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Abstract: We look for solutions of (—A)*u + f(u) = 0 in a bounded smooth domain Q, s € (0, 1), with a strong
singularity at the boundary. In particular, we are interested in solutions which are L1(Q) and higher order
with respect to dist(x, 0Q)5~1. We provide sufficient conditions for the existence of such a solution. Roughly
speaking, these functions are the real fractional counterpart of large solutions in the classical setting.
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1 Introduction

In the theory of semilinear elliptic equations, functions solving
~Au+fu)=0 inQcRN, (1.1)
where Q is open and bounded, coupled with the boundary condition
i )= o0

are known as boundary blow-up solutions or large solutions. There is a huge amount of bibliography dealing
with this problem which dates back to the seminal work of Bieberbach [3], for N = 2 and f(u) = e%. Keller [18]
and Osserman [22] independently established a sufficient and necessary condition on the nonlinear term f
for the existence of a boundary blow-up solution which takes the form

+00
dt
——— < +0c0, whereF' =f>0, (1.2)
J JED

and it is known as the Keller-Osserman condition. One can find these solutions with singular behaviour
at the boundary in a number of applications. For example, Loewner and Nirenberg [21] studied the case
f(u) = ulN+2/IN=2) " N > 3, which is strictly related to the singular Yamabe problem in conformal Geometry,
while Labutin [19] completely characterized the class of sets Q that admit a large solution for f(u) = u4, g > 1,
with capacitary methods inspired by the theory of spatial branching processes, that are particular stochastic
processes. See also the purely probabilistic works by Le Gall [20], and Dhersin and Le Gall [9] dealing with
the particular case g = 2.

In this paper we tackle equation (1.1) when the Laplacian operator is replaced by one of its fractional
powers. The fractional Laplacian (-A)®, s € (0, 1), is an integral nonlocal operator of fractional order which
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admits different equivalent definitions, see, e.g., [10]. We will use the following:

(=AY u(x) = A(N, 5) PV J u(x) -~ u@y) u(x) - u(y)

—————dy =A(N, s)li _—
’ |X_y|N+25 y ( S) &}fg J |X_y|N+Zs

{ly—xI>¢}

dy, (1.3)

where A(N, s) is a renormalizing positive constant. This operator generates! a Wiener process subordinated
in time with an s-stable Lévy process. The Dirichlet problem related to (-A)* is of the form

-A’u=f inQ,
u=g inRV\Q,
because the data have to take into account the nonlocal character of the operator. Nevertheless, in [1] the
author showed how this problem is ill-posed in a weak L' sense, of Stampacchia’s sort, unless a singular

trace is prescribed at the boundary. A well-posed Dirichlet problem needs to deal with two conditions at the
same time. Namely, if d denotes the distance to the boundary 0Q, it looks like

(-A)’u=f inQ,
u=g in RN \ Q,
d™u=h onoQ,

where the data satisfy the following assumptions:

J|f| & < +o0, j lgld™> min{1, d™N") < +00, [Hlze(o0) < +00.

Q R¥\Q
Further references in this direction are the recent works by Grubb [16, 17], where also the regularity up to the
boundary is investigated. This means in particular that in the context of fractional Dirichlet problems there
are solutions with an explosive behaviour at the boundary as a result of a linear phenomenon. For instance,
the solutions to

(-AY’u=0 in By, (-AYu =0 inBj,
u(x) = (x> =152 inRY\ By, and u=0 inRN\B;,
d"™Su=0 on 0B d"Su=1 ondB;

are of the order of 0(d~%/2) and 0(d*™1), respectively, at 0B, see [1]. The existence of harmonic functions of
this sort can therefore be used to prove, via a sub- and supersolution argument, the existence of boundary
blow-up solutions to nonlinear problems of the form

(-A)°u = —f(x,u) inQ,
u=g in RV \ Q,
d"Su=nh on 0Q

with f(x, u) > 0. Anyhow, this singular behaviour is driven by a linear phenomenon rather than a compensa-
tion between the nonlinearity and the explosion (as in the classical case). Indeed no growth condition on f
arises except when h # 0, where one needs

[ rex, a0 Hdeo dx < o,

Q

in order to make sense of the weak L! definition.
For this reason we address here the question of the existence of solutions to problems of the form

(-A)*u=—f(u) inQ,
u=g inRV\ Q, g=0, J gd~*min{1, dV5} = +c0,
d"Su=+00 o0onoQ, RM\Q

providing sufficient conditions for the solvability. In doing so, we extend the results by Felmer and Quaas [13],

1 Recall that —A is the infinitesimal generator of the Wiener process, modelling the Brownian motion.
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and Chen, Felmer and Quaas [6] for f(u) = u?, which is the only reference available on the topic, and we also
clarify the notion of large solution in this setting. The results listed in Theorems 1.3 and 1.5 below can be
applied to a particular case of the fractional singular Yamabe problem, see, e.g., [15].

1.1 Hypotheses and main results

We work with the following set of assumptions:

« Qisabounded open domain of class C2.

« fisanincreasing C! function with f(0) = 0.

o Fisthe antiderivative of f vanishing in 0, that is,

t
F(t) := jf(r) dr. (1.4)
0
o There exist 0 < m < M such that
1+m<tf,(t)<1+M (1.5)
T fly T ’ '
and thus f satisfies (1.2), because by integrating the lower inequality, one gets
1+m f(l) 2+m
ft) = f()t and F(t) > S+m mt .
We can therefore define the function
+00
dt
(W) := J _ar (1.6)
¢ 5 VF (t)
« The function ¢ satisfies
+00
J PO dt < +o0. (1.7)

1
In what follows we will use the expression g < h, where g, h: (0, +c0) — (0, +00), to shorten the follow-
ing condition:

“there exists C > 0 such that @ < g(t) < Ch(t) forany t > 0.”

Remark 1.1. The function ¢: (0, +c0) — (0, +c0) is monotone decreasing and

ltlln(;l @(t) = +oo, tlTIP(;IO ¢(t) =0.

