
Design and Development of a Mobile Dapp for Mobile
Crowdsensing over EVM-enabled Blockchains

Lorenzo Gigli
lorenzo.gigli@unibo.it

University of Bologna
Italy

Federico Montori
University of Bologna

Italy

Giacomo Galletti
University of Bologna

Italy

Luca Sciullo
University of Bologna

Italy

Luca Bedogni
University of Modena and Reggio

Emilia
Italy

ABSTRACT
Mobile crowdsensing (MCS) is a valuable approach for data col-
lection via personal devices, however, it faces challenges in data
security and reward to end users. Blockchain is considered a viable
addition to MCS, though few real integrations of this kind are de-
ployed. In this paper, we explore the integration of blockchain into
MCS, highlighting benefits and architectural adaptation challenges.
We then present a novel mobile distributed application (MDapp)
that serves crowdsourcers, workers, and verifiers in managing cam-
paigns, data contribution and validation, as well as in the reward
process. We also provide a quantitative analysis across different
blockchains to highlight the feasibility and economic considerations
of this integration.

CCS CONCEPTS
• Information systems→Collaborative and social computing
systems and tools; • Security and privacy → Distributed sys-
tems security; • Computer systems organization → Peer-to-peer
architectures.

KEYWORDS
Mobile Crowdsensing, Blockchain, distributed systems
ACM Reference Format:
Lorenzo Gigli, Federico Montori, Giacomo Galletti, Luca Sciullo, and Luca
Bedogni. 2023. Design and Development of a Mobile Dapp for Mobile
Crowdsensing over EVM-enabled Blockchains. In The Fifth ACM Interna-
tional Workshop on Blockchain-enabled Networked Sensor Systems (BlockSys)
(BlockSys ’23), November 12, 2023, Istanbul, Turkiye. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3628354.3629531

1 INTRODUCTION
Mobile crowdsensing (MCS) is a paradigm that leverages the col-
lective data obtained by personal devices such as smartphones and
wearables, and it has emerged as a viable solution for a variety of

This work is licensed under a Creative Commons Attribution International 4.0
License.
BlockSys ’23, November 12, 2023, Istanbul, Turkiye
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0439-0/23/11.
https://doi.org/10.1145/3628354.3629531

applications, from urban planning to health monitoring. However,
there are some inherent challenges surrounding data reliability,
data quality, security, and privacy which limit its full potential and
the widespread adoption in more challenging scenarios. In fact,
MCS systems usually require geolocalized and timestamped data to
contextualize the measurements received. Here different solutions
exist, ranging from data obfuscation techniques to anonymization
mechanisms. At the same time, users are generally discouraged
from providing data without adequate compensation, however,
these techniques make the design of a proper reward system for
contributing users a nontrivial issue [13].

In recent years, Blockchains have also been studied as an adapt-
able solution for a plethora of decentralized systems. Blockchain
systems work in a Peer-to-Peer (P2P) fashion, in which each node
belonging to the network maintains a list of all the transactions
performed within the system, where a transaction is a change in
the status of the system that is validated through consensus among
all nodes in the network. Since its inception with Bitcoin, there
have been a plethora of alternatives, such as Ethereum, Solana,
IOTA, and many others. With the advent of smart contracts, which
allow the deployment of immutable computer programs within a
blockchain, the number of possible use cases has exploded. Inte-
grating the Blockchain within an MCS system may bring many
interesting advantages, but it comes at the cost of adapting a natu-
rally decentralized architecture to the traditionally centralized MCS
architecture. To realize this vision and embody all the advantages of
the blockchain, the MCS architecture requires foundational changes
which also have to be validated [4]. At the same time, given the
possibly heavy load of data that can be written on the blockchain,
it is also important to keep transaction costs low.

