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ABSTRACT
In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics
(MHD) approximation breaks down. Here, we introduce novel explicit and implicit numer-
ical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these
non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained
transport scheme, which evolves the cell-centred magnetic vector potential. We test our im-
plementation against problems of increasing complexity, such as one- and two-dimensional
diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these
test problems, our implementation recovers the analytic solutions to second-order accuracy.
As first applications, we investigate the tearing instability in magnetized plasmas and the
gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a
key role. In the former case, it allows for the development of the tearing instability through
reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic
resistivity has an impact on both the gas distribution around the emerging protostar and the
mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens
up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the
ideal MHD approximation.

Key words: magnetic fields – magnetic reconnection – MHD – methods: numerical – stars:
formation.

1 I N T RO D U C T I O N

Magnetic fields are an essential component of the Universe. They
are present at all spatial scales (Vallée 1998; Feretti et al. 2012;
Beck & Wielebinski 2013), and directly influence a large amount
of processes that play a key role in shaping the properties of the
objects populating the cosmos. Therefore, a complete understanding
of many astrophysical phenomena requires taking into account the
effects of magnetic fields on the dynamics of conducting gases
(Ferrière 2001; Cox 2005) and charged relativistic particles (Fermi
1949; Kotera & Olinto 2011).

Numerical simulations represent the most comprehensive ap-
proach to describe the evolution of complex physical systems. The
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inclusion of magnetic fields in numerical astrophysical magneto-
hydrodynamical simulations often makes use of the so-called
ideal magnetohydrodynamics (MHD) approximation (e.g. Fro-
mang, Hennebelle & Teyssier 2006; Mignone et al. 2007; Stone
et al. 2008; Dolag & Stasyszyn 2009; Pakmor, Bauer & Springel
2011; Pakmor & Springel 2013; Hopkins & Raives 2016). Under
many circumstances, this approximation is an excellent descrip-
tion for the behaviour of partially ionized gases in the presence
of magnetic fields. Indeed, simulations using this approach have
become quite sophisticated, and are modelling systems of increas-
ing complexity. These range from small-scale calculations studying
the development of turbulence and the structure of the interstellar
medium of galaxies (e.g de Avillez & Breitschwerdt 2005; Iffrig
& Hennebelle 2017) to larger scale simulations studying the origin
and the evolution of magnetic fields in galaxies (e.g. Pakmor, Mari-
nacci & Springel 2014; Pakmor et al. 2017) and galaxy clusters
(e.g. Dolag, Bartelmann & Lesch 1999, 2002), and to large-scale
cosmological simulations (Marinacci et al. 2015; Dolag, Komatsu
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& Sunyaev 2016; Marinacci & Vogelsberger 2016; Marinacci et al.
2017).

However, there are situations, especially at small spatial scales,
e.g. below those of giant molecular clouds, where the ideal MHD ap-
proximation is not an accurate description of the underlying physics
any more. Here, the assumptions of ideal MHD break down, and
non-ideal MHD terms, such as ambipolar diffusion and ohmic re-
sistivity, must be taken into account for a correct description of the
physical system.

For example, in studies of galactic molecular clouds, it is well
established that ambipolar diffusion, which arises in partially ion-
ized plasmas, is a key physical process for the mechanism of star
formation (e.g. Mestel & Spitzer 1956; Mouschovias 1976a,b; Shu,
Adams & Lizano 1987) because it allows for the decoupling of neu-
tral gas from magnetic fields (Basu & Ciolek 2004), which would
otherwise hinder gravitational collapse and star formation. Ambipo-
lar diffusion is also advocated to solve the so-called fragmentation
crisis, i.e. the stabilizing effect that comparatively weak magnetic
fields have on the fragmentation of a collapsing star-forming cloud
(e.g. Hennebelle & Teyssier 2008). Moreover, ambipolar diffusion
can have a non-negligible effect on MHD turbulence, by steepening
the velocity and magnetic field power spectrum (Li et al. 2008)
and changing the morphology of the velocity and density structures
of the gas (Ntormousi et al. 2016). Finally, together with the Hall
effect and ohmic resistivity, ambipolar diffusion is also relevant in
protoplanetary discs, which are only partially ionized. In this case,
the combination of these three non-ideal MHD effects can influence
the development of the turbulence due to the magneto-rotational in-
stability in such objects (Bai 2015), thus affecting the accretion rate
on to the central star and the angular momentum transport within the
disc (Lesur, Kunz & Fromang 2014; Gressel et al. 2015; Béthune,
Lesur & Ferreira 2017).

Ohmic resistivity is also important under various circumstances.
In particular, it allows for magnetic reconnection, a change of topol-
ogy of magnetic field lines that is prevented in ideal MHD due to
flux conservation. At the reconnection points, ohmic resistivity gen-
erates intense Joule dissipation, which may power the heating of the
solar corona (Parker 1983) or eruptive events in the Sun (see, e.g.
Cheng, Guo & Ding 2017). A crucial difficulty in the study of
magnetic reconnection in simulations is due to the introduction of
numerical resistivity, which is inherent to any discretization proce-
dure. This non-physical resistivity may yield to reconnection phe-
nomena that are entirely numerical in nature, substantially affecting
the reliability of the simulations. This is particularly severe in the
low-resistivity regime, which is usually the case in the modelling
of real systems and that thus requires very high resolution to prop-
erly model the (small) spatial scales over which resistive effects are
important.

The presence of ohmic resistivity may also render unstable oth-
erwise stable configurations through the development of tearing
instability modes (Furth, Killeen & Rosenbluth 1963). Another ef-
fect of a non-zero resistivity in the gas is the shortening of the
decay time of long-term MHD turbulence in molecular clouds
(Basu & Dapp 2010). Moreover, ohmic resistivity is a key phys-
ical process in the studies of the formation of discs around proto-
stellar objects (Krasnopolsky, Li & Shang 2010). In this case, it
can help in alleviating the so-called magnetic braking catastrophe,
which is the suppression of the formation of rotationally supported
discs in simulations modelling low-mass star formation in ideal
MHD due to the high efficiency of angular momentum transport
by the magnetic field. Indeed, this process seems to be effective
on small scales (Dapp & Basu 2010), but to allow for the forma-

tion of larger circumstellar discs, other mechanisms, such as turbu-
lent reconnection (Santos-Lima, de Gouveia Dal Pino & Lazarian
2012), have been proposed. Ohmic resistivity can also affect the
efficiency and the mass loading of magnetically driven outflows
in star-forming clouds (Machida, Inutsuka & Matsumoto 2007;
Matsushita et al. 2017), by weakening or even suppressing them
compared to ideal MHD studies (Hennebelle et al. 2011; Seifried
et al. 2012). Here, ohmic resistivity weakens the coupling between
the magnetic fields and the gas in regions where the field dissi-
pation, resulting from finite resistivity, is effective. The reduced
coupling causes the inability of magnetic fields to drive outflows,
which, on the other hand, are present even for weakly magne-
tized configurations in the ideal MHD case (see again Matsushita
et al. 2017). However, the extent of these effects is uncertain and
still debated. These uncertainties are associated to the difficulty
in computing the exact value of the resistivity coefficient, which
strongly depends on the detailed chemical composition and ioniza-
tion state of the gas, in molecular clouds (see, e.g. Nakano, Nishi &
Umebayashi 2002).

Given the importance of non-ideal MHD processes, it is not
surprising that many numerical implementations have been devel-
oped to include them in MHD simulations. The techniques adopted
are very different, and single-fluid (e.g. Mac Low et al. 1995; Li,
Krasnopolsky & Shang 2011; Masson et al. 2012), or multi-fluid
(e.g. Falle 2003; Tilley & Balsara 2011) approaches, with a variety
of time integration techniques, have been used. In this paper, we
resort to a single-fluid approach and focus on the implementation of
the ohmic resistive terms in the moving-mesh code AREPO (Springel
2010). We describe such an implementation for the Powell diver-
gence cleaning and constrained transport (CT) MHD schemes. For
both schemes, we present an explicit and implicit time integration
method for the treatment of the ohmic terms.