Moreover,
1
W= -——e=
VE(u)
is of the same order as —(u f(u))~*/2 since for ¢t > 0 and some 1 € (0, t), by the Cauchy theorem, we have
L
F® _— f(n) T2+ M’
tfiy fo+tfi(r)y | _ 1
T 2+m’

This entails that the order of ¢(u) is the same as (u/f(u))'/2. Indeed, for u > 0 and some t € (u, +c0),

w1 [fO . [t
Viw _2NT TRer | fO-'0 4o

pw ¢’ (t) -ty iy 7
which belongs to (m, M) by hypothesis (1.5). Note that hypothesis (1.7) is therefore equivalent to
+oo< ¢ >1/(25) d ( )
— t < +00. 1.8
| (7

1
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Remark 1.2. In [18] and [22] condition (1.2) is proven to be necessary and sufficient for the existence of a
solution of

{ —Au=—f(u) inQ,

lim u(x) = +oo.
x—0Q

Note that if we set s = 1 in (1.7), then

+00 +00

+00 > J d(t) dt = J \/%dt: Tﬁ dt,

and we get the condition to force the classical solution u to be L1(Q). Indeed, in [11, Theorem 1.6] it was
proved that a solution u satisfies

lim 200

Jm =100 =1. (1.9

This yields that u € L(Q) if and only if ¢=1, the inverse function of ¢ (recall it is monotone decreasing), is
integrable in a neighbourhood of 0, i.e., with a change of integration variable

+00 +00

oL () dr = j t|¢’(t)|dt:j
¢~1(n) to

t

——dt
VEF(t)

+00 >

Ot

Our results can be summarised as follows.

Theorem 1.3. Suppose that the nonlinear term f satisfies hypotheses (1.5) and (1.7) above and

+00
j fO2079) dt < +oo. (1.10)
to

Then, the following problem:
(-8)°u=-fw) inQ,

u=0 inRV\ Q, (1.11)
dSu=+00 o0noQ
admits a solution u € L*(Q). Moreover, there exists ¢ > O for which

Ppu(x) = cd(x)®* inQ. (1.12)

Remark 1.4. The condition u € L1(Q) is necessary to make sense of the fractional Laplacian, see equation
(1.3). Also, compare the boundary behaviour in this setting expressed by equation (1.12) with the classical
one in equation (1.9).

Theorem 1.5. Suppose that the nonlinear term f satisfies hypotheses (1.5) and (1.7) above and

g:R¥\Q 5 [0,+00), geL'@®¥\Q)
P(g(x)) = d(x)®, near oQ. (1.13)

Then, the following problem:

{ (-A)Su = -fu) inQ, (1.14)

u=g inRV\ Q
admits a solution u € LY (Q). Moreover, there exists ¢ > O for which
¢u(x) = cd(x)®* near 0Q.

Remark 1.6. Note that in problem (1.14) we do not prescribe the singular trace at 0Q.
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Remark 1.7. The hypotheses in Theorem 1.3, when considering f(u) = u?, reduce to

2s

1-s )’

see Theorem 1.10. Note that this range of exponents does not converge, letting s T 1, to the set of admissible
exponents for —A, which is given by (1.2) and simply reads as p € (1, +c0). Indeed, we only have 1 + 2s — 3
as s T 1. This is not discouraging though. In this fractional setting we need u € L1(Q) to make sense of the
operator. This is an additional (natural) restriction we do not have in the classical problem, so it is reasonable
to get smaller ranges for p. Moreover, the classical solution to the large problem is known to behave like (cf.
equation (1.9))

pe(1+23,1+

u=d2e,

and such a u is in L'(Q) when p > 3. In this sense, we actually have the asymptotic convergence of the ad-
missible ranges of exponents. Compare this also with Remark 1.2.

Remark 1.8. As it will be clear in the following proofs, hypothesis (1.5) is technical and not structural. We
conjecture that it is not necessary to establish existence results. But let us mention how a similar assump-
tion arises naturally even in the classical framework when dealing with the computation of the asymptotic
behaviour of the solution, see [2, equations (B) and (B)'].

The strategy to prove the existence result in Theorem 1.3 is to build the sequence {uy}yen of solutions to the
following problem?:
(=D)*ur = ~flur) inQ,

U =0 inRN\ Q, (1.15)
Eur=k on oQ,

and then let k T +co. In case uy admits a limit, then we will need to prove that this is the solution we were
looking for. This might also be called the minimal large solution, by borrowing the expression used in the
classical theory.

We can also provide a partial nonexistence result.

Theorem 1.9. Suppose there exist a, b > O for which
ft) <a+bt foranyt e (0, +00). (1.16)
Then, there exists a > O such that
Uur(x) T 400 as k T +oo, whenever d(x) < a.

In the case of power-like nonlinearities we can prove the following.

Theorem 1.10. Let f(t) = t?, p > 0. Then, the following hold:
1) Ifpe[1+ %, +00), then the approximating sequence {uy} i< does not exist.
2) Ifpe(1+2s,1+ %), then the approximating sequence converges to a solution u of (1.11) and

u < Cd2/0D,

(3) Ifp € (1, 1 + 5), then the approximating sequence exits L1(Q), meaning lukllzi) T+ooas k T +oo.
(4) Ifp € (0, 1], then the approximating sequence blows-up uniformly in some open strip near the boundary.

1.2 Notations

In the following we will always denote by CE = RN \ E for any E c RV,

2 The operator E denotes the singular trace operator defined in [1].
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Hypothesis (1.5) implies that f(t)t~1"M is monotone decreasing and f(t)t 1™ is monotone increasing,
since

d f(o) ft) d f(t) 1 f(t)
= mm(fo-armi2) <o and 2T - (ro-armiY)z0.
We write this monotonicity conditions as
() < flet) < cPMA), c>1, t>0. (1.17)
The function F satisfies, similar to (1.5), the following inequalities:
tf(t)
2+msm32+M. (1.18)
Indeed, by integrating (1.5), we deduce
t
(1+m)F(t) < I 7 f'(1) dt = tf(t) - F(b).
0
Let i = ¢! be the inverse of ¢, so that
+00 dt
V= J —) v=0. (1.19)
VF(t)
)

The function ) is decreasing and (v) T +coasv | 0. Moreover, by Remark 1.1 and (1.18), for u > 0 and some
y € (U, +00), we have

2
+00 __1 _
o)  VFW J dt  “Tm 1 = u
1 - N yfy) T yfe) 2
u|¢’ (u)| u F(t) _F(y) T 2Ry 2F(y) < E’
which in turn, by setting v = ¢(u), implies that
VIl/J w2
One can prove also
P(ev) < c?Myv), ce(0,1),v>0, (1.21)

as we have done for (1.17) above. Also, by (1.18) and (1.20), we have

vY'w) VW) VE@W) _ vY'e)?
o) 29) Yoy w2

(1.22)

1.3 Construction of a supersolution

In this paragraph we prove the key point for the proof of Theorems 1.3 and 1.5, that is, we build a superso-
lution to both problems by handling the function U defined in (1.23) below.

