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Monitoring the direction of the short-term
trend of economic indicators

Estela Bee Dagum
Department of Statistical Sciences, University of Bologna

and
Silvia Bianconcini

Department of Statistical Sciences, University of Bologna

Abstract

Socioeconomic indicators have long been used by official statistical agencies to
analyse and assess the current stage at which the economy stands via the applica-
tion of linear filters used in conjunction with seasonal adjustment procedures. In
this study, we propose a new set of symmetric and asymmetric weights that offer
substantial gains in real-time by providing timely and more accurate information for
detecting short-term trends with respect to filters commonly applied by statistical
agencies. We compare the new filters to the classical ones through application to
indicators of the US economy, which remains the linchpin of the global economic sys-
tem. To assess the superiority of the proposed filters we develop and evaluate explicit
tests of the null hypothesis of no difference in revision accuracy of two competing
filters. Furthermore, asymptotic and exact finite-sample tests are proposed and il-
lustrated to assess if two compared filters have equal probabilities of failing to detect
turning points at different time horizons after their occurrence.

Keywords: data revisions, turning points, Diebold-Mariano test, McNemar test.
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1 Introduction

The purpose of short-term economic statistics is to provide a comprehensive and timely

picture of economic processes, such as production, income distribution, financing and ex-

penditure, to evaluate the stage of the cycle at which the economy stands. Economic

analysts and policymakers not only require accurate and timely information on the di-

rection and magnitude of the trend of main economic variables, but they must also be

confident that these estimates are unlikely to change significantly as more complete data

becomes available. This is particularly important nowadays when the fallout from the

COVID-19 pandemic and the ongoing war in Ukraine has led to a significant economic

slump in 2022. Prices for some common commodities are reaching record levels, economic

growth is slowing and inflation is rising. In July 2022, the Gross Domestic Product (GDP)

growth in the United States fell for a second quarter, which has stirred up debate over

whether the country is or will soon be in a recession. Hence, the problem of identifying the

direction of the short-term trend of major socioeconomic indicators has become of great

interest. Reliable trend-cycle estimates in real-time are of key importance to aid and assist

governments and Central Banks in informed decision making.

Research efforts by official statisticians have recently been devoted to improving existing

procedures to help reveal better the movements in the short-term trend and the occurrence

of turning points. This differs from business cycle studies where cyclical fluctuations are

measured around a long-term trend to estimate complete cycles (see among others Azevedo

(2011); Azevedo et al. (2006); de Carvalho et al. (2012); de Carvalho and Rua (2017)).

National bureaus generally rely on the symmetric Henderson (1916) filter used together

with asymmetric filters developed by Musgrave in 1964. However, the use of the latter

introduces large revisions as new observations are added to the series. From a policy-

making viewpoint, they are too slow in detecting true turning points (see Dagum and

Bianconcini (2015, 2016), and reference therein). To overcome these main limitations,

Dagum and Luati (2009) developed a linear filter based on the convolution of several

noise suppression, trend estimation, and extrapolation filters. Main statistical agencies

around the world nowadays use this linear cascade filter and the Henderson/Musgrave

weights to provide information on trend-cycle movements for several economic indicators

2



(see https://www.statcan.gc.ca/eng/dai/btd/trend-cycle, and US Census Bureau (2017)).

The moving average used to estimate the trend-cycle component is selected based on

the amplitude of irregular variations in the data relative to the amplitude of long-term

systematic variations, known as noise-to-signal ratio (Shiskin et al., 1967). Following the

so-called X11 variable trend-cycle routine (Findley et al., 1998), threshold values of this

ratio are used to guide the selection of the most appropriate trend-cycle filter for monthly

and quarterly series. For monthly data, 9-, 13- or 23-term filters are selected, whereas

for quarterly data, 5- and 7-term filters are used. Threshold values for high-frequency

data, such as weekly or daily observations, are not available but are the subject of current

research by official statistical agencies (Ladiray et al., 2018).

Differently from the Henderson and Musgrave filters, only the 13-term cascade sym-

metric filter and corresponding asymmetric weights have been developed. Due to the

application of a specific ad hoc mixed normalisation performed to ensure that the thirteen

weights added up to unity, cascade filters of shorter length cannot be derived. The cor-

responding asymmetric weights, fundamental to obtaining real-time trend-cycle estimates,

are not available for longer cascade filters.