The paper is organized as follows. In Section 2, we describe
the schemes that we have adopted to include the ohmic resistivity
terms in AREPO, differentiating between the explicit (Section 2.1)
and implicit time integration (Section 2.2) cases. In Section 3, we
test our implementation on a variety of test problems. In Sections 4
and 5, we present first non-ideal MHD applications by studying
magnetic reconnection and the gravitational collapse of a rotating
magnetised cloud, respectively. Finally, in Section 6, we summarize
our results.

2 M E T H O D S

We implement the ohmic diffusion term in AREPO for two differ-
ent numerical MHD techniques. The first one (Pakmor et al. 2011;
Pakmor & Springel 2013) evolves the MHD equations using the
Powell et al. (1999) 8-wave approach to control divergence errors.
The second method (Mocz, Vogelsberger & Hernquist 2014; Mocz
et al. 2016) implements the CT technique in AREPO, which has the
advantage of enforcing the ∇ · B = 0 constraint to machine preci-
sion. The CT scheme in AREPO evolves the cell-centred magnetic
vector potential rather than a face-centred magnetic field. For the
implementation of the ohmic diffusion term, we restrict ourselves
to a constant gas resistivity although this can easily be extended
to the case of a spatially varying resistivity. Finally, for each MHD
scheme, we present an explicit and implicit time integration method
of the ohmic diffusion terms, discussing only the MHD equations
directly affected by the introduction of such terms, as described in
the following subsections. The interested reader can find a complete
description of the MHD treatment in AREPO in method papers cited
above.
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2.1 Explicit time integration

In the limit of spatially constant gas resistivity η, the induction
equation is given by1

∂B
∂t

− ∇ × (v × B) − η∇2 B = 0, (1)

or in terms of the vector potential B = ∇ × A, under the Coulomb
gauge ∇ · A ≡ 0:

∂A
∂t

− (v × B) − η∇2 A = 0. (2)

A non-zero resistivity η further modifies the energy conservation
equation to

∂(ρe)

∂t
+ ∇ · {(ρe + p)v − (v · B)B + η( J × B)} = 0. (3)

In the previous equations, ρ is the gas density, e the gas total energy
per unit mass, P the gas pressure, v the gas velocity, B the magnetic
field, J = ∇ × B, and the term η( J × B) represents the heat added
to the system due to the dissipation of the magnetic field through
ohmic resistivity.

Equations (1)–(3) can be integrated in time in an explicit way
by adding the contribution of the ohmic diffusion terms to the ideal
MHD fluxes. We first focus on the induction equations. The diffusive
terms have the form ∇ · Fd, where

Fd =
{

−η∇ B

−η∇ A.
(4)

For a finite volume discretization, the flux across a face shared by
the mesh generating points i and j becomes after the application of
Gauss’ theorem

Fd =

⎧⎪⎪⎨
⎪⎪⎩

−η
Bi − B j

rij

aij

−η
Ai − A j

rij

aij

, (5)

where Bi , Ai are the time-extrapolated values of the magnetic field
or the magnetic vector potential of cell i, rij is the distance between
the mesh-generating points and aij is the area of the face. The
expressions of equation (5) are then added to their ideal MHD
counterpart before the flux limiting procedure and the time evolution
of the system is applied.

For the ohmic heating term in the energy equation (3), the proce-
dure is similar. To achieve second-order accuracy in the computation
of the heat flux across a given face shared between the mesh gen-
erating points i and j, we first compute the term η( J × B) for the
two cells and we subsequently take their average as the resulting
second-order flux. The expression for the heat flux is thus given by

η
( Ji × Bi ) + ( J j × B j )

2
· ri j

rij

aij , (6)

with the symbols having the same meaning as in equation (5). Please
note that other second-order discretizations are possible for these
terms. For instance, the cross product can be taken after the average
values of J and B are evaluated. However, tests on the propagation
of an Alfvén wave (see Sec. 3.2 for the set-up of the test) show
that the results obtained with this latter scheme are equivalent to the
ones given by equation (6).

1 Throughout the paper, we express magnetic field intensities in the Lorentz–
Heaviside system of units.

The relative simplicity of explicit schemes has made them a pop-
ular choice in most of the available implementations of non-ideal
MHD terms (e.g. Masson et al. 2012). However, the major draw-
back of explicit schemes is the rather restrictive time-step criterion
that must be imposed for the scheme to be numerically stable. We
enforce this by limiting the time-step of any given gas cell to

�t = min

(
�tMHD,

ξ�r2

η

)
, (7)

where �tMHD is the time-step computed for the ideal MHD part of
the calculation and the second term is the diffusive time-step that
is composed of a pre-factor ξ = 0.2, the fiducial cell radius �r,
computed as the radius of the sphere having the same volume as the
Voronoi cell (or circle having the same area for two-dimensional
(2D) configurations; in case of 1D Voronoi tessellations, it is the
cell size), and the ohmic diffusion coefficient η. The quadratic de-
pendence on the cell size, contrary to the linear dependence in the
case of the ideal MHD time-step criterion, renders the explicit non-
ideal MHD scheme computationally expensive for high-resolution
simulations.

2.2 Implicit time integration

The intrinsic time-step limitations of explicit time integration meth-
ods can be avoided by employing an implicit scheme that does not
request such a stringent time-step criterion. We follow the imple-
mentation presented in Kannan et al. (2016, 2017), where an im-
plicit scheme for anisotropic heat diffusion has been presented. The
implementation of ohmic diffusion is simplified by the fact that
the ohmic diffusion equations are isotropic such that many of the
aspects described in Kannan et al. (2016), like the slope limiting
procedure of the transverse diffusion fluxes, are not required in our
case.

We start from the discretized form of equation (1) – the case of
equation (2) follows naturally by replacing the magnetic field with
the vector potential – in a finite volume sense by considering only
the diffusive terms. After applying Gauss’ theorem for cell i, this
can be cast into the form

∂Bi

∂t
= η

Vi

∑
j �=i

B j − Bi

rij

aij , (8)

where the index j runs over all the neighbours of cell i and the
meaning of the symbols is the same as in the previous equations (Vi

is the volume of the ith cell).
To advance equation (8) in time, we use two methods. The first

one is a first-order backwards Euler discretization, which we can
write as

Bi
t+�t − Bi

t

�t
= η

Vi

∑
j �=i

B j
t+�t − Bi

t+�t

rij

aij . (9)

To solve equation (9), we recast it in the form

Bi
t+�t − �t

∑
j

Mij (B j
t+�t − Bi

t+�t ) = Bi
t , (10)

where Mij is a matrix with elements

Mij =
⎧⎨
⎩

ηaij

Virij

if i �= j

0 if i = j
. (11)

Equation (10) is a linear vector equation for the three components
of the magnetic field. We only focus on a generic component, but
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the same procedure applies similarly to the other components as
well. We rewrite equation (10) for a generic component of the field
in the ith cell Bi as

Bt+�t
i − �t

∑
j

Mij (Bt+�t
j − Bt+�t

i ) = Bt
i , (12)

which, following the same procedure discussed in Kannan et al.
(2016), can also be written in the form

∑
j

[
δij

(
1 + �t

∑
k

Mik

)
− �tMij

]
Bt+�t

j = Bt
i , (13)

which is in the generic matrix form

C B = B0. (14)

This linear system can efficiently be solved via standard linear
parallel solvers. To this end, we employ the HYPRE2 library with the
generalized minimal residual (GMRES) iterative method (Saad &
Schultz 1986) and an algebraic multigrid pre-conditioner (Henson
& Yang 2002). We use a tolerance limit of εtol = 10−10 for the
GMRES solver. It can be easily shown that the matrix C is (strictly)
diagonally dominant. In the peculiar case of a structured (and static)
mesh, in which the volume of each resolution element remains the
same, the matrix is also symmetric and positive definite. This is the
usual configuration in most of the test problems (see Section 3).
In these configurations, the matrix C will be well-conditioned and
indeed convergence is reached after a few (∼4 maximum) iterations
of the GMRES solver. The conditioning properties of the matrix
(and in particular strict diagonal dominance) are independent of the
size of the time-step. A direct estimation of the condition number of
the matrix is difficult, but it can be assumed that for more distorted
mesh topologies the matrix will become progressively more ill-
conditioned. However, we would like to note that Arepo employs
mesh regularization techniques that prevent unwanted and excessive
mesh twisting and tangling (see Springel 2010), which therefore
should also limit the magnitude of the condition number of the
matrix C.

