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Abstract: Face detection is an important problem in computer vision because it enables a wide
range of applications, such as facial recognition and an analysis of human behavior. The problem
is challenging because of the large variations in facial appearance across different individuals and
lighting and pose conditions. One way to detect faces is to utilize a highly advanced face detection
method, such as RetinaFace or YOLOv7, which uses deep learning techniques to achieve high
accuracy in various datasets. However, even the best face detectors can produce false positives, which
can lead to incorrect or unreliable results. In this paper, we propose a method for reducing false
positives in face detection by using information from a depth map. A depth map is a two-dimensional
representation of the distance of objects in an image from the camera. By using the depth information,
the proposed method is able to better differentiate between true faces and false positives. The method
proposed by the authors is tested on a dataset of 549 images, which includes 614 upright frontal faces.
The outcomes of the evaluation demonstrate that the method effectively minimizes false positives
without compromising the overall detection rate. These findings suggest that incorporating depth
information can enhance the accuracy of face detection.

Keywords: depth map; face detection; deep learning; filtering

1. Introduction

Face detection algorithms have been developed to automate the process of identifying
and locating faces in digital images, driven by the growing demand for such capabili-
ties [1–3]. These algorithms have undergone a series of advancements, beginning with
knowledge-based methods that relied on human expertise to define the features of a face,
followed by feature-invariant approaches that aimed to recognize faces based on their
geometrical properties, such as the relative positioning of the eyes, nose, and mouth.

In response to the challenge of face detection, researchers have developed a variety
of techniques utilizing both traditional computer vision methods and more contemporary
deep learning methods [4,5]. Traditional methods frequently rely on handcrafted features
and ensembles of classifiers to detect faces in images. Although computationally efficient,
these methods often encounter difficulties with variations in facial appearance and are
sensitive to changes in illumination and pose. More recent approaches based on deep
learning have shown great promise in overcoming these limitations. These methods use
convolutional neural networks (CNNs) trained on large datasets of face images to learn
highly discriminative features for face detection. CNNs have the advantage of being able
to automatically learn features from data, which can be more robust and generalizable
than hand-crafted features. Additionally, CNNs can be trained using large-scale parallel
computing, which allows for efficient training of very deep and complex models.
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The single-shot detector (SSD) is one of the most renowned face detection systems that
employs deep learning [6]. It utilizes a convolutional neural network (CNN) to anticipate
bounding boxes and class probabilities for faces in an image. SSDs are celebrated for their
ability to deliver high-speed and real-time performance, rendering them ideal for use in
applications such as video surveillance and face tracking. Another popular approach to
face detection is the multi-task cascade convolutional neural network (MTCNN) [7], which
uses a cascade of three CNNs to first identify potential face regions, refine the bounding
boxes and facial landmarks, and finally classify the detected faces. MTCNNs have been
shown to achieve high accuracy on a range of face detection benchmarks.

Overall, face detection remains a challenging problem due to the wide variations
in face appearance and the need for real-time performance. However, the development
of deep learning methods has greatly improved the state of the art in face detection and
opened up new possibilities for applications that rely on the detection and analysis of faces.

In contrast, template matching methods [5] employ a pre-established template of a
face to look for corresponding matches in an image. While these methods can be successful,
they have certain limitations. Specifically, the template must be meticulously constructed
to accommodate for variations in facial appearance, thereby restricting the efficacy of this
approach. Appearance-based methods, also known as holistic methods, have become
increasingly popular in recent years. These methods use machine learning techniques to
learn the characteristic features of a face from a large dataset of labeled images. Because
these methods can learn to recognize faces automatically, they are not limited by the
constraints of template matching approaches.

The Viola–Jones algorithm (VJ) [8] was a popular and effective method for detecting
objects in images. It was specifically designed for object detection and relied on three tech-
niques: an integral image strategy for the efficient extraction of Haar features, an ensemble
called AdaBoost, and an attentional cascade structure. One of the main advantages of the
Viola–Jones algorithm was its efficiency, which allowed it to run in real-time on standard
hardware. This was achieved through Haar-like features, i.e., simple rectangular shapes
that can be calculated quickly and easily. Additionally, the boosting algorithm was effective
at reducing false positives, a common issue in detection algorithms. Despite its popularity,
the Viola–Jones algorithm had certain limitations. It was not always effective at detecting
faces in uncontrolled environments, where it has been known to miss face detections [9].
This is due to the limitations of the Haar-like features utilized by the algorithm, which may
struggle to accommodate for variations in lighting and facial expression, or other factors
that can influence facial appearance.