In this work, we propose a novel architecture that allows the inte-
gration of a smart contract-enabled blockchain within an MCS sys-
tem. Specifically, we first architecturally conceptualize a blockchain-
enabled MCS system that encompasses three types of users: (I) the
crowdsourcer, which is the stakeholder running the campaign, (II)
the worker, which is the user providing the data, and (III) the verifier,
which acts as a quality guarantee, by endorsing or discrediting the
data provided by the workers. We implement the proposed archi-
tecture by developing both the smart contracts and a hybrid Mobile
Distributed application (MDapp), which constitutes the frontend for
all three user types. The MDapp is integrated with the Metamask
wallet and implemented through the Flutter framework. Finally,

21

https://doi.org/10.1145/3628354.3629531
https://doi.org/10.1145/3628354.3629531
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3628354.3629531&domain=pdf&date_stamp=2024-01-02

BlockSys ’23, November 12, 2023, Istanbul, Turkiye Gigli et al.

we analyze the cost of deploying such an application on different
commercially available blockchains, to highlight their benefits and
drawbacks, and to prove the feasibility of our proposal.

The rest of this paper is structured as follows: Section 2 intro-
duces and discusses related works from literature; Section 3 details
the MCS architecture; Section 4 describes how we implemented the
MDapp and the MCS system; Section 5 presents the performance
evaluation of our proposals and discusses the results; Section 6
concludes this work and considers avenues for future works.

2 RELATEDWORKS
Mobile Crowdsensing is actively used in several projects and ser-
vices, as it enables the collection of data from user-owned devices
without the need to build a dedicated infrastructure. Although there
are different challenges in MCS, certainly what kind of reward users
contributing to the platform receive is key, as users who do not
sense an advantage in providing data tend to quit [14]. We divide
between monetary and non-monetary rewards, where the former
provides a quantifiable compensation for the user’s work, while
the latter involves other forms of rewards. Monetary rewards can
then be further divided into static, considering a flat compensa-
tion for the user-provided data, or dynamic, in which the reward
may vary due to the freshness of information, area coverage, and
alike. Non-monetary rewards can be more diverse, ranging from
social incentives [18], intrinsic motives [12], and user self-interest
[3]. For a complete discussion on the different available rewarding
mechanisms, we refer the reader to [9].

In this work, we focus on monetary rewards, in which the stake-
holder has to provide redeemable certificates to the end user, which
can be money, a QR code with a coupon, a discount for specific
services, and alike. Specifically in this scenario, the main advan-
tages that the blockchain brings are immutability and transparency.
The immutability property is needed so that users have the guar-
antee that neither their rewards nor the owner of the data they
provide can be altered. This is why in recent years it has been
possible to find a plethora of works that target the blockchain as a
viable solution for rewards in MCS. We mention here [7], which
presents a blockchain-based (MCS) framework aimed at bolstering
privacy and security within MCS applications, such as those found
in smart cities, healthcare, and environmental monitoring. This
framework incorporates an incentive mechanism that leverages a
three-stage Stackelberg game. Other proposals such as [16] lever-
age the blockchain to better identify users through private keys, in
order to build a more trustworthy user base.

Clearly, there are also proposals that leverage the blockchain to
offer cryptocurrencies, such as [15]. Here a novel cryptocurrency
is built so that it can be granted whenever users report new mea-
surements to the platform. More recent works propose their own
blockchain to natively integrate MCS, for instance, the work in
[8] proposes BlockSense, which is built on top of Proof-of-Data
(PoD), an ad-hoc consensus algorithm that forces miners to check
for data quality instead of performing useless computation. The
idea of making blockchain miners the actual verifiers of data quality
has been adopted by many others [17], but it forces the deployment
of a custom blockchain instead of using commercial solutions.

Bl
oc

kc
ha

in

Campaign
Factory

Campaign

MDapp

workers

verifiers

Create Campaign

List
Campaigns

Endorse/DiscreditCID

See Uploaded CIDs

Download Data

Upload Unverified CID

Uplo
ad

Data

Close

Campaign

See Verified

CIDs

MCSCoin

Hub
MDapp

MDapp

crowdsourcers

[1]

[2]

[3]

[3] [4]
[5]

[6]

[5]

[7]

[8]

Figure 1: Architecture of the proposed MCS system.