For improved accuracy, we have also implemented a second-
order Crank–Nicholson scheme (Crank, Nicolson & Hartree 1947).
This can efficiently be implemented by considering

Bt+�t
i − �t

2

∑
j

Mij (Bt+�t
j − Bt+�t

i ) = B̃t
i , (15)

where the right-hand side of equation (15) reads

B̃t
i = Bt

i + �t

2

∑
j

Mij (Bt
j − Bt

i ). (16)

We then solve the resulting linear system with the same iterative
method used for the first-order Euler scheme. We note that con-
trary to the simple backwards Euler, which is our default choice,
the Crank–Nicholson scheme may induce slowly decaying oscil-
lations to the solution if the time-step is too large. To avoid the
appearance of this, we limit the time-step according to equation (7)
with safety factor ξ < 0.5 as derived by a von Neumann stability
analysis. We point out that this procedure is performed only for the
Crank–Nicholson scheme. In our simulations, should this time-step
limitation become too computationally expensive, we resort to the
more robust, but less accurate, Euler implicit time integration in
which no time-step limitation is present. With this approach, our

2 http://acts.nersc.gov/hypre

implicit treatment, unlike the explicit scheme, does never suffer
from a too severe time-step constraint that would otherwise prevent
performing high-resolution simulations of non-ideal MHD effects.

Finally, in the implicit integration scheme, the ohmic heating
term is directly added to the gas thermal energy before diffusing the
magnetic field or vector potential according to the equation

∂u

∂t
= η

||J ||2
ρ

, (17)

where J = ∇ × B, ρ is the gas density, and u its thermal energy
per unit mass. In particular, the new value for ui for each cell is
computed as

ut+�t
i = ut

i + �tη
||J t

i ||2
ρt

i

. (18)

After the new magnetic field and internal energy values have been
computed, the gas total energy and pressure are updated self-
consistently. It is worth pointing out that the treatment for the ohmic
heating term presented implies that the scheme is not strictly conser-
vative and this can have an effect on the evolution of the simulated
systems (see also Fig. 10). The implicit time integration schemes
described above are used only on global time-steps (see Kannan
et al. 2016, for details), which in combination with a less restrictive
limitation on the time-step renders them significantly more effi-
cient than their explicit counterpart, especially for non-ideal MHD
applications in which resistivity effects become dominant.

3 TEST PROBLEMS

In this section, we test the implementation of the ohmic resistivity
terms in AREPO on a series of problems of increasing complexity.
For each problem, we present the initial conditions for the magnetic
field and the vector potential, which is required for the initializa-
tion of the CT scheme. In all the test problems, periodic boundary
conditions will be imposed. In the case of the CT scheme, which
evolves the vector potential, while the magnetic field is periodic,
the vector potential need not be. The mean magnetic field in the
domain leads to a discontinuity in the vector potential across peri-
odic boundaries. Therefore, the treatment of the vector potential in
the CT scheme (Mocz et al. 2016) involves decomposing the vector
potential into two parts by defining a periodic component of the
vector potential and a component associated with the mean-field,
which is discontinuous across boundaries. This is necessary as a
discontinuity in the vector potential leads to an infinite value of
the associated magnetic field with catastrophic effects on the runs.
Finally, also in the case of ohmic diffusion, the mean magnetic field
in the simulated volume is a conserved quantity originating from
a (non-periodic) vector potential static in time. Therefore, it is not
necessary to evolve this part of the vector potential in time, and the
associated mean magnetic field is simply added to the cell-centred
field tracked by the simulation at the end of each CT mapping step
(see Mocz et al. 2016, for details).

3.1 Gaussian pulse

We first test the implementation of resistive MHD terms in the
simplified case where the dynamics of the gas is not followed. This
is equivalent to assuming v ≡ 0 at all times. The MHD equations
then reduce to

∂B
∂t

= η∇2 B. (19)
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Figure 1. Time evolution of the diffusion of a 1D Gaussian magnetic field pulse with the implicit CT scheme. Both the evolution of the magnetic vector
potential (top rows) and the associated magnetic field (bottom rows) are shown and compared to the analytic solution (dashed line). Time increases from the
left- to right-hand side and is in units of the initial time (t0 = 10−3).

Mathematically, equation (19) is an isotropic diffusion equation
with diffusion coefficient η for each of the component of the mag-
netic field. A similar equation also holds for the vector potential A
in the CT scheme.

3.1.1 1D Gaussian pulse

To further reduce the complexity of the problem, we first simulate
the diffusion of a 1D Gaussian pulse:

B(x) = δ(x)êz, (20)

where δ(x) is the Dirac delta function. The solution of this initial
value problem at time t is the 1D heat kernel function

B(x, t) = 1√
4πηt

exp

(
− x2

4ηt

)
êz. (21)

To initialize this test, we sample equation (21) with 128 resolution
elements at the initial time t0 = 10−3, and we assume η = 1. The
test is carried out on the 1D domain [0, L] with L = 4.

For the CT scheme, we adopt the following vector potential for
this test

A(x) = 	(x)êy , (22)

where 	(x) is the Heaviside step function. The solution of this initial
value problem at time t is the error function

A(x, t) = 1

2
erf

(
x√
4ηt

)
êy . (23)

In order to use periodic boundary conditions, and since the ohmic
diffusion operator is linear, we diffuse two of such steps by starting
from the initial conditions

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

	(x − 0.75)êy if x > 0.5

	(0.25 − x)êy if x ≤ 0.5.

(24)

The time evolution of this vector potential gives rise to two Gaussian
magnetic fields of opposite polarity centred at x = 0.25 and 0.75,
respectively.

Fig. 1 presents the results of this test for the initial conditions
described in equation (24) calculated with the implicit CT scheme3

with a 1D grid of 128 points. We chose this scheme since it formally
requires the diffusion of a discontinuous step function for t = 0, and
therefore better illustrates the robustness of our implementation. All
the other implementations of ohmic diffusion perform equally well
in this test problem.

The panels show the evolution of the vector potential (top rows)
and associated magnetic field (bottom rows) at different times in
units of the initial time t0 = 10−3, indicated in the bottom right-
hand corner of each panel. Red squares represent the numerical
solution, whereas the black dashed lines represent the analytic so-
lution. Our implementation correctly captures the evolution of the

3 Unless otherwise stated, the Crank–Nicholson scheme is used in this paper
for the implicit time integration.

MNRAS 476, 2476–2492 (2018)



Non-ideal magnetohydrodynamics on a moving mesh 2481

Figure 2. L1 norm of the error as a function of resolution for the vector
potential (red circles) and magnetic field (blue squares) of the 1D diffusion
test, performed with the implicit CT scheme, at time t = 4 × t0. The grey
dashed lines represent the expected scaling for a second-order scheme.

vector potential and the associated magnetic field even at the rela-
tively low resolution used in this test problem. Only at the locations
of the maximum and minimum magnetic field (at x = 0.75 and 0.25,
respectively), the numerical values of the field are slightly underes-
timated with respect to the analytic solution, which however can be
cured by adopting a higher resolution. This underestimation of the
magnetic field intensities is less pronounced or absent altogether at
later times.

