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Chemoprevention is a strategy aimed to not only reduce the risk but also delay the
development or recurrence of cancer. An ideal chemopreventive agent is not dangerous
and ought not to result in side effects or damage to human health. In this context,
epigallocatechin-3-gallate (EGCG) is considered a suitable chemopreventive agent, but its
clinical use is limited by many factors, namely, the difference in source, administration,
individual metabolism, absorption, and distribution. Genetic and dietary differences greatly
cause this variability, which has limited the rational use of EGCG in chemoprevention and,
particularly, the definition of a safe and efficient concentration. In the present mini review,
the main limitations to a complete understanding of the use of EGCG as a
chemopreventive agent will be briefly illustrated. This review also indicates the
introduction and trialing of lipid-based nanoparticles (NPs) as a proper strategy to
deliver EGCG at a well-defined concentration for better investigation of the
chemopreventive activity. Finally, some examples of cancers that might benefit from
EGCG treatment in different stages of the disease are proposed.
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INTRODUCTION

EGCG, the most abundant catechin in green tea, is considered a suitable chemopreventive agent
based on epidemiologic (Yuan et al., 2011; Yi et al., 2019; Zhao et al., 2021) and animal model studies
(Khan and Mukhtar, 2007; Yang et al., 2011; Yiannakopoulou, 2014). In vitro studies on human
cancer cells have also provided a large set of data that indicate the cytotoxicity of EGCG on cancer
cells (Singh et al., 2011; Gan et al., 2018; Shirakami and Shimizu, 2018; Aggarwal et al., 2020). On the
other hand, many contradictory results have also been published, and doubts on its potential use in
humans exist (Filippini et al., 2020; Kim et al., 2020). The complexity of unraveling the activity of
EGCG against cancer cells is due to the very high number of variables, which are difficult to interpret
correctly (Mereles and Hunstein, 2011). A first issue concerns the poor physicochemical stability and
low bioavailability of EGCG (Lambert and Yang, 2003; Chow and Hakim, 2011; Sang et al., 2011).
Oral consumption of EGCG bioavailability after oral intake can be reduced or increased by assuming
various food and beverages (Kale et al., 2010; Peters et al., 2010; Naumovsky et al., 2015). Thus,

Edited by:
Mukerrem Betul Yerer Aycan,

Erciyes University, Turkey

Reviewed by:
Song Zhu,

Jiangnan University, China

*Correspondence:
Fulvia Farabegoli

fulvia.farabegoli@unibo.it

Specialty section:
This article was submitted to

Pharmacology of Anti-Cancer Drugs,
a section of the journal

Frontiers in Pharmacology

Received: 05 November 2021
Accepted: 15 March 2022
Published: 14 April 2022

Citation:
Farabegoli F and Pinheiro M (2022)

Epigallocatechin-3-Gallate Delivery in
Lipid-Based Nanoparticles: Potentiality

and Perspectives for Future
Applications in Cancer

Chemoprevention and Therapy.
Front. Pharmacol. 13:809706.

doi: 10.3389/fphar.2022.809706

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8097061

MINI REVIEW
published: 14 April 2022

doi: 10.3389/fphar.2022.809706

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.809706&domain=pdf&date_stamp=2022-04-14
https://www.frontiersin.org/articles/10.3389/fphar.2022.809706/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.809706/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.809706/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.809706/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.809706/full
http://creativecommons.org/licenses/by/4.0/
mailto:fulvia.farabegoli@unibo.it
https://doi.org/10.3389/fphar.2022.809706
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.809706


