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A B S T R A C T

Advancements in satellite technology yield environmental data with ever improving spatial coverage and
temporal resolution. This necessitates the development of techniques to discern actionable information from
large amounts of such data. We explore the potential of dynamic mode decomposition (DMD) to discover
the dynamics of spatially correlated structures present in global-scale data, specifically in observations of total
water storage anomalies provided by GRACE satellite missions. Our results demonstrate that DMD enables data
compression and extrapolation from a reduced set of dominant spatiotemporal structures. The accuracy of its
predictions of global system dynamics is preserved in its reconstruction of local time series. These findings
suggest potential uses of DMD in analysis of remote-sensing data for hydrologic applications.
1. Introduction

Climate change poses new challenges to the sustainable exploitation
of water resources and requires modeling and monitoring activities
to identify and design appropriate adaptation and mitigation strate-
gies (Huggins et al., 2022; IPCC, 2023; Scanlon et al., 2023). Satellite
technologies inform these activities by providing input to both physics-
based and data-driven models used to analyze climate-related phenom-
ena (Sheffield et al., 2018; Pasetto et al., 2018; Scanlon et al., 2018;
Stampoulis et al., 2019; Adams et al., 2022).

Total water storage anomalies (TWSA) are data provided by the
Gravity Recovery and Climate Experiment (GRACE) satellite mission
and its successor, the GRACE follow-on (GRACE–FO) (Tapley et al.,
2004; Landerer et al., 2020). These satellites measure Earth’s gravity
field variations to detect water distribution changes on the planet
and draw an integrated view of how Earth’s water cycle evolves in
time (Watkins et al., 2015). These observations enable one to detect
trends in water distribution at regional and continental scales and
hypothesize correlations with climatic conditions and anthropogenic
activities (Rodell et al., 2018; Thomas and Famiglietti, 2019; Rodell and
Reager, 2023). Given the importance of these observations of global
water distribution, many modeling studies focus on bridging the data
gap between the two satellite missions (Li et al., 2020; Sun et al., 2020).

Data-driven (e.g., machine learning) methods seek to discover con-
stitutive relationships directly from data (model’s output and/or obser-
vational data), deriving data-informed and equation-free reduced-order
models (ROMs) for the interpretation of complex real-world prob-
lems (Asher et al., 2015; Lu et al., 2020). ROMs are invaluable when
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either a large number of model simulations is required or no model is
available.

Commonly employed data-driven methods include non-intrusive
response surface methods (Ciriello et al., 2019; Marzadri et al., 2024),
machine learning approaches such as neural networks (NN) (Qin et al.,
2019; Tartakovsky and Zong, 2024), and modal-decomposition tech-
niques (Towne et al., 2018; Taira et al., 2020). The latter class includes
dynamic mode decomposition (DMD), which constructs an ‘‘optimal’’
linear model for a given dynamic system in the observable space
via a hierarchical decomposition of complex patterns into simpler
processes (Kutz et al., 2016). Like proper orthogonal decomposition
(POD) (Holmes et al., 2012) and independent component analysis (Bell
and Sejnowski, 1997), DMD is based on the singular value decom-
position (SVD) of temporal snapshots of the dynamic system. While
the other methods provide a hierarchy of modes based on spatial
correlation and energy content, DMD provides a reduced set of modes
consisting of spatially correlated structures with a specific temporal
evolution (time dynamic). Thus, DMD can be seen as an ideal com-
bination of a POD-like spatial dimensionality-reduction technique with
Fourier transforms in time (Kutz et al., 2016). When combined with
the Koopman theory (Koopman, 1931), DMD acquires some physical
interpretability (Mezić, 2013; Rowley et al., 2009).