In Fig. 2, we assess more quantitatively the performance of our
scheme by showing the Lp error computed as (Pakmor et al. 2016)

Lp = 1

V

(
Ncells∑
i=0

|fi |pVi

)1/p

, (25)

for the results presented in Fig. 1. In equation (25), V is the total
simulated volume, Vi is the volume of the ith cell, and fi is the
difference between the analytic and numerical solution in the cell i.
In Fig. 2, we show the L1 error (p = 1), for both the vector potential
(red squares) and the magnetic field (blue circles), as a function
of the mesh resolution expressed as the inverse of the mean cell
size 1/�x. We note that we adopt these choices for stating the
resolution in all similar figures quantifying the convergence of our
schemes that we will present below. The mean cell size �x can be
computed as the radius of a sphere (circle) having the same volume
(area) of a given cell for 3D (2D) configurations depending on
the problem analysed. We note that finer resolution corresponds to
larger values of 1/�x. The grey dashed line represents the second-
order scaling of the L1 error expected for our schemes. We find that
in this test problem the L1 error follows exactly the scaling predicted
for second-order convergence. Since the magnetic field is a derived
quantity in the CT scheme (see Mocz et al. 2016), the amplitude of
the L1 error is larger than for the vector potential whose evolution
is directly followed.

3.1.2 2D Gaussian pulse

The previous test problem assessed the accuracy of our ohmic dif-
fusion scheme in a 1D set-up. We now increase the dimensionality
by using as initial conditions a magnetic field of the form

B(x) = δ(x)δ(y)êz. (26)

The solution of this initial value problem at time t is the 2D heat
kernel

B(x, t) = 1

4πηt
exp

(
−x2 + y2

4ηt

)
êz. (27)

To initialize the simulation, we sample equation (27) at the initial
time t0 = 10−3, and we assume η = 1. The test is carried out on the
2D domain [0, 1] × [0, 1]. The domain is partitioned in cells via a
structured Voronoi mesh in which the mesh generating points are
arranged in a 2D rhombic lattice. The lattice is built by using two
interleaved Cartesian meshes of 322 points, separated by half the
cell spacing, for a total of 2 × 322 resolution elements.

An explicit expression for the vector potential corresponding to
the magnetic field presented in equation (27) can be found in polar
coordinates,

A(x, t) = − 1

2πR
exp

(
− R2

4ηt

)
êϕ, (28)

or equivalently in Cartesian coordinates,

A(x, t) = − yêx − xêy

2π(x2 + y2)
exp

(
−x2 + y2

4ηt

)
. (29)

To initialize the test for the CT scheme, we use again the same
mesh of 2 × 323 resolution elements on the 2D domain [0,
1] × [0, 1] adopted for the Powell scheme. Equation (29) is sam-
pled on this mesh at the initial time t0 = 10−3, and we assume
η = 1.

Fig. 3 illustrates the result of this test for the initial conditions de-
scribed in equation (27) calculated with the implicit Powell scheme.
We chose here the implicit Powell scheme, instead of the more com-
plex implicit CT scheme, to demonstrate that our non-ideal MHD
implementation is also working for the cleaning scheme. Again,
we note that all the other schemes applied to this test problem es-
sentially give the same results. The panels show the evolution of
the magnetic field at different times (in units of the initial time
t0 = 10−3) indicated in the top right-hand corner of each panel.
The colour map shows the values of the field mapped linearly in
the range [0; 10], whereas the contour lines are placed at the val-
ues 1, 5, 5, and 10 (from the outside in). The upper right-hand
quadrant of each panel shows the analytic solution obtained from
equation (27), whereas in the rest of the plot the numerical solution is
presented.

The implicit treatment of ohmic diffusion with the Powell scheme
is able to correctly capture the evolution of the magnetic field in-
tensity with time. The diffusion of the field is visible in the panels
as a decrease of the central magnetic field strength as a function of
time. The contour levels clearly illustrate this trend. In particular,
the highest contour shrinks in size with time, as the magnetic field
diffuses out, and disappears in the second panel. Similarly, the sec-
ond highest contour shrinks in size and disappears at time t = 5 × t0.
We note that, contrary to the computation of the analytic solution,
no smoothing of the simulation values has been applied to produce
this figure; i.e. the magnetic field values of the cell closest to any
given pixel has been assigned to that pixel. This has been done on
purpose to show the structure of the underlying rhombic mesh. The
structure is made more evident by the shape of the contour levels
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Figure 3. Time evolution of the diffusion of a 2D Gaussian magnetic field pulse evolved with the implicit Powell scheme. Contour levels are located at 10, 5,
3, and 1, from the innermost to the outermost. The upper right-hand quadrant of each panel shows the evolution of the analytic solution of this problem (see
equation 27). Time, in units of the initial time t0 = 10−3, increases from the left to right-hand side and from the top to bottom as indicated in the legend.

in the quadrants displaying the numerical solution, which unlike
the smooth circular analytic contours present a jagged shape along
the cell boundaries. However, their spatial position is in excellent
agreement with the analytic expectations.

Fig. 4 presents the L1 error as a function of the mesh resolution
for the implicit Powell scheme investigated in this test. The second-
order convergence of the scheme, as indicated by the grey dashed
line, is clearly visible. All the other schemes implemented in this
work show the same behaviour when they are coupled with a second-
order accurate time integrator.

3.2 Alfvén waves

We now test our implementation of the ohmic diffusion term in the
presence of gas dynamics by studying the evolution of a circularly
polarized Alfvén wave. The resistivity term in equations (1) and (2)
causes the amplitude of the wave to decay exponentially, whereas
the ohmic dissipation term added to the energy equation (3) leads
to an increase of the thermal energy content of the gas via Joule
heating. We test two cases: a progressive wave propagating along the
negative z-direction (Section 3.2.1) and a stationary wave obtained
as the superposition of two progressive waves propagating again
along the z-axis but in opposite directions (Section 3.2.2). Both
tests are presented for the implicit CT scheme since the additional
step needed to reconstruct the magnetic field from the diffused
vector potential makes it a more complex problem to test compared
to the Powell method.

Figure 4. L1 norm of the error as a function of resolution for the magnetic
field in the 2D diffusion test at time t = 4 × t0 performed with the implicit
Powell scheme. The grey dashed line represents the expected scaling for a
second-order scheme.
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3.2.1 Progressive wave

We follow Masson et al. (2012) to initialize this test problem. In
the case of a progressive wave, we evolve the following initial
conditions in a 3D periodic domain of side length L = 1,

B(x) = δB[cos(kz)êx − sin(kz)êy] + B0êz, (30)

v(x) = δv{[ωi cos(kz) − ωr sin(kz)] êx

− [ωi sin(kz) + ωr cos(kz)] êy}, (31)

with

δv = kB0

ρ0ω2
δB, ω2 = ω2

r + ω2
i , ωr = −k2η

2
,

ωi =
√

(kvA)2 − ω2
r , k = 2π, vA = B0√

ρ0
. (32)

The wave will be evolving as

B(x, t) = eωr t δB[cos(kz + ωit) êx − sin(kz + ωit)êy]

+ B0êz, (33)

v(x, t) = eωr t δv

× {[ωi cos(kz + ωit) − ωr sin(kz + ωit)] êx

− [ωi sin(kz + ωit) + ωr cos(kz + ωit)] êy}, (34)

which is a planar, circularly polarized Alfvén wave in a clockwise
direction from the source perspective.

The previous equations demonstrate how the amplitude of the
wave is decaying exponentially at a rate equal to ωr. The rate is
faster for larger values of the resistivity η. Moreover, the frequency
of the wave is decreased due to the resistivity in the system, which
implies a lower propagation speed compared to the Alfvén speed.
As a result of ohmic dissipation, the gas internal energy is expected
to grow alongside an increase of the gas thermal pressure that can
be described by (see again Masson et al. 2012)

P (t) = 1 + (γ − 1)k2δB2η
e2ωr t − 1

2ωr

, (35)

with γ = 5/3 being the ratio of the specific heats of the gas. We
note that ωr is a negative quantity. Therefore, the increase in pres-
sure reaches a maximum formally for t → +∞. This situation
corresponds to the total dissipation of the initial magnetic and ki-
netic energy contained in the wave to thermal energy due to Joule
heating. Moreover, the absence of any spatial dependence in the
pressure expression implies that the heating is uniform throughout
the simulated domain.