This paper aims to provide a set of symmetric and asymmetric weights to be used in

conjunction with seasonal adjustment procedures based on a kernel representation of the

cascade filter that is twofold. First, we derive kernel weights that closely reproduce the

13-term symmetric cascade ones but, differently from the latter, symmetric kernel filters

of any length can be determined. Secondly, asymmetric weights can be obtained by select-

ing time-varying bandwidths, specific for each asymmetric filter (Dagum and Bianconcini,

2015). We show that, for the 13-term symmetric filter, these asymmetric weights have

similar properties to the cascade ones in terms of gain and phaseshift functions. However,

differently from the latter, asymmetric filters of any length can be derived.

We illustrate the proposed asymmetric and symmetric weights using socioeconomic

indicators of the US economy, which remains the linchpin of the global economic system.

Specifically, we show that when the noise-to-signal ratio selects the 13-term filter, the

proposed kernels and the cascade filter provide similar results in revisions and turning point

detection. Furthermore, we illustrate that these real-time trend-cycle kernels always have
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to be preferred to the Musgrave filters. We propose two widely applicable tests to assess

the significance of our key empirical findings. One for the null hypothesis of no difference

in revision accuracy of two competing filters, and the second to evaluate differences in the

timely detection of turning points. For the former, our approach is in the spirit of the

Diebold and Mariano (1995) test developed to compare predictive accuracy. For the latter,

we consider different time horizons after the occurrence of the turning point and develop a

test for the null hypothesis of equal probabilities of failing its detection for two compared

filters. We show that it is similar to the McNemar (1947) test used for testing marginal

homogeneity of paired binomial proportions.

2 Official statistical methods for short-term trend es-

timation

Linear filters developed by Henderson (1916) are the classical method to estimate the

trend-cycle component of seasonally adjusted economic indicators used together with non-

parametric seasonal adjustment estimates from the US Bureau of the Census X11 method

(Shiskin et al., 1967) and its variants, X11/X12ARIMA (Findley et al., 1998) and X13ARIMA

(US Census Bureau, 2017).

Assuming that the input series {yt, t = 1, . . . , N} is seasonally adjusted, it can be

decomposed into the sum of a systematic component gt, usually referred to as the trend-

cycle for they are estimated jointly, plus an erratic component ut, called the noise, such

that

yt = gt + ut, t = 1, . . . , N.

The noise ut is assumed to be either a white noise, WN(0, σ2
u), or, more generally, to follow

a stationary and invertible autoregressive moving average (ARMA) process.

The Henderson trend-cycle estimates ĝt for the central observations, t = m+1, . . . , N −m,

are obtained through a weighted moving average as follows

ĝt =
m∑

j=−m

wjyt+j, (1)
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where the weights wj, j = −m, . . . ,m, are derived by the Henderson ideal formula:

wj =
315[(m+ 1)2 − j2][(m+ 2)2 − j2][(m+ 3)2 − j2][3(m+ 2)2 − 16− 11j2]

8(m+ 2)[(m+ 2)2 − 1][4(m+ 2)2 − 1][4(m+ 2)2 − 9][4(m+ 2)2 − 25]
. (2)

Using the reproducing kernel Hilbert space methodology, Dagum and Bianconcini (2008)

have shown that these weights can be equivalently derived by

wj =
KB

3 (j/(m+ 1))∑m
j=−m KB

3 (j/(m+ 1))
, j = −m, . . . ,m, (3)

where KB
3 is a third order kernel derived from the biweight density function f0B(t) =

(15/16)(1 − t2)2, t ∈ [−1, 1], and corresponding Jacobi orthonormal polynomials Pi, i =

0, . . . , 3, that is KB
3 (t) =

∑3
i=0 Pi(t)Pi(0)f0B(t), t ∈ [−1, 1].

At the end (beginning) of the series, asymmetric weights need to be applied. The asym-

metric Henderson smoothers currently in use were developed by Musgrave (1964). They

are based on the minimisation of the mean squared revision between final and preliminary

estimates subject to the constraint that the sum of the weights is equal to one (Doherty,

2001). The assumption made is that at the end (beginning) of the series, the seasonally

adjusted values follow a linear trend-cycle plus a purely random irregular component.

Dagum and Bianconcini (2008, 2013) introduced a kernel representation of the Mus-

grave filters. In this framework, given the biweight density function, once the length of the

symmetric filter is chosen, the statistical properties of the asymmetric filters are strongly

affected by the bandwidth parameter of the kernel function from which the weights are

derived. The authors made the bandwidth parameters equal for all the asymmetric filters

(global time-invariant bandwidth) to closely approximate the Musgrave filters, but in an-

other paper (Dagum and Bianconcini, 2015) they have proposed time-varying bandwidth

parameters since the asymmetric filters are time-varying.