EGCG, which is only partly degraded in the stomach at low pH,
reaches the intestine, where the pH is neutral-alkaline, and is
further degraded (Neilson et al., 2007). The quantity of EGCG
that crosses the enterocytes is low: EGCG enters the enterocytes
mainly by passive diffusion since no specific receptors carrying
EGCG exist on the surface of enterocytes. Active outflow by
multidrug resistance-associated protein 2 (MRP2) may occur,
further lowering EGCG absorption (Vaidyanathan and Walle,
2001; Hong et al., 2003; Scholl et al., 2018). Once into the
enterocytes, the EGCG is actively metabolized by phase II
enzymes, conjugated with glucuronic acid and sulfate, or by
methylation or methylated by catechol-Omethyltransferase
(COMT). Glucuronidation and sulfation mainly occur in the
intestine, whereas glucuronidation, sulfation, and methylation
occur later in the liver (Singh et al., 2011). Some conjugates are
further methylated. Genetic heterogeneity due to a
polymorphism involving COMT results in a low-activity
variant, which possesses a 40–75% less catalytic capacity than
the enzyme coded with wild-type alleles and can introduce a high
variability in EGCG activity (Wu et al., 2003; Miller et al., 2012;
Lai et al., 2019). A large part of orally taken EGCG is effluxed
from the enterocytes into the intestinal lumen or from the liver to
the bile and excreted in the feces, and hence lost. Gut microbiota
plays a critical role in the metabolism of EGCG. Microbiota can
deconjugate and degrade EGCG (Zhang et al., 2013; Liu et al.,
2020). In contrast, it has been found that metabolites of green tea,
including EGCG, produced by gut microbes, have significant
health benefits: small molecules derived from breakdown can
show antioxidant and anti-inflammatory capacity, correct
dysbiosis, and decrease harmful metabolites (Zhang et al.,
2019; Xu et al., 2020). Then, ultimately, microbiota may
concur to improve the health effects of EGCG. In addition to
cancer cell cytotoxicity, indirect advantages of EGCG on cancer
onset and development are also related to the metabolic
(antidiabetic and contrasting obesity effects) (Hursel et al.,
2009; Hara-Terawaki et al., 2017; Quezada-Fernández et al.,
2019), antioxidative, and anti-inflammatory actions of EGCG
(Chen et al., 2018), all these conditions being clearly associated
with cancer development (Thielecke and Boschmann, 2009; Yang
et al., 2016; Oz, 2017; Potenza et al., 2020).

Then, why should EGCG be proposed as a chemopreventive
agent? The relative potency of all these variables to stability and
bioavailability makes defining the health effects of green tea
catechins and EGCG unpredictable. Several observational and
interventional studies have been reviewed extensively over the last
years (Clement, 2009; Fujiki et al., 2018; Almatroodi et al., 2020).
The findings are conflicting, but a consistent number of studies
on several human malignant neoplasia support the potential use
of EGCG as a chemopreventive agent despite this variability: any
improvement in EGCG stability and bioavailability is, therefore,
supposed to improve the efficacy. When we turn to animal
models, there is a general agreement that a clear
chemopreventive effect independent of the experimental model
used (chemical carcinogenesis, xenograft tumors, knock-out
animals spontaneously developing cancer, etc.) occurs. A large
majority of studies clearly demonstrated that EGCG, usually used
as a beverage, delayed cancer onset and the metastatic process and

reduced the size and number of neoplastic foci (Ju et al., 2007;
Fujiki et al., 2018; Gan et al., 2018). In the context of animal
models, the number of variables under evaluation and concurring
to the final target decreases: animals are genetically related,
frequently inbred, exposed to the same environmental
conditions that are controlled from the beginning to the end
of the experimental treatments, and consume the same food,
which is very simple and not varied. In these conditions, EGCG
shows chemopreventive efficacy (Ju et al., 2007; Yang et al., 2011).

Another conflicting point concerns “in vitro” experiments on
cell lines. In this case, the EGCG concentrations used to obtain
significant results, including cytotoxicity and downregulation of
molecular pathways involved in cancer onset and development,
are far from those measured in vivo, in blood and tissues, after
EGCG oral administration (Gan et al., 2018; Almatroodi et al.,
2020). This discrepancy seems to be related to the fact that EGCG
dissolved in culture medium is barely taken up by cells and is
unstable at pH greater than 5 (Hong et al., 2002). Furthermore,
oxidation processes may occur, and they are considered
misleading with respect to the interpretation of the final
cytotoxic effects (Lambert and Elias, 2010; Wei et al., 2016).
On the other hand, currently a large number of studies are
underway on human cancer cell lines: extensive meta-analysis
in the last years reported coherent results concerning the
molecular targets (Singh et al., 2011; Gan et al., 2018;
Shirakami and Shimizu, 2018; Aggarwal et al., 2020; Farooqi
et al., 2020) and stressed another crucial point: EGCG is safe for
normal cells since very high concentrations can only induce cell
death (Weisburg et al., 2004; Papi et al., 2013; Tyagi et al., 2015;
Luo et al., 2018; Ni et al., 2018; Xie et al., 2018). So, EGCG is
preferentially taken up by cancer cells rather than by normal cells,
fulfilling one of the basic characteristics of a molecule suitable for
chemoprevention. Can the potentiality of EGCG as a
chemopreventive agent be improved in view of future
applications?