3 ARCHITECTURE
In this section, we present the general architecture of the system
with respect to the actors involved. Before delving into the de-
tails, it is necessary to introduce the main concepts that power an
MCS scenario. First of all, the MCS system involves the exchange
of goods between two parties: the crowdsourcer, i.e. the entity
that requests sensor data, and a crowd of workers, each of them
possessing the capabilities of collecting such data through their
devices. The process of data collection takes place according to a
data collection campaign, which is published by the crowdsourcer
onto an MCS platform and dictates the terms of the data collection
process, such as what kind of data is requested, the validity time-
frame, and the area of interest. A single contribution by a worker
within a campaign is called a task. Some MCS scenarios – called
pull-based – do not impose a recruitment system, meaning that any
worker can contribute to the campaign. This obviously introduces
the problem of data quality, which is often tackled by introducing
special actors, called verifiers, in the loop, especially when the
MCS system is implemented on top of a blockchain [1]. Verifiers
are then committed to endorsing or discrediting measurements
uploaded by workers.

Figure 1 outlines the architecture of our proposed MCS system,
which builds upon the interaction among three main architectural
systems: a smart contract-enabled blockchain (such as Ethereum),
an InterPlanetary File System (IPFS), and a Mobile Dapp, addressed
here as MDapp. The blockchain retains a number of smart contracts
which act as the backend of our system. Smart contracts can be here
seen as immutable computer programs, directly written on-chain
and hosting a number of functions. These functions can be executed
by any blockchain node through the Ethereum Virtual Machine
(EVM), thus we assume that the blockchain is EVM-compatible. This
is a fair assumption, as EVM-compatible blockchains are the vast
majority [10]. In particular, our system consists of four contracts:

• the Campaign Contract corresponds to a single published
campaign, thus each campaign is associated with a single
Campaign contract. The contract retains metadata about the

22

Design and Development of a Mobile Dapp for Mobile Crowdsensing over EVM-enabled Blockchains BlockSys ’23, November 12, 2023, Istanbul, Turkiye

campaign that influences whether a data upload is valid or
not; then it exposes (i) functions for the worker to upload
sensor data, (ii) functions for the verifiers to verify data
uploads and (iii) functions for the crowdsourcers to close the
campaign and trigger the payoff for all participants.

• theCampaign Factory Contract hosts the function for gen-
erating a new campaign and, thus, creating the related smart
contract. This function is only invoked by crowdsourcers.

• the Hub Contract is the entry point to the system, which
keeps track of all campaigns and their statuses, along with
the function to close an existing campaign and trigger the
payoff process for workers and verifiers.

• theMCScoin Contract is based on the ERC20 standard and
implements the fungible token, called MCSCoin, that makes
up for the currency used in the system, along with functions
to transfer the ownership of tokens.

Sensor data collected by workers is never saved on-chain, be-
cause of its variable size which may trigger significant upload fees
(see Section 5 for more details). For this reason, we use IPFS for data
storage. IPFS is a P2P distributed file system built upon a network of
nodes that retain copies of a subset of the stored files to make them
easily sharable [2]. In IPFS every file and directory has a unique
address (CID) based on the hash of their content and it is stored into
chunks that are organized into a Merkle DAG (Directed Acyclic
Graph) object. The CID is then stored on-chain, ensuring that every
saved element has a predictable and fixed size.

The MDapp is the user interface through which all three actors
in the system interact with the blockchain. In our case, the MDapp
is represented by a mobile application that is connected to a wallet
in order to send and receive funds, sign and track transactions, and
manage authorizations. More in detail, as shown in Figure 1, the
interactions among actors and the blockchain take place as follows:

(1) The crowdsourcer creates a campaign by querying the Cam-
paign Factory contract and stakes a definite amount of MC-
Scoins which make up for the cost of the whole campaign.

(2) The worker selects a campaign to participate in by querying
the Hub contract.