Under common economic conditions, the 13-term filter and corresponding asymmetric

weights are often applied for monthly data. These filters have the excellent property of fast

detection of true turning points but the limitation of producing large revisions to the most

recent estimates when new observations are added to the series. To overcome these main

limitations, Dagum (1996) proposed a nonlinear semiparametric predictor that consisted of
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(1) extending the seasonally adjusted series, modified by extreme values with zero weights,

with ARIMA extrapolations, and (2) applying the 13-term Henderson filter to the extended

series using stricter sigma limits for the identification and replacement of extreme values

(±0.7σ and ±1σ were recommended). Given its excellent properties, Dagum and Luati

(2009) provided a linear approximation for both symmetric and asymmetric components

using the convolution of several noise suppression, trend estimation, and extrapolation

linear filters. The general matrix representation of the symmetric cascade linear filter is

given by

H[H+M7,(0.143)(IN −H)][H+M5,(0.25)(IN −H)], (4)

where H refers to the Henderson filter, M5,(0.25) is the matrix representation of a 5-term

moving average with weights (0.250,0.250,0.000,0.250,0.250), and M7,(0.143) is the matrix

representation of a 7-term filter with all weights equal to 0.143. Each element of the

convolution matrix (4) depends on single, pairs and triplets of Henderson weights, and,

based on the Henderson ideal formula (2), the central weight wCLF
0 can be expressed as a

direct function of the filter length, as detailed in the Supplementary Material.

When the 13-term Henderson filter is considered, the convolution (4) produces a sym-

metric filter of thirty one terms with very small weights at both ends. Dagum and Luati

(2009) truncated this filter to thirteen terms and performed an ad hoc mixed normalisation

to ensure that the weights added up to unity. The total weight discrepancy (equal to -0.065)

was distributed over the thirteen weights, wCLF
j , j = −6, . . . , 6, by mostly allocating it to

the central value wCLF
0 (+36.4%). Conversely, the values of wCLF

3 and wCLF
−3 were reduced

(-34.1%) to preserve as much as possible the same area under the positive weights as the

Henderson filter, without modifying the negative ones, for a proper estimation of points of

maxima and minima. Asymmetric filters were applied to the last six data points, which

are crucial for current analysis. They were obtained by the convolution of the symmetric

filter with linear extrapolation filters for the last six data points from an ARIMA(0, 1, 1)

model with θ = 0.40.
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2.1 Relationship between the cascade and Henderson filter

The main limitation of the cascade filter is that only the 13-term symmetric weights are

available since the performed ad hoc normalisation, applied to ensure that the weights

added to the unity, cannot be extended to different filter lengths. To provide a general

formulation of the filter, the behaviour of the convolution (4) should be analysed when the

normalisation is not needed, that is, for a filter of length greater than or equal to 21-term,

and in comparison with the Henderson filter of the same length. Particularly for the latter,

the following results hold.

Proposition 2.1. For a Henderson filter of length 2m+1, the weights wj are negative (or

null) if |j| ≥ ⌈
√

3(m+2)2−16
11

⌉, with

⌈m
2
⌉+ 1 ≤ ⌈

√
3(m+ 2)2 − 16

11
⌉ ≤ ⌈m

2
⌉+ 2,

where ⌈x⌉ denotes the function mapping x to the least integer greater than or equal to x.

Corollary 2.1. Given the Henderson filter of length 2m+1, if 2 ≤ m ≤ 7, the weights are

negative when |j| ≥ ⌈m
2
⌉+ 1, if 7 ≤ m ≤ 24, wj is negative for |j| ≥ ⌊m

2
⌋+ 2, whereas, for

m ≥ 24, wj is negative when |j| ≥ ⌈m
2
⌉+ 2, being ⌊x⌋ the floor function mapping x to the

greatest integer less than or equal to x.

As widely discussed by Dagum and Luati (2009), the ad hoc normalisation applied to derive

the 13-term symmetric weights were developed to preserve the same area under positive

and negative weights as the Henderson filter for a proper estimation of points of maxima

and minima.

Proposition 2.2. The area under the positive Henderson weights is approximately equal to

1.1+O
(

1
m

)
, and, consequently, the one under the negative weights is almost −0.1+O

(
1
m

)
.

Differently from the Henderson filter, the unnormalised cascade weights have the following

property.