The standard DMD (sDMD) algorithm (Tu et al., 2014) returns a
best-fit linear dynamical system that advances high-dimensional mea-
surements forward in time, i.e., a linear ROM that describes the re-
lationship between time-shifted snapshots representing the system dy-
namic (Kutz et al., 2016; Lu and Tartakovsky, 2020b). Several vari-
ants (Hemati et al., 2017; Wynn et al., 2013; Jovanović et al., 2014;
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Lu and Tartakovsky, 2020a; Colbrook et al., 2023) have been devel-
ped to improve the performance of model reduction and to adapt

the algorithm to different applications (Schmid, 2022). Among these
ariants, we adopt the xDMD algorithm (Lu and Tartakovsky, 2021)
hat supplements sDMD with a bias term to handle inhomogeneous
roblems. This variant extends the applicability of DMD-based ROMs
o dynamical systems described by inhomogeneous partial differential
quations with inhomogeneous boundary conditions. The robustness
f xDMD-based ROMs of three-dimensional fluid dynamics simulations
nd xDMD’s efficacy in reducing the data-generation cost for ensemble-
ased simulations are demonstrated in Libero et al. (2024b,a).

We explore the use of DMD to represent and extrapolate GRACE
data. We also provide general indications of the use and suitability
f this method in remote sensing for hydrologic studies. Specifically,
e quantify the efficiency and accuracy of sDMD and xDMD in the

reconstruction of GRACE data at the global and local scales, i.e., at
different latitudes and longitudes. Our results demonstrate that DMD
is an accurate and efficient method for learning the global dynamics
from dominant spatiotemporal structures present in the data, and that
DMD preserves its accuracy in local time series reconstruction.

The paper is organized as follows. Section 2 is devoted to the
presentation of both our methodological framework and the data used
n the study. Section 3 reports the results, discussed in Section 4.

Section 5 provides final remarks.

2. Materials and methods

2.1. The DMD framework for dynamic processes

Data-driven regression and machine learning techniques are becom-
ing critical to characterize dynamical systems from data. Among these
techniques, DMD (Schmid, 2010; Tu et al., 2014; Kutz et al., 2016) is a
owerful tool for the characterization of high-dimensional systems and
an be equally used to either experimental or numerical data.

Consider a dynamical system
d𝐱
d𝑡 = 𝐟 (𝐱, 𝑡;𝜇), (1)

where 𝐱(𝑡) ∈ R𝑁 is a vector representing the system state at time t,
𝜇 includes parameters of the system, and 𝐟 (⋅) represents the dynamics.
Typically, the state 𝐱 arises from the discretization of a PDE at a number
𝑁 of spatial locations. The continuous-time dynamics in Eq. (1) may
also induce a discrete-time representation deriving from the sample
of the system state every 𝛥𝑡 in time (hereinafter snapshots) so that
𝑘 = 𝐱(𝑡𝑘), with 𝑡𝑘 = 𝑘𝛥𝑡 and 𝑘 = 1,… , 𝑀 . As such, we define the
iscrete-time flow map 𝐅𝛥𝑡 ∶ R𝑁 → R𝑁 , which relates 𝐱𝑘 to 𝐱𝑘−1 for
ny 𝛥𝑡 as

𝐱𝑘 = 𝐅𝛥𝑡(𝐱𝑘−1). (2)

Note that if the dynamics 𝐟 (𝐱, 𝑡;𝜇) in Eq. (1) is unknown, only the ob-
servations of the system state can be used to approximate the dynamics
and predict the future state.