(3) The worker performs the sensor reading on the end device
and uploads the sensed data on IPFS and its CID on the
Campaign contract.

(4) The verifier selects a campaign to participate in by querying
the Hub contract.

(5) the verifier selects the sensor reading to verify after obtaining
the list from the Campaign contract.

(6) the verifier reads the data from IPFS and endorses or disap-
proves the related CID stored on the Campaign contract.

(7) Once the data collected is sufficient, the crowdsourcer closes
the campaign by triggering the related operation on the Hub
contract. This operation can be implemented in two ways, as
can be seen in Section 5, and results in workers and verifiers
sharing the amount of MCScoins staked by the crowdsourcer
at the beginning.

(8) the crowdsourcer visualizes all the sensed data from IPFS,
once obtained their CIDs from the Campaign contract.

3.1 Costs
The exchange of MCSCoins takes place when a crowdsourcer closes
a campaign. More in detail, when a crowdsourcer creates a cam-
paign, she transfers a certain amount of MCSCoins to the campaign
address; this amount is known to participants as it is stated publicly
in the Campaign contract. According to the default policy (clearly,
other policies could be implemented), when the campaign is closed,
the amount of MCSCoins staked is subdivided equally among all
participating workers, in proportion to the number of endorsed
contributions. This may encourage workers to contribute honestly
and privilege the campaigns with less data. The same mechanism
could be adopted for verifiers (as long as their opinion belongs to
the majority) with a second MCSCoins pool, however, this aspect
has not been implemented in our proof-of-concept.

Crowdsourcers, workers, and verifiers should also be aware of
the inherent costs connected with their operations. All the functions
invoked by the actors in Figure 1 have a color coding. The blue
calls are view/pure functions, which can be computed by any node
in the network and do not require any modification on the chain.
Red calls are functions that actually trigger blockchain transactions,
and thus are subject to the payment of gas fees on Ethereum and
its connected layer 2 blockchains (more details on this aspect are
given in Section 5). With this in mind, it is implicit that not only
crowdsourcers pay to obtain data but also every data point uploaded
by workers as well as every endorse/discredit action performed by
a verifier potentially costs gas, which is an additional fee that has
nothing to do with our MCSCoin currency.

3.2 Extensions
The present paper intends to present a proof-of-concept rather than
a production-ready environment, for this reason, we intentionally
leave apart some security and privacy aspects that are admittedly
very important in the context of MCS but fall out of the scope of
this paper. For example, as data is published on IPFS, then anyone
can read and steal it, however, there exist solutions for granting
cryptography and ensuring data ownership through non-fungible
tokens (NFTs) [5]. We also do not deal here with the selection of
verifiers such that they cannot perform collusion attacks, as well
as with limiting the frequency of contributions by workers. Both
these issues can be solved by adding a data oracle layer as in our
recent proposal [6].

4 IMPLEMENTATION
We here provide the implementation details of both the smart con-
tracts and the mobile application used in the scenario presented
in Section 3. We published open source under GPLv3 license both
the code for the smart contracts and the MDapp1.

The smart contracts mentioned in Figure 1 have all been imple-
mented in Solidity and deployed on the Ethereum testnet. At the
time of writing, Ethereum imposes a limit of 24,576 bytes to the size
of a single transaction, including the contract itself (the deployment
of which is actually a transaction), which is why we decided to sep-
arate the system into multiple contracts adopting a factory pattern,
where contracts can be deployed automatically through a function
of a single factory contract (i.e. Campaign Factory contract).
1https://github.com/UniBO-PRISMLab/MDappMobileCrowdSensing

23

https://github.com/UniBO-PRISMLab/MDappMobileCrowdSensing

BlockSys ’23, November 12, 2023, Istanbul, Turkiye Gigli et al.

(a) Crowdsourcer view: cre-
ation of a campaign.

(b) Worker/Verifier view: list
of all campaigns.

(c) Worker view: task execu-
tion.

(d) Verifier view: display of
data to be verified.