For the CT scheme, the periodic part of the vector potential
originating the magnetic field of the progressive Alfvén wave (33)–
(34) is given by

A(x) = δB

[
cos(kz)

k
êx − sin(kz)

k
êy

]
(36)

and evolves as

A(x, t) = eωr t δB

×
[

cos(kz + ωit)

k
êx − sin(kz + ωit)

k
êy

]
. (37)

The mean magnetic field is represented in this set-up by the z-
component of equation (30). We initialize the simulation by assum-
ing a uniform initial density ρ0 = 1 and pressure P0 = 1, a guide

field in the z-direction B0 = 1, δB = 1 and a resistivity η = 2 × 10−2.
All other quantities can be derived from relations (32). For the mesh
generating points of the Voronoi tessellation, we use a cubic body-
centred lattice, composed by two interleaved Cartesian meshes of
323 points and separated by half the cell spacing, for a total of
2 × 323 resolution elements.

In Fig. 5, we present the results of this test problem for the
implicit CT scheme on a static mesh. We show the amplitude of the
two transverse components of the magnetic field (coloured squares)
and of the guide field (black solid line) at different times, indicated
in the top right-hand corner of each panel. The simulation results
are compared to the analytic expectations, indicated by the dashed
black lines in each panel. The simulation is run approximately for
five periods of the wave. This is a time-scale over which the effect
of ohmic dissipation is particularly noticeable.

The numerical results agree with the analytic expectations for this
test. In particular, the guide field in the z-direction is not affected
by the ohmic dissipation thus staying at its initial strength. The
two transverse components, instead, clearly show an exponential
decay in their amplitude, such that at the final time their maximum
values are about a quarter of their initial amplitude. Also noticeable
is the propagation of the wave towards decreasing values of the
coordinate z. No phase offset is apparent in this test between the
numerical values of the solution and the analytic estimates.

In the left-hand panel of Fig. 6, we quantify the exponential
decay of the magnetic field by showing the time evolution of the
volume-weighted rms values of the two transverse components of
the magnetic field for the implicit CT scheme. This quantity gives
an indication of the magnetic energy density contained within the
simulated box in each of the magnetic field components, which is
dissipated by ohmic resistivity. The y-component is offset by 0.1
from its true value to improve the clarity of the plot.

For the initial conditions used in this experiment, we expect
analytically that the mean rms values decrease exponentially in a
characteristic time-scale ωr, from an initial amplitude of

√
2. This

trend is recovered in Fig. 6, where the simulation results (coloured
squares) overlap well with the analytic expectations (black dashed
line).

In the right-hand panel of Fig. 6, we show the L1 error in the
two transverse magnetic field components (coloured symbols) as
a function of the simulation resolution for the implicit CT scheme
at t = 0.74. The grey dashed line shows the expected scaling for
second-order convergence. The open coloured symbols indicate the
results obtained for this test problem for the implicit Powell scheme
run on a moving-mesh configuration in which the mesh generating
points are free to move with the fluid motion. The figure clearly
demonstrates the quadratic decrease of the L1 error of the numerical
solution with increasing resolution, thus signalling that even in this
more complex case where gas dynamics must be taken fully into
account, our implementations of the ohmic terms in AREPO perform
as expected.

3.2.2 Stationary wave

The case of a stationary wave is obtained by linearly combining
two progressive waves with equal weights (1/2) as described by
equations (36), (30), and (31) propagating in opposite direction and
thus with opposite ωi. This results in

B(x) = δB[cos(kz)êx − sin(kz)êy] + B0êz, (38)

v(x) = −δv[ωr sin(kz) êx + ωr cos(kz) êy], (39)
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Figure 5. Time evolution of a progressive Alfvén wave in the presence of ohmic diffusion simulated with the implicit CT scheme. The panels show the
evolution of the three components of the magnetic field (coloured symbols and black solid line) contrasted to the analytic solution (dashed line). The exponential
decay in amplitude of the wave is clearly visible. The direction of wave propagation is the negative z-axis.

Figure 6. Left-hand panel: Time evolution of the average rms intensity of the transverse components of the magnetic field for the progressive Alfvén wave
test simulation with the implicit CT scheme. The panel shows the evolution of these components (coloured squares) contrasted to the analytic solution (dashed
line). The y-component of the magnetic field is offset from its true value to improve clarity. The exponential decay in the amplitude of the magnetic field is
clearly visible. Right-hand panel: L1 norm of the error as a function of resolution for the progressive Alfvén wave tests run with the implicit CT scheme at time
t = 0.74. Different coloured symbols show the error of the individual components of the magnetic field as indicated in the legend, whereas the grey dashed
line represents the expected scaling for a second-order scheme. Open symbols show the results obtained for the implicit Powell scheme run on a moving-mesh
configuration. At high resolution, the convergence becomes slower than second-order due to a significantly distorted mesh.
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Figure 7. Time evolution of a stationary Alfvén wave in the presence of ohmic diffusion with the implicit CT scheme. The panels show the evolution of the
three components of the magnetic field (coloured symbols and black solid line) contrasted to the analytic solution (dashed line). The exponential decay in
amplitude of the wave is clearly visible.

with all the symbols defined by equation (32). The wave will be
evolving as

B(x, t) = eωr t δB[cos(kz) cos(ωit) êx

− sin(kz) cos(ωit) êy] + B0 êz, (40)

v(x, t) = −eωr t δv

× {[ωi sin(kz) sin(ωit) + ωr sin(kz) cos(ωit)] êx

+ [ωi cos(kz) sin(ωit) + ωr cos(kz) cos(ωit)] êy}. (41)

We note that contrary to the previous case, the spatial and temporal
dependences are separated such that the wave does not propagate. In
particular, the location of the knots of the wave – where the magnetic
field and velocity amplitude are zero – does not change with time.
Only the amplitude of the wave is decaying exponentially at a rate
equal to ωr, as in the progressive case. Again, due to the ohmic
dissipation, the gas internal energy increases and the gas thermal
pressure evolves as (see Masson et al. 2012)

P (t) = 1 + (γ − 1)

4
k2δB2η

{
e2ωr t − 1

ωr

+ e2ωr t

[
ωr cos(2ωit) + ωi sin(2ωit)

ω2

]
− ωr

ω2

}
. (42)

As in the progressive wave, ωr is a negative quantity, which implies
that for t → +∞ the pressure reaches a maximum value once the

initial magnetic field is totally dissipated by resistive effects. The
heating rate of the gas is independent of the position in this case as
well.

For the CT scheme, the (periodic) vector potential originating a
stationary Alfvén wave can be expressed as

A(x) = δB

[
cos(kz)

k
êx − sin(kz)

k
êy

]
, (43)

and its evolution is given by

A(x, t) = eωr t δB

×
[

cos(kz) cos(ωit)

k
êx − sin(kz) cos(ωit)

k
êy

]
. (44)

The mean magnetic field is also represented in this set-up by the
z-component of equation (38). The same set-up as in the progressive
case is used in this test problem as well as for what concerns the
values of both the initial gas properties and the grid geometry.

