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Abstract:We look for solutions of (−∆)su + f(u) = 0 in a bounded smooth domain Ω, s ∈ (0, 1), with a strong
singularity at the boundary. In particular, we are interested in solutions which are L1(Ω) and higher order

with respect to dist(x, ∂Ω)s−1. We provide sufficient conditions for the existence of such a solution. Roughly

speaking, these functions are the real fractional counterpart of large solutions in the classical setting.
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1 Introduction
In the theory of semilinear elliptic equations, functions solving

−∆u + f(u) = 0 in Ω ⊆ ℝN , (1.1)

where Ω is open and bounded, coupled with the boundary condition

lim

x→∂Ω
u(x) = +∞

are known as boundary blow-up solutions or large solutions. There is a huge amount of bibliography dealing

with this problemwhich dates back to the seminal work of Bieberbach [3], for N = 2 and f(u) = eu. Keller [18]
and Osserman [22] independently established a sufficient and necessary condition on the nonlinear term f
for the existence of a boundary blow-up solution which takes the form

+∞

∫
dt

√F(t)
< +∞, where F� = f ≥ 0, (1.2)

and it is known as the Keller–Osserman condition. One can find these solutions with singular behaviour

at the boundary in a number of applications. For example, Loewner and Nirenberg [21] studied the case

f(u) = u(N+2)/(N−2), N ≥ 3, which is strictly related to the singular Yamabe problem in conformal Geometry,

while Labutin [19] completely characterized the class of setsΩ that admit a large solution for f(u) = uq, q > 1,

with capacitary methods inspired by the theory of spatial branching processes, that are particular stochastic
processes. See also the purely probabilistic works by Le Gall [20], and Dhersin and Le Gall [9] dealing with

the particular case q = 2.

In this paper we tackle equation (1.1) when the Laplacian operator is replaced by one of its fractional

powers. The fractional Laplacian (−∆)s, s ∈ (0, 1), is an integral nonlocal operator of fractional order which
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admits different equivalent definitions, see, e.g., [10]. We will use the following:

(−∆)su(x) = A(N, s)PV ∫

ℝN

u(x) − u(y)
|x − y|N+2s

dy = A(N, s) lim
ε↓0

∫
{|y−x|>ε}

u(x) − u(y)
|x − y|N+2s

dy, (1.3)

where A(N, s) is a renormalizing positive constant. This operator generates¹ a Wiener process subordinated

in time with an s-stable Lévy process. The Dirichlet problem related to (−∆)s is of the form

{
(−∆)su = f in Ω,

u = g inℝN \ Ω,

because the data have to take into account the nonlocal character of the operator. Nevertheless, in [1] the

author showed how this problem is ill-posed in a weak L1 sense, of Stampacchia’s sort, unless a singular

trace is prescribed at the boundary. A well-posed Dirichlet problem needs to deal with two conditions at the

same time. Namely, if d denotes the distance to the boundary ∂Ω, it looks like

{{{
{{{
{

(−∆)su = f in Ω,

u = g inℝN \ Ω,

d1−su = h on ∂Ω,

where the data satisfy the following assumptions:

∫
Ω

|f | ds < +∞, ∫

ℝN\Ω

|g|d−smin{1, d−N−s} < +∞, ‖h‖L∞(∂Ω) < +∞.

Further references in this direction are the recent works by Grubb [16, 17], where also the regularity up to the

boundary is investigated. This means in particular that in the context of fractional Dirichlet problems there

are solutions with an explosive behaviour at the boundary as a result of a linear phenomenon. For instance,

the solutions to

{{{
{{{
{

(−∆)su = 0 in B
1
,

u(x) = (|x|2 − 1)−s/2 inℝN \ B
1
,

d1−su = 0 on ∂B
1

and

{{{
{{{
{

(−∆)su = 0 in B
1
,

u = 0 inℝN \ B
1
,

d1−su = 1 on ∂B
1

are of the order of O(d−s/2) and O(ds−1), respectively, at ∂B
1
, see [1]. The existence of harmonic functions of

this sort can therefore be used to prove, via a sub- and supersolution argument, the existence of boundary

blow-up solutions to nonlinear problems of the form

{{{
{{{
{

(−∆)su = −f(x, u) in Ω,

u = g inℝN \ Ω,

d1−su = h on ∂Ω

with f(x, u) ≥ 0. Anyhow, this singular behaviour is driven by a linear phenomenon rather than a compensa-

tion between the nonlinearity and the explosion (as in the classical case). Indeed no growth condition on f
arises except when h ̸≡ 0, where one needs

∫
Ω

f(x, d(x)s−1)d(x)s dx < ∞,

in order to make sense of the weak L1 definition.
For this reason we address here the question of the existence of solutions to problems of the form

{{{
{{{
{

(−∆)su = −f(u) in Ω,

u = g inℝN \ Ω,

d1−su = +∞ on ∂Ω,
g ≥ 0, ∫

ℝN\Ω

gd−smin{1, d−N−s} = +∞,

providing sufficient conditions for the solvability. In doing so,we extend the results by Felmer andQuaas [13],

1 Recall that −∆ is the infinitesimal generator of the Wiener process, modelling the Brownian motion.
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and Chen, Felmer and Quaas [6] for f(u) = up, which is the only reference available on the topic, and we also
clarify the notion of large solution in this setting. The results listed in Theorems 1.3 and 1.5 below can be

applied to a particular case of the fractional singular Yamabe problem, see, e.g., [15].

1.1 Hypotheses and main results

We work with the following set of assumptions:

∙ Ω is a bounded open domain of class C2.
∙ f is an increasing C1 function with f(0) = 0.

∙ F is the antiderivative of f vanishing in 0, that is,

F(t) :=
t

∫
0

f(τ) dτ. (1.4)

∙ There exist 0 < m < M such that

1 + m ≤
tf �(t)
f(t)

≤ 1 +M, (1.5)

and thus f satisfies (1.2), because by integrating the lower inequality, one gets

f(t) ≥ f(1)t1+m and F(t) ≥ f(1)
2 + m

t2+m .

We can therefore define the function

ϕ(u) :=
+∞

∫
u

dt
√F(t)

. (1.6)

∙ The function ϕ satisfies

+∞

∫
1

ϕ(t)1/s dt < +∞. (1.7)

In what follows we will use the expression g ≍ h, where g, h : (0, +∞) → (0, +∞), to shorten the follow-
ing condition:

“there exists C > 0 such that h(t)
C

≤ g(t) ≤ Ch(t) for any t > 0.”

Remark 1.1. The function ϕ : (0, +∞) → (0, +∞) is monotone decreasing and

lim

t↓0
ϕ(t) = +∞, lim

t↑+∞
ϕ(t) = 0.

Moreover,

ϕ�(u) = −
1

√F(u)
is of the same order as −(u f(u))−1/2 since for t > 0 and some τ ∈ (0, t), by the Cauchy theorem, we have

F(t)
tf(t)

=
f(τ)

f(τ) + τf �(τ)

{{{
{{{
{

≥
1

2 +M
,

≤
1

2 + m
.

This entails that the order of ϕ(u) is the same as (u/f(u))1/2. Indeed, for u > 0 and some t ∈ (u, +∞),

√ u
f(u)

ϕ(u)
=

1

2

√ f(t)
t ⋅ f(t)−tf

�(t)
f(t)2

ϕ�(t)
≍
f(t) − tf �(t)

−f(t)
=
tf �(t)
f(t)

− 1,

which belongs to (m,M) by hypothesis (1.5). Note that hypothesis (1.7) is therefore equivalent to
+∞

∫
1

(
t
f(t))

1/(2s)
dt < +∞. (1.8)
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Remark 1.2. In [18] and [22] condition (1.2) is proven to be necessary and sufficient for the existence of a

solution of

{
{
{

−∆u = −f(u) in Ω,

lim

x→∂Ω
u(x) = +∞.