2.1.1. sDMD algorithm
Let 𝐗,𝐗′ ∈ R𝑁×𝑀 denote two matrices whose columns are the

ectors 𝐱0,… , 𝐱𝑀−1 and 𝐱1,… , 𝐱𝑀 , respectively. The sDMD approach
eeks to derive a ROM of the nonlinear dynamic system described
y Eq. (1), approximating the flow map of Eq. (2) by a linear model

𝐱𝑘 ≈ 𝐀𝐱𝑘−1. (3)

As in general 𝑀 ≪ 𝑁 , the rank of 𝐀 is at most 𝑀 , however, computing
the best-fit linear operator (or its spectral decomposition) as 𝐀 =
′𝐗† ∈ R𝑁×𝑁 remains onerous. Hence, the truncated SVD of 𝐗 =

𝐔Σ𝐕⊤, with rank 𝑟 < 𝑀 , is used
𝐀 ≈ 𝐗′𝐕𝚺−1𝐔⊤, (4)

2 
where 𝐔 ∈ R𝑁×𝑟, Σ ∈ R𝑟×𝑟, 𝐕 ∈ R𝑀×𝑟. If 𝑟 is smaller than the number
of nonzero singular values (i.e., the rank of 𝐗), then the truncated SVD
is a proxy of 𝐗.

This formulation (Tu et al., 2014) generalizes the original DMD
(Schmid, 2010) to a larger class of datasets, including non-sequential
time series. Subsequent modifications enhance the accuracy of the
riginal algorithm. For example, total DMD (Hemati et al., 2017)

reformulates DMD as a two-stage algorithm in order to address the
ssue of noise-induced bias. Optimal mode decomposition (Wynn et al.,

2013) generalizes sDMD by using an iterative procedure to find an
optimal combination of a linear model and POD modes subspace that
minimizes the system residual error. A sparsity-promoting variant of
sDMD (Jovanović et al., 2014) aims to achieve a desirable trade-off
between the approximation quality and the number of modes used in
the approximation.

2.1.2. xDMD algorithm
Given the complexity of the GRACE dataset, we also employ xDMD

(Lu and Tartakovsky, 2021) to better handle inhomogeneity of the
ystem dynamics. The sDMD equations are modified by adding both a
ias term (to cope with inhomogeneous partial differential operators)
nd residual learning (which is proved to be highly advantageous in
eep-learning). Following Chen and Xiu (2021), xDMD approximates

the temporal relationship between 𝐘 = 𝐗′ − 𝐗 and 𝐗 as

𝐲𝑘 ≈ 𝐁𝐱𝑘−1 + 𝐛. (5)

Here, [𝐁 𝐛] = 𝐘𝐗̃† ∈ R𝑁×𝑁+1, where 𝐗̃⊤ = [𝐗 𝟏] and 𝐗̃ ∈ R𝑁+1×𝑀 . For
computational saving, the best-fit linear operator is obtained through
the SVD of the matrix 𝐗̃ ≈ 𝐔̃Σ̃𝐕̃⊤ as

[𝐁 𝐛] ≈ 𝐘𝐕̃Σ̃−1𝐔̃⊤, (6)

where 𝐔̃ ∈ R𝑁+1×𝑟, Σ̃ ∈ R𝑟×𝑟, 𝐕̃ ∈ R𝑀×𝑟. The performance of xDMD
can be further improved by adapting the above mentioned algorithm
optimizations for sDMD.

2.1.3. Truncation rank criteria and model assessment
Three criteria are employed to select the truncation rank of both

sDMD and xDMD. The first is a hard thresholding of singular val-
ues (Gavish and Donoho, 2013) of a non-square 𝑁 ×𝑀 matrix:

𝑟′ = min(𝑛) ∶ 𝜎𝑛 ≤ 𝜔(𝛽)𝜎med, (7)

where 𝜎𝑛 is the 𝑛th singular value of 𝐗 (or 𝐗̃), i.e., 𝑛th diagonal element
of 𝚺 (or 𝚺̃); 𝜎med is the median singular value of the data matrix;
𝛽 = 𝑀∕𝑁 ; and

𝜔(𝛽) ≃ 0.56𝛽3 − 0.95𝛽2 + 1.82𝛽 + 1.43. (8)

The second option is 𝑟 = 𝑟90, where 𝑟90 is the number of diagonal
elements of 𝚺 (or 𝚺̃) corresponding to the 90% of the cumulative energy
in the SVD of 𝐗 (or 𝐗̃). The third one is 𝑟 = 𝑟∗, where