Proposition 2.3. For the cascade linear filter of length 2m+1, the weights wCLF
j are nega-

tive (or null) if j = ±
(
⌈m

2
⌉+ 2

)
, . . . ,±m, and positive if j = −

(
⌈m

2
⌉+ 1

)
, . . . ,

(
⌈m

2
⌉+ 1

)
.
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Formal proofs of Proposition 2.1, 2.2, and 2.3 are provided in the Supplementary Mate-

rial. It is evident that the Henderson weights get negative before, that is, for smaller (ab-

solute) values of j, respect to the cascade filter (Regularity 1.). The discrepancies between

the two filters reduce as the filter length increases as derived by Corollary 2.1, according

to which both filters have negative weights when |j| ≥ ⌈m
2
⌉ + 2 as m ≥ 24 (Regularity

2.). Finally, independently on the filter length (see Proposition 2.2), both the cascade and

Henderson filters cover the same area under positive and negative weights, approximately

equal to 1.1 and -0.1, respectively (Regularity 3.).

3 A reproducing kernel filter for real-time analysis

Based on the proven regularities that relate the convolution (4) to the Henderson weights,

a generalisation of the 13-term cascade filter can be obtained by looking for a kernel repre-

sentation within the same family from which the Henderson filter is derived (Dagum and

Bianconcini, 2008). The latter belongs to the Beta family based on the density

f0Beta(t) =
r

2B(s+ 1, 1/r)
(1− | t |r)s, t ∈ [−1, 1] (5)

where B(s+ 1, 1/r) is the Beta function. The corresponding third-order kernel is given by

K3(t) = R3(t)f0Beta(t) =

(
µ4 − µ2t

2

µ4 − µ2
2

)
f0Beta(t), t ∈ [−1, 1] (6)

where µ2 and µ4 are the second and fourth order moments of the Beta density, and R3(t)

is the reproducing kernel based on orthonormal Jacobi polynomials. It defines the sign of

the kernel function that results negative for any | t |≥
√

µ4

µ2
.

Different values of r and s in eq. (6) define different kernels. The Henderson kernel is

obtained when r = s = 2, for which the ratio between the fourth and second moment is

equal to µ4

µ2
= 1

3
. The uniform (r = 1, s = 0), triangle (r = 1, s = 1), and Epanechinov

(r = 2, s = 1) kernels are the other ones for which this ratio is greater than 1
3
. However,

among them, the triangle kernel is the only one covering the same area, as the biweight
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kernel, under negative and positive values (see Proposition 2.2). It is given by

KT
3 (t) =

(
12

7
− 30

7
t2
)
(1− | t |), t ∈ [−1, 1],

and it can be considered as the kernel representation of the linear cascade filter.

3.1 Bandwidth selection

When applied to real data, the symmetric filter weights are derived from the triangle kernel

KT
3 as follows:

wT
j =

KT
3 (j/b)∑m

j=−m KT
3 (j/b)

, j = −m, . . . ,m, (7)

where b is a time-invariant global bandwidth parameter (same for all t = m+1, . . . , N−m)

selected to ensure a symmetric filter of length 2m + 1. Its selection has to be done to

reproduce the behaviour of the cascade filter correctly. For this purpose, the bandwidth

b is chosen such that the central kernel weight wT
0 is equal to the central cascade weight

wCLF
0 . The latter is the greatest weight of the symmetric filter, such that if we guarantee

to reproduce it exactly due to the shape of the triangle kernel, all the remaining cascade

weights are closely represented. This is true when the cascade weights add to one, that is,

for filters of length greater than or equal to 21-term, since the kernel weights in eq. (7)

sum up to one. Based on eq. (7),

wT
0 =

12b3

12b3(2m+ 1)− 12b2m(m+ 1)− 10bm(2m2 + 3m+ 1) + 15m2(m+ 1)2
,

whereas wCLF
0 is a direct function of the filter length. This implies that an analytical

relationship between the bandwidth parameter and the filter length can be derived. By

imposing wT
0 to be equal to wCLT

0 , the bandwidth parameter is obtained by solving the

following equation

12[1−wCLT
0 (2m+1)]b3+12wCLT

0 m(m+1)b2+10wCLT
0 m(m+1)(2m+1)b−15wCLT

0 m2(m+1)2 = 0.

(8)
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The three roots of eq. (8) can be real or complex. Among them, the greatest real one is

selected since, given the properties of the bandwidth parameter, it is the only one that is

(a) real, (b) positive, and (c) greater than m.

Table 1 shows the bandwidths selected for cascade filters of length greater than or equal to

21-term. The application of these bandwidth parameters allows us to derive triangle kernel

weights wT
j , j = −m, . . . ,m, that closely reproduce the corresponding cascade ones. This

is illustrated in Table 2 for the 23-term filters, which are almost identical to the third digit.

Similar results for the other filter lengths are obtained, not reported for space reasons.