To overcome these limitations, several extensions and enhancements to the original
Haar-like features have been proposed. These include rotated Haar-like features, which
are designed to be more robust to rotation, and sparse features, which are designed to
be more efficient to compute. In their research, Markuš et al. [10] integrated a modified
version of the Viola–Jones (VJ) method with an algorithm that can detect salient facial
landmarks. Meanwhile, Liao et al. [9] introduced a novel feature named scale-invariant
NPD and extended the VJ tree classifier to include a deeper quadratic tree structure.

With the advent of deep learning, convolutional neural networks (CNNs) have become
increasingly popular for face detection and have shown impressive results in terms of
accuracy and speed [11–14]. These networks are able to learn complex patterns in data
and can be trained on large datasets, which has helped improve the performance of face
detection algorithms. Additionally, techniques such as transfer learning, which involves
using pre-trained CNNs on large datasets and fine-tuning them for specific tasks, have
further improved the performance of face detection algorithms. In the context of 2D face
detection, deep learning methods have been shown to be effective in detecting faces in
images and videos. These methods, such as R-CNN [15] and Deep Dense Face Detector
(DDFD) [12], use convolutional neural networks (CNNs) to extract features from images
and then classify them using support vector machines (SVMs). These methods have the
advantage of being able to handle a wide range of face orientations and sizes without
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requiring pose or landmark annotations. They have been shown to outperform traditional
face detection methods in terms of accuracy and speed.

RetinaFace [16] is a face detection algorithm considered to be a state-of-the-art face
detector because it is able to combine high-level and low-level semantic information in
order to perform single-shot multi-level face localization. This means that it is able to detect
faces in a single stage, using a five-level feature pyramid network (FPN) that allows it
to process multiscale feature maps. This improves the detection speed of the algorithm,
making it faster and more efficient than many other face detection algorithms.

The use of 3D information in face detection can improve accuracy by providing
additional cues about the shape and structure of the face, which can be used to differentiate
it more effectively from other objects in the scene. Depth information can also help resolve
occlusions, where part of the face may be obscured by another object, by allowing the
algorithm to infer the shape of the face behind the occluder.

There are multiple 3D sensors and devices available for face detection, each with
its own set of benefits and drawbacks. The Kinect [17] is a popular choice due to its
affordability and user-friendliness. However, its performance is limited by the resolution of
its depth map and its ability to capture only one depth value per pixel. Advanced sensors
such as the MU-2 stereo imaging system [18] and the Minolta Vivid 910 range scanner [19]
offer higher-resolution depth maps and more precise depth measurements. Nevertheless,
these sensors are usually more expensive and complex to operate.

Overall, the use of 3D information in face detection can significantly improve accuracy,
but it also introduces additional challenges and complexities in terms of both hardware
and software. As 3D sensing technology continues to advance and become more affordable,
it is likely that we will see a more widespread adoption of 3D face detection techniques in
various of applications.

Various approaches have been used for face detection using depth images, each with
their own strengths and limitations. Some methods, such as [20], rely on comparing pixels
in depth images to classify body joints and parts for pose recognition, while others, such
as [21], compare square regions for face detection. In [3], a deep-learned approach for 2D
images (DeepFace) is combined with a 3D-model-based alignment, which was effective in
detecting faces in unconstrained environments. Anisetti et al. [22] used a coarse detection
method and a 3D morphable face model for locating faces. Nanni et al. [1] proposed
different filtering steps to be applied on information in the Kinect depth map to address the
issue of increased false positives when combining different face detectors, they also shared
a challenging dataset that contains depth and 2D images, which is used to validate the
best-performing system developed in this work. The dataset has 549 samples, including
614 upright frontal faces. The filtering steps adopted in the system decrease the amount of
false positives without significantly affecting the detection rate of Retina Face. The paper
describes the face detection strategy in Section 2, presents the experiments in Section 3, and
provides a summary and notes on future directions in Section 4. The code and dataset used
in the paper are available on GitHub at https://github.com/LorisNanni (accessed on 30
December 2022).