In Fig. 7, we present the results of this test for the implicit CT
scheme on a static mesh. As in the previous case, we show the
amplitude of the two transverse components of the magnetic field
(coloured squares) and of the guide field (black solid line) at dif-
ferent times, shown in the top right-hand corner of each panel.
The analytic solution is indicated by the dashed black lines in each
panel. The simulation is run again approximately for five periods
of oscillation of the wave to give ample time for ohmic diffusion to
act.
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Figure 8. Left-hand panel: Time evolution of the average rms intensity of the transverse components of the magnetic field for the stationary Alfvén wave test
simulation with the implicit CT scheme. The panel shows the evolution of this quantity contrasted to the analytic solution (dashed line). The y-component of
the magnetic field is offset from its true value to improve clarity. The exponential decay in the amplitude of the magnetic field, modulated by a cosine function,
is clearly visible. Right-hand panel: L1 norm of the error as a function of resolution for the stationary Alfvén wave tests at time t = 0.74. Different coloured
symbols show the error of the individual components of the magnetic field as indicated in the legend, whereas the grey dashed line represents the expected
scaling for a second-order scheme. Open symbols show the results obtained for the implicit Powell scheme run on a moving-mesh configuration.

This figure demonstrates that the numerical results agree very
well with the analytic solution. As expected, no change is visible
in the guide field in the z-direction, which remains at the initial
strength. On the other hand, the amplitude of the two transverse
components decays exponentially as a function of time. At the final
time displayed for this test problem they only reach one-tenth of
their initial amplitude. This fact might appear surprising at first,
given that the time-scale for dissipation ωr is the same as in the
progressive case (eωr t ≈ 0.18 for t = 4.32). However, a closer in-
spection of equation (40) reveals that the magnetic field amplitude
is further modulated by a cos (ωit) term that accounts for this dis-
crepancy.

The modulation due to this cosine term can be seen more easily
if the mean energy content of the magnetic field is plotted as a
function of time. We present this in the left-hand panel of Fig. 8,
where the time evolution of the volume-weighted mean rms values
of the two transverse components of the magnetic field is shown for
the implicit CT scheme. The y-component of the field is offset by
0.2 from its true value to improve the clarity of the plot. We expect
an exponential decay of the field amplitude on a characteristic time-
scale ωi starting from an initial amplitude of

√
2. It is evident from

the figure that both the numerical (coloured squares) and analytical
(black dashed line) solutions follow this expected trend and that they
are in agreement with one another. In addition to the exponential
decay, the modulation of the cos (ωit) term is clearly visible as
oscillations in the time evolution of the magnetic field rms values.

Finally, in the right-hand panel of Fig. 8, we present the L1

error in the two transverse magnetic field components (coloured
symbols) as a function of the simulation resolution for this set-up at
t = 0.74. The grey dashed line indicates the scaling for second-order
convergence, whereas the open coloured symbols show the results
obtained for this test problem for the implicit Powell scheme run
on a moving-mesh configuration. As in the progressive case, the
convergence is second-order accurate. The plot also demonstrates

that our implementation performs well when gas dynamics has to be
followed to model self-consistently the evolution of the simulated
system.

4 M AG N E T I C R E C O N N E C T I O N

In this section, we present a first application of our ohmic resistiv-
ity implementation exploring the effects of magnetic reconnection.
Magnetic reconnection is the rearrangement of the magnetic field
topology that occurs in highly conducting plasmas with finite resis-
tivity. During the reconnection phase, the energy that is present in
the magnetic field can be rapidly converted into thermal and kinetic
energy of the plasma. Therefore, this mechanism has been widely
proposed as the key process that lies at the heart of eruptive events
in the Sun (Zhu et al. 2016; Cheng et al. 2017; Seaton, Bartz &
Darnel 2017) or the heating of its corona (Parker 1983, see also
Klimchuk 2006 and references therein).

To study this process, we simulate the so-called tearing instability
(Furth et al. 1963). In this configuration, magnetic fields of opposite
polarity are connected by a thin current sheet. Upon perturbing this
configuration, reconnection of the field is triggered, which eventu-
ally leads to the formation of magnetic islands with increasing size
that eventually coalesce (Landi & Bettarini 2012, and references
therein for numerical work done on the instability).

To simulate the tearing instability, we use an adapted version of
the initial conditions presented in Landi et al. (2008). In particular,
we use a 2D domain with side length Lx = Ly = L = 6π, which we
simulate with 1024 × 3072 resolution elements. The larger number
of resolution elements in the y-direction is necessary to resolve
the steep gradients across the current sheets. The gas density is
uniform and set to ρ0 = 1. The initial conditions for this test start
with a so-called Harris (1962) current sheet configuration, which
is an equilibrium solution for ideal MHD equations (i.e. when the
resistivity η is put to zero). To employ periodic boundary conditions
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throughout (see discussion at the beginning of Section 3), we use
two of such current sheets of opposite polarity that are placed in the
computational domain as

B(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B0 tanh

[
δ

(
y − 3Ly

4

)]
êx if y >

Ly

2

B0 tanh

[
δ

(
Ly

4
− y

)]
êx if y ≤ Ly

2

, (45)

where B0 is the amplitude of the magnetic field at large distances
from the current sheet and δ = 10 is its characteristic thickness.
Equilibrium is ensured by the condition

P + ||B||2
2

= const, (46)

in which the gas thermal pressure P counterbalances its magnetic
counterpart. This condition can be rewritten as

P (y) = β + 1 − ||B||2
2

, (47)

and β can be interpreted as the ratio between thermal and magnetic
pressure in the plasma at large distances from the current sheet(s).
We fix β = 5 in our runs, so magnetic fields are dynamically im-
portant in this set-up. We then perturb this equilibrium solution by
adding a component in velocity as

v(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε

tanh

[
δ

(
y − 3 Ly

4

)]

cosh

[
δ

(
y − 3 Ly

4

)] sin(kxx)êy if y >
Ly

2

ε

tanh

[
δ

(
Ly

4
− y

)]

cosh

[
δ

(
Ly

4
− y

)] sin(kxx)êy if y ≤ Ly

2

(48)

where ε = 10−2, and kx = 2πm/Lx . For the wavelength of the
perturbation, we chose m = 7, which Landi et al. (2008) showed
to be the fastest growing mode. We employ Alfvénic units so that
lengths are normalized to a characteristic scale L, which we assume
to be unity, densities are normalized to a characteristic value ρ0 = 1,
magnetic fields are normalized to B0 = 1, velocities are normalized
to the Alfvén velocity cA = B0/

√
ρ0, and times are normalized to

tA = cA/L. The system is evolved up to the final time t = 250 tA

with a resistivity η = 2 × 10−4.
For the CT scheme, a periodic vector potential that gives rise to

the magnetic field in equation (45) is given by

A(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B0

δ
ln cosh

[
δ

(
y − 3Ly

4

)]
êz if y >

Ly

2

B0

δ

{
C − ln cosh

[
δ

(
Ly

4
− y

)]}
êz if y ≤ Ly

2

,

(49)

where C = 2ln cosh (δLy/4) is chosen to ensure the continuity of
the vector potential at y = Ly/2. In the configuration that we have
used in this test problem, the average magnetic field is zero.

We present the results of this calculation in Fig. 9 for the im-
plicit CT scheme on a static mesh. We point out that all our other
schemes yield essentially the same results (see also Fig 10). In
the top six panels, we show the time evolution of the out-of-plane

current density vector Jz = ∇ × B at the time indicated in the top
right-hand corner. The bottom six panels are the analogous figure
for the evolution of the gas thermal pressure. At early times, it is
evident how the gradient in the gas thermal pressure, which reaches
its maximum values at the locations of the current sheets, balances
the opposite gradient in the magnetic pressure – magnetic fields are
zero at the sheet location, reaching their maximum amplitude far
away from it (i.e. for |y| � 1/δ). The thickness of the current sheets,
indicated by the size of the coloured regions where Jz is not zero,
slowly increases with time due to the presence of ohmic diffusion.
At around t = 100 tA, the linear perturbation added to the velocity
also starts to be noticeable in Jz with its characteristic m = 7 pattern.
At t = 150 tA, the instability has fully developed in the non-linear
regime and X shaped regions in Jz are present. In these regions,
magnetic reconnection operates, changing the topology of the mag-
netic field, an effect that it is not possible in the ideal regime, and
reorienting its direction from the x- to y-axis. These reconnection
points divide the current sheets in topological islands that coalesce
at later times. The evolution of the pressure follows a trend akin
to the current density, with similar morphological features. In the
region where the current dissipation is maximal, i.e. mostly inside
magnetic islands, the maximum of the pressure is also reached due
to the intense associated ohmic heating.