Since by assumption 0Q € C?, the function dist(x, 0Q) is C? in an open strip around the boundary, ex-
cept on 0Q itself. Consider a positive function §(x) which is obtained by extending dist(x, 0Q) smoothly to
RN\ 0Q. Define

Ux) = p(6(x)%), xeRVN, (1.23)

Lemma 1.11. The function U defined in (1.23) is in L1(Q).

Proof Since both 1 and §° are continuous in Q, we have that U € Ll (Q). Fix 8, > 0 small and consider

={x € Q: 6(x) < 8p}. We have (using once the coarea formula)

loc

[

J P60 dx<C j P(t) dt.

Qo 0
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Apply now the transformation (t°) = n to get

+00
| voax<c [ ngpa-riganian,
Qo Mo
where, by Remark 1.1, -
1 n
1" ()] = and ¢(n):\j—.
nfn) f)
Therefore,
+00
n 1/(2s)
UG d gcj i/ dn,
J s <f(n)> 1
Qo Mo
which is finite by (1.8). O

The following Proposition shows that U is a good starting point to build a supersolution. The proofis technical
but this is the key step for the following.

Proposition 1.12. For some C, 6y > 0, the function U defined in (1.23) satisfies
(-A)°U = -Cf(U) inQs, ={x€Q:8(x) < 6o} (1.24)
Before giving the proof, we prove a preliminary lemma.

Lemma 1.13. Let Q c RN be a bounded open domain with compact boundary Q. Cover 0Q by a finite number
of open portions T c 0Q, j=1,...,n. For any n € 0Q, there exists i(n) € {1, ..., n} such that n € Ty for
which

dist(n, 0Q \ Typp) = ¢ (1.25)

for some constant c > 0 independent of n € 0Q.
Proof. For any j =1,...,n, the function n — dist(r7, 0Q \ Tj) is continuous on 0Q and so is the function
n — max; dist(n, 0Q \ I';). There exists a point 1. € 0Q, where 1 — max; dist(n, 0Q \ T;) attains its mini-

mum. Such a minimum cannot be 0 because 1. belongs at least to one of the I';. This implies that for any
n € 0Q, there exists i(n) € {1, ..., n} such that

max dist(n., 0Q \ I'}) < maxdist(n, 0Q \ T}) = dist(n, 0Q \ Tiq)). O
j j

Proof of Proposition 1.12. We start by writing, for x € Q,

(8)°UC) _ P(B(0)%) - P(6()°) P(B(0)%) - P(E()°)
A(N,s) PVJ |x — y|N+2s dy + j [x — y|N+2s d

(1.26)

Let us begin with an estimate for

PVJ Y60 - YY) ,

|X — y|N+25
Split the integral into
P6(x)*) - p(6(y)*) P6()*) - p(6(y)*) P6(x)*) - p(6(y)*)
J Ix - y|N+25 dy + PVQJ Ix - y|N+Zs dy + J Ix - y|N+25 ’

where we have set
Q=0Q:UQuUQ3

with

0;={yen:60)> 2o},

1
Q {y €0: 2800 < 80) < %5(;()},

Q5 = {y cQ:6() < %5(x)}.
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In Q; we have in particular 6(y) > 6(x) so that, since i is a decreasing function, the first integral contributes
by a positive quantity. Now, let us turn to the integrals on Q, and Q3. Set x = 6 + §(x)V8(x),0 € 0Q. Uptoa
rotation and a translation, we can suppose that 8 = 0 and V&(x) = ey.

Let {T; ;’:1 be a finite open covering of 0Q and let T := T';(p) (in the notations of the last lemma) be a
neighbourhood of 0 on 0Q chosen from {l"j}]f;l and for which (1.25) is fulfilled. Let also

w={yeRN:y=n+68y)Vsy), ner}.
The set T ¢ 0Q can be described as the graph of the following C? function:
y:Bl(0) <RVt SR, n'—y(n') suchthatn=(n',y(n")) €T,

satisfying y(0) = |Vy(0)| = 0.

The integration on (Q; U Q3) \ w is of lower order with respect to the one on (Q; U Q3) N w, since in the
latter we have the singularity in x to deal with, while in the former |x - y| is a quantity bounded below inde-
pendently on x. Indeed, when y € (Q, U Q3) \ w, we have

Ix =yl = In+8y)Vé(y)l - 6(x) = Inl - 6(y) - 6(x) = dist(0, 0Q\ T) - %5()(),

where §(x) is small and the first addend is bounded uniformly in x by (1.25).
We are left with

Y(600°) - P(6(y)°) Y(6(0)°) - P(6(y)°)
C-PV J |X_y|N+25 dy+C J |X_y|N+Zs d

Q>Nw Q3nw
Let us split the remainder of the estimate in steps.

First step: The distance between x and y. We claim that there exists ¢ > 0 such that

{ Ix=yI> 2 c(160) - 6WIF+In'1?), ye(@uQs)nw, (1.27)

y=n+8(y)V8(y), n='ymn").
Since in our set of coordinates x = §(x)ey, we can write
X =yI? = 18(0en ~ 8(y)en + 8(v)en — ynen ~y'I°
> [6(x) - 8()I* = 216(x) = 8W)| - 16() — ynl +18(y) — ynlI* + Iy 7.

We concentrate our attention on |6(y) — yn|. The idea is to show that this is a small quantity. Indeed, in the
particular case when T lies on the hyperplane yy = 0, this quantity is actually zero. As in the definition of w,
welety = n+8(y)Vé(y)andn = (n', y(n")) € T.Thus, yy = y(n') + 6(y){VE(y), en), where V&(y) is the inward
unit normal to 0Q at the point 7, so that

(—V)’("l’), 1)

VIVy(nI% + 1
' ' 5(Y)VY('1’)

Y =n'-———"— and yn=y(n)+
\IVy(mHI2 +1

Now, since y € Q, U Q3, we have |6(x) — 6(y)| < 6(x) and

. r
\IVy("I2 +1

where, in this case, C = |lyllc2(s,) depends only on the geometry of 0Q and not on x. By (1.28), we have

Vé(y) =

5(y)

VIVy(m)I2 + 1

(1.28)

16(y) =yl < ly(n")l + 6(y)<1 - ) < Cln'I* +2¢8(0In' 1%,

26(y)% [Vy(n")I?