2. Materials and Methods

Figure 1 depicts the face detection system that is developed in this work. First, face
detection with the face detector RetinaFace is performed on a raw color image (see the
top two boxes in Figure 1). RetinaFace selects many candidate regions that contain no
faces. Second, the number of false positives is reduced by aligning the depth maps (see
the bottom two boxes). By calibrating the color and depth information it is possible to
accomplish the alignment, as explained in [23]. Briefly, the depth sample’s positions in 3D
space are computed through the intrinsic camera parameters of principal point and focal
length of the depth camera. These intrinsic parameters, along with the extrinsic parameters
of the camera pair system, are then projected onto 2D space. Next, depth values and color
are combined with each sample, as described in Section 2.1. To reduce computation time,

https://github.com/LorisNanni
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we apply this process only to those regions containing the candidate faces. Finally, these
regions are filtered (see the box on the right of Figure 1) to remove false positives. This last
process is described in Section 2.3.
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Figure 1. A general illustration of the proposed face detection approach. First, the input image
undergoes a first round of detection RetinaFace (top). Second, segmentation is performed using the
depth map of the image (bottom). Finally, the candidate faces undergo a filtering process to select
regions with faces (right).

2.1. Depth Map Alignment and Segmentation

Depth maps and the raw color images are segmented in tandem, similar to the method
in [24]. The procedure involves transforming each sample into a six-dimensional vector
and then clustering the point set using the mean shift algorithm [25].

Transformation into a six-dimensional vector is accomplished as follows. Samples in
the Kinetic depth map are 3D points: pi, i = 1, . . . , N, where N is the number of points. As
described in [23], color cameras and the joint calibration of the depth facilitates reprojecting
the depth samples. This involves mapping them onto the corresponding pixels in the
color image. This process allows each point to be connected to its 3D spatial coordinates
(x, y, and z), as well as the RGB color values. However, these representations cannot be
directly compared because they exist in completely different spaces. In order to use the
mean shift clustering algorithm to extract multidimensional vectors, it is necessary to make
all components comparable. To make the color values comparable, they are converted to
the CIELAB uniform color space, so colors are represented in a 3D space with lightness (L)
values ranging from black (0) to white (100), (a) from green (-) to red (+), and (b) from blue
(-) to yellow (+). The purpose of this conversion is to use the Euclidean distance between
the color vectors in the mean shift algorithm.

More formally, the algorithm works by considering each scene point’s color informa-
tion in the CIELAB color space, c, as a 3D vector:

pc
i =

L(pi)
a(pi)
b(pi)

, i = 1, . . . , N. (1)
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The geometry, g, is defined by each point 3D coordinates as:

pg
i =

x(pi)
y(pi)
z(pi)

, i = 1, . . . , N. (2)

In order to ensure that the scene segmentation algorithm is not affected by the relative
scaling of the point-cloud geometry and to ensure that the color distances and geometry are
consistent, all components of pg

i are normalized based on the average standard deviation
of the coordinates of the point in three dimensions σg =

(
σx + σy + σz

)
/3, which results in

the following vector: x(pi)
y(pi)
z(pi)

 =
3

σx + σy + σz

x(pi)
y(pi)
z(pi)

 =
1
σg

x(pi)
y(pi)
z(pi)

 (3)

After normalizing the color information vectors, the final color representation is ob-
tained by taking the average of the standard deviations of the L, a, and b color components:L(pi)

a(pi)
b(pi)

 =
3

σL + σa + σb

L(pi)
a(pi)
b(pi)

 =
1
σc

L(pi)
a(pi)
b(pi)

 (4)

After the normalization of the vectors of the color information and geometry, they are
combined to produce the final representation f :

p f
i =



L(pi)
a(pi)
b(pi)

λx
λy
λz

 (5)

The relative weight of color and geometry in the final segmentation can be controlled
using the parameter λ. A lower value of λ assigns more importance to color informa-
tion, while a higher value of λ emphasizes geometry. For more information on how to
automatically determine the optimal value for λ, refer to [24].

The vectors p f
i are clustered with the mean shift algorithm [25] to segment the sampled

scene. Further refinement is possible by removing regions smaller than some thresholds
since these regions are usually the result of noise. An example of a segmented image using
this method of segmentation is provided in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 
Figure 2. Raw color image (left), depth map (middle), and segmentation map (right). 

