 General Wentzell boundary conditions

In [7] and [8] the authors considered the problem







































Dtu(t, x) =Mu(t, x), (t, x) ∈ (0, T )× Ω,

Mu(t, x′) + β(x′)∂aνu(t, x
′)− qβ(x′)L∂γu(t, x

′) + qã(x′) · ∇τγu(t, x
′) + r̃(x′)γu(t, x′) = 0,

(t, x′) ∈ (0, T )× Γ,

u(0, x) = u0(x), x ∈ Ω.

(5.1)
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Here

Mu =

n
∑

i,j=1

∂i(aij(·)∂ju) +

n
∑

i=1

ci∂iu+ ru,

with aij real valued, aij = aji,
∑n

i,j=1 aij(x)ξiξj ≥ α0|ξ|
2 for any (x, ξ) ∈ Ω×R

n for some α0 positive, β

positive, ∂aν =
∑n

i,j=1 aij(·)νi∂ju, q ∈ R
+, aij , ci, r defined and sufficiently regular on Ω, ã and r̃ defined

and sufficiently regular on Γ. ∇τ stands for the gradient operator in Γ and

L∂γu = div(B(x)∇τγu)

is an operator of the form considered in Example 2.4. Of course the Riemannian structure in Γ is that
inherited as an embedded submanifold of Rn. The open set Ω is not assumed to be bounded. System
(5.1) is studied in the following way: it is introduced the following operator Mp:







D(M̃p) := {(u, γu) : u ∈ C2
c (Ω), γMu+ β∂aνu− qβL∂γu+ qã · ∇τu+ r̃γu = 0},

Mp(u, γu) = (Mu, γMu) = (Au,−β∂aνu+ qβL∂γu− qã · ∇τu− r̃γu).
(5.2)

Then it is proved that the closure of M̂p in Lp(Ω) × Lp(Γ) generates an analytic semigroup. It follows

that, for every u0 belonging to the domain of M̂p, (5.1) has a solution (in some generalized sense).
Following this idea, we can consider the problem























Dtu(t, x) = Au(t, x), (t, x) ∈ (0, T )× Ω,

γAu(t, ·)− Lγu(t, ·)− γEu(t, ·) = 0, t ∈ (0, T )

u(0, x) = u0(x), x ∈ Ω,

(5.3)

with the assumptions of Theorem 3.9: we introduce the following operator Mp, for p ∈ (1,∞):







D(Mp) := {(u, γu) : u ∈ C2(Ω), γAu− Lγu− γEu = 0},

Mp(u, γu) = (Au, γAu) = (Au,Lγu+ γEu).
(5.4)

We show the following

Theorem 5.1. Suppose that (B1)-(B2) hold, L is as in (2.6) and E is as in (3.6) with coefficients in
C1(Ω). Moreover,

(a) Γ = ∂Ω is of class C2+α, for some α ∈ (0, 1);
(b) the coefficients aij, bj, c of A (1 ≤ i, j ≤ n) are of class Cα(Ω);
(c) the coefficients lα,Φ in (2.6) are in Cα(U);
(d) the coefficients ej (0 ≤ j ≤ n) of E (see (3.6) are in Cα(Ω)).
Then, if 1 < p < ∞, Mp is closable in Xp = Lp(Ω) × Lp(∂Ω) and its closure coincides with Gp

(defined in (4.1)).

Proof. We have to prove the following:

∀(u, γu) ∈ D(Gp) there exists a sequence ((uk, γuk))k∈N in D(Mp) such that

‖(uk, γuk)− (u, γu)‖Xp
+ ‖Mp(uk, γuk)−Gp(u, γu)‖Xp

→ 0 (k → ∞).

We start by proving three steps.

Step 1: Let (u, γu) ∈ D(Gp) be such that, for some λ ∈ C, (λ−Gp)(u, γu) ∈ Cα(Ω)× Cα(Γ). Then
(u, γu) ∈ C2+α(Ω)× C2+α(Γ)
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We start by considering the case E = 0. Then, λγu − Lγu = h ∈ Cα(Γ) and so γu ∈ C2+α(Γ) (see
[11], Theorem 2.1). So u ∈W 2,p(Ω) and solves the system







(λ−A)u = f ∈ Cα(Ω),

γu ∈ C2+α(Γ),

again implying u ∈ C2+α(Ω).
Now we consider the case E 6= 0, employing a bootstrap argument. Suppose that we have shown that

(u, γu) ∈W 2,q(Ω)×W 2,q(Γ) for some q ≥ p. Then γEu ∈W 1−1/q,q(Γ). Assume that

q ≥
n

1− α
.