- TABLE 1 NEAR HERE -

Looking at the parameters shown in Table 1, it is evident that the relationship between the

filter length, that is, m, and the corresponding bandwidth is strictly linear. Specifically,

for all m, the bandwidth parameter is equal to

b = 2.327 + 0.913m. (9)

Based on this result, kernel filters of any length can be derived. For example, the 13-term

symmetric kernel weights are obtained by fixing b = 7.808. They are reported in Table

2 together with the classical cascade filter. It can be noted that the two weight systems

are similar, with the main discrepancy being in the central weights. These differences are

because the bandwidth is selected to reproduce wCLF
0 , but for the 13-term, and in general,

for shorter (than 21-term) filters, it refers to not normalised symmetric weights.

- TABLE 2 NEAR HERE -

On the other hand, if we select the bandwidth b to exactly reproduce the normalised central

weight obtained by Dagum and Luati (2009) - equal to 7.409 - we obtain kernel weights

almost identical to the classical cascade filter weights. These weights are reported in Table

2. This implies that the triangle kernel KT
3 is the kernel representation of the cascade filter.

In the following, all the symmetric kernel weights, including the 13-term filter, are derived

by selecting the bandwidth (9).
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3.2 Asymmetric weights

The derivation of the symmetric triangle filter has assumed the availability of 2m+1 input

values centred at t. However, at the end of the sample period, that is t = N−(m+1), . . . , N ,

only 2m, . . . ,m + 1 observations are available, and asymmetric filters of the same length

have to be considered. At the boundaries, Dagum and Bianconcini (2015) have suggested

following the so-called “cut and normalise” method, according to which the kernels KTq∗

3

are obtained as follows

KTq∗

3 (t) =
KT

3 (t)∫ q∗

−1
KT

3 (t)dt
, t ∈ [−1, q∗], q∗ << 1. (10)

Applied to real data, the asymmetric weights result

wq,j =
KTq∗

3 (j/bq)∑q
j=−m KTq∗

3 (j/bq)
, (11)

for j = −m, . . . , q, and q = 0, . . . ,m − 1, where bq is the local bandwidth, specific for

each asymmetric filter. For each q, it relates the discrete domain of the filter, that is

{−m, . . . , q}, to the continuous domain of the kernel function, that is [−1, q∗]. Dagum

and Bianconcini (2015) derive a class of optimal asymmetric filters based on bandwidth

parameters selected as follows

bq,G = min
bq

√
2

∫ 1/2

0

|Gq(ω)−G(ω)|2dω, (12)

where G(ω) is the gain function of the symmetric filter, whereas Gq(ω) is the one cor-

responding to the asymmetric weights wq,j, j = −m, . . . , q. This study considers these

time-varying bandwidth parameters since they determine optimal filters that minimise re-

visions and time lag to detect a true turning point (Dagum and Bianconcini, 2015).

- FIGURE 1 NEAR HERE -

Figure 1 illustrates the gain functions of the asymmetric cascade filters developed by Dagum

and Luati (2009) (left) with the triangle kernels based on bq,G and relative to the 13-term

symmetric filter obtained using the bandwidth (9) (right). The filters behave similarly,
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with a fast convergence to the corresponding symmetric filter. The similar behaviour of

these filters is true not only in revisions but also in terms of time lag in detecting a true

turning point, as highlighted by Figure 2. The latter shows the phaseshifts (in months) of

the last point cascade and triangle filters, and it is clear that both take, on average, two

months to signal the upcoming peak or a trough.

- FIGURE 2 NEAR HERE -

4 Statistical tests for short-term trend filtering com-

parison

To evaluate the goodness of the proposed short-term trend filters, we first address the

problem of the accuracy of their estimates in real-time, that is, in every period t. Real-time

accuracy has been a great concern of socioeconomic time series analysts (see Orphanides

and Norden (2002), and references therein). In a real-time application, the value of the

short-term trend at time t relies on the information available up to that time. This value

is, however, updated over time, and revisions occur for different reasons. The data itself

undergoes revisions or/and new data becomes available as time passes, thus leading to a

larger information set which improves the accuracy of the series. We neglect the former

source of revisions since the dataset does not involve different data vintages corresponding

to each time point in the sample and concentrate on the revisions due to filter changes.

4.1 Accuracy in real time

We compare the real-time performance of the triangle filters (TK) with the 13-term sym-

metric cascade filter and corresponding asymmetric weights (C), when applicable, and

with the Henderson and Musgrave filters (H). For each method, we compute the real-time

trend-cycle estimates A0
it, t = m + 1, . . . , N ; i = TK,H,