V12 +2C800)2 1012 < 21V 12 + C8GO2 1n' 12
Va1 S 22680 ' < 211+ €800 In' I,

In'1? <2ly'|* +
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so that [n'|> < Cly'|> when §(x) is small enough. Finally,

Ix =yl = 16(x) = 8W)I* + Iy'1* - 216(x) - 6(y)| - 16(y) - yn]
> |8(x) - 6()I* +cn'I> - 2€8(x0)In" I,

where, again, C = ||ylc2s,) and (1.27) is proved provided x is close enough to 0Q.

Second step: Integration on Q; N w. Using the regularity of ) and & we write

PE()°) = hB(1)°) = V(R 8°)(x) - (x = ¥) = ID* (¥ © 8°)L=(,0) X = VI,

where I,b, 55 le)ll 5 lpl &8
2 _SY8%) oo STYT(6°) s(s - 1)yY'(6°%)
D (¢ o (SS) = 515 D76+ 52-25 V6® Ve + TV&& V(S,
so that
'(8) v V()
DM s LD ) ey
" (l/) )"L (Q2nw) 51-s Lo () §2-2s Lo () 52-s Lo ()

By the definition of Q, and by (1.21), we can control the sup-norm by the value at x, i.e.,

ID*( © 6%l Leo(rnw) <

— 391

CI!,D’(5(X)S)| Cl/)"(ﬁ(X)s) CI¢’(5(X)S)I<C¢”(5(X)S) C|¢'(5(X)S)|

and using equation (1.22), we finally get

P (6(x)°%)

ID* (¥ © 6%, 00) < Cw-

If we now retrieve the whole integral and exploit (1.27), we have

sy _ s " s
PV j Y(6(x)°) - (6(y) )d >_Cl/J (6(0)°) J dy

|X _ y|N+25 - 5(X)2—25 |X _ y|N+25—2
QoNw QNw
L1050 | dy
109 by o (1600 = 8(y)12 + n|2)(N+2s-2)/2"
Nw

2

We focus our attention on the integral on the right-hand side. By the coarea formula,

36(x)/2
J dy _ dt do(n)
(16(x) = 8(y)[2 + [n|2)N+25-2)/2 (1600) = £ + [n|»)(N+25=2)/2
Qonw s(/2  (B)=tnw
36(x)/2
dn'
sC J dt (|6(X) _ t|2 + |rll|2)(N+2$—2)/2
6(x)/2 B,
36(x)/2 r
N-2
<C P

a (16(x) — t|? + p2)(N+25-2)/2 dp
8c0/2 0

36(x)/2 r
o
= J dt!(|6(x>—t|2+p2)<25+1>/2 dp

8(x)/2
36(x)/2
<c dt
B It - 6(x)|2s-1"
8(x)/2
We can retrieve now the chain of inequalities we stopped above:
36(x)/2
P"(6(x)°) dt

> —CyP" (6(x)%).

J PO - YOW")

|X _ y|N+Zs 6(X)2—2s |6(X) _ t|—1+25
Q3Nw 6(x)/2

5(X)1‘5 + 5(X)2—25 + 6(X)2_5 - 5(X)2‘25 + 5(X)2‘5 ’



392 —— N.Abatangelo, Very large solutions for the fractional Laplacian

Third step: Integration on Q3 N w. Using (1.27) once again, we have

I PEX)*) - P(6(y)*) dy > - J YEw?) 4,

N+2s N+2s
X — X —
e Ix -yl o Ix -yl

. c J By
(16(x) — 8312 + 1) "=

Q3Nw
6(x)/2

P(E)
(600 - 1

6(x)/2
Y(t5) dt.

2= 8(x)1+2s

The term we have obtained is of the same order of §(x) 251 (6(x)®), thus by (1.20),

dy

6(x)/2 6(x)/2 5()() 6()()5 1 8(x)/2
perde= | eyerde=22(50) -1 | v
0 0 (0]
so that
i $(6(0%)
s - Sy _ 1+2s |
0 W(E) i = 6(0P(60°) = 6012 - EEEC,

Recall now that (8(x)%)8(x) =2 is in turn of the same size of "' (6(x)®) by (1.22).

Fourth step: The outside integral in (1.26). We focus now our attention on

J YEy)?) - Pp6()°)

|X _ y|N+2s

First, by using the monotonicity of i, we write

PE(y)*) — Pp(6(x)%)

DE GRUYTER

(1.29)

dy.

Y(6(y)°) - Y(6(0)°) Y(6(y)°) - Y(6(0)°)
J |X _ y|N+Zs dy s J |X _ y|N+Zs dy +

{yeCQ:6(y)<6()}nw {yeCQ:6(y)<6()N\w
The second integral gives

Y6(y)°) - P(6(x)*)

|X — y|N+ZS

dy < Clp(8°)lp wm)»
{yeCQ:6(y)<6(x)N\w
because the distance between x and y is bounded there. Again we point out that

s s 809 Sy _ s
Y(6(y)°) - P(6(x) )dysC J Y(t%) ¢(5(X))dt

|X _ y|N+Zs |5(X) + t|1+25

{6(y)<6C0nw
5(x)/2 8(x)

P(t%) Y(ts)
<C J et dt+C6 j

6(x)/2

|5(X) + tl 1+2s
(x)/2

IX _ y|N+Zs

s 6(x)
< €500 J Y(E) dt + cw(a(zis)) I 600 + 07172 dt

0 5(x)/2
6(x)
< CH(x) 1 J W(E) dt + CY(6(0%)6(),
0

which is of the order of " (§(x)®), by (1.29) and (1.22).
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In conclusion, we have proved that for §(x) sufficiently small,
(-0)°U() = ~CP" (8(x)°).

Recall now that "' (6%) = f(i - 6%) and U = ¢ o 6% in Q, so that

(-0)°U = -Cf(U)
holds in a neighbourhood of 0Q. O
Starting from U, it is possible to build a full supersolution in view of the following lemma.
Lemma 1.14. Letv: RN — R a function which satisfies (-A)Sv € C(Q). If there exist C, 8¢ > O such that

(-A)v = -Cf(v) inQs, :={x € Q:8(x)< b},

then there exists u > v such that (-A)’u > —f(u) throughout Q.