Note that if we set s = 1 in (1.7), then

+∞ >
+∞

∫
u

ϕ(t) dt ≍
+∞

∫
u

√ t
f(t)

dt ≍
+∞

∫
u

t
√F(t)

dt,

and we get the condition to force the classical solution u to be L1(Ω). Indeed, in [11, Theorem 1.6] it was

proved that a solution u satisfies
lim

x→∂Ω

ϕ(u(x))
d(x)

= 1. (1.9)

This yields that u ∈ L1(Ω) if and only if ϕ−1, the inverse function of ϕ (recall it is monotone decreasing), is

integrable in a neighbourhood of 0, i.e., with a change of integration variable

+∞ >

η

∫
0

ϕ−1(r) dr =
+∞

∫
ϕ−1(η) t|ϕ

�(t)| dt =
+∞

∫
t
0

t
√F(t)

dt.

Our results can be summarised as follows.

Theorem 1.3. Suppose that the nonlinear term f satisfies hypotheses (1.5) and (1.7) above and

+∞

∫
t
0

f(t)t−2/(1−s) dt < +∞. (1.10)

Then, the following problem:
{{{
{{{
{

(−∆)su = −f(u) in Ω,
u = 0 inℝN \ Ω,

d1−su = +∞ on ∂Ω
(1.11)

admits a solution u ∈ L1(Ω). Moreover, there exists c > 0 for which

ϕ(u(x)) ≥ cd(x)s in Ω. (1.12)

Remark 1.4. The condition u ∈ L1(Ω) is necessary to make sense of the fractional Laplacian, see equation

(1.3). Also, compare the boundary behaviour in this setting expressed by equation (1.12) with the classical

one in equation (1.9).

Theorem 1.5. Suppose that the nonlinear term f satisfies hypotheses (1.5) and (1.7) above and

g : ℝN \ Ω → [0, +∞), g ∈ L1(ℝN \ Ω)

ϕ(g(x)) ≥ d(x)s , near ∂Ω. (1.13)

Then, the following problem:

{
(−∆)su = −f(u) in Ω,

u = g inℝN \ Ω
(1.14)

admits a solution u ∈ L1(Ω). Moreover, there exists c > 0 for which

ϕ(u(x)) ≥ cd(x)s near ∂Ω.

Remark 1.6. Note that in problem (1.14) we do not prescribe the singular trace at ∂Ω.
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Remark 1.7. The hypotheses in Theorem 1.3, when considering f(u) = up, reduce to

p ∈ (1 + 2s, 1 +
2s
1 − s)

,

see Theorem 1.10. Note that this range of exponents does not converge, letting s ↑ 1, to the set of admissible

exponents for −∆, which is given by (1.2) and simply reads as p ∈ (1, +∞). Indeed, we only have 1 + 2s → 3

as s ↑ 1. This is not discouraging though. In this fractional setting we need u ∈ L1(Ω) to make sense of the

operator. This is an additional (natural) restrictionwe do not have in the classical problem, so it is reasonable

to get smaller ranges for p. Moreover, the classical solution to the large problem is known to behave like (cf.

equation (1.9))

u ≍ d−2/(p−1),

and such a u is in L1(Ω) when p > 3. In this sense, we actually have the asymptotic convergence of the ad-

missible ranges of exponents. Compare this also with Remark 1.2.

Remark 1.8. As it will be clear in the following proofs, hypothesis (1.5) is technical and not structural. We

conjecture that it is not necessary to establish existence results. But let us mention how a similar assump-

tion arises naturally even in the classical framework when dealing with the computation of the asymptotic

behaviour of the solution, see [2, equations (B) and (B)

�
].

The strategy to prove the existence result in Theorem 1.3 is to build the sequence {uk}k∈ℕ of solutions to the
following problem²:

{{{
{{{
{

(−∆)suk = −f(uk) in Ω,

uk = 0 inℝN \ Ω,

E uk = k on ∂Ω,
(1.15)

and then let k ↑ +∞. In case uk admits a limit, then we will need to prove that this is the solution we were

looking for. This might also be called the minimal large solution, by borrowing the expression used in the

classical theory.

We can also provide a partial nonexistence result.

Theorem 1.9. Suppose there exist a, b > 0 for which

f(t) ≤ a + bt for any t ∈ (0, +∞). (1.16)

Then, there exists α > 0 such that

uk(x) ↑ +∞ as k ↑ +∞, whenever d(x) < α.

In the case of power-like nonlinearities we can prove the following.

Theorem 1.10. Let f(t) = tp , p > 0. Then, the following hold:
(1) If p ∈ [1 + 2s

1−s , +∞), then the approximating sequence {uk}k∈ℕ does not exist.
(2) If p ∈ (1 + 2s, 1 + 2s

1−s ), then the approximating sequence converges to a solution u of (1.11) and

u ≤ Cd−2s/(p−1).

(3) If p ∈ (1, 1 + s), then the approximating sequence exits L1(Ω), meaning ‖uk‖L1(Ω) ↑ +∞ as k ↑ +∞.
(4) If p ∈ (0, 1], then the approximating sequence blows-up uniformly in some open strip near the boundary.

1.2 Notations

In the following we will always denote by CE = ℝN \ E for any E ⊂ ℝN .

2 The operator E denotes the singular trace operator defined in [1].
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Hypothesis (1.5) implies that f(t)t−1−M is monotone decreasing and f(t)t−1−m is monotone increasing,

since

d
dt

f(t)
t1+M

=
1

t1+M
(f �(t) − (1 +M)

f(t)
t ) ≤ 0 and

d
dt

f(t)
t1+m

=
1

t1+m
(f �(t) − (1 + m)

f(t)
t ) ≥ 0.

We write this monotonicity conditions as

c1+m f(t) ≤ f(ct) ≤ c1+M f(t), c > 1, t > 0. (1.17)

The function F satisfies, similar to (1.5), the following inequalities:

2 + m ≤
t f(t)
F(t)

≤ 2 +M. (1.18)

Indeed, by integrating (1.5), we deduce

(1 + m)F(t) ≤
t

∫
0

τ f �(τ) dτ = tf(t) − F(t).

Let ψ = ϕ−1 be the inverse of ϕ, so that

v =
+∞

∫
ψ(v)

dt
√F(t)

, v ≥ 0. (1.19)

The functionψ is decreasing andψ(v) ↑ +∞ as v ↓ 0. Moreover, by Remark 1.1 and (1.18), for u > 0 and some

y ∈ (u, +∞), we have

ϕ(u)
u|ϕ�(u)|

=
√F(u)
u

+∞

∫
u

dt
√F(t)

=
− 1

√F(y)
1

√F(y) −
yf(y)

2F(y)3/2 =
1

yf(y)
2F(y) − 1

{{{
{{{
{

≥
2

M
,

≤
2

m
,

which in turn, by setting v = ϕ(u), implies that

2

M
≤
v|ψ�(v)|
ψ(v)

≤
2

m
. (1.20)

One can prove also

ψ(cv) ≤ c−2/Mψ(v), c ∈ (0, 1), v > 0, (1.21)

as we have done for (1.17) above. Also, by (1.18) and (1.20), we have

v2ψ��(v)
ψ(v)

=
v2f(ψ(v))
2ψ(v)

≍
v2F(ψ(v))
ψ(v)2

=
v2ψ�(v)2

ψ(v)2
≍ 1. (1.22)

1.3 Construction of a supersolution

In this paragraph we prove the key point for the proof of Theorems 1.3 and 1.5, that is, we build a superso-

lution to both problems by handling the function U defined in (1.23) below.

Since by assumption ∂Ω ∈ C2, the function dist(x, ∂Ω) is C2 in an open strip around the boundary, ex-

cept on ∂Ω itself. Consider a positive function δ(x) which is obtained by extending dist(x, ∂Ω) smoothly to

ℝN \ ∂Ω. Define
U(x) = ψ(δ(x)s), x ∈ ℝN . (1.23)

Lemma 1.11. The function U defined in (1.23) is in L1(Ω).

Proof. Since both ψ and δs are continuous in Ω, we have that U ∈ L1
loc

(Ω). Fix δ
0
> 0 small and consider

Ω
0
= {x ∈ Ω : δ(x) < δ

0
}. We have (using once the coarea formula)

∫
Ω
0

ψ(δ(x)s) dx ≤ C
δ
0

∫
0

ψ(ts) dt.
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Apply now the transformation ψ(ts) = η to get

∫
Ω
0

U(x) dx ≤ C
+∞

∫
η
0

η ϕ(η)(1−s)/s|ϕ�(η)| dη,

where, by Remark 1.1,

|ϕ�(η)| ≍ 1

√η f(η)
and ϕ(η) ≍ √

η
f(η)

.