Then W 1−1/q,q(Γ) →֒ Cα(Γ), so that (λu−Au, λγu−Lγu) ∈ Cα(Ω)×Cα(Γ) and the conclusion follows.
Suppose q > n. Then γEu ∈ Cα′

(Γ), for some α′ ∈ (0, 1). It follows that (λu − Au, λγu − Lγu) ∈
Cα′

(Ω)× Cα′

(Γ). This implies u ∈ C2+α′

(Ω), so that γEu ∈ C1+α′

(Γ) →֒ Cα(Γ) and we have again the
conclusion.

Suppose q < n. Then γEu ∈ W 1−1/q,q(Γ) →֒ L
n−1

n−q q(Γ). We deduce (λu − Au, λγu − Lγu) ∈

Cα(Ω) × L
n−1

n−q q(Γ), implying (u, γu) ∈ W 2,q1(Ω) ×W 2,q1(Γ), with q1 = n−1
n−q q > q. If q1 > n, we can

conclude. Otherwise, we deduce that (u, γu) ∈ W 2,q2(Ω) ×W 2,q2(Γ), with q2 = n−1
n−q1

q1 > q1. We can

iterate the process until we get the belonging of (u, γu) to W 2,r(Ω)×W 2,r(Γ) for some r > n. This can
be necessarily achieved in a finite number of steps. Otherwise, we should obtain the belonging of (u, γu)
to W 2,qk(Ω) ×W 2,qk(Γ) with q < q1 < · · · < qk < qk+1 ≤ · · · < n for a certain sequence (qk)k∈N. But
this is not possible, because

qk =
n− 1

n− qk−1
qk−1 ≥ (

n− 1

n− q
)kq → ∞ (k → ∞),

a contradiction.

Step 2: Let (u, γu) ∈ D(Gp) be such that, for some λ ∈ C, (λ−Gp)(u, γu) = (f, h) ∈ Cα(Ω)×Cα(Γ),
with α ∈ (0, 1) and h = γf . Then (u, γu) ∈ D(Mp).

In fact, by Step 1, (u, γu) ∈ C2+α(Ω)× C2+α(Γ). Moreover,

γAu− Lγu− γEu = λγu− γf − λγu+ h = 0.

Step 3: {(ψ, γψ) : ψ ∈ Cα(Ω)} is dense in Xp.

In fact, let (f, h) ∈ Xp. We begin by considering a sequence (hk)k∈N with values in Cα(Γ), such that
‖hk − h‖Lp(Γ) → 0 (k → ∞). Let P be the extension operator described in Lemma 4.2. By Remark

4.3, it can be extended to a linear bounded operator from Cα(Γ) to Cα(Ω) and from Lp(Γ) to Lp(Ω).
So Phk ∈ Cα(Ω) for every k ∈ N and (Phk)k∈N converges to Ph in Lp(Ω). Now we consider a sequence
(φk)k∈N in C∞

0 (Ω) converging to f − Ph in Lp(Ω). We set ψk := Phk + φk. Then ψk ∈ Cα(Ω), (ψk)k∈N

converges to f in Lp(Ω) and (γψk)k∈N = (hk)k∈N converges to h in Lp(Γ).

Now let us consider (u, γu) ∈ D(Gp). We fix λ ∈ ρ(Gp) and set (f, h) := λ(u, γu)−Gp((u, γu)) ∈ Xp.
We take a sequence ((ψk, γψk))k∈N with ψk ∈ Cα(Ω), converging to (f, h) in Xp. We set (uk, γuk) :=
(λ−Gp)

−1(ψk, γψk) (k ∈ N). Then (uk, γuk) ∈ D(Mp), the sequence ((uk, γuk))k∈N converges to (u, γu)
in W 2,p(Ω)×W 2,p(Γ), so that (Mp(uk, γuk))k∈N converges to Gp(u, γu) in Xp.
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