Proof. Define ¢: RN — R as the solution to

(-A)¥*¢=1 inQ,
¢£=0 inCQ, (1.30)
E&=0 onoQ,

and consider u = pv + A¢, where u, A > 1. If C € (0, 1], then (-A)’v > —f(v) in Qs,, so choose p = 1. If C > 1,
then choose p = CY/M > 1, in order to have in Qs,,

(=D)%U + f(@) = (D) (uv + A&) + f(uv + A&) = —u Cf(v) + f(uv) > (-u C + p"*M)f(v) = 0,

where we have heavily used the positivity of & and (1.17). Now, since (-A)°v € C(WQ&)), we can choose
A = ull(-8)*vllL=(a\0,,) SO that, also in Q \ Qs,,

(=8)°U = (~B)*(uv + A§) = p(-D)*v + A 2 0 = —f(w). -

2 Existence

Lemma 2.1. If the nonlinear term f satisfies the growth condition (1.10), then the function U defined in (1.23)
satisfies
lim §(x)*SU(X) = +oo0.
x—0Q

Proof. Write
lim inf §(x) S (8(x)*) = liminf u ¢(u) =95,
x—0Q ul+oo

Such a limit is +co if and only if

+00 dt
lim inf u%/~%) J = +00.
uf+co J V2F(1)
If we use L’Hopital’s rule to
J‘+OO dt
u V2F(t)
u-s/a-s) ’

we get the ratio u'/(*=)/+/2F(u), and applying once again L’Hépital’s rule, this time to u%/1=5)/F(u), we get
u(1+9)/(=5) /f(y), which diverges by hypothesis (1.10). Indeed, since f is increasing,

+00 +00

w99y = fruy . -5 | 29 aes | oo ae—o. 0
1+s uT+oo
u u

Collecting the information so far, we have that Lemmas 1.11, 1.14 and 2.1 fully prove the following theorems.
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Theorem 2.2. If the nonlinear term f satisfies the growth condition (2.1), then there exists a function u which is
a supersolution to (1.11). Moreover,
u=uP%+A¢ inQ,

where ¢ is the solution of (1.30), A > 0 and u = max{1, C'/M}, where C > 0 is the constant in (1.24) and M > 0
the one in (1.5).
Theorem 2.3. There exists a function u which is a supersolution to (1.14). Moreover,

u=uP®+A¢ inQ,

where ¢ is the solution of (1.30), A > 0 and u = max{1, C1/M}, where C > 0 is the constant in (1.24) and M > 0
the onein (1.5).

2.1 Proof of Theorem 1.3

Build the sequence of solutions to problems of the following form:
(=0)’uk = —f(ur) inQ,
ur=0 in CQ, (2.1)
Eur=k on 0Q, k € N.
The existence of any uy can be proved as in [1, Theorem 1.2.12], in view of hypothesis (1.10), since it implies
8o
J £(651)6° db < +oo.
0

The first tool we need is a Comparison Principle.
Lemma 2.4 (Comparison principle). Let v, w € C(Q) n L1(Q) solve pointwisely
{ (-A)’v<-flv) inQ, and { (-A)’w = —f(w) inQ,
v<0 in CQ w=>0 in CQ.
Ifv<swinU, :={x € Q:6x) < a} forsome a > 0, then v < w in the whole Q.

Proof. Consider Q" = {v > w} c (Q\ Uy,). The difference v — w achieves its (global) maximum at some point
x* € Q*.So
0 < (FA°(v =w)(x*) < fw(x™)) - flv(x™)) < O,
in view of the monotonicity of f. Thus, Q* must be empty. O
Step 1: {ux}rken has a pointwise limit. Any uy solves the equation in a pointwise sense, as Lemma 4.3 below
implies. The sequence {uy}rcn is increasing with k by the comparison principle (Lemma 2.4). Moreover, any
uy lies below u. Indeed, since E(u — ux) = +oo, then ux < u holds close to 0Q and another application of the
comparison principle yields uy < u in Q.
Finally, {ux}ken is increasing and pointwisely bounded by u throughout Q. This entails that

u(x) := lim ug(x)
kT+o0
is well defined and finite for any x € Q. Also, 0 < u < u in Q and since u € L'(Q), by Lemma 1.11 we have
that u € L1(Q).
Step 2: u € C(Q). Fix any compact D ¢ Q and choose ¢ > 0 such that §(x) > 2¢ for any x € D. Let
D:={yeQ:6(y)>cl

For any k, j € N, we have
(=0)° (Uisj — uk) = flur) - flugsj) <0 inD,
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and therefore
0% ukey 00 - w0 < | P06 V)it ) = ue(y)] s
eD
where P5(x, y) is the Poisson kernel associated to D, which satisfies (see [8, Theorem 2.10])
C 65(X)s
5 Ix—yIN’
When x € D c D one has |x - y| > c forany y € €D, and therefore

Ui (y) — ug(y) u(y) — ur(y)
—_— e d < C s v
5507 <c| 550)°

P5(x,y) < xeD,yecD.

0 < iy (0 - w0 < C | dy,

where the last integral converges by monotone convergence to O independently on x. This means the con-
vergence uy — u is uniform on compact subsets and since {uy}xen € C(Q) (cf. [1, Theorem 1.2.12]), we have
also that u € C(Q).

Step 3:u € C*(Q). Thisis a standard bootstrap argument using the elliptic regularity in [25, Propositions 2.8
and 2.9].

Step 4: u solves (1.11) in a pointwise sense. The function (-A)°u(x) is well defined for any x € Q because
u € C2(Q) n LY(RY). Using the regularity results in [25, Propositions 2.8 and 2.9], we have

(-A)°u = lim (-A)*ux = - lim f(uy) = —f(u).
kT+00 kT+00
Also, 61=Su > 61Suy holds in Q for any k € IN. Therefore, for any k € N,
liminf 6(x)"Su(x) > lim 80x) Sur(x) > AE uy = Ak
X—0Q X—0Q
for some constant A > 0 depending on Q and not on k. This entails
lim 6(x)'Su(x) = +co
x—0Q
and completes the proof of Theorem 1.3.

Remark 2.5. The proof of Theorem 1.5 is similar. Indeed, in the same way, the sequence of solutions to the
following problem:

(=A)*uy = —f(uy) in Q,
Uy = gx := min{k, g} in CQ, ke NN, (2.2)
Eur=0 on 0Q

approaches a solution of problem (1.14), which lies below the supersolution provided by Theorem 2.3.

2.2 Proof of Theorem 1.9
Following [1], we write the Green representation for uy:

ue(x) = k j Ma(x, 6) do(9) - j Galx, Yfury) dy,  x € Q.

20 0
Denoting simply
mi(0 = [ Mo(c,0)dot®) and §00 = [ Gatx.y) dy,
20 Q
we get

k() > khy(x) — a&(x) - b j Ga(x, y) ui(y) dy = khy (x) - a&(x) - bkj Got, i) dy.  (2.3)
Q Q
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Recall that £ = 6% and h; = §°~1. Applying [1, Proposition 3], we see that

hy(x0) — b j Gax,y) hi(y)dy > 0
Q

holds when x is taken close enough to 0Q. This concludes the proof.