Therefore,

∫
Ω
0

U(x) dx ≤ C
+∞

∫
η
0

(
η
f(η))

1/(2s)
dη,

which is finite by (1.8).

The followingProposition shows thatU is a good startingpoint to build a supersolution. Theproof is technical

but this is the key step for the following.

Proposition 1.12. For some C, δ
0
> 0, the function U defined in (1.23) satisfies

(−∆)sU ≥ −Cf(U) in Ωδ
0

= {x ∈ Ω : δ(x) < δ
0
}. (1.24)

Before giving the proof, we prove a preliminary lemma.

Lemma 1.13. Let Ω ⊂ ℝN be a bounded open domain with compact boundary ∂Ω. Cover ∂Ω by a finite number
of open portions Γj ⊂ ∂Ω, j = 1, . . . , n. For any η ∈ ∂Ω, there exists i(η) ∈ {1, . . . , n} such that η ∈ Γi(η) for
which

dist(η, ∂Ω \ Γi(η)) ≥ c (1.25)

for some constant c > 0 independent of η ∈ ∂Ω.

Proof. For any j = 1, . . . , n, the function η Ü→ dist(η, ∂Ω \ Γj) is continuous on ∂Ω and so is the function

η Ü→ maxj dist(η, ∂Ω \ Γj). There exists a point η∗ ∈ ∂Ω, where η Ü→ maxj dist(η, ∂Ω \ Γj) attains its mini-

mum. Such a minimum cannot be 0 because η∗ belongs at least to one of the Γj. This implies that for any

η ∈ ∂Ω, there exists i(η) ∈ {1, . . . , n} such that

max

j
dist(η∗, ∂Ω \ Γj) ≤ max

j
dist(η, ∂Ω \ Γj) = dist(η, ∂Ω \ Γi(η)).

Proof of Proposition 1.12. We start by writing, for x ∈ Ω,

(−∆)sU(x)
A(N, s)

= PV∫
Ω

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy + ∫
CΩ

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy. (1.26)

Let us begin with an estimate for

PV∫
Ω

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy.

Split the integral into

∫
Ω
1

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy + PV ∫
Ω
2

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy + ∫
Ω
3

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy,

where we have set

Ω = Ω
1
∪ Ω

2
∪ Ω

3

with

Ω
1
= {y ∈ Ω : δ(y) > 3

2

δ(x)},

Ω
2
= {y ∈ Ω :

1

2

δ(x) ≤ δ(y) ≤ 3

2

δ(x)},

Ω
3
= {y ∈ Ω : δ(y) < 1

2

δ(x)}.
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In Ω
1
we have in particular δ(y) > δ(x) so that, since ψ is a decreasing function, the first integral contributes

by a positive quantity. Now, let us turn to the integrals on Ω
2
and Ω

3
. Set x = θ + δ(x)∇δ(x), θ ∈ ∂Ω. Up to a

rotation and a translation, we can suppose that θ = 0 and ∇δ(x) = eN .
Let {Γj}nj=1 be a finite open covering of ∂Ω and let Γ := Γi(0) (in the notations of the last lemma) be a

neighbourhood of 0 on ∂Ω chosen from {Γj}nj=1 and for which (1.25) is fulfilled. Let also

ω = {y ∈ ℝN : y = η + δ(y)∇δ(y), η ∈ Γ}.

The set Γ ⊂ ∂Ω can be described as the graph of the following C2 function:

γ : B�
r(0) ⊆ ℝ

N−1 → ℝ, η� Ü→ γ(η�) such that η = (η�, γ(η�)) ∈ Γ,

satisfying γ(0) = |∇γ(0)| = 0.

The integration on (Ω
2
∪ Ω

3
) \ ω is of lower order with respect to the one on (Ω

2
∪ Ω

3
) ∩ ω, since in the

latter we have the singularity in x to deal with, while in the former |x − y| is a quantity bounded below inde-

pendently on x. Indeed, when y ∈ (Ω
2
∪ Ω

3
) \ ω, we have

|x − y| ≥ |η + δ(y)∇δ(y)| − δ(x) ≥ |η| − δ(y) − δ(x) ≥ dist(0, ∂Ω \ Γ) −
5

2

δ(x),

where δ(x) is small and the first addend is bounded uniformly in x by (1.25).
We are left with

C ⋅ PV ∫
Ω
2
∩ω

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy + C ∫
Ω
3
∩ω

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy.

Let us split the remainder of the estimate in steps.

First step: The distance between x and y. We claim that there exists c > 0 such that

{
|x − y|2 ≥ c(|δ(x) − δ(y)|2 + |η�|2), y ∈ (Ω

2
∪ Ω

3
) ∩ ω,

y = η + δ(y)∇δ(y), η = (η�, γ(η�)).
(1.27)

Since in our set of coordinates x = δ(x)eN , we can write

|x − y|2 = |δ(x)eN − δ(y)eN + δ(y)eN − yNeN − y�|2

≥ |δ(x) − δ(y)|2 − 2|δ(x) − δ(y)| ⋅ |δ(y) − yN | + |δ(y) − yN |2 + |y�|2.

We concentrate our attention on |δ(y) − yN |. The idea is to show that this is a small quantity. Indeed, in the

particular case when Γ lies on the hyperplane yN = 0, this quantity is actually zero. As in the definition of ω,
we let y = η + δ(y)∇δ(y) and η = (η�, γ(η�)) ∈ Γ. Thus, yN = γ(η�) + δ(y)⟨∇δ(y), eN⟩, where∇δ(y) is the inward
unit normal to ∂Ω at the point η, so that

∇δ(y) = (−∇γ(η�), 1)

√|∇γ(η�)|2 + 1

,

y� = η� − δ(y)∇γ(η�)

√|∇γ(η�)|2 + 1

and yN = γ(η�) + δ(y)

√|∇γ(η�)|2 + 1

. (1.28)

Now, since y ∈ Ω
2
∪ Ω

3
, we have |δ(x) − δ(y)| ≤ δ(x) and

|δ(y) − yN | ≤ |γ(η�)| + δ(y)(1 −
1

√|∇γ(η�)|2 + 1

) ≤ C|η�|2 + 2Cδ(x)|η�|2,

where, in this case, C = ‖γ‖C2(Br) depends only on the geometry of ∂Ω and not on x. By (1.28), we have

|η�|2 ≤ 2|y�|2 + 2δ(y)2 |∇γ(η�)|2

|∇γ(η�)|2 + 1

≤ 2|y�|2 + 2Cδ(y)2 |η�|2 ≤ 2|y�|2 + Cδ(x)2 |η�|2,
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so that |η�|2 ≤ C|y�|2 when δ(x) is small enough. Finally,

|x − y|2 ≥ |δ(x) − δ(y)|2 + |y�|2 − 2|δ(x) − δ(y)| ⋅ |δ(y) − yN |
≥ |δ(x) − δ(y)|2 + c|η�|2 − 2Cδ(x)|η�|2,

where, again, C = ‖γ‖C2(Br) and (1.27) is proved provided x is close enough to ∂Ω.

Second step: Integration on Ω
2
∩ ω. Using the regularity of ψ and δ we write

ψ(δ(x)s) − ψ(δ(y)s) ≥ ∇(ψ ∘ δs)(x) ⋅ (x − y) − ‖D2(ψ ∘ δs)‖L∞(Ω
2
∩ω)|x − y|2,

where

D2(ψ ∘ δs) = sψ�(δs)
δ1−s

D2δ + s
2ψ��(δs)
δ2−2s

∇δ ⊗ ∇δ + s(s − 1)ψ�(δs)
δ2−s

∇δ ⊗ ∇δ,

so that

‖D2(ψ ∘ δs)‖L∞(Ω
2
∩ω) ≤ C

"""""""
ψ�(δs)
δ1−s

"""""""L∞(Ω
2
∩ω)

+ C
"""""""
ψ��(δs)
δ2−2s

"""""""L∞(Ω
2
∩ω)

+ C
"""""""
ψ�(δs)
δ2−s

"""""""L∞(Ω
2
∩ω)
.