2.2. Face Detectors: RetinaFace and YOLOv7 
RetinaFace [16] is a recent pixel-wise face detection method that, along with box clas-

sification and regression branches, applies extra-supervised and self-supervised tech-
niques/learning tasks. The face detector system is able to perform multiple tasks, includ-
ing predicting a face score, identifying the bounding box around a face, identifying five 
facial landmarks, and determining the 3D position and correspondence of each pixel on 
the face. The system’s overall structure is depicted in Figure 3. 

 
Figure 3. RetinaFace detector. 

RetinaFace is based on three main modules made by a feature pyramid network, the 
context head module, and the cascade multi-task loss. The first module is composed of a 
pyramid network that digests the input images by computing five different feature maps, 
each one at a different scale. These are then used by the context head modules to compute, 
for each of the feature maps, the multi-task loss described below. The first context head 
module makes a first bounding box for the anchor, which is fine-tuned by the second con-
text head module to generate a more accurate bounding box. 

Feature pyramid levels are computed using ResNet residuals, while the multi-task 
loss is computed as follows: ℒ = ℒ (𝑝 ,𝑝∗)  + 𝜆  𝑝∗ℒ (𝑡 , 𝑡∗) + 𝜆  𝑝∗ℒ (𝑙 , 𝑙∗) + 𝜆  𝑝∗ℒ (𝑣 ,𝑣∗) (6)

where 𝑝  is the predicted probability that the i-th anchor is a face, while 𝑝∗ is the ground-
truth value (1 if it is a face, 0 otherwise); 𝑡  is a vector with the predicted coordinates for 
the bounding box of the i-th anchor, and 𝑡∗ is the vector with the coordinates of the real 
bounding box. The vector 𝑙  contains the predicted coordinates of the five facial land-
marks, while 𝑙∗ is the vector with the coordinates for the five ground-truth facial land-
marks. The vector, 𝑣 , has the 1068 vertices used for the mesh that represents the 3D face, and 𝑣∗ is the corresponding ground-truth. The variables 𝜆 , 𝜆 , and 𝜆  are loss-balancing parameters. ℒ is a combination of a vertex loss and an edge loss used to compute a 2D 
projection of a 3D representation of the face; ℒ  is the classification loss for the binary 

Figure 2. Raw color image (left), depth map (middle), and segmentation map (right).



Appl. Sci. 2023, 13, 2987 6 of 14

2.2. Face Detectors: RetinaFace and YOLOv7

RetinaFace [16] is a recent pixel-wise face detection method that, along with box
classification and regression branches, applies extra-supervised and self-supervised tech-
niques/learning tasks. The face detector system is able to perform multiple tasks, including
predicting a face score, identifying the bounding box around a face, identifying five facial
landmarks, and determining the 3D position and correspondence of each pixel on the face.
The system’s overall structure is depicted in Figure 3.
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Figure 3. RetinaFace detector.

RetinaFace is based on three main modules made by a feature pyramid network, the
context head module, and the cascade multi-task loss. The first module is composed of a
pyramid network that digests the input images by computing five different feature maps,
each one at a different scale. These are then used by the context head modules to compute,
for each of the feature maps, the multi-task loss described below. The first context head
module makes a first bounding box for the anchor, which is fine-tuned by the second
context head module to generate a more accurate bounding box.

Feature pyramid levels are computed using ResNet residuals, while the multi-task
loss is computed as follows:

L = Lcls(pi, p∗i ) + λ1 p∗i Lbox(ti, t∗i ) + λ2 p∗i Lpts(li, l∗i ) + λ3 p∗i Lmesh(vi, v∗i ) (6)

where pi is the predicted probability that the i-th anchor is a face, while p∗i is the ground-
truth value (1 if it is a face, 0 otherwise); ti is a vector with the predicted coordinates for
the bounding box of the i-th anchor, and t∗i is the vector with the coordinates of the real
bounding box. The vector li contains the predicted coordinates of the five facial landmarks,
while l∗i is the vector with the coordinates for the five ground-truth facial landmarks. The
vector, vi, has the 1068 vertices used for the mesh that represents the 3D face, and v∗i is the
corresponding ground-truth. The variables λ1, λ2, and λ3 are loss-balancing parameters.
Lmesh is a combination of a vertex loss and an edge loss used to compute a 2D projection
of a 3D representation of the face; Lcls is the classification loss for the binary classes of
face/not face. Lbox is the regression loss for the bounding box, and Lpts is the regression
component used to compute the five facial landmarks.