APPLICATION OF NANOTECHNOLOGY IN
EPIGALLOCATECHIN-3-GALLATE
DELIVERY SYSTEMS TO CANCER CELLS
The use of nanotechnology, namely, the development of drug
delivery systems, especially biocompatible nanoparticles (NPs),
constitutes a promising approach to increase the bioavailability
and stability of this natural compound (Granja et al., 2017; Cai
et al., 2018; Granja et al., 2019). Different types of NPs, including
lipid-based NPs, polymeric NPs, and gold NPs, among others,
can be used, and for more comprehensive information, the reader
can consult the following studies: Min and Kwon (2014), Granja
et al. (2017), and Li et al. (2020). NPs are extremely versatile and
can be easily modified at their surface to selectively target cancer
cells and, therefore, selectively release ECGC, especially inside
tumor cells (Li et al., 2020). The main ligands that are used
include antibodies that recognize tumor cells and folic acid and
analogs because of the higher expression of folic acid receptors in
cancer cell lines than in healthy cells (Granja et al., 2017). Among
the different types of NPs, lipid-based NPs emerge as the most
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promising drug delivery systems because their composition is
based on lipids, which also exist in the human body, making the
NPs biocompatible and biodegradable (Nature Reviews
Materials, 2021). One important advantage of their use is also
their production simplicity, which is based on nanoemulsion oil/
water production, and their high physicochemical stability, which
is demanding for their scale-up (Frias et al., 2016).

Lipid-Based Nanoparticles
Lipid-based NPs constitute a broad and diverse group that
includes liposomes and lipid NPs (Garcia-Pinel et al., 2019).
Liposomes were discovered in 1965; are vesicular structures,
constituted by phospholipid bilayers, enclosing an aqueous
medium; and have been attracting interest as nanocarriers for
many years (Bangham et al., 1965a; Bangham et al., 1965b). Thus,
liposomes are already used in the clinical industry in several
marketed formulations, including Doxil®, Ambisome®, and
DepoDur™, among others (Bulbake et al., 2017). Solid lipid
nanocarriers (SLNs) were developed in the 1990s, and next-
generation nanostructured lipid carriers (NLCs) found almost
10 years later to improve the stability and capacity loading of
SNLs (Naseri et al., 2015). The lipid NPs approved for clinical use
were recently used in COVID-19 mRNA vaccines (Nature
Reviews Materials, 2021). This mini review highlights the main
contributions of EGCG lipid-based NPs developed in recent years
and applied in cancer therapy and their enormous advantages and
potential in clinical use. The main characteristics of lipid-based
NP EGCG delivery systems in cancer therapy are summarized in
Table 1. In 2005, Fang et al. developed liposomes loaded with
EGCG of 157 nm diameter and with an encapsulation efficiency
(EE) of 57%. The authors demonstrated that the formulation
allowed the accumulation of EGCG in the tissues of Balb/c-nu, a
mouse model of basal cell carcinoma. One year later, the authors
developed liposomes of size 100 nm and with an EE of 100%. The
authors demonstrated that in comparison with unloaded EGCG,
the liposomal formulations demonstrated a 20-fold higher EGCG
deposition (Fang et al., 2005; Fang et al., 2006). In 2013, Cohen de
Pace et al. developed nanoliposomes loaded with EGCG of