𝑟∗ = min(𝑛) ∶ 𝜎𝑛 ≤ 10−3
𝑀−1
∑

𝑘=0
𝜎𝑘. (9)

Starting from observations of the system evolution, we employ DMD
to build a ROM for use as a surrogate model. (The use of DMD to
investigate the modes and time dynamics embedded in the dataset
is beyond the goal of this work). Although there are methods to
evaluate the specific error linked to the notion of modal ordering and
physical interpretability of the modes (Higham et al., 2018), we chose
to evaluate the performance of the ROM only through the comparison
between observed and simulated system states.

The difference between the state of the system predicted by the
eneric DMD ROM and the real snapshot at time 𝑡𝑘 is
𝐝𝑘 = 𝐱𝑘 − 𝐱𝑘, (10)
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Table 1
Number of snapshots (𝑀) and ranks considered for representation and extrapolation
tests.

Task Train Test 𝑟′ 𝑟90 𝑟∗ Rank(𝐗)

Representation 𝑀 = 196 𝑀 = 196 73 79 122 195
Extrapolation 𝑀 = 148 𝑀 = 48 55 72 124 147

where  indicates the ROM’s approximation. Hence, similarly to Lu
and Tartakovsky (2021), we define the relative error at a given time
s follows

𝜀𝑘 =
‖𝐝𝑘 ‖

2

‖𝐱𝑘‖2
, (11)

where ∥ ⋅ ∥ denotes vector 2-norm.
The information loss due to the truncation, which is carried out in

the SVD decomposition and affects the model accuracy, is evaluated
by comparing the error 𝜀𝑘 associated with the different truncation
options described above, considering as a reference the case 𝑟 = rank(𝐗)
(i.e., no truncation).

2.2. GRACE data

The GRACE satellite mission (Tapley et al., 2004; Watkins et al.,
2015), which was in orbit from April 2002 to October 2017, and its
successor, the GRACE-FO (Landerer et al., 2020), launched in 2018 and
till working, take advantage of gravity field measurements, to derive

information about how global water distribution evolves in time. Each
mission counts a pair of orbiting satellites continuously tracking how
their relative distance is affected by Earth’s gravity field variations.
These changes reflect mass distribution variations on Earth, primarily
due to changes in water storage in hydrologic reservoirs, moving ocean,
atmospheric and land ice masses, and mass exchanges between these
compartments. The vertical extent of these changes is measured in
centimeters of equivalent water thickness (EWT).

TWSA are derived from satellite measurements and then are freely
provided to the users as global matrices of centimeters of EWT anoma-
lies with respect to a baseline mean (Jan 2004–Dec 2009). Monthly
data are available with some short-term gaps and a major interruption
due to the transition between the missions. The native resolution is
3 degrees in both latitude and longitude, but a 0.5-degree scaling
factor map is provided to compensate for the signal attenuation during
sampling and post-processing (Wiese et al., 2016). This also acts as
a mask, removing oceans and areas around the poles, where specific
analyses should be considered.

For this study, the most recent GRACE mascon product
RL06.1Mv03) is downloaded from the Jet Propulsion Laboratory
rchive (NASA/JPL, 2023), together with the scaling factor file and a
ist of the months of activity of the two missions. The dataset we use
ollects 215 snapshots of TWSA (in cm) between April 2002 (𝑡 = 1) and
ovember 2022 (𝑡 = 248), each one counting 𝑁 = 58908 grid elements
laced on land areas. From the entire dataset, subsets of snapshots are
ransformed into column vectors to build two data matrices 𝐗 and 𝐗′,
hose correspondent columns are shifted of the same 𝛥𝑡, to train and

est the DMD ROMs.