By the definition of Ω
2
and by (1.21), we can control the sup-norm by the value at x, i.e.,

‖D2(ψ ∘ δs)‖L∞(Ω
2
∩ω) ≤ C

|ψ�(δ(x)s)|
δ(x)1−s

+ Cψ
��(δ(x)s)
δ(x)2−2s

+ C |ψ
�(δ(x)s)|
δ(x)2−s

≤ Cψ
��(δ(x)s)
δ(x)2−2s

+ C |ψ
�(δ(x)s)|
δ(x)2−s

,

and using equation (1.22), we finally get

‖D2(ψ ∘ δs)‖L∞(Ω
2
∩ω) ≤ C

ψ��(δ(x)s)
δ(x)2−2s

.

If we now retrieve the whole integral and exploit (1.27), we have

PV ∫
Ω
2
∩ω

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy ≥ −Cψ
��(δ(x)s)
δ(x)2−2s

∫
Ω
2
∩ω

dy
|x − y|N+2s−2

≥ −Cψ
��(δ(x)s)
δ(x)2−2s

∫
Ω
2
∩ω

dy
(|δ(x) − δ(y)|2 + |η|2)(N+2s−2)/2

.

We focus our attention on the integral on the right-hand side. By the coarea formula,

∫
Ω
2
∩ω

dy
(|δ(x) − δ(y)|2 + |η|2)(N+2s−2)/2

=

3δ(x)/2

∫
δ(x)/2

dt ∫
{δ(y)=t}∩ω

dσ(η)
(|δ(x) − t|2 + |η|2)(N+2s−2)/2

≤ C
3δ(x)/2

∫
δ(x)/2

dt ∫
Br

dη�

(|δ(x) − t|2 + |η�|2)(N+2s−2)/2

≤ C
3δ(x)/2

∫
δ(x)/2

dt
r

∫
0

ρN−2

(|δ(x) − t|2 + ρ2)(N+2s−2)/2
dρ

≤ C
3δ(x)/2

∫
δ(x)/2

dt
r

∫
0

ρ
(|δ(x) − t|2 + ρ2)(2s+1)/2

dρ

≤ C
3δ(x)/2

∫
δ(x)/2

dt
|t − δ(x)|2s−1

.

We can retrieve now the chain of inequalities we stopped above:

∫
Ω
3
∩ω

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy ≥ −Cψ
��(δ(x)s)
δ(x)2−2s

3δ(x)/2

∫
δ(x)/2

dt
|δ(x) − t|−1+2s

≥ −C ψ��(δ(x)s).



392 | N. Abatangelo, Very large solutions for the fractional Laplacian

Third step: Integration on Ω
3
∩ ω. Using (1.27) once again, we have

∫
Ω
3
∩ω

ψ(δ(x)s) − ψ(δ(y)s)
|x − y|N+2s

dy ≥ − ∫
Ω
3
∩ω

ψ(δ(y)s)
|x − y|N+2s

dy

≥ −C ∫
Ω
3
∩ω

ψ(δ(y)s)
(|δ(x) − δ(y)|2 + |η�|2) N+2s2

dy

≥ −C
δ(x)/2

∫
0

ψ(ts)
(δ(x) − t)1+2s

dt

≥ −
C

δ(x)1+2s

δ(x)/2

∫
0

ψ(ts) dt.

The term we have obtained is of the same order of δ(x)−2sψ(δ(x)s), thus by (1.20),

δ(x)/2

∫
0

ψ(ts) dt ≍
δ(x)/2

∫
0

tsψ�(ts) dt = δ(x)
2s

ψ( δ(x)
s

2
s ) −

1

s

δ(x)/2

∫
0

ψ(ts) dt,

so that

δ(x)/2

∫
0

ψ(ts) dt ≍ δ(x)ψ(δ(x)s) = δ(x)1+2s ⋅ ψ(δ(x)
s)

δ(x)2s
. (1.29)

Recall now that ψ(δ(x)s)δ(x)−2s is in turn of the same size of ψ��(δ(x)s) by (1.22).

Fourth step: The outside integral in (1.26). We focus now our attention on

∫
CΩ

ψ(δ(y)s) − ψ(δ(x)s)
|x − y|N+2s

dy.

First, by using the monotonicity of ψ, we write

∫
CΩ

ψ(δ(y)s) − ψ(δ(x)s)
|x − y|N+2s

dy ≤ ∫
{y∈CΩ:δ(y)<δ(x)}∩ω

ψ(δ(y)s) − ψ(δ(x)s)
|x − y|N+2s

dy + ∫
{y∈CΩ:δ(y)<δ(x)}\ω

ψ(δ(y)s) − ψ(δ(x)s)
|x − y|N+2s

dy.

The second integral gives

∫
{y∈CΩ:δ(y)<δ(x)}\ω

ψ(δ(y)s) − ψ(δ(x)s)
|x − y|N+2s

dy ≤ C‖ψ(δs)‖L1(ℝN ),

because the distance between x and y is bounded there. Again we point out that

∫
{δ(y)<δ(x)}∩ω

ψ(δ(y)s) − ψ(δ(x)s)
|x − y|N+2s

dy ≤ C
δ(x)

∫
0

ψ(ts) − ψ(δ(x)s)
|δ(x) + t|1+2s

dt

≤ C
δ(x)/2

∫
0

ψ(ts)
|δ(x) + t|1+2s

dt + C
δ(x)

∫
δ(x)/2

ψ(ts)
|δ(x) + t|1+2s

dt

≤ Cδ(x)−1−2s
δ(x)/2

∫
0

ψ(ts) dt + Cψ( δ(x)
s

2
s )

δ(x)

∫
δ(x)/2

(δ(x) + t)−1−2s dt

≤ Cδ(x)−1−2s
δ(x)

∫
0

ψ(ts) dt + Cψ(δ(x)s)δ(x)−2s ,

which is of the order of ψ��(δ(x)s), by (1.29) and (1.22).
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In conclusion, we have proved that for δ(x) sufficiently small,

(−∆)sU(x) ≥ −Cψ��(δ(x)s).

Recall now that ψ��(δs) = f(ψ ∘ δs) and U = ψ ∘ δs in Ω, so that

(−∆)sU ≥ −Cf(U)

holds in a neighbourhood of ∂Ω.

Starting from U, it is possible to build a full supersolution in view of the following lemma.

Lemma 1.14. Let v : ℝN → ℝ a function which satisfies (−∆)sv ∈ C(Ω). If there exist C, δ
0
> 0 such that

(−∆)sv ≥ −Cf(v) in Ωδ
0

:= {x ∈ Ω : δ(x) < δ
0
},

then there exists u ≥ v such that (−∆)su ≥ −f(u) throughout Ω.

Proof. Define ξ : ℝN → ℝ as the solution to

{{{
{{{
{

(−∆)sξ = 1 in Ω,

ξ = 0 in CΩ,

Eξ = 0 on ∂Ω,
(1.30)

and consider u = μv + λξ , where μ, λ ≥ 1. If C ∈ (0, 1], then (−∆)sv ≥ −f(v) in Ωδ
0

, so choose μ = 1. If C > 1,

then choose μ = C1/M > 1, in order to have in Ωδ
0

,

(−∆)su + f(u) = (−∆)s(μv + λξ) + f(μv + λξ) ≥ −μ Cf(v) + f(μv) ≥ (−μ C + μ1+M)f(v) = 0,

where we have heavily used the positivity of ξ and (1.17). Now, since (−∆)sv ∈ C(Ω \ Ωδ
0

), we can choose

λ = μ‖(−∆)sv‖L∞(Ω\Ωδ
0

) so that, also in Ω \ Ωδ
0

,

(−∆)su = (−∆)s(μv + λξ) = μ(−∆)sv + λ ≥ 0 ≥ −f(u).

2 Existence
Lemma 2.1. If the nonlinear term f satisfies the growth condition (1.10), then the function U defined in (1.23)
satisfies

lim

x→∂Ω
δ(x)1−sU(x) = +∞.

Proof. Write

lim inf

x→∂Ω
δ(x)1−sψ(δ(x)s) = lim inf

u↑+∞
u ϕ(u)(1−s)/s .

Such a limit is +∞ if and only if

lim inf

u↑+∞
us/(1−s)

+∞

∫
u

dt
√2F(t)

= +∞.