diameter 56 nm and with an EE of 90% and demonstrated
that this formulation significantly enhanced EGCG stability,
improved its sustained release, and increased the intracellular
EGCG content in MCF7 cells, inducing apoptosis of MCF7 cells
and inhibiting MCF7 cell proliferation compared to unloaded
EGCG. In addition, the authors demonstrated that the developed
formulation retained its antiproliferative and proapoptotic
effectiveness at 10 µM or lower, at which unloaded EGCG
does not have any beneficial effects (Cohen de Pace et al.,
2013). In 2015, Ramadass et al. developed liposomes with
EGCG of diameter 127 nm and with an EE of 59%. They
demonstrated the synergistic outcome of a combination of
EGCG with an anticancer drug paclitaxel (PTX) in an MDA-
MB-231 breast cancer cell line and concluded on the suitability of
PTX/EGCG co-loaded liposomes for the treatment of invasive
breast cancer (Ramadass et al., 2015). In 2016, Radhakrishnan
et al. developed EGCG solid lipid NPs of diameter 157 nm and
with an EE of 67%. This formulation was tested in MDA-MB-231
and DU-135 cell lines, and an increase in cytotoxicity of 8.1- and
3.8-fold, respectively, was observed. In the same year, Frias et al.
developed SLNs and NLCs loaded with EGCG of diameter
300–400 nm that demonstrated a higher EE of 80% and 90%,
respectively, and a high stability during long-term storage
(Radhakrishnan et al., 2016). Later, in 2019, Granja et al.
developed NLCs of 300 nm diameter and with an EE of 90%
and functionalized the NPs with folic acid to increase their
transport across the intestinal barrier to reach the cancer cells
(Granja et al., 2019). Recently, Radhakrishnan et al. developed solid
lipid NPs loaded with EGCG and functionalized the NPs with a
gastrin-releasing peptide receptor (GRPR)-specific peptide as
GRPRs are overexpressed in breast cancer. The “in vivo” studies
performed on C57/BL6 mice showed greater survivability and
reduction in tumor volume in mice treated with functionalized
solid lipid NPs than in mice treated with a nonfunctionalized
formulation or with unloaded EGCG (Radhakrishnan et al., 2019).
Table 1 summarizes examples of successful nanoformulations with
EGCG. An update on this topic can be found in Yang et al. (2020),
Kazi et al. (2020), and Rashidinejad et al. (2021).

TABLE 1 | Lipid-based NPs, including liposomes and lipid NPs, as EGCG delivery systems.

Nanodelivery
system

Particle
size
(nm)

EE
(%)

Type of
cancer

Primary outcome References

Liposomes 157 57 Skin Accumulation of EGCG in the tissues in a mouse model of basal cell carcinoma Fang et al. (2005)
Liposomes 100 100 Skin Liposomes allowed a higher EGCG accumulation within tumor cells Fang et al. (2006)
Liposomes 56 90 Breast Antiproliferative and proapoptotic effect in MCF7 breast cancer cells Cohen de Pace et al.

(2013)
Liposomes 127 59 Breast Synergistic outcome of EGCG combination with an anticancer drug PTX in an

MDA-MB-231 breast cancer cell line
Ramadass et al. (2015)

Solid lipid NPs 157 67 Breast and
prostate

The NPs increase the cytotoxicity of MDA-MB-231 and DU-135 cell lines by
8.1- and 3.8-fold, respectively, in comparison with unloaded EGCG

Radhakrishnan et al.
(2016)

Nanostructured
lipid NPs

300 90 Not specified Folic acid to make it easier for NLC-based nanoparticles to transport EGCG
across the intestinal barrier to reach the cancer cells

Granja et al. (2019)

Solid lipid NPs 163 67 Breast C57/BL6 mice showed greater survivability and reduction in tumor volume in
mice treated with functionalized lipid NPs as compared to those treated with a
nonfunctionalized formulation or with unloaded EGCG

Radhakrishna et al.
(2019)

EGCG, epigallocatechin gallate; NPs, nanoparticles; NLCs, nanostructured lipid carriers; PTX, paclitaxel; SLNs, solid lipid nanoparticles; EE, encapsulation efficiency.
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POTENTIAL APPLICATIONS AND KEY
ISSUES FOR FURTHER RESEARCH

Neoplastic disease is extremely heterogeneous, and even in the
same tissue and organ, the multiplicity of cancer types having
different degrees of malignancy and evolution is very high.
Chemoprevention is classified as primary, secondary, or
tertiary. Primary chemoprevention aims at preventing the
development of premalignant lesions (often assessed by
appropriate markers) and subsequent cancer in high-risk
cohorts. Secondary chemoprevention prevents the evolution of
premalignant markers/lesions into cancer. Finally, tertiary
chemoprevention prevents the recurrence of cancer (Landis-
Piwowar and Iyer, 2014).