Figure 2: The four main screens of the mobile application used by the crowdsourcer, the worker, and the verifier.

4.1 Mobile Distributed Application
We developed a hybrid MDapp using the Dart programming lan-
guage2 and the Flutter framework3. Flutter allows the creation of
applications with the same codebase that can be easily distributed
and installed on different operating systems, like Windows, An-
droid, and iOS. For the goal of this paper, we limited the test to
Android devices solely. As previously explained, we consider three
different types of users for the scenario: (i) the crowdsourcer, (ii)
the worker, and (iii) the verifier. Depending on the role, the user
can interact with the application in a different way.

As shown in Figure 2a, the crowdsourcer can create a new cam-
paign through a form, inserting the name of the campaign, the inter-
ested area with the desired radius, the type of data to be collected
in the campaign, and the amount of reward for the entire cam-
paign. The interested area can be selected automatically through
the GPS of the mobile device, while for rendering the map and for
the manual search of a specific area we rely on the OpenStreetMap4
APIs. The crowdsourcer can also monitor and manage an active
campaign through a dedicated page of the MDapp. More in detail,
she can monitor the progress of a campaign, and close the cam-
paign whenever sufficient validated data points have been collected
by the workers. The latter operation automatically triggers the
reward phase for workers and verifiers. Finally, the crowdsourcer
can list the closed campaigns and the data collected for each of
them. For the sake of simplicity, and in order to display the collected
data, we implemented only a photo carousel in case of image data,
and a line chart in case of sensor data. We highlight that further

2https://dart.dev
3https://flutter.dev
4https://openstreetmap.org

customized visualization methods can be easily added to the appli-
cations depending on the type of the collected data. In our example,
the crowdsourcer creates a campaign in which workers collect ge-
olocalized photos of price tags of bottled water in supermarkets
of different brands with the goal of publishing a survey. This is a
popular MCS solution for comparing market retail prices in the
absence of online services [11].

A worker has the ability to view all active campaigns, as il-
lustrated in Figure 2b. The worker can filter these campaigns to
display only those she has subscribed to or those located in prox-
imity within a specified radius. She can subscribe or unsubscribe
to an active campaign and get its details by clicking on the card on
the list. A geo-fence service automatically returns the user to the
main page if she walks out of the specified area. In this case, the
worker gets also informed by the MDapp through a notification
that she is not inside the interested area anymore. The MDapp has
an additional type of notification for making the worker aware if
a campaign to which she subscribed is still open or not. As soon
as she subscribes to a new campaign, a background service is in-
stantiated: every 30 seconds it connects to the chain and checks if
the campaign was closed. Once the user subscribes to a campaign,
the MDapp redirects the user to the dedicated page for uploading
the data to collect. Figure 2c shows the worker view for the water
price tag campaign. The worker takes the photo and uploads it to
IPFS, hence issuing a new transaction on the chain.

The verifier shares the same page for listing the active campaigns
with the worker, but after subscribing to a campaign, the MDapp
shows the tasks of the campaign, both the ones verified and not
verified yet. The verifier can then endorse/discredit a task by click-
ing on it and accepting or denying the preview of the data collected
for such task and downloaded from IPFS, as shown in Figure 2d.

24

https://dart.dev
https://flutter.dev
https://openstreetmap.org

Design and Development of a Mobile Dapp for Mobile Crowdsensing over EVM-enabled Blockchains BlockSys ’23, November 12, 2023, Istanbul, Turkiye

All the operations that issue a new transaction on the chain –
any non-view/pure function call, like the upload of new data, or the
verification of a task – must be signed. This process is not directly
handled by our MDapp, but instead by a third-party wallet that
must be installed and configured beforehand on the same mobile
device. More precisely, we used WalletConnect5, a communication
protocol for web3, which enables wallets and apps to securely con-
nect and interact. While WalletConnect can work with different
wallets, we used Metamask6, one of the most famous crypto wal-
lets and gateways to the Ethereum blockchain. Finally, in order to
interact with the Ethereum blockchain, the MDapp connects to an
INFURA7 endpoint. Infura offers trusted and robust APIs to interact
with the Ethereum blockchain, instead of manually performing the
operations directly on the blockchain nodes.