If we use L’Hôpital’s rule to

∫
+∞
u

dt
√2F(t)

u−s/(1−s)
,

we get the ratio u1/(1−s)/√2F(u), and applying once again L’Hôpital’s rule, this time to u2/(1−s)/F(u), we get
u(1+s)/(1−s)/f(u), which diverges by hypothesis (1.10). Indeed, since f is increasing,

u−(1+s)/(1−s)f(u) = f(u) ⋅ 1 − s
1 + s

+∞

∫
u

t−2/(1−s) dt ≤
+∞

∫
u

f(t)t−2/(1−s) dt ÚÚÚÚÚ→
u↑+∞

0.

Collecting the information so far, we have that Lemmas 1.11, 1.14 and2.1 fully prove the following theorems.
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Theorem 2.2. If the nonlinear term f satisfies the growth condition (2.1), then there exists a function u which is
a supersolution to (1.11). Moreover,

u = μψ(δs) + λξ in Ω,

where ξ is the solution of (1.30), λ > 0 and μ = max{1, C1/M}, where C > 0 is the constant in (1.24) and M > 0

the one in (1.5).

Theorem 2.3. There exists a function u which is a supersolution to (1.14). Moreover,

u = μψ(δs) + λξ in Ω,

where ξ is the solution of (1.30), λ > 0 and μ = max{1, C1/M}, where C > 0 is the constant in (1.24) and M > 0

the one in (1.5).

2.1 Proof of Theorem 1.3

Build the sequence of solutions to problems of the following form:

{{{
{{{
{

(−∆)suk = −f(uk) in Ω,

uk = 0 in CΩ,

E uk = k on ∂Ω, k ∈ ℕ.

(2.1)

The existence of any uk can be proved as in [1, Theorem 1.2.12], in view of hypothesis (1.10), since it implies

δ
0

∫
0

f(δs−1)δs dδ < +∞.

The first tool we need is a Comparison Principle.

Lemma 2.4 (Comparison principle). Let v, w ∈ C(Ω) ∩ L1(Ω) solve pointwisely

{
(−∆)sv ≤ −f(v) in Ω,

v ≤ 0 in CΩ
and {

(−∆)sw ≥ −f(w) in Ω,
w ≥ 0 in CΩ.

If v ≤ w in Uα := {x ∈ Ω : δ(x) < α} for some α > 0, then v ≤ w in the whole Ω.

Proof. Consider Ω+ = {v > w} ⊂ (Ω \ Uα). The difference v − w achieves its (global) maximum at some point

x∗ ∈ Ω+. So
0 < (−∆)s(v − w)(x∗) ≤ f(w(x∗)) − f(v(x∗)) ≤ 0,

in view of the monotonicity of f . Thus, Ω+ must be empty.

Step 1: {uk}k∈ℕ has a pointwise limit. Any uk solves the equation in a pointwise sense, as Lemma 4.3 below

implies. The sequence {uk}k∈ℕ is increasing with k by the comparison principle (Lemma 2.4). Moreover, any

uk lies below u. Indeed, since E(u − uk) = +∞, then uk ≤ u holds close to ∂Ω and another application of the

comparison principle yields uk ≤ u in Ω.
Finally, {uk}k∈ℕ is increasing and pointwisely bounded by u throughout Ω. This entails that

u(x) := lim

k↑+∞
uk(x)

is well defined and finite for any x ∈ Ω. Also, 0 ≤ u ≤ u in Ω and since u ∈ L1(Ω), by Lemma 1.11 we have

that u ∈ L1(Ω).

Step 2: u ∈ C(Ω). Fix any compact D ⊂ Ω and choose c > 0 such that δ(x) > 2c for any x ∈ D. Let

D̃ := {y ∈ Ω : δ(y) > c}.

For any k, j ∈ ℕ, we have
(−∆)s(uk+j − uk) = f(uk) − f(uk+j) ≤ 0 in D̃,
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and therefore

0 ≤ uk+j(x) − uk(x) ≤ ∫

CD̃

PD̃(x, y)[uk+j(y) − uk(y)] dy,

where PD̃(x, y) is the Poisson kernel associated to D̃, which satisfies (see [8, Theorem 2.10])

PD̃(x, y) ≤
C δD̃(x)

s

δD̃(y)
s|x − y|N

, x ∈ D̃, y ∈ CD̃.

When x ∈ D ⊂ D̃ one has |x − y| > c for any y ∈ CD̃, and therefore

0 ≤ uk+j(x) − uk(x) ≤ C ∫

CD̃

uk+j(y) − uk(y)
δD̃(y)

s dy ≤ C ∫

CD̃

u(y) − uk(y)
δD̃(y)

s dy,

where the last integral converges by monotone convergence to 0 independently on x. This means the con-

vergence uk → u is uniform on compact subsets and since {uk}k∈ℕ ⊂ C(Ω) (cf. [1, Theorem 1.2.12]), we have

also that u ∈ C(Ω).

Step 3: u ∈ C2(Ω). This is a standard bootstrap argument using the elliptic regularity in [25, Propositions 2.8

and 2.9].

Step 4: u solves (1.11) in a pointwise sense. The function (−∆)su(x) is well defined for any x ∈ Ω because

u ∈ C2(Ω) ∩ L1(ℝN). Using the regularity results in [25, Propositions 2.8 and 2.9], we have

(−∆)su = lim

k↑+∞
(−∆)suk = − lim

k↑+∞
f(uk) = −f(u).

Also, δ1−su ≥ δ1−suk holds in Ω for any k ∈ ℕ. Therefore, for any k ∈ ℕ,

lim inf

x→∂Ω
δ(x)1−su(x) ≥ lim

x→∂Ω
δ(x)1−suk(x) ≥ λE uk = λk

for some constant λ > 0 depending on Ω and not on k. This entails

lim

x→∂Ω
δ(x)1−su(x) = +∞

and completes the proof of Theorem 1.3.

Remark 2.5. The proof of Theorem 1.5 is similar. Indeed, in the same way, the sequence of solutions to the

following problem:

{{{
{{{
{

(−∆)suk = −f(uk) in Ω,

uk = gk := min{k, g} in CΩ, k ∈ ℕ,

E uk = 0 on ∂Ω
(2.2)

approaches a solution of problem (1.14), which lies below the supersolution provided by Theorem 2.3.

2.2 Proof of Theorem 1.9

Following [1], we write the Green representation for uk:

uk(x) = k ∫
∂Ω

M
Ω
(x, θ) dσ(θ) − ∫

Ω

G
Ω
(x, y)f(uk(y)) dy, x ∈ Ω.

Denoting simply

h
1
(x) := ∫

∂Ω

M
Ω
(x, θ) dσ(θ) and ξ(x) := ∫

Ω

G
Ω
(x, y) dy,

we get

uk(x) ≥ kh1(x) − aξ(x) − b∫
Ω

G
Ω
(x, y) uk(y) dy ≥ kh1(x) − aξ(x) − bk∫

Ω

G
Ω
(x, y) h

1
(y) dy. (2.3)
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Recall that ξ ≍ δs and h
1
≍ δs−1. Applying [1, Proposition 3], we see that

h
1
(x) − b∫

Ω

G
Ω
(x, y) h

1
(y) dy > 0

holds when x is taken close enough to ∂Ω. This concludes the proof.

3 The power case: Proof of Theorem 1.10
Proof of (1). We show how the following problem:

{{{
{{{
{

(−∆)su
1
= −up

1

in Ω,

u
1
= 0 in CΩ,

E u
1
= 1 on ∂Ω

(3.1)

does not admit any weak or pointwise solution.

In both cases the solution would satisfy u
1
≥ cδs−1 in Ω for some c > 0. If u

1
was a weak solution then

for any ϕ ∈ T(Ω),

∫
Ω

u
1
(−∆)sϕ + ∫

Ω

up
1

ϕ = ∫
∂Ω

Dsϕ,

where

∫
Ω

up
1

ϕ ≥ C∫
Ω

δp(s−1)δs = +∞,

because (1.10) does not hold, a contradiction.