Premalignant Lesions in Sporadic Cancer
Sporadic cancer represents the most common human cancer. In
some cases, premalignant lesions precede the development of
frankly malignant neoplasms with invasive growth. Here, we
discuss some aspects of a few neoplasms largely found in the
human population, for example, prostatic intraepithelial
neoplasia (PIN) and high-grade PIN in prostatic cancer,
atypical hyperplasia and lobular/ductal carcinoma in situ
(LCIS, DCIS) of the breast, and colon premalignant lesions,
which can be identified by screening or are detected
occasionally, and some open questions that might be
addressed by a chemopreventive intervention based on EGCG.
In some cases, surgery is the first option, but evolution of a
premalignant lesion is difficult to predict and the risk of
overtreatment must be evaluated too (Curtius et al., 2017). For
a critically reviewed list of premalignant diseases potentially
subject to chemopreventive interventions, the reader can
consult Maresso et al. (2015). Chemoprevention might be an
option to be investigated in all those cases where surgery is not
considered necessary or a second-line intervention after surgery
to target potentially evolving situations. A successful example of a
green tea catechin (GTC) extract, orally administered in patients
with high-grade PIN, was reported by Naponelli and coworkers
(Naponelli et al., 2017). After 1 year of treatment, only one tumor
was diagnosed among 30 GTC-treated men, while nine cancers
were found among 30 placebo-treated men. Despite the
limitations of stability and bioavailability of GTCs, many
successful trials on the use of green tea or EGCG in prostate
cancer prevention have been reported and critically analyzed
(Guo et al., 2017; Jacob et al., 2017; Perletti et al., 2019).

In breast atypical hyperplasia and LCIS or DCIS, tamoxifen
and raloxifene have been demonstrated to reduce breast cancer
risk, but they must be used in postmenopausal women, reducing
the number of patients who might obtain significant risk
reduction benefits without incurring serious harm (Moen and
Keating, 2008; Sauter, 2018). Aromatase inhibitors, which
increase osteoporosis risk, are also preferentially used in
postmenopausal women, but estrogen-insensitive breast
neoplasms do not respond to this kind of treatment (Trivedi
et al., 2017; Thorat and Balasubramanian, 2020). Therefore,
premenopausal women and women with estrogen-negative
neoplasms cannot benefit from this plan of chemoprevention.

Patients with premalignant lesions, especially those in
premenopause, might be eligible for a chemoprevention trial
based on EGCG or green tea extract. In early breast
carcinoma, EGCG administration 4 weeks before the surgery
resulted in a higher concentration of EGCG in the tumor than
in the adjacent normal tissue, which correlated with a lower Ki-67
index with respect to untreated patients (Lazzeroni et al., 2017).
Mammographic density was found to be reduced by GTE
supplementation in women at high risk of breast cancer,
similar to tamoxifen treatment (Samavat et al., 2017). On the
basis of numerous studies indicating a protective effect of green
tea catechins in breast cancer development (Yu et al., 2019),
EGCG nanoformulations might have the potential to reduce the
risk in patients who develop premalignant breast lesions,
independent of the presence or absence of estrogen receptors
and age.

Colorectal cancer (CRC) is one of the leading causes of cancer
deaths in the world (Arnold et al., 2017). Although
recommendations for aspirin-based chemoprevention strategies
have recently been established, hazards of the long-term use of
aspirin make identification of individuals for whom the protective
benefits outweigh the harms important (Katona and Weiss,
2020). Some premalignant diseases develop in the context of
inflammatory bowel diseases (Nadeem et al., 2020) and require
surgery to alleviate symptoms, independent of possible future
cancer, such as colectomy for patients suffering from severe colitis
symptoms. EGCG might be suggested as a chemoprevention
strategy, particularly in patients suffering from severe colitis,
due to the anti-inflammatory property of EGCG (Sokolosky
and Wargovich, 2012; Wang et al., 2020). The development of
a suitable nanoformulation for proper delivery to the colic
mucosa might be an achievable target for these patients and
an opportunity to delay and reduce cancer risk.

Disease-free intervals between chemo- and radiotherapy
treatments occur in many cancer patients. In these phases,
patients often do not receive any support (apart from some
nutrition suggestions) to achieve remission or to prevent
relapse. Compounds such as EGCG that have anti-
inflammatory, antioxidant, and chemopreventive properties
might also offer an opportunity of treatment for all patients
experiencing undesired consequences of therapies. A special
mention concerns childhood neoplasms: treatments in young
cancer patients may open the way to secondary neoplasms that
have time to insurge. Especially for very young cancer survivors,
the option of safe intervention is mandatory (Gebauer et al., 2019).

CONCLUSION

This mini review summarized the main contributions of lipid-
based NPs for EGCG delivery in cancer prevention and therapy
and demonstrated that lipid-based NPs offer a great opportunity
to increase the potential of EGCG as a chemopreventive and
therapeutic agent. Adequate clinical trials to establish the safety
and efficacy of nanoformulations are urgently needed to validate
EGCG as a crucial component in experiencing a new innovative
chemoprevention and treatment strategy for cancer.
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