5 EVALUATION
In this section, we discuss the evaluation of our proposed system,
focusing on the gas consumption of various components of the
system and the associated costs across different blockchain plat-
forms. The evaluation aims to provide a clear perspective on the
efficiency and feasibility of deploying and operating our mobile
crowdsensing system, particularly on popular blockchain platforms
such as Ethereum, Polygon, BNB Smart Chain, and Avalanche.

5.1 Experimental Setup
The contracts were developed in Solidity (version 0.8.17)8 using
the Hardhat development environment (version 2.3.3)9. To ensure a
precise and accurate assessment of gas consumption for contract de-
ployment and function calls, we employed the hardhat-gas-reporter
plugin (version 1.0.9)10. The plugin was configured to use the Coin-
MarketCap API11 to retrieve the cost in USD. For the experiments
presented in Section 5.2, the exchange rate was sourced on 19
September 2023. The experiments were conducted on a machine
equipped with an Intel Core i7 (6th Gen) 6700HQ processor @
2.6GHz, with 16GB of RAM, SSD, and Linux Ubuntu 22.04.3 oper-
ating system. It is important to note that while we deployed our
contracts on the EthereumGoerli Testnet12 for running some closed
test campaigns, these specific results come from a dedicated test
suite built with the Hardhat test framework and executed on the
Hardhat Network. Conducting these experiments on a real testnet
would have posed challenges due to the need for acquiring test
tokens and managing unpredictable network behaviors. The con-
trolled environment of the Hardhat Network provided a consistent
and repeatable testing platform, allowing for a more reliable and
precise measurement of gas consumption and associated metrics.

Note that the actual payoff has been implemented in two dif-
ferent ways that correspond to two separate paradigms. The first
implementation behaves like a real backend, where, by triggering
the campaign closure, the crowdsourcer also actively transfers the

5https://walletconnect.com
6https://metamask.io
7https://infura.io
8https://soliditylang.org
9https://hardhat.org
10https://npmjs.com/package/hardhat-gas-reporter
11https://coinmarketcap.com
12https://goerli.net

payment of MCSCoins to all workers (and verifiers) who are meant
to be paid (function closeCampaignAndPay). With this approach,
neither workers nor verifiers will consume resources to claim their
reward, however, this operation itself results in high gas costs for
the crowdsourcer. The second implementation follows a “Pull” pat-
tern, where the crowdsourcer only triggers the campaign closure
(function closeCampaign) and divides the initial stake in fair shares.
Subsequently, each payee should actively perform a withdraw op-
eration to actually obtain the reward. This also divides the gas cost
of the rewarding process among the payees instead of charging the
entire amount to the payer.

5.2 Results
The fundamental metric that dictates the efficiency and feasibility
of any Ethereum-based application is its gas consumption. The
Campaign Factory contract, essential for crowdsourcers to initiate
new campaigns, necessitates 2,896,292 gas units for deployment. In
contrast, the MCSCoin contract, which powers the system’s eco-
nomic infrastructure, uses 1,003,567 gas units. Figure 3 shows the
associated monetary costs across various blockchain platforms. On
Ethereum, deploying the Campaign Factory costs $115, whereas
setting up the MCSCoin costs $39.85. Polygon offers a more cost-
efficient solution with just $0.27 for the Campaign Factory and a
mere $0.09 for the MCSCoin. The BNB Smart Chain and Avalanche
follow with their respective pricing tiers: BNB charges $1.9 for
Campaign Factory and $0.66 for MCSCoin, while Avalanche re-
quires $0.88 and $0.31 for the two. These variations underline the
importance of selecting the right platform based on both functional
needs and economic considerations.