In Fig. 10, we present for all numerical schemes the time evo-
lution of the volume-weighted rms values of the By component as
a proxy for the evolution of the instability. The fraction of mag-
netic energy in the y-component of the field at the initial time is
zero, so its evolution reflects the growth of the instability and the
amount of reconnection occurring in the system. It is evident that
in the linear regime of the instability (at very early times), the By

rms value increases exponentially. At very early times (t ∼ tA),
there is a wiggle in the By rms amplitude, which is likely due to our
choice of perturbing the y-component of the gas velocity only rather
than both gas velocity and magnetic field y-components based on
an analytic solution of the tearing instability mode (e.g. Rembiasz
et al. 2017). For t  50 tA, the growth rate decreases sensibly, al-
though the average By field keeps steadily increasing. In general,
the Powell and the CT schemes give consistent results across all the
examined time span. There is a difference in the final values of the
By component between the explicit and implicit time integration,
with the latter giving consistently lower values after a time of t �
25 tA has elapsed. The difference reaches a maximum of about a
factor of 2 at late times (t ≈ 150 tA) to then reduce at the end of
the simulated time span. This trend is an indication that the implicit
schemes are slightly more diffusive than their explicit counterparts.
We ascribe this behaviour to the first-order and non-strictly conser-
vative treatment of the Joule heating term in the implicit schemes
(see equation 18). To investigate whether this could be the cause
of the observed difference, we reran the magnetic reconnection test
with the explicit schemes, but using the same first-order treatment
for the Joule heating term as in the implicit implementation. We
find a closer agreement in the evolution of the rms By values in this
case between explicit and implicit schemes, thus confirming that the
additional diffusivity is caused by the treatment of the Joule term.
The green dashed line shows the evolution of the By rms ampli-
tude for a non-resistive plasma, in which η has been fixed to zero.
Theoretically, the tearing instability, and the associated magnetic
reconnection, cannot develop in this configuration. However, any
code introduces a finite amount of numerical resistivity due to the
discretization of the equations governing the system. This numerical
resistivity, which is dependent on resolution, can lead to magnetic
reconnection that is entirely numerical in nature, and if it is large
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Figure 9. Time evolution of the out-of-plane current density Jz (top panels) and gas thermal pressure (bottom panels) of the magnetic reconnection simulation
performed with the implicit CT scheme. Each snapshot has been taken at the time (normalized to tA) indicated in each panel. Note the development of the
X-point reconnection regions for times t � 100 × tA in the Jz snapshots, where the topology of the magnetic field is modified. The insets in the last panels
show a magnified portion of the upper magnetic island.
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Figure 10. Volume-weighted average magnetic field along the y-direction
as a function of time for the magnetic reconnection simulation (tearing
instability) performed with different implementations of ohmic diffusivity
as indicated in the legend. After an exponential increase at early times, the
growth rate decreases sensibly after t ∼ 50 × tA, although the field value
keeps increasing steadily. Overall, the Powell and CT schemes agree quite
well in their predictions. However, the implicit implementation predicts
lower magnetic field values at times t � 25 × tA. The discrepancy is about
a factor of 2 at t ≈ 150 tA to then reduce at the end of the examined time
span. The green dashed line shows the evolution of the By rms amplitude
for a non-resistive plasma. Note that in this case the growth rate of the field
is much more reduced compared to the resistive simulation and the tearing
instability does not develop although numerical reconnection is present to
some extent.

enough trigger the onset of the instability. It can be appreciated from
the figure that there is an increase of the By rms amplitude due to
this effect. However, the growth is much more reduced compared to
the resistive simulation and the tearing instability does not develop
at the resolution presented here. This is not the case for lower res-
olution realizations of this set-up, in which the amplitudes reached
by the By field are comparable to the ones obtained with the onset
of the tearing instability mode. In particular, degrading the resolu-
tion by a factor of 4 in both directions leads to the development of
the instability for purely numerical reasons. Summarizing, these re-
sults illustrate the ability of our implementations to handle complex
non-ideal MHD applications, which include ohmic resistivity.

5 M AG N E T I Z E D C L O U D C O L L A P S E

As another application of our scheme, we study next the gravita-
tional collapse of a magnetised sphere and compare the outcome of
simulations performed in the ideal and non-ideal MHD case. This
system represents an important astrophysical problem as this set-
up can be considered as an idealized model of the formation of a
protostar.

The initial conditions for this problem are taken from Pakmor
et al. (2011), which are an adaptation of those presented in Hen-
nebelle & Fromang (2008). They consist of a spherical cloud of
uniform density with a radius of R0 = 0.015 pc. The cloud is em-
bedded in a more tenuous atmosphere with a small transition region
at the boundary. The initial mass of the cloud is 1 M�, which implies

an initial density of 4.8 × 10−18 g cm−3. With this initial density,
the free-fall time is 3 × 104 yr. The atmosphere surrounding the
cloud is 100 times less dense than the cloud. At the beginning of
the calculation, the gas in the cloud rotates as a rigid body with a
period of 4.7 × 105 yr. The simulation domain is a box of side length
0.06 pc and is filled with a uniform magnetic field with a strength
of 30 μG directed in the same direction of the angular momentum
of the gas. The gas follows a barotropic equation of state given by
(see Hennebelle & Fromang 2008)

P = ρc2
0

√
1 + (ρ/ρc)4/3, (50)

where c0 = 0.2 kms−1 and ρc = 10−13 g cm−3. Inflow/outflow
boundary conditions are applied at all sides of the domain. We
start the simulation with a Cartesian mesh with 1283 cells, but we
allow for the refinement of gas cells whose free-fall time-scale be-
comes smaller than 10 times its sound-crossing time-scale. With this
criterion, we basically resolve the local Jeans length with at least
10 resolution elements. To avoid an excessive number of gas cells
as the simulation progresses, we limit their volume to a minimum
value of 5 × 10−17 pc3, which is equivalent to an effective resolution
of 163843 resolution elements (see Hennebelle & Fromang 2008;
Pakmor et al. 2011). In the simulation with ohmic resistivity, per-
formed with the explicit Powell scheme, we use a spatially constant
resistivity η = 1018 cm2 s−1. We note that this calculation is meant
to be an idealized collapse model, and we therefore do not account
for the variation of resistivity with gas properties (such as chemical
composition and ionization state), a task that is non-trivial and out-
side the scope of this paper. However, the chosen resistivity value is
appropriate for densities n � 1012 cm−3  1.67 × 10−12 g cm−3, as-
suming a fully hydrogen composition (see also Machida et al. 2007,
Fig. 1). These densities are reached in the regions surrounding the
protostar in our set-up.

The choice of the explicit Powell scheme was also adopted on the
basis that the ratio between the resistive and the CFL time-step (see
equation 7) reaches a minimum value of about four at the end of the
simulated time span (1.13tff). So in terms of the size of the time-
step, the advantages of using an implicit scheme are limited for this
set-up. However, we would like to mention two important aspects:
(i) the value of the resistivity might be larger than the one that
we have adopted at higher densities (Nakano et al. 2002; Machida
et al. 2007), and (ii) we have imposed a minimum size to the gas
cells in the simulation, effectively limiting the maximum resolution
that can be achieved. Both factors contribute to keep the ratio of
time-steps large enough that explicit schemes are a more convenient
choice with respect to implicit schemes for this particular set-up.
Increasing the resistivity value or the resolution of the simulation
(or a combination of both) may render implicit schemes competitive
with explicit schemes for this calculation.