3 The power case: Proof of Theorem 1.10

Proof of (1). We show how the following problem:
(-A)up = -uf inQ,
ur=0 incCQ, (3.1)
Eu; =1 on oQ
does not admit any weak or pointwise solution.

In both cases the solution would satisfy u; > ¢85! in Q for some c > 0. If u; was a weak solution then
for any ¢ € T(Q),
Jucarg s+ [ulg - [ oo,
Q Q o0
where
J e >C I /6D = 1o,
Q Q

because (1.10) does not hold, a contradiction.
If u; was a pointwise solution, then by Lemma 4.4 it would be a weak solution on any subdomain
D ¢ D ¢ Q. Therefore,

w00 =~ [ 6oty w7 dy+ [ Poey)uny)dy.
D €D
If up denotes the s-harmonic function induced by Eu = 1, then u; < up in Q and

w100 < - [ 6oty w0 dy + [ Poty)uo)dy = - [ Gote yus ()" dy + uo(-
D €D D
Fix x € Q. Letting now D ~ Q we have that Gp(x, y) T Gq(x, y) and
[Gayyur dy= cscor [ 8w wr dy = oo,
Q {26(y)<6(x)}
because (1.10) does not hold, a contradiction. O

Proof of (2). We apply Theorem 1.3 when f(t) = t?. In this case,

o0 _
0

so that hypothesis (1.5) is fulfilled. The function ¢ reads as (cf. equation (1.6))

>1,

+00

p() = J \]p—”t‘(p*“/z dt = | 2P0,
2 1

u

Hypothesis (1.7) can then be written as

+00

J 1PIC) 4 < 4o,

u
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which holds if and only if p > 1 + 2s. On the other hand, hypothesis (1.10) becomes

2 1+s 2s
-—— < -1, ie, < =1+—-. O
p 1-s p 1-s +1—s

Remark 3.1. We retrieve in this case some of the results in [6, Theorem 1.1, equations (1.6) and (1.7)] and
we obtain the explicit value of the parameter denoted? by 1o(a) € (-1, 0), which is 7o(a) = a — 1.

Proof of (3). Following [1], we write the Green representation for uy:

() = k j Ma(x, ) do(6) - j Galx, y) ur(y’ dy, x€Q.
0Q Q
Denoting simply
hy(x) o= j Ma(x, 6) do(8),
0Q

we have uy < khq in Q and

(%) = khy (x) — K° j Galx, y) uy)~* hy(y)* dy. (3.2)
Q

Define

£(x) = j Ga(x, y) dy,
Q

and recall that £ = 6%, while h; = §5~1. By (3.2) we deduce

[z i [uomse.

Q Q Q

Since p € (1,1 +s), we have that p—s € (1 -s, 1) and ui_s < uy. Thus, there exists a constant C > 0 such
that

J Uy + cj Uy 5D 5 kj hy,
Q Q Q

where s(s — 1) + s > 0, so (modifying C if necessary)
(C+1)Iuk2kjh1,
Q Q
which concludes the proof.

Proof of (4). This is a straightforward consequence of Theorem 1.9.

4 Remarks and comments

In this section we would like to point out some elements that may be unclear if left implicit. In the first sub-
section we discuss the relation between pointwise solutions and weak L solutions. The second one studies
the equivalence of variational weak solutions and weak L' solutions in some particular cases. The third and
last subsection deals with the definition of weak L! solution given by Chen and Véron [7], which amounts to
be equivalent to the one given in [1].

3 In the notations of [6], a € (0, 1) is the power of the Laplacian, which corresponds to s in our notations.
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4.1 Pointwise solutions vs weak L! solutions

For the sake of clarity we recall here the definitions involved. In the following, Q will always be a bounded
open subset of RY with C? boundary.
Definition 4.1. Given three measurable functions
f:Q->R, g:CQ—->R and h:0Q — R,
a function u: RN — R is said to be a pointwise solution of
(-A’u=f inQ,
u=g inCQ,

Eu=h onoQ,
provided that the following hold:
i) uelLl(Q).
(ii) Forany x € CQ, u(x) = g(x).
(iii) The principal value

u(x) — u(y)
Vﬂ{[] |X _y|N+Zs d

converges for any x € Q and

dy = f(x) foranyx e Q.

u(x) —u(y)
A(N, s) PVIRJN oy

(iv) For any 6 € 0Q the limit lim,_g 6(x)1~Su(x) exists and the renormalized limit E u satisfies E u(8) = h(6).

Definition 4.2. Given three measurable functions
f:Q->R, g:CQ—->R and h:0Q - R,
a function u: RY — Ris said to be a weak L' solution of
(-A’u=f inQ,
u=g inCQ,
Eu=h onoQ,
provided u € L1(Q) and for any
¢ € T(Q) = {p € CCRN) : (-A)’plg € C(Q), ¢ = 0in CQ}
the following holds:
[ucare=[ro- [ s-arg+ | npsg.
o) Q co 20

For further details and notation, we refer to [1].
Lemma 4.3. Take f € C* _(Q) for some a € (0, 1) with

loc
J|f|65 < +00,
Q
g: CQ — R measurable with

J 1216~ min{1, 6 N5} < +co,
en
heCQ) andu: RN — R aweak L solution to

-AN’u=f inQ,
u=g inCQ,
Eu=h onoQ.

Then, u is also a pointwise solution.
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Proof. We can write u as the sum

u(x) = j Ga(x, YY) dy + uo(x),
Q

where ug is the s-harmonic function induced in Q by the data g and h. For any x € Q, in a pointwise sense
we have that (-A)*u(x) = f(x), in view of the regularity of f and the construction of the Green kernel. Then, to
completely prove the lemma, it suffices to prove

lim 500" j Ga(x, ) f(y) dy = 0.
Q

This is proved in Lemma 4.5 below. O

Lemma 4.4. Take f € C* (Q) for some a € (0, 1), h € C(0Q) and u: RN — R a pointwise solution to

loc

-Nu=f inQ,
u=g inCQ, (4.1)
Eu=h onoQ.

If
j|f|6s < +00, j 916~ min{1, 6V} < +c0 and h € C(dQ),
Q eQ

then u is also a weak L' solution to the same problem.