If u
1
was a pointwise solution, then by Lemma 4.4 it would be a weak solution on any subdomain

D ⊂ D ⊂ Ω. Therefore,

u
1
(x) = −∫

D

GD(x, y) u1(y)p dy + ∫
CD

PD(x, y) u1(y) dy.

If u
0
denotes the s-harmonic function induced by E u = 1, then u

1
≤ u

0
in Ω and

u
1
(x) ≤ −∫

D

GD(x, y) u1(y)p dy + ∫
CD

PD(x, y) u0(y) dy = −∫
D

GD(x, y)u1(y)p dy + u0(x).

Fix x ∈ Ω. Letting now D ↗ Ω we have that GD(x, y) ↑ GΩ(x, y) and

∫
Ω

G
Ω
(x, y) u

1
(y)p dy ≥ cδ(x)s ∫

{2δ(y)<δ(x)}

δ(y)s u
1
(y)p dy = +∞,

because (1.10) does not hold, a contradiction.

Proof of (2). We apply Theorem 1.3 when f(t) = tp. In this case,

tf �(t)
f(t)

= p > 1,

so that hypothesis (1.5) is fulfilled. The function ϕ reads as (cf. equation (1.6))

ϕ(u) =
+∞

∫
u

√ p + 1

2

t−(p+1)/2 dt = √ 2(p + 1)
p − 1

u(1−p)/2.

Hypothesis (1.7) can then be written as

+∞

∫
u

η(1−p)/(2s) dη < +∞,
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which holds if and only if p > 1 + 2s. On the other hand, hypothesis (1.10) becomes

p −
2

1 − s
< −1, i.e., p <

1 + s
1 − s

= 1 +
2s
1 − s

.

Remark 3.1. We retrieve in this case some of the results in [6, Theorem 1.1, equations (1.6) and (1.7)] and
we obtain the explicit value of the parameter denoted³ by τ

0
(α) ∈ (−1, 0), which is τ

0
(α) = α − 1.

Proof of (3). Following [1], we write the Green representation for uk:

uk(x) = k ∫
∂Ω

M
Ω
(x, θ) dσ(θ) − ∫

Ω

G
Ω
(x, y) uk(y)p dy, x ∈ Ω.

Denoting simply

h
1
(x) := ∫

∂Ω

M
Ω
(x, θ) dσ(θ),

we have uk ≤ kh1 in Ω and

uk(x) ≥ kh1(x) − ks ∫
Ω

G
Ω
(x, y) uk(y)p−s h1(y)s dy. (3.2)

Define

ξ(x) := ∫
Ω

G
Ω
(x, y) dy,

and recall that ξ ≍ δs, while h
1
≍ δs−1. By (3.2) we deduce

∫
Ω

uk ≥ k∫
Ω

h
1
− ∫
Ω

up−sk hs
1

ξ.

Since p ∈ (1, 1 + s), we have that p − s ∈ (1 − s, 1) and up−sk ≤ uk. Thus, there exists a constant C > 0 such

that

∫
Ω

uk + C∫
Ω

ukδs(s−1)+s ≥ k∫
Ω

h
1
,

where s(s − 1) + s > 0, so (modifying C if necessary)

(C + 1)∫
Ω

uk ≥ k∫
Ω

h
1
,

which concludes the proof.

Proof of (4). This is a straightforward consequence of Theorem 1.9.

4 Remarks and comments
In this section we would like to point out some elements that may be unclear if left implicit. In the first sub-

section we discuss the relation between pointwise solutions and weak L1 solutions. The second one studies
the equivalence of variational weak solutions and weak L1 solutions in some particular cases. The third and

last subsection deals with the definition of weak L1 solution given by Chen and Véron [7], which amounts to

be equivalent to the one given in [1].

3 In the notations of [6], α ∈ (0, 1) is the power of the Laplacian, which corresponds to s in our notations.
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4.1 Pointwise solutions vs weak L1 solutions

For the sake of clarity we recall here the definitions involved. In the following, Ω will always be a bounded

open subset ofℝN with C2 boundary.

Definition 4.1. Given three measurable functions

f : Ω → ℝ, g : CΩ → ℝ and h : ∂Ω → ℝ,

a function u : ℝN → ℝ is said to be a pointwise solution of

{{{
{{{
{

(−∆)su = f in Ω,

u = g in CΩ,

E u = h on ∂Ω,
provided that the following hold:

(i) u ∈ L1(Ω).
(ii) For any x ∈ CΩ, u(x) = g(x).
(iii) The principal value

PV ∫

ℝN

u(x) − u(y)
|x − y|N+2s

dy

converges for any x ∈ Ω and

A(N, s)PV ∫

ℝN

u(x) − u(y)
|x − y|N+2s

dy = f(x) for any x ∈ Ω.

(iv) For any θ ∈ ∂Ω the limit limx→θ δ(x)1−su(x) exists and the renormalized limit E u satisfies E u(θ) = h(θ).

Definition 4.2. Given three measurable functions

f : Ω → ℝ, g : CΩ → ℝ and h : ∂Ω → ℝ,

a function u : ℝN → ℝ is said to be a weak L1 solution of

{{{
{{{
{

(−∆)su = f in Ω,

u = g in CΩ,

E u = h on ∂Ω,
provided u ∈ L1(Ω) and for any

ϕ ∈ T(Ω) = {ϕ ∈ Cs(ℝN) : (−∆)sϕ|
Ω
∈ C∞c (Ω), ϕ = 0 in CΩ}

the following holds:

∫
Ω

u(−∆)sϕ = ∫
Ω

fϕ − ∫
CΩ

g(−∆)sϕ + ∫
∂Ω

hDsϕ.

For further details and notation, we refer to [1].

Lemma 4.3. Take f ∈ Cα
loc

(Ω) for some α ∈ (0, 1) with

∫
Ω

|f |δs < +∞,

g : CΩ → ℝmeasurable with
∫
CΩ

|g|δ−smin{1, δ−N−s} < +∞,

h ∈ C(∂Ω) and u : ℝN → ℝ a weak L1 solution to

{{{
{{{
{

(−∆)su = f in Ω,
u = g in CΩ,

E u = h on ∂Ω.

Then, u is also a pointwise solution.
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Proof. We can write u as the sum

u(x) = ∫
Ω

G
Ω
(x, y)f(y) dy + u

0
(x),

where u
0
is the s-harmonic function induced in Ω by the data g and h. For any x ∈ Ω, in a pointwise sense

we have that (−∆)su(x) = f(x), in view of the regularity of f and the construction of the Green kernel. Then, to
completely prove the lemma, it suffices to prove

lim

x→∂Ω
δ(x)1−s ∫

Ω

G
Ω
(x, y) f(y) dy = 0.

This is proved in Lemma 4.5 below.

Lemma 4.4. Take f ∈ Cα
loc

(Ω) for some α ∈ (0, 1), h ∈ C(∂Ω) and u : ℝN → ℝ a pointwise solution to

{{{
{{{
{

(−∆)su = f in Ω,
u = g in CΩ,

E u = h on ∂Ω.
(4.1)

If
∫
Ω

|f |δs < +∞, ∫
CΩ

|g|δ−smin{1, δ−N−s} < +∞ and h ∈ C(∂Ω),

then u is also a weak L1 solution to the same problem.

Proof. We refer to [1, Theorem 1.2.8] for the existence and uniqueness of a weak L1 solution v to problem
(4.1). By Lemma 4.3, v is also a pointwise solution. Thus,

{{{
{{{
{

(−∆)s(u − v) = 0 in Ω,

u − v = 0 in CΩ,

E(u − v) = 0 on ∂Ω

in a pointwise sense. In particular, u − v ∈ C(Ω), since harmonic functions are smooth. Define

Ω

+
:= {x ∈ Ω : u(x) > v(x)},

in which u − v is a nonnegative s-harmonic function and, by [4, Lemma5 and Theorem1], it decomposes into

the sum of the s-harmonic function induced by the E
Ω

+ (u − v) trace and the one by its values on CΩ+. But, on

the one hand E
Ω

+ (u − v) = 0 on ∂Ω+ as it is implied by the singular trace datum in (4.1) and the continuity

on ∂Ω+ ∩ Ω while, on the other u − v ≤ 0 in CΩ+. This yields Ω+ = 0 and v ≥ u in Ω. Repeating the argument,

we deduce also u ≤ v and this completes the proof of the lemma.