Fig. 11 presents the output of the simulations in the ideal (left-
hand column) and resistive (right-hand column) cases at the final
time t = 1.13 tff. The rows show slices (of depth equal to 0.2 times
the side length of the projection) through the centre of the simulated
domain in the xz-plane (the z-axis coincides with the cloud’s rota-
tion axis) of the volume-weighted gas density (top) and the density-
weighted magnetic field in the z- (middle) and azimuthal (bottom)
directions. The density panels display the results on a smaller scale
(0.03 R0) compared to the magnetic field panels (0.3 R0). In the
ideal MHD case, results are similar to those found by Pakmor et al.
(2011). At the centre of the domain a protostar is formed, which is
surrounded by a disc of material. Compression of the gas due to the
collapse has amplified the initial magnetic field to values of about
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Figure 11. Collapse of a magnetized cloud in the ideal (left-hand column) and non-ideal (right-hand column) MHD case. The panels show a slice (of
depth equal to 0.2 times the side length of the projection) through the centre of the simulated domain in the xz-plane. The top row shows a zoom-in of the
volume-weighted gas density on the central region (0.03 R0), where most of the mass of the cloud has collapsed, whereas the central and the bottom rows
display the density-weighted magnetic field in the z- and azimuthal directions on a larger scale (0.3 R0), respectively. The main effect of ohmic diffusivity in
the calculation is to reduce the strength of magnetically-driven outflows (and of the global magnetic field strength) and to favour the formation of a larger
disc-like structure in the central regions. All the panels are displayed at t = 1.13 tff.

MNRAS 476, 2476–2492 (2018)



Non-ideal magnetohydrodynamics on a moving mesh 2491

105 μG close to the protostar in the z-direction and to ∼70 μG in
the azimuthal direction immediately above and below the mid-plane
of the disc. The amplification of the magnetic field also causes the
launching of magnetically driven outflows reaching distances in ex-
cess of ∼0.1 R0 from the protostar in the z-direction. The inclusion
of ohmic resistivity changes this picture. In particular, the amplifica-
tion of the field is less pronounced because of the diffusive effects.
As a consequence, gas outflows are less strong (i.e. they reach a
smaller distance from the protostar) and also the gas distribution in
the protostar region is different, featuring a more thick and extended
disc-like structure. These results are in line with numerical studies of
star-forming clouds highlighting the importance of ohmic diffusion
on the transport of angular momentum (e.g. Dapp & Basu 2010) and
the generation of magnetically driven gas outflows (e.g. Matsushita
et al. 2017), and further validate the applicability of our non-ideal
MHD schemes to complex astrophysical systems. We caution again
that the detailed effects of ohmic resistivity on the cloud collapse
depend on the exact value of η as a function of the gas properties.
This is a non-trivial task to accomplish and our simulations have not
attempted such detailed modelling resorting, instead, to a constant
value for the resistivity.

6 SU M M A RY A N D C O N C L U S I O N S

Magnetic fields are an essential component of many physical pro-
cesses that influence the evolution of the objects populating the
Universe. Although in many astrophysical circumstances magnetic
fields can be well modelled in the ideal MHD approximation, there
are phenomena in which non-ideal effects such as ohmic resistivity,
ambipolar diffusion, and the Hall effect play an essential role. It
is therefore desirable to extend the capabilities of numerical MHD
codes to treat such non-ideal terms in order to faithfully model these
phenomena.

In this paper, we have made a step in this direction by focus-
ing on the inclusion of ohmic terms, which appear in the MHD
equations when the gas resistivity is non-zero, in the moving-mesh
code AREPO. The code has two main approaches for treating MHD,
namely a Powell et al. (1999) divergence cleaning scheme and a CT
method (Mocz et al. 2014, 2016) that evolves the vector potential to
ensure the ∇ · B = 0 constraint. We have implemented the resistive
terms for both techniques with explicit and implicit time integra-
tion. This allows for a high degree of flexibility in treating MHD
problems in which diffusivity plays a role. In particular, the implicit
time integration treatment makes it possible to circumvent the re-
strictive time-step CFL condition (∝ �x−2) necessary to guarantee
the stability of explicit time integration schemes for diffusive phe-
nomena. These explicit schemes are adopted in many non-ideal
MHD simulation codes (see e.g. Masson et al. 2012; Mignone
et al. 2012; Hopkins 2017), owing to their relatively simple im-
plementation. However, the quadratic spatial resolution scaling of
their CFL condition renders them impractical for high-resolution
applications.

We have tested our implementation in problems of increasing
physical complexity. We have first confirmed that the magnetic
field properly diffuses, in the absence of any gas dynamics, in all
our implementations. To this end, we have performed a classical 1D
diffusion test of a Gaussian magnetic field configuration recovering
the expected evolution. We have also extended this test to a 2D
configuration and found that all our implementations yielded the
expected results. In particular, we demonstrated that, regardless of
the scheme employed, second-order convergence is achieved.

We have then proceeded to include gas dynamics in our test
problems by studying the decay of Alfvén waves due to a finite
resistivity of the plasma. We have tested all our schemes in two
different initial configurations: a progressive wave and a superposi-
tion of two waves travelling in opposite directions that give rise to
a stationary wave configuration. In both cases, all the schemes that
we have implemented recovered the expected exponential decay of
the magnetic field strength, and showed second-order convergence
also in the presence of gas dynamics. We note that ohmic resistivity
not only causes the magnetic field to diffuse – and, in particular,
to decay exponentially in this problem – but also increases the
plasma temperature through Joule dissipation. In the diffusion of
an Alfvén wave (both in the progressive and stationary configura-
tions), Joule dissipation increases uniformly the gas pressure as the
intensity of the magnetic field declines. This behaviour is captured
correctly by our schemes, although the treatment of Joule heating is
different (second versus first-order accurate) between explicit and
implicit schemes, and this difference may sometimes have a more
pronounced impact on the results (see Fig. 10).

As a first application, we have investigated magnetic reconnec-
tion in a plasma configuration that develops the tearing instability
(Furth et al. 1963). The study of the emergence of this instability is
complicated by the fact that any numerical scheme introduces non-
physical numerical resistivity due to the discretization procedure.
This numerical resistivity can affect the results, especially in the
low-resistivity regime, which is interesting for the modelling of real
systems such as the solar corona. It is therefore important that the
level of numerical resistivity is lower than the physical resistivity
that is considered in the calculations, which can be achieved by
adopting a high enough resolution in the simulation. We took care
of this aspect by first running a version of this problem with zero
resistivity for increasingly high resolution until no instability due
to numerical effects was present in the calculation. We then intro-
duced physical resistivity in the system and studied its evolution.
All our schemes were able to capture the onset and the evolution
of the instability into to the non-linear regime. Furthermore, our
simulations clearly showed the emergence of X shaped regions in
the out-of-plane current density Jz, demonstrating that intense mag-
netic reconnection is occurring. These regions of strong magnetic
reconnection divide the plasma in magnetic islands that eventually
coalesce.

Finally, to further test our implementation on a problem directly
relevant for astrophysical applications and in particular for star
formation studies, we have examined the gravitational collapse of
a magnetized rotating cloud (Hennebelle & Fromang 2008). We
have demonstrated that for high-enough, but admissible, values
of the ohmic resistivity, there are visible effects on the density
gas distribution around the emerging protostar, the amplification
of the magnetic field due to the collapse, and the strength of the
magnetically driven outflows. In particular, compared to the ideal
MHD case (see also Pakmor et al. 2011), the gas in the vicinity of
the protostar is distributed in a more thick and extended disc-like
structure, the final magnetic field strength is lower and the resulting
gas outflows are weaker and less extended, in broad agreement with
previous non-ideal MHD work (e.g. Dapp & Basu 2010; Matsushita
et al. 2017).

To conclude, we have presented a first implementation of non-
ideal MHD terms in the moving-mesh code AREPO. Interesting ap-
plications of the new code capabilities include the study of massive
star formation in atomic cooling haloes (Becerra et al. 2015), or
the role of magnetic fields on small-scale star formation (Hull et al.
2017) and its correlations to supersonic turbulence in star-forming
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cores (Mocz et al. 2017). We intend to pursue these lines of research
in future work.
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