Similar to deployment costs, the correspondent USD costs asso-
ciated with invoking the functions across different chains provide
a clearer picture of the economic implications of our system. On
the Ethereum platform, invoking the createCampaign function is
the most expensive at $77.95, followed by uploadFile at $8.42. The
other functions, namely validateFile, closeCampaign, and withdraw,
cost $2.58, $5.15, and $2.18, respectively. Staying true to its cost-
efficient reputation, Polygon demonstrates the lowest costs across
all functions, priced below $0.20. Similarly, the BNB Smart Chain
and Avalanche retain their mid-tier cost structure, with all functions
costing under $1.5 and $0.7, respectively. A visual representation
of these costs can be found in Figure 4.

A separate assessment was performed for the closeCampaig-
nAndPay function due to its variability based on the number of
participants. Gas consumption for this function naturally escalates
as the number of participants rises, starting at 202,603 for a single
participant and surging to 1,944,129 for 50 participants. Examining
the monetary implications on different chains, Ethereum remains
the priciest option. For a single user, the cost stands at $8.06, which
increases to $77.23 for 50 users. The Polygon chain remains the
most economical, charging a mere $0.19 for 50 users. BNB Smart
Chain and Avalanche follow suit with their mid-range costs, asking
$1.28 and $0.60 for 50 users, respectively.

Our evaluation demonstrates clear trade-offs in terms of cost and
performance across different blockchain platforms.While Ethereum
provides robustness and security, its associated costs might be
prohibitive for frequent and large-scale campaigns. On the other

25

https://walletconnect.com
https://metamask.io
https://infura.io
https://soliditylang.org
https://hardhat.org
https://npmjs.com/package/hardhat-gas-reporter
https://goerli.net

BlockSys ’23, November 12, 2023, Istanbul, Turkiye Gigli et al.

Figure 3: Cost in USD to deploy contracts across chains (loga-
rithmic scale)

Figure 4: Cost in USD to execute functions across chains
(logarithmic scale)

Figure 5: Cost in USD to execute closeCampaignAndPay func-
tion across chains with increasing users (logarithmic scale)

hand, chains like Polygon offer almost negligible costs but sacrifice
some decentralization and security. Deciding on a platform would
require crowdsourcers to carefully consider the scale and frequency
of their campaigns. The closeCampaignAndPay function provides
flexibility, especially for larger entities or public administrations
willing to absorb the extra costs for rewarding instead of their users.

6 CONCLUSION
In this paper, we presented a prototype of the integration of an
MCS system with blockchain technologies. We first highlighted
the architectural implications of such an integration, and then we
presented the implementation details of our system, including the
smart contracts in the blockchains and the frontend in the form of an
MDapp implemented in Flutter. We finally showed the feasibility of
our solution by outlining the gas costs in a real deployment. Results
clearly show that layer 2 blockchains are able to support our system
and scale up. Future works will be dedicated to integrating solutions
for privacy, security, and data ownership in this framework.

REFERENCES
[1] Jian An, Jindong Cheng, Xiaolin Gui, Wendong Zhang, Danwei Liang, Ruowei

Gui, Lin Jiang, and Dong Liao. 2020. A lightweight blockchain-based model for
data quality assessment in crowdsensing. IEEE Transactions on Computational
Social Systems 7, 1 (2020), 84–97.

[2] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561 (2014).

[3] Nirupama Bulusu, Chun Tung Chou, Salil Kanhere, Alex Dong, Shitiz Sehgal,
David Sullivan, and Lupco Blazeski. 2008. Participatory sensing in commerce:
Using mobile camera phones to track market price dispersion. (01 2008).

[4] Zhiyan Chen, Claudio Fiandrino, and Burak Kantarci. 2021. On blockchain inte-
gration into mobile crowdsensing via smart embedded devices: A comprehensive
survey. Journal of Systems Architecture 115 (2021), 102011.

[5] Marco Di Francesco, Lodovica Marchesi, and Raffaele Porcu. 2023. Kryptosafe:
managing and trading data sets using blockchain and IPFS. In 2023 IEEE/ACM 6th
International Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB). IEEE, 5–8.