3. Results

We explore the accuracy, in representation and extrapolation, of a
et of DMD-based ROMs obtained by truncating the SVD of the data

matrix 𝐗 at four different ranks, either 𝑟 = 𝑟′, 𝑟90, 𝑟∗, or rank(𝐗), i.e., no
runcation.
3 
3.1. Global data representation

First, both the sDMD and xDMD algorithms are tested on the entire
dataset of available snapshots. Specifically, we train the ROMs by
extracting from the original dataset 𝑀 = 196 couples of snapshots
equally shifted in time by 𝛥𝑡 = 1mont h (Table 1). The ability of
both algorithms to reproduce the training set is tested and quantified
hrough the representation error 𝜀𝑘 (Eq. (11)).

The curve of the cumulative energy in panel (a) of Fig. 1 shows
ow the informative content carried by the training data is decomposed
nd distributed among the elements of the SVD. By definition, the
umulative energy associated with 𝑟 = rank(𝐗) is equal to 1, while
0% of the information is lost when 𝑟90 is applied; truncating at 𝑟∗

eeps around 95% of the energy in this case. Since 𝑟′ ≃ 𝑟90 and
he associated cumulative energy is approximately the same, in what
ollows we consider only the case 𝑟 = 𝑟90. In the other panels of

Fig. 1, the representation error averaged over 𝑘, i.e. 𝜀, is depicted as
unction of 𝑟 for sDMD- (panel (b)) and xDMD- (panel (c)) based ROMs,
espectively.

In Fig. 2 we compare how the error 𝜀𝑘 associated with the sDMD-
nd xDMD-based ROMs (panels (a) and (b), respectively), truncated at
90, 𝑟∗ and rank(𝐗), evolve in time.

Additionally, the representation performance of both the formu-
ations of DMD is analyzed locally in space in Fig. 3. On the first

row (panels (a) and (b)), two maps, serving as references, show the
original values of TWSA provided by GRACE for 𝑡 = 124, and 248.
The differences 𝐝𝑘 between them and the reconstructions provided by
DMD are computed through Eq. (10) and mapped in the remaining
anels. Panels (c)–(d) and (e)–(f) show the results for sDMD and xDMD,

respectively. Here, all the ROMs are truncated at 𝑟90. Each of the four
maps in panels (c)–(f) is accompanied by two curves: in the vertical
graph is the mean by row of the absolute values of the mapped local
ifferences; in the horizontal graph, the same by column, to enhance
ifferent performances in latitudes and longitudes. To each time 𝑡𝑘

corresponds a vector of differences 𝐝𝑘 containing 𝑁 = 58908 values

𝑘 , one for each cell located on a land area in the map.

The probability distribution of d𝑘 is described by the histograms
in Fig. 4. Each plot symmetrically refers to the corresponding map in
panels (c)–(f) of Fig. 3.

3.2. Global data extrapolation

To test the performance of DMD in the extrapolation regime, the
riginal GRACE dataset is split into a training set, counting 𝑀 = 148
airs of snapshots, extracted in 𝑡 = 1 ÷ 200, and a test set made with the
emaining 48 pairs, in 𝑡 = 201 ÷ 248 (see Table 1). The first group of data

is employed to train both sDMD- and xDMD-based ROMs, which are
then used to predict the following states of the system. The performance
is assessed by comparing the DMD predictions with the test set elements
and computing the extrapolation error according to Eq. (11). Panel (a)
f Fig. 5 shows the evolution in time of the extrapolation error of the

sDMD-based ROM truncated at 𝑟90, 𝑟∗ and rank(𝐗); panel (b) shows the
same for xDMD.

Fig. 6 does the same as Fig. 3, but here the maps refer to 𝑡 = 224
and 𝑡 = 248, as the focus is specifically on the extrapolated part of the
series (𝑡 = 201 ÷ 248). The TWSA maps provided by GRACE for 𝑡 = 224
and 𝑡 = 248 are plotted on the first row, in panels (a) and (b). The
differences 𝐝𝑘 between them and the corresponding maps predicted by
sDMD are on the second row (panels (c) and (d)), while the plots of the
third row (panels (e) and (f)) refer to the xDMD.