Lemma 4.5. Let f : Ω → ℝ be a continuous function such that

∫
Ω

|f |δs < +∞. (4.2)

Then,

lim

η↓0
(
1

η ∫
{δ(x)<η}

δ(x)1−s ∫
Ω

G
Ω
(x, y)f(y) dy dx) = 0. (4.3)

Proof. Equation (4.3) expresses a notion of weak trace at the boundary introduced by Ponce [23, Proposi-

tion 3.5]. Choose η > 0 small and consider the integral

1

η ∫
Ω

δ(x)1−sχ(0,η)(δ(x))∫
Ω

G
Ω
(x, y)f(y) dy dx. (4.4)

We are going to show that it converges to 0 as η ↓ 0. By splitting f into its positive and negative part, we can
assume, without loss of generality, that f ≥ 0. Fix σ ∈ (0, s) and exchange the order of integration in (4.4).
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Our claim is that

∫
Ω

G
Ω
(x, y)δ(x)1−sχ(0,η)(δ(x)) dx ≤

{
{
{

Cη1+σδ(y)s−σ if δ(y) ≥ η,
Cηδ(y)s if δ(y) < η.

(4.5)

This would prove

1

η ∫
Ω

f(y)∫
Ω

G
Ω
(x, y)δ(x)1−sχ(0,η)(δ(x)) dx dy ≤ Cησ ∫

{δ(y)≥η}∩Ω

f(y)δ(y)s−σ dy + C ∫
{δ(y)<η}∩Ω

f(y)δ(y)s dy,

where the second addend converges to 0 as η ↓ 0 by (4.2). For the first addend, we have that ησ f(y)δ(y)s−σ

converges pointwisely to zero for any y ∈ Ω and ησ f(y)δ(y)s−σ ≤ f(y)δ(y)s if y ∈ Ω ∩ {δ(y) > η}. Therefore, we
have the convergence to 0 by dominated convergence.

We turn now to the proof of (4.5). For any y ∈ Ω one has

∫
Ω

G
Ω
(x, y)δ(x)1−sχ(0,η)(δ(x)) dx ≤ η1+σ ∫

Ω

G
Ω
(x, y)δ(x)−s−σ dx ≤ Cη1+σδ(y)s−σ , (4.6)

where we have used the regularity at the boundary in [1, Proposition 1.2.9]. In particular, (4.6) holds when

δ(y) > η.
To prove the other part of (4.5), we write (dropping from now on multiplicative constants depending

on N, Ω and s)

∫
Ω

G
Ω
(x, y) δ(x)1−sχ(0,η)(δ(x)) dx ≤ η1−s ∫

{δ(x)<η}∩Ω

(δ(x)δ(y) ∧ |x − y|2)s

|x − y|N
δ(x)1−s dx,

and we are allowed to perform the computations only in the case where ∂Ω is locally flat where the above

reads as

η

∫
0

∫
B

[xNyN ∧ (|x� − y�|2 + |xN − yN |2)]s

(|x� − y�|2 + |xN − yN |2)N/2
⋅ x1−sN dx� dxN ,

where x = (x�, xN) ∈ ℝN−1 ×ℝand y = (y�, yN) ∈ ℝN−1 ×ℝ. First note thatwe canassume,without loss of gen-

erality, that y� = 0 and a ∧ b ≤ 2ab/(a + b)when a, b > 0.With the change of variable xN = yN t and x� = yN ξ ,
we reduce to

y1+sN

η/yN

∫
0

∫
B
1/yN

t
(|ξ|2 + |t − 1|2)N/2−s

⋅
dξ

(|ξ|2 + |t − 1|2 + t)s
dt

and, passing to polar coordinates in the ξ variable,

y1+sN

η/yN

∫
0

1/yN

∫
0

tρN−2

(ρ2 + |t − 1|2)N/2−s
⋅

dρ
(ρ2 + |t − 1|2 + t)s

dt

≤ y1+sN

η/yN

∫
0

1/yN

∫
0

tρ
(ρ2 + |t − 1|2)3/2−s

⋅
dρ

(ρ2 + |t − 1|2 + t)s
dt.

We deal first with the integral in the ρ variable. We have⁴

t
1/yN

∫
0

ρ
(ρ2 + |t − 1|2)3/2−s

⋅
dρ

(ρ2 + |t − 1|2 + t)s

≤
t

(|t − 1|2 + t)s

1

∫
0

ρ
(ρ2 + |t − 1|2)3/2−s

dρ + t
1/yN

∫
1

ρ
(ρ2 + |t − 1|2)3/2

dρ

≤
t

(|t − 1|2 + t)s
⋅
(ρ2 + |t − 1|2)−1/2+s

2s − 1

!!!!!!!!!

1

ρ=0
+

t
(1 + |t − 1|2)1/2

.

4 The computation which follows is not valid in the particular case s = 1/2, but with someminor natural modifications the same

idea will work.
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Then,

t
1/yN

∫
0

ρ
(ρ2 + |t − 1|2)3/2−s

⋅
dρ

(ρ2 + |t − 1|2 + t)s
≤

{{{{
{{{{
{

t
(|t − 1|2 + t)s|t − 1|1−2s

+
t

(1 + |t − 1|2)1/2
, s ∈ (0, 1/2),

t(1 + |t − 1|2)s−1/2

(|t − 1|2 + t)s
+

t
(1 + |t − 1|2)1/2

, s ∈ (1/2, 1).

The two quantities are both integrable in t = 1 and converge to a positive constant as t ↑ +∞, therefore

y1+sN

η/yN

∫
0

1/yN

∫
0

tρN−2

(ρ2 + |t − 1|2)N/2−s
⋅

dρ
(ρ2 + |t − 1|2 + t)s

dt ≤ ηysN = ηδ(y)s ,

which completes the proof of (4.5).

4.2 Variational weak solutions vs weak L1 solutions

In this subsection we are going to prove the equivalence – for some class of Dirichlet problems – between the

definition of weak L1 solution and the more standard one of variational weak solution.

Definition 4.6. Given f ∈ L∞(Ω), a variational weak solution of

{
(−∆)su = f in Ω,

u = 0 in CΩ
(4.7)

is a function u ∈ Hs(ℝN) such that u ≡ 0 in CΩ and for any other v ∈ Hs(ℝN) such that v ≡ 0 in CΩ, we have

∫

ℝN

(−∆)s/2u (−∆)s/2v = ∫
Ω

f v.

Lemma 4.7. Recall the definition of the space T(Ω) given in Definition 4.2. We have that T(Ω) ⊂ Hs(ℝN).

Proof. Consider ϕ ∈ T(Ω). The fractional Laplacian (−∆)s/2ϕ is a continuous function decaying like |x|−N−s

at infinity. So ‖(−∆)s/2ϕ‖L2(ℝN ) < ∞ and we can apply [10, Proposition 3.6].

Proposition 4.8. Let f ∈ L∞(Ω). Let u be a variational weak solution of (4.7). Then, it is also aweak L1 solution
to the problem

{{{
{{{
{

(−∆)su = f in Ω,
u = 0 in CΩ,

E u = 0 on ∂Ω.

Proof. Consider ϕ ∈ T(Ω). Then,

∫
Ω

u(−∆)sϕ = ∫

ℝN

(−∆)s/2u(−∆)s/2ϕ = ∫
Ω

fϕ,

where we have used Lemma 4.7 on ϕ.

Proposition 4.9. Let f ∈ L∞(Ω). Let u be a weak L1 solution to the problem

{{{
{{{
{

(−∆)su = f in Ω,
u = 0 in CΩ,

E u = 0 on ∂Ω.

Then, u is also a variational weak solution of (4.7).

Proof. Call w the variational weak solution of (4.7). By the previous Lemma, w is also a weak L1 solution. We

thus conclude u = w, by the uniqueness of a weak L1 solution.
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4.3 The test function space

In [7] the following definition of a weak solution is given.