YOLOv7 is the latest and fastest single-stage real-time object detector in the YOLO
family, introduced in July 2022 [26]. It is a fully convolutional neural network (FCNN)-
based object detector with three components: Backbone, Neck, and Head. The Backbone
extracts features, the Neck collects them, and the Head consists of output layers for final
detection. YOLO models are trained to predict the locations and classes of objects with
bounding boxes and use non-maximum suppression (NMS) for post-processing. We used
YOLO as face detector according to following library (https://github.com/hpc203/yolov7
-detect-face-onnxrun-cpp-py, accessed on 30 December 2022).

https://github.com/hpc203/yolov7-detect-face-onnxrun-cpp-py
https://github.com/hpc203/yolov7-detect-face-onnxrun-cpp-py
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2.3. Filtering Steps

By leveraging on depth maps it is possible to apply a filtering approach with the aim
of removing some false positives, as noted in Figure 4. For some examples of candidate
faces that were rejected by the filters, see Figure 4.
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2.3.1. Filter Based on Image Size (SIZE)

As previously mentioned, the effectiveness of the filtering process can be further im-
proved by considering the size of the face region identified in the depth map, as suggested
in [27]. Starting from the estimation of dimension (W2D, h2D) of the candidate face in the
2D image, the corresponding 3D physical dimensions in millimeters (W3D, h3D) can be
estimated using the following approach:

W3D = W2D
d
fx

and h3D = h2D
d
fy

, (7)

In this equation, fx and fy are the Kinect camera’s focal lengths, which are calculated
using the calibration algorithm described in [23], and d is the average depth of the samples
within the bounding box of the candidate face region. The estimated 3D physical dimen-
sions (W3D, h3D) are only accepted if each of them falls within the fixed range of [7.5 cm,
45 cm]. It is worth noting that d is the median of the depth samples.

2.3.2. Flatness\Unevenness Filter (STD)

STD [28] extracts flatness and unevenness information from the depth maps: regions
with high flatness and unevenness are removed.

STD is a two-step filtering process:
Step 1: Segmentation using the depth map is applied;
Step 2: For each face candidate region, the standard deviation (STD) of the pixels in

the depth map that belong to the largest region identified by the segmentation procedure is
calculated. If the STD falls outside the range of [0.01, 2.00], that region is rejected.

2.3.3. Segmentation-Based Filtering (SEG and ELL)

SEG and ELL [1] both use different approaches to compare the dimensions of the
segmented version of the depth image to a reference shape. In the case of SEG, the
comparison is made to the bounding box of the image, while in the case of ELL, the
reference shape is an ellipse. These evaluations allow for the comparison of the relative size
of the largest area to the entire candidate image in the case of SEG, and for the assessment
of the shape (i.e., whether it is elliptical) in the case of ELL (a least-squares criterion is
adopted to evaluate the similarity of a region to an elliptical model). Regions that are
smaller than 40% of the total area are not considered in the analysis. The score is computed
with a “fit_ellipse” function.
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2.3.4. Filtering Based on the Analysis of the Depth Values (SEC)

SEC [1] is based on the observation that faces are most commonly located on the top
of the body and that the surrounding volume of a face is typically empty. When candidate
faces produce a different pattern than expected, it is rejected. To calculate whether the
pattern differs from what is expected, the rectangular region that defines a candidate face
is enlarged to include the surrounding depth map for further analysis. In this work, the
expanded region is partitioned into two regions, RU and RD (see Figure 5). For each region
R, a number of pixels nR are counted whose depth value dp is close to the average depth
value of the face d, as follows:

nR =
∣∣∣{p :

∣∣∣dp − d
∣∣∣ < td ∧ p ∈ R

}∣∣∣ (8)

where td (equals 50 cm here) is the measure of closeness.
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The ratio between the two regions, 3·nD/nU , is calculated, and a candidate face will
be removed if the ratio drops below a specified threshold, tr (tr = 0.8 here).