Proof. We refer to [1, Theorem 1.2.8] for the existence and uniqueness of a weak L! solution v to problem
(4.1). By Lemma 4.3, v is also a pointwise solution. Thus,
(-A)*(u-v)=0 inQ,
u-v=0 inCQ,
E(u-v)=0 onoQ
in a pointwise sense. In particular, u — v € C(Q), since harmonic functions are smooth. Define

Q" i={xeQ:ux) >vx)},

in which u — v is a nonnegative s-harmonic function and, by [4, Lemma 5 and Theorem 1], it decomposes into
the sum of the s-harmonic function induced by the Eq+(u — v) trace and the one by its values on CQ*. But, on
the one hand Eq+(u - v) = 0 on 0Q" as it is implied by the singular trace datum in (4.1) and the continuity
on 0Q" N Q while, on the other u — v < 0in CQ™. This yields Q" = ¢ and v > u in Q. Repeating the argument,
we deduce also u < v and this completes the proof of the lemma. O

Lemma 4.5. Let f: Q — R be a continuous function such that

j|f|5s < +00. (4.2)
Q
Then,
lim ( 1 j 500 J Go(x, Y)Fy) dy dx) _o0. 4.3)
nlo \ n
{600)<n} Q

Proof. Equation (4.3) expresses a notion of weak trace at the boundary introduced by Ponce [23, Proposi-
tion 3.5]. Choose 1 > 0 small and consider the integral

% j 50010, (6(X)) j Ga(x, YY) dy dx. (4.4)
Q Q

We are going to show that it converges to 0 as n | 0. By splitting f into its positive and negative part, we can
assume, without loss of generality, that f > 0. Fix ¢ € (0, s) and exchange the order of integration in (4.4).
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Our claim is that

j Ga(x, Y)5(0 X (0,p(8(x)) dx < (4.5)

{Cn“%(y)s-" it6(y) = 11,
Q

Cné(y)* if 6(y) < 1.

This would prove

[ [ 6ottt ron@miaxaysen [ fnswTdyee | sy ay

1 Q Q {6(y)zninQ {8(y)<ninQ
where the second addend converges to 0 as 1 | 0 by (4.2). For the first addend, we have that n?f(y)6(y)5~°
converges pointwisely to zero for any y € Q and n?f(y)6(y)* ™7 < f(y)d(y)S ify € Q n{6(y) > n}. Therefore, we
have the convergence to 0 by dominated convergence.

We turn now to the proof of (4.5). For any y € Q one has

J Ga(X, Y)8(X)' Sy 0. (6(x)) dx < n**® J Ga(x,y)8(x)™"% dx < Cn**76(y)*~°, (4.6)
Q Q
where we have used the regularity at the boundary in [1, Proposition 1.2.9]. In particular, (4.6) holds when

6(y) > n.
To prove the other part of (4.5), we write (dropping from now on multiplicative constants depending
onN, Q and s)

J Ga(x,y) 6(x)1‘s)((0,,1)(6(x)) dx <nts
Q {6(x)<ninQ

(6(x)8(y) A lx - yI?)®
Ix - yN

50 dx,

and we are allowed to perform the computations only in the case where 0Q is locally flat where the above

reads as .
J J [xnyn A (X' = y'12 + [xy - ynI))]®

1-s !
<Xy o dx' dxy
N b
(X' = y'12 + Iy — yn1)V?

0B
wherex = (x', xy) € R¥"! x Randy = (y', yn) € R¥~! x R. First note that we can assume, without loss of gen-
erality, thaty’ = 0and a A b < 2ab/(a + b) when a, b > 0. With the change of variable xy = yytand x' = yn¢,

we reduce to
n/yn

1+s t A d'f
v J J(|€|2+|t—1|2)N/2-s G-

1/yn

and, passing to polar coordinates in the ¢ variable,

n/yn 1/yn .
y1+s tpN ’ . dp dt
VoLl el (2 +le- 11+ 0
n/yn 1/yn
1+s tp dp

dt.

< .
SVYn ] (P2 + |t —1]2)3/2-s  (p2 + |t —1]2 + 1)

We deal first with the integral in the p variable. We have*

1/yn
P . dp
(p2 + |t =12)3/2=s (p2+[t-1]2+ 1)
¢ 1 1/yn
p p
< dp +t J ——d
<(It—1|2+t)3!(p2+|t—1|2)3/2‘5 P - ¥
B t (p2+|t_1|2)—1/2+s 1 ) t
T(t-12+ )8 2s-1 =0 1 +|t-12)12°

4 The computation which follows is not valid in the particular case s = 1/2, but with some minor natural modifications the same
idea will work.
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Then,
1/ { + t s€(0,1/2)
f” p dp B K L I T CR TR T 1/2),
2 1 -112)3/25 (02 +1t—12+ 05 | #1 + |t —1/2)5-1/2 ¢
(p* +1t-1]%) (p? +| 1=+ 1) (1+] 1) se(1/2.1).

+ >
(E-12+05 (L+]t-1)12

The two quantities are both integrable in ¢ = 1 and converge to a positive constant as ¢ T +co, therefore

n/yn 1/yn foN-2 4
1+s P P s .
’ dt < =né(y)°,
YN o (PZ+|t—1|2)N/2—S (p2+|t_1|2+t)s nyy="n )
which completes the proof of (4.5). -

4.2 Variational weak solutions vs weak L! solutions

In this subsection we are going to prove the equivalence — for some class of Dirichlet problems — between the
definition of weak L! solution and the more standard one of variational weak solution.

Definition 4.6. Given f € L*°(Q), a variational weak solution of

(-A)’u=f inQ,
4.7
{ u=0 inCQ 4.

is a function u € HS(RN) such that u = 0 in CQ and for any other v € HS(RY) such that v = 0 in €Q, we have
J (=0)?u (-0)*%v = J fv.
RV Q

Lemma 4.7. Recall the definition of the space T(Q) given in Definition 4.2. We have that T(Q) ¢ H5(RN).

Proof. Consider ¢ € T(Q). The fractional Laplacian (=A% 2(;1) is a continuous function decaying like |x|~N-*
at infinity. So [|(-A)*2 ¢ || LYy < oo and we can apply [10, Proposition 3.6]. O

Proposition 4.8. Letf ¢ L>(Q). Let u be avariational weak solution of (4.7). Then, it is also a weak L' solution
to the problem
-AN’u=f inQ,

u=0 inCQ,
Eu=0 onoQ.
Proof. Consider ¢ € T7(Q). Then,
[ucare - [ corlucnrie - | g,
Q RN Q
where we have used Lemma 4.7 on ¢. O
Proposition 4.9. Let f € L®(Q). Let u be a weak L! solution to the problem
-A°u=f inQ,
u=0 inCQ,
Eu=0 onoQ.