The histograms in Fig. 7, symmetrically paired to the maps of panels
(c)–(f) in Fig. 6, describe the probability distributions of d𝑘 for the
extrapolation test.
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Fig. 1. (a) Cumulative energy associated with the SVD of 𝐗 vs. the singular values number 𝑛. Representation error (averaged over time) 𝜀 of the (b) sDMD-, and (c) xDMD-based
ROMs vs. 𝑟. In all panels, the yellow, blue, green, and red dots correspond to 𝑟′, 𝑟90, 𝑟∗, and rank(𝐗), respectively.
Fig. 2. Representation error 𝜀𝑘 (Eq. (11)) of the (a) sDMD- and (b) xDMD-based ROMs. In each plot different lines correspond to the ROMs with different truncation ranks: 𝑟90
in blue, 𝑟∗ in green, and rank(𝐗) in red. Dots over the lines correspond to 𝑡𝑘, with 𝑘 = 1,… , 𝑀 and 𝑀 = 196 (see Table 1).
3.3. Local time series reconstruction

Fig. 8 offers a more detailed evaluation of the local performance
of the DMD. For 6 points on the Planet, the time series of TWSA
provided by GRACE are compared to the representations (𝑡 ≤ 200) and
extrapolations (𝑡 > 200) computed by the xDMD-based ROM truncated
at 𝑟90. Selected points are in the following basins (a) Amazon (Brazil),
(b) San Joaquin (California, USA), (c) Po (Italy), (d) Hai Ho (China),
(e) Roper (Australia), and (f) Nilo (Uganda).

4. Discussion

A key role in ROM efficiency is played by the selection of the
truncation rank in the SVD of data matrix 𝐗, which should guarantee
an optimal balance between predictive accuracy and data compression.
This selection is typically done via experimentation, rendering the
method’s implementation subjective.

Fig. 1 shows that the curves of the representation error for the sDMD
(panel (b)) and xDMD (panel (c)) are both steeper at the beginning,
where maintaining one more single element in the SVD corresponds to
a big gain in information and therefore in model accuracy. The error
continues its decay slower in the central part of the curves so that
truncating at 𝑟90 or 𝑟∗ yields very similar results (log(𝜀) ∼ −1.6 ÷ −1.5
in the first case, and log(𝜀) ∼ −1.8 in the second one). The end of the
curves (𝑟 = rank(𝐗)), instead, marks the difference between the two
with a significantly higher performance of the xDMD (log(𝜀) ∼ −28.3,
while log(𝜀) ∼ −3.4 for the sDMD under the same conditions).

Overall, our results show that 𝑟90, which corresponds to about the
40% of singular values (see Table 1), assures a good balance between
predictive accuracy and data compression in this case study. In general,
based on our tests performed on different applications (Libero et al.,
2024a), the indication is to select 𝑟 in the range

[

𝑟90, 𝑟∗
]

, which allows
capturing the salient features of the phenomena while excluding noise
that produces overfitting and compromises the ROM performance in
interpolation or extrapolation. Thus avoiding reconstructing the whole
4 
behavior of the error as a function of 𝑟, which can be computationally
prohibitive in some cases.