3. Results and Discussion
3.1. Datasets

In our study, we utilized the dataset MERGED proposed in [1], which is obtained by
combining the following four datasets: Microsoft Hand Gesture (MHG) dataset, Padua
Hand Gesture (PHG) dataset, Padua FaceDec (PFD) dataset, and Padua FaceDec2 (PFD2)
dataset. All of these datasets contain colored images of faces captured in unconstrained
environments along with their corresponding depth maps. The faces in these datasets are
frontal and upright with limited degrees of rotation (with less than ±30◦). A summary of
features is presented in Table 1.

Table 1. Main characteristics of the datasets.

Dataset Number
Images

Number
Faces

Depth
Resolution

Color
Resolution

Difficulty
Level

MHG 42 42 640 × 480 640 × 480 Low
PHG 59 59 640 × 480 1280 × 1024 Low
PFD 132 150 640 × 480 1280 × 1024 High
PFD2 316 363 512 × 424 1920 × 1080 High
MERGED 549 614 — — High
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3.2. Performance Indicators

We report two performance indicators:

• Detection rate (DR): this metric measures the accuracy of the face detection algorithm
by comparing the number of faces correctly detected to the total amount of faces in
the dataset. All faces in the dataset have been manually labeled for this evaluation.
Let dl , (dr) be the Euclidean distance between the manually extracted Cl(Cr) positions
that are centered left and right, and let C′ l(C′r) be the detected centered left and right
eye positions. The relative error of detection (ED) is defined as max(dl , dr)/dlr, where
dlr is the Euclidean distance between the expected eye centers. In this work, ED ≤ 0.35
is the value used as a criterion to claim a right eye detection.

• False positives (FP): this is the number of candidate faces with no face correctly
extracted (i.e., incorrect eye detection, having ED > 0.35).

3.3. Experiments

The goal of the first experiment (Table 2) was to compare the detection rates of Reti-
naFace (https://github.com/elliottzheng/face-detection, accessed on 30 December 2022)
and YOLO by adjusting the sensitivity threshold (on the score output of the detector). It
will be observed that setting the threshold for increasing the detection rate generates more
false positives.

Table 2. Performance (detection rate and false positives) of RetinaFace and YOLOv7.

Face
Detector: RetinaFace YOLOv7Tiny YOLOv7Lite

Threshold DR FP DR FP DR FP

0.02 95.93 1152 83.06 909 73.94 1491
0.2 95.93 281 82.74 405 73.78 427
0.5 95.93 227 82.41 309 73.45 305
0.9 95.60 171 0.16 0 0 0
0.98 94.79 119 0 0 0 0

The results obtained by RetinaFace are clearly better than previous face detectors
based on handcrafted methods or shallow neural networks (see [1] for details). RetinaFace
can still be considered a state-of-the-art face detector.

The second experiment aims to assess the performance of the filtering steps and their
combinations. Table 3 presents the results of combining the three face detectors with the
filtering steps.

Table 3. Performance of face detection methods combined by filtering steps.

Face Detector: RetinaFace YOLOv7Tiny YOLOv7Lite

Threshold Filter DR FP DR FP DR FP

0.98

None 94.79 119 0 0 0 0
SIZE 94.63 84 0 0 0 0
SIZE + SEC 94.14 75 0 0 0 0
all 92.67 71 0 0 0 0

0.5

None 95.93 227 82.41 309 73.45 305
SIZE 95.77 111 82.08 199 73.29 230
SIZE + SEC 95.11 95 81.60 180 72.96 213
all 93.65 85 79.80 162 71.01 194

0.2

None 95.93 281 82.74 405 73.78 427
SIZE 95.77 128 82.41 229 73.62 283
SIZE + SEC 95.11 109 81.92 206 73.29 254
all 93.65 94 80.13 179 71.34 220

https://github.com/elliottzheng/face-detection
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It should be noted that the complexity of the three face detectors is very different:
YOLOv7lite has a storage requirement of 3 MB, YOLOv7tiny has a requirement of 31 MB,
and RetinaFace (with ResNet backbone) requires 107 MB. The detection time of YOLOv7tiny
is 38% higher than YOLOv7lite, and RetinaFace is 243% higher than YOLOv7lite.

The following conclusions can be drawn from the above table:

• The best trade-off of DR and FP is obtained by RetinaFace (0.5) with the SIZE filter
applied. Clearly, SIZE increases the effectiveness of RetinaFace on the test set;

• The other filters reduce the number of FP but also decrease DR;
• SIZE permits to reduce FP without a considerable reduction in DR, even when coupled

with YOLOv7.