[6] Lorenzo Gigli, Ivan Zyrianoff, Federico Montori, Cristiano Aguzzi, Luca Roffia,
and Marco Di Felice. 2023. A Decentralized Oracle Architecture for a Blockchain-
Based IoT Global Market. IEEE Communications Magazine 61, 8 (2023), 86–92.

[7] Jiejun Hu, Kun Yang, Kezhi Wang, and Kai Zhang. 2020. A Blockchain-Based Re-
ward Mechanism for Mobile Crowdsensing. IEEE Transactions on Computational
Social Systems 7, 1 (feb 2020), 178–191.

[8] Junqin Huang, Linghe Kong, Long Cheng, Hong-Ning Dai, Meikang Qiu, Guihai
Chen, Xue Liu, and Gang Huang. 2022. BlockSense: Towards Trustworthy Mo-
bile Crowdsensing via Proof-of-Data Blockchain. IEEE Transactions on Mobile
Computing (2022).

[9] Luis G. Jaimes, Idalides J. Vergara-Laurens, and Andrew Raij. 2015. A Survey of
Incentive Techniques for Mobile Crowd Sensing. IEEE Internet of Things Journal
2, 5 (oct 2015), 370–380.

[10] Ruizhe Jia and Steven Yin. 2022. To EVM or not to EVM: Blockchain compat-
ibility and network effects. In Proceedings of the 2022 ACM CCS Workshop on
Decentralized Finance and Security. 23–29.

[11] Şevval Seray Macakoğlu, Burcu Alakuş Çınar, and Serhat Peker. 2022. Kiyaslio: a
gamified mobile crowdsourcing application for tracking price dispersion in the
grocery retail market. International Journal of Web Information Systems 18, 1
(2022), 55–75.

[12] Emiliano Miluzzo, Nicholas D. Lane, Shane B. Eisenman, and Andrew T. Camp-
bell. [n. d.]. CenceMe – Injecting Sensing Presence into Social Networking
Applications. In Smart Sensing and Context. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1–28.

[13] Federico Montori and Luca Bedogni. 2023. Privacy preservation for spatio-
temporal data inMobile Crowdsensing scenarios. Pervasive andMobile Computing
90 (mar 2023), 101755.

[14] Martine Rutten, Ellen Minkman, and Maarten van der Sanden. 2017. How to get
and keep citizens involved in mobile crowd sensing for water management? A
review of key success factors and motivational aspects. WIREs Water 4, 4 (2017).

[15] JingzhongWang, Mengru Li, Yunhua He, Hong Li, Ke Xiao, and ChaoWang. 2018.
A Blockchain Based Privacy-Preserving Incentive Mechanism in Crowdsensing
Applications. IEEE Access 6 (2018), 17545–17556.

[16] WeizhengWang, Yaoqi Yang, Zhimeng Yin, Kapal Dev, Xiaokang Zhou, Xingwang
Li, Nawab Muhammad Faseeh Qureshi, and Chunhua Su. 2022. BSIF: Blockchain-
Based Secure, Interactive, and Fair Mobile Crowdsensing. IEEE Journal on Selected
Areas in Communications 40, 12 (2022), 3452–3469.

[17] Jinwen Xi, Shihong Zou, Guoai Xu, and Yueming Lu. 2022. CrowdLBM: A
lightweight blockchain-based model for mobile crowdsensing in the Internet of
Things. Pervasive and Mobile Computing 84 (2022), 101623.

[18] Guang Yang, Shibo He, Zhiguo Shi, and Jiming Chen. 2017. Promoting Co-
operation by the Social Incentive Mechanism in Mobile Crowdsensing. IEEE
Communications Magazine 55, 3 (mar 2017), 86–92.

26

	Abstract
	1 Introduction
	2 Related Works
	3 Architecture
	3.1 Costs
	3.2 Extensions

	4 Implementation
	4.1 Mobile Distributed Application

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	References