Definition 4.10. Given a Radon measure ν such that δs ∈ L1(Ω, dν), a function u ∈ L1(Ω) is a weak solution
of

{
(−∆)su + f(u) = ν in Ω,

u = 0 in CΩ,

if f(u) ∈ L1(Ω, δs dx) and

∫
Ω

u(−∆)sξ + ∫
Ω

f(u)ξ = ∫
Ω

ξ dν

for any ξ ∈ Xs ⊂ C(ℝN), i.e., the following hold:
(1) supp ξ ⊆ Ω.
(2) (−∆)sξ(x) is pointwisely defined for any x ∈ Ω and ‖(−∆)sξ‖L∞(Ω) < +∞.

(3) There exist a positive ϕ ∈ L1(Ω, δsdx) and ε
0
> 0 such that

|(−∆)sεξ(x)| =
!!!!!!!!!

∫
CBε(x)

ξ(x) − ξ(y)
|x − y|N+2s

dy
!!!!!!!!!
≤ ϕ(x) for all ε ∈ (0, ε

0
].

The test space Xs in Definition 4.10 is quite different from the space T(Ω) which is used in Definition 4.2.

Still, testing a Dirichlet problem against one or the other does not yield two different solutions, i.e., the two

notions of weak L1 solutions are equivalent. We split the proof of this fact into two lemmas.

Lemma 4.11. We have that T(Ω) ⊂ Xs.

Proof. Pick ϕ ∈ T(Ω). Properties (1) and (2) of Definition 4.10 are satisfied by construction. In order to

prove (3), write for δ(x) < 2ε,

(−∆)sεϕ(x) = ψ(x) − PV ∫
Bε(x)

ϕ(x) − ϕ(y)
|x − y|N+2s

dy

= ψ(x) − PV ∫
Bδ(x)/2(x)

ϕ(x) − ϕ(y)
|x − y|N+2s

dy − ∫
Bε(x)\Bδ(x)/2(x)

ϕ(x) − ϕ(y)
|x − y|N+2s

dy (4.8)

with ψ := (−∆)sϕ|
Ω
∈ C∞c (Ω). Consider α ∈ (0, s). For the first integral,

!!!!!!!!!
PV ∫

Bδ(x)/2(x)
ϕ(x) − ϕ(y)
|x − y|N+2s

dy
!!!!!!!!!
≤ ‖ϕ‖C2s+α(Bδ(x)/2(x)) ∫

Bδ(x)/2(x)
dy

|x − y|N−α

= ‖ϕ‖C2s+α(Bδ(x)/2(x))ωN−1α (
δ(x)
2

)
α
,

where, by [25, Proposition 2.8],

‖ϕ‖C2s+α(Bδ(x)/2(x)) = 2

2s+αδ(x)−2s−α
"""""""
ϕ(x + δ(x)

2

⋅ )
"""""""C2s+α(B)

≤ Cδ(x)−2s−α(
"""""""
ϕ(x + δ(x)

2

⋅ )
"""""""L∞(B)

+
"""""""
ψ(x + δ(x)

2

⋅ )
"""""""Cα(B)

)

≤ Cδ(x)−2s−α(‖ϕ‖L∞(Bδ(x)/2(x)) + δ(x)α‖ψ‖Cα(Bδ(x)/2(x)))
≤ Cδ(x)−2s−α(‖ψ‖L∞(ℝN )δ(x)s + δ(x)α‖ψ‖Cα(ℝN ))

≤ C‖ψ‖Cα(ℝN )δ(x)−2s .
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The integration far from x gives
!!!!!!!!!

∫
Bε(x)\Bδ(x)/2(x)

ϕ(x) − ϕ(y)
|x − y|N+2s

dy
!!!!!!!!!
≤ ‖ϕ‖Cs(ℝN ) ∫

Bε(x)\Bδ(x)/2(x)
dy

|x − y|N+s

≤ ‖ϕ‖Cs(ℝN ) ∫

ℝN\Bδ(x)/2
dz

|z|N+s

≤ ‖ϕ‖Cs(ℝN )
ωN−1
s (

2

δ(x))
s
.

All this entails

δ(x)s|(−∆)sεϕ(x)| ≤ δ(x)s|ψ(x)| + C‖ψ‖Cα(ℝN )δ(x)α−s + C‖ϕ‖Cs(ℝN ) when δ(x) < 2ε.

For δ(x) ≥ 2ε one does not have the second integral on the right-hand side of (4.8) whereas the first one is

computed on the ball of radius ε, where the same computations can be carried out. This proves the statement

of the lemma.

Lemma 4.12. Given a Radon measure ν ∈ M(Ω) such that δs ∈ L1(Ω, dν), if a function u ∈ L1(Ω) satisfies

∫
Ω

u(−∆)sξ = ∫
Ω

ξ dν for any ξ ∈ T(Ω), (4.9)

then the same holds true for any ξ ∈ Xs.

Proof. Pick ξ ∈ Xs. By definition, ζ := (−∆)sξ ∈ L∞(Ω). Consider the standard mollifier η ∈ C∞c (ℝN) and
ηε(x) := ε−Nη(x/ε). Then,

ζε := ζχΩ ∗ ηε ∈ C∞(ℝN) and ‖ζε‖L∞(Ω) ≤ ‖ζ ‖L∞(Ω). (4.10)

Define ξε as the solution to
{{{
{{{
{

(−∆)sξε = ζε in Ω,

ξε = 0 in CΩ,

E ξε = 0 on ∂Ω.

Also, for ρ > 0 small, consider

Ωρ := {x ∈ Ω : δ(x) > ρ}

and a bump function bρ ∈ C∞c (ℝN) such that

bρ ≡ 1 in Ω
2ρ , bρ ≡ 0 inℝN \ Ωρ , 0 ≤ bρ ≤ 1 inℝN .

Then, ζε,ρ := bρζε ∈ C∞
0

(Ω). Let ξε,ρ ∈ T(Ω) be the function induced by ζε,ρ. By (4.9),

∫
Ω

uζε,ρ = ∫
Ω

ξε,ρ dν. (4.11)

We have ζε,ρ → ζε as ρ ↓ 0 with ‖ζε,ρ‖L∞(Ω) ≤ ‖ζε‖L∞(Ω) and

|ξε,ρ(x)| ≤ C‖ζε,ρ‖L∞(Ω)δ(x)s ≤ ‖ζε‖L∞(Ω)δ(x)s ,

so that we can push equality (4.11) to the limit to deduce, by dominated convergence,

∫
Ω

uζε = ∫
Ω

ξε dν. (4.12)

Similarly, since ‖ζε‖L∞(Ω) ≤ ‖ζ‖L∞(Ω), letting ε ↓ 0, yields

∫
Ω

uζ = ∫
Ω

ξ dν.
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5 Examples
In the next two examples we look at the two critical cases in the power-like nonlinearity, adding a logarithmic

weight.

Example 5.1 (Lower critical case for powers). We consider here

f(t) = t1+2s lnα(1 + t), α > 0.

In this case,

tf �(t)
f(t)

=
(1 + 2s)f(t) + αtf(t)

(1+t) ln(1+t)
f(t)

= 1 + 2s + αt
(1 + t) ln(1 + t)

.

Condition (1.8) turns into

+∞

∫
u

(
t

t1+2s lnα(1 + t)
)
1/(2s)

dt =
+∞

∫
u

dt
t lnα/(2s)(1 + t)

< +∞,

which is fulfilled only for α > 2s. Also, hypothesis (1.10) becomes

+∞

∫
t
0

t1+2s−2/(1−s) lnα(1 + t) dt < +∞,

which is satisfied by any α > 0 since (1 + 2s)(1 − s) − 2 < s − 1.

Example 5.2 (Upper critical case for powers). We consider here f(t) = t(1+s)/(1−s) ln−β(1 + t), β > 0. In this

case

tf �(t)
f(t)

=
1+s
1−s f(t) −

βtf(t)
(1+t) ln t

f(t)
=
1 + s
1 − s

−
βt

(1 + t) ln(1 + t)
.

Hypothesis (1.8) turns into

+∞

∫
u

(
t lnβ(1 + t)
t(1+s)/(1−s)

)
1/(2s)

dt =
+∞

∫
u

ln

β/(2s)(1 + t)
t1/(1−s)

dt, < +∞

which is fulfilled for any β > 0. Also, hypothesis (1.10) becomes

+∞

∫
t
0

t−1 ln−β(1 + t) dt < +∞,

which is satisfied by any β > 1.
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