We note that sDMD and xDMD, truncating at 𝑟90 or 𝑟∗, yield very
close performances, also locally in time, with a slight advantage for
𝑟∗ (Fig. 2). Both the algorithms, for both the truncation ranks, lose
accuracy in the range 𝑡 = 23 ÷ 94 (passing from log(𝜀𝑘 ) ∼ −2.0 ÷ −3.5
to log(𝜀𝑘 ) ∼ −1.5 ÷ −1.0). In this same time window, it is noticeable
the difference between the algorithms when 𝑟 = rank(𝐗). Indeed, in
the case of sDMD a significant increase of the error is shown. This time
interval corresponds to months between January 2004 and December
2009, the same taken as the baseline of GRACE missions data. To
analyze this behavior, we need to consider that all GRACE data are
provided as anomalies with respect to the reference interval, which
means that the baseline mean is subtracted from all the measurements,
with the consequence that the subset of snapshots in 2004–2009 has
zero mean, while the rest of the dataset has not. This peculiarity of the
GRACE dataset is better interpreted by xDMD, which can count on the
bias term and the residual learning (Eq. (5)) to model this behavior.
However, this advantage is evident only when no truncation is applied
to SVD, otherwise sDMD and xDMD return very similar performance.

To analyze the representation error locally in space, we observe
in Fig. 3 for July 2012 (𝑡 = 124) and November 2022 (𝑡 = 248) the
values of d𝑘 over the globe for the two algorithms truncated at 𝑟90.
These values, together with the mean by latitude and longitude of
|d𝑘 |, reveal that the ROMs mainly lose accuracy at higher latitudes,
where the presence of perennial ice and topographic adjustments affect
the accuracy of original data. However, the maps of d𝑘 show the
efficiency of the ROMs. Even if locally xDMD provides accentuated
differences, e.g., in the South of Africa, in Siberia, or on the East Coast
of North America, the spatial pattern of d𝑘 is almost the same for
both algorithms. The probability distributions of d𝑘 in Fig. 3(c)–(f) are
symmetric around zero. The probability quickly decays and is almost
negligible for |d𝑘 | > 5, thus denoting a remarkable accuracy of the DMD
reconstruction with both the ROMs for 𝑟 = 𝑟90.

Moving on to the analysis of the accuracy of the method in extrapo-
lation, Fig. 5 confirms that truncating at 𝑟 guarantees the best overall
90
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Fig. 3. Maps of TWSA (cm) provided by GRACE at (a) 𝑡 = 124 and (b) 𝑡 = 248 and maps of the differences 𝐝𝑘 (Eq. (10)) associated with the reconstructions provided by (c–d) the
sDMD- and (e–f) the xDMD-based ROM, truncated at 𝑟90. In panels (c–f) the curves in blue represent the mean of the absolute values of the mapped local differences by latitude
(vertical) and longitude (horizontal).
Fig. 4. Probability distribution of d𝑘 , mapped in Fig. 3, between GRACE data for time 𝑡 = 124 and 𝑡 = 248 and the respective reconstructions provided by (a–b) the sDMD- and
(c–d) the xDMD-based ROM, both truncated at 𝑟90.
performance. Indeed, the selection of 𝑟 = rank(𝐗), which corresponds
to the lowest representation error (Fig. 2), provides the worst approxi-
mation in the extrapolation regime. In general, as expected for all the
machine learning methods, the ROMs provide higher errors when used
to extrapolate future states of the system. Also, a slight increase of
the error is noticed for 𝑟 = rank(𝐗) and 𝑟∗ as we extend the number
of predicted time steps. However, the ROMs return a more accurate
5 
prediction when truncated at 𝑟90, for which the error is also more
stable in time, denoting the robustness of the approach, especially when
xDMD is employed.