Then, u is also a variational weak solution of (4.7).

Proof. Call w the variational weak solution of (4.7). By the previous Lemma, w is also a weak L! solution. We
thus conclude u = w, by the uniqueness of a weak L' solution. O
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4.3 The test function space

In [7] the following definition of a weak solution is given.

Definition 4.10. Given a Radon measure v such that 65 € L1(Q, dv), a function u € L*(Q) is a weak solution
of

=AN’u+fu)=v inQ,
u=0 inCQ,

if f(u) e L1(Q, 6° dx) and

[ ucares [ s = [ gav
Q Q Q

for any ¢ € X5 c C(RN), i.e., the following hold:

(1) suppé < Q.

(2) (-A)*&(x) is pointwisely defined for any x € Q and [[(-A)*¢&||z(q) < +00.
(3) There exist a positive ¢ € L1(Q, §5dx) and &q > 0 such that

500 - &)
| |N+2$
CB:(x)

(D)0l = dy| < ¢(x) foralle € (0, go].

The test space X in Definition 4.10 is quite different from the space T(Q) which is used in Definition 4.2.
Still, testing a Dirichlet problem against one or the other does not yield two different solutions, i.e., the two
notions of weak L! solutions are equivalent. We split the proof of this fact into two lemmas.

Lemma 4.11. We have that T(Q) c X.

Proof. Pick ¢ € T(Q). Properties (1) and (2) of Definition 4.10 are satisfied by construction. In order to
prove (3), write for §(x) < 2¢,

(-D)3p(x) = P(x) - PV j P00 -9 ,

|X _ y|N+25
e (x
P(x) - P(y) P(x) - ¢(y)
= l/)(X) -PV J % |N+Zs d Ix — y|N+25 dy (4'8)
By(x)/2(x) Be(X)\Bs(x)/2(X)

with ¥ := (-A)*plq € CX(Q). Consider a € (0, s). For the first integral,

X d
‘PV | ¢~ 9 y’s||¢||czs+a<36<x),z<x» | y

| y|N+Zs |X _ y|N—a
Bs(x/2(x) Bs(x/2(x)
WN-1 ( 5(x) )"‘

||¢||C25*‘" (Bsy2(0) — 2

where, by [25, Proposition 2.8],

Il casraBy o) = 225F28(x) 257

o5 N

(x5 M 5
< C6(X)7257a(||¢||L°°(BB(X)/2(X)) + 800 1P llca(Bsio 2 (0)

< CE() ™ ([l oo @) 6(0)° + 8() [l cecrry)
< Cllll ey 800>,

< c(s(x)-ZS-“(

C“(B))
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The integration far from x gives

P(x) - ¢(y) dy
m dy| < lplicswn) m
Be (X0)\Bs(x)/2(X) Be(X)\Bs(x)/2(X)
dz
<l Plesrny J 2]V
RM\Bs(x)/2
WN-1 ( 2 )S
< S | & < .
< lplicsmyy s \600)

All this entails
SO I(-A);p ()| < 8(X)* 1Y) + Clllcamyy6(x)*~° + Clipllcsrvy  When 6(x) < 2e.

For 8(x) > 2¢ one does not have the second integral on the right-hand side of (4.8) whereas the first one is
computed on the ball of radius &, where the same computations can be carried out. This proves the statement
of the lemma. O

Lemma 4.12. Given a Radon measure v € M(Q) such that §° € L1(Q, dv), if a function u € L1 (Q) satisfies
J u(-A)>5¢ = J &dv forany & € T(Q), (4.9)
Q Q
then the same holds true for any ¢ € X.
Proof. Pick ¢ € Xs. By definition, {:= (-A)°¢ € L®(Q). Consider the standard mollifier n € C°(RY) and
Ne(x) := e’ ¥n(x/¢). Then,
Ge =X * e € CO(RY) and  [1¢elleoa) < I¢llo(0)- (4.10)

Define &, as the solution to
(-0)¥& ={ inQ,
& =0 inCQ,
Eé =0 onoQ.

Also, for p > 0 small, consider
Qp:={xeQ:6(x) >p}

and a bump function b, € C®(RY) such that
bpy=1 inQy, bp=0 inRY\Q,, 0<b,<1 inR".
Then, ¢ := bp(e € CP(Q). Let & , € T(Q) be the function induced by {; ,. By (4.9),

J ue,p = J & pdv. (4.11)

o) Q
We have {;,, — (- asp | 0 with |{¢ pllze(q) < [§ellzo@) and

1&e,0 0| < ClIde,pllzeo(@)6(X)° < 1¢ellzeo)6(x)°,
so that we can push equality (4.11) to the limit to deduce, by dominated convergence,

J ule = j £ dv. (4.12)

Q Q

Similarly, since [|(¢llL=(q) < [{llL=(q), letting € | O, yields

Ju(:J.{dv. O

Q Q
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5 Examples
In the next two examples we look at the two critical cases in the power-like nonlinearity, adding a logarithmic
weight.
Example 5.1 (Lower critical case for powers). We consider here
fit) =t In*1 +t), a>O0.

In this case,
atf(t)

tf'(t) _ (1 +29f(0) + @rpinen PP at .
f(t) Ji63) 1+0In(1+1¢)
Condition (1.8) turns into
+00 +0o

t 1/(2s) 4 dt
—_— t= — Y < 100,
J (t1+23 ln“(l + t)> J tlna/(Zs)(l + l’)

which is fulfilled only for a > 2s. Also, hypothesis (1.10) becomes

+00
J 12572109 1n%(1 4 ¢) dt < +oo0,

to

which is satisfied by any a > 0 since (1 +2s)(1-s)-2<s-1.

Example 5.2 (Upper critical case for powers). We consider here f(t) = t1*)/1=9)1n"A(1 4+ ¢), B> 0. In this
case

t()  1sf0 - i _l+s Bt
fity £(6) T1-s (Q+Hlnd+o
Hypothesis (1.8) turns into
+00

J‘ <tlnﬁ(1 +t) )1/(25) df = TO P91 +¢)

£(1+5)/(1=5) £1/(-s) dt, < +co

u

which is fulfilled for any 8 > 0. Also, hypothesis (1.10) becomes

+00
J t11In P + t) dt < +o0,

to

which is satisfied by any > 1.

Acknowledgment: The author is thankful to L. Dupaigne and E. Valdinoci for the reading of the paper and
fruitful discussions.
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