Obviously, the advantage of using depth map information is more pronounced when
the effectiveness of the visual sensor is reduced due to darkness, fog, or other reasons
that prevent a perfect view of the scene. To highlight this advantage, an additional test
was performed in which the visual spectrum images were subjected to a fog filter. The
effect was achieved using Gimp’s foggify filter (https://docs.gimp.org/2.8/en/python-fu-
foggify.html, accessed on 30 December 2022) with turbulence = 4.0 and opacity 100.

Figure 6 shows an example of perturbed images, while Table 4 shows the results of
the same experiment in Table 3 applied to the perturbed images.
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Figure 6. Original images (left), fog-perturbed images (right).

In Figure 7 a plot of detection rate vs. number of false positives is reported (by varying
the acceptance threshold) for each of the considered approaches: in the first row, results on
the original dataset are shown, while the second row reports results from the fog-perturbed
dataset. The usefulness of filtering is more evident when considering regions that do not
contain faces. Therefore, we define a strong false positive (SFP) as a candidate face that has
an ED score greater than 1. In Figure 8, a plot of the detection rate versus the number of
strong false positives is presented.

https://docs.gimp.org/2.8/en/python-fu-foggify.html
https://docs.gimp.org/2.8/en/python-fu-foggify.html
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Table 4. Performance of face detection methods combined by filtering steps on the fog-perturbed
images.

Face Detector: RetinaFace YOLOv7Tiny YOLOv7Lite

Threshold Filter DR FP DR FP DR FP

0.98

none 79.15 93 0 0 0 0
SIZE 78.99 66 0 0 0 0
SIZE + SEC 78.66 63 0 0 0 0
all 77.36 59 0 0 0 0

0.5

none 87.46 219 69.54 264 59.77 274
SIZE 87.30 132 69.22 186 59.61 217
SIZE + SEC 86.64 118 68.73 172 59.61 201
all 85.34 101 67.26 153 57.98 189

0.2

none 88.64 321 72.15 363 62.54 398
SIZE 88.27 171 71.82 233 62.38 289
SIZE + SEC 87.62 149 71.34 211 62.38 257
all 86.32 123 69.71 180 60.59 234
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According to the plots in Figure 7 it is clear that the best trade-off between the detection
rate and the number of false positives is gained by coupling the face detector with the
filtering method named “size”. It happens for all the approaches tested in this paper, but
undoubtedly this is more interesting for YOLO since the performance is lower.

The advantages of all the filtering approaches are more evident in the presence of
strong false positives, as shown in Figure 8.

As for the choice of basic face detector, obviously it must be dictated by the system
requirements: YOLO is faster, but less accurate, while RetinaFace is very accurate but
requires more resources and a longer computation time. It is important to note that the
most suited application of our idea will be in AR/VR headsets, mainly in portable devices
where lightweight networks will be used, at least for the next few years.

Although the proposed approach has only been evaluated using a single dataset, it is
believed to be effective in real-world conditions because the MERGED dataset is highly re-
alistic. It includes many images taken in natural settings and features multiple frontal faces,
not just a single one, making it more representative of real-world conditions. Moreover, the
fog-perturbed version of the dataset makes the benchmark even more difficult.

4. Conclusions

We use two state-of-the-art face detectors called RetinaFace and YOLOv7 and apply
a set of filters based on the depth map to improve the accuracy of the detection. We
demonstrate that the filters reduce the false positives produced by base method while
maximizing the detection rate. Our method for reliable face detection uses information in
the depth maps and filters to increase effectiveness, measured as a high detection rate with
a lower number of false positives compared with a standalone face detector working on
visual spectrum images. This effectiveness was demonstrated on two challenging datasets:
the first is the combination of several datasets, including images with different illumination
settings, both indoors and outdoors, the second is a fog-perturbed version of the first. Many
of the images contain multiple faces, often located in cluttered environments.

Although we used a state-of-the-art face detector, it produced many false positives
on our dataset. When a low detection threshold is applied to increase the detection rate,
the reported experiments show that the filters based on depth maps are a feasible way to
increase the trade-off between detection rate (DR) and false positives (FP) with several
state-of-the-art face detectors.

Though it may seem that using a 3D camera is an unnecessary cost for the face
detection problem, it must be considered that sensors with a depth map function will be
widespread and inexpensive in the near future.
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