In line with these results, Fig. 6 shows that compared to the rep-
resentation regime, the differences between original data and DMD
predictions are higher but only a slight increase in their value is
detected from November 2020 (𝑡 = 224) to November 2022 (𝑡 = 248).
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Fig. 5. Extrapolation error 𝜀𝑘 (Eq. (11)) of the (a) sDMD- and (b) the xDMD-based ROMs. In each plot different lines correspond to the ROMs with different truncation ranks: 𝑟90
in blue, 𝑟∗ in green, and rank(𝐗) in red. Dots over the lines correspond to 𝑡𝑘, with 𝑘 = 1,… , 𝑀 and 𝑀 = 48 (see Table 1).
Fig. 6. Maps of TWSA (cm) provided by GRACE at (a) 𝑡 = 224 and (b) 𝑡 = 248 and maps of the differences 𝐝𝑘 (Eq. (10)) associated with the reconstructions provided by (c–d) the
sDMD- and (e–f) the xDMD-based ROM, truncated at 𝑟90. In panels (c–f) the curves in blue represent the mean of the absolute value of the mapped local differences by latitude
(vertical) and longitude (horizontal).
The accuracy of xDMD-based ROM is better even if the general pattern
of the error is nearly the same of the sDMD. The curves plotted over and
next to each map confirm, as in representation, the major difficulties
of the ROMs in predicting TWSA values at higher latitudes. Like for
the representation test, the probability distributions of d𝑘 mapped
in Fig. 6(c)–(f) are centered in zero and almost symmetric and not
significantly affected by the time instant. However, in extrapolation,
the pdf appears more sensitive to the choice of the DMD version. In
the xDMD case values of d𝑘 close to zero are more likely to happen,
according to the more narrow and high shape of the distribution,
confirming the better accuracy in extrapolation of this algorithm for
𝑟 = 𝑟 .
90

6 
A final analysis of representation and extrapolation tests is repro-
duced in Fig. 8 where we selected six locations over the globe in
major basins to observe the time series reconstruction of TWSA values
offered by the xDMD-based ROM truncated at 𝑟90. The reconstruction
is successfully performed in all the cases both in representation and in
extrapolation, except for minor deviations at points (c) and (f). This
result is remarkable considering that the ROM is trained with global
data and tested locally, which means that with a unique data-driven
model, we can reconstruct accurately local time series, thus avoiding
the need to implement local approaches at each location of interest
and site-specific models which do not benefit from spatial correlation
information. In addition, the results are also significant because the
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Fig. 7. Probability distribution of d𝑘 , mapped in Fig. 6, between GRACE data for time 𝑡 = 224 and 𝑡 = 248 and the respective reconstructions provided by (a–b) the sDMD- and
(c–d) the xDMD-based ROM, both truncated at 𝑟90.

Fig. 8. (a–f) Time series of TWSA (cm) at six points as provided by GRACE (continuous gray line) and predicted by the xDMD-based ROM truncated at 𝑟90 (dashed line), in
representation (shaded) and extrapolation regimes. The reference map represents the mean over time of TWSA in the selected range of data.
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extrapolation performed is immediately after the major interruption
between the two GRACE missions.

5. Conclusion

Our results indicate that DMD may have considerable implications
in the field of satellite data compression and extrapolation for global
hydrological data collection, management, and forecast. Indeed, the
remarkable accuracy shown by the ROMs in the representation of

RACE observations unravels the possibility of using DMD for the
identification of the dominant spatiotemporal structures embedded in
the big dataset, which is critical for dimensionality reduction, and
data storage and interpretation. At the same time, the maintenance
of high standards of accuracy when used to extrapolate GRACE data,
uggests the potentiality of the method for multiple purposes rang-

ing from filling measurement gaps to short-medium forecast, which
is relevant to understanding critical trends and designing mitigation
strategies. We also demonstrate the benefit of dimensionality reduction
in extrapolation to avoid overfitting and provide general indications
on the choice of the truncation rank, which is a crucial aspect of the
DMD algorithms. Based on our study, we identify the main advantages
of DMD in the following points. First, based on the identification of
patially correlated structures in global-scale data and their dynamics,
MD provides an easy-to-interpret data-driven linear approximation
f a dynamic process. Second, the global-scale linear approximation
f the dynamic process provided by DMD allows for local time series
econstruction, thus overcoming site-specific reconstruction methods
hat one needs to replicate at each location of interest. Finally, the
ominant spatiotemporal structures in global-scale data enable the
dentification of patterns and trends whose analysis for GRACE data
ill be developed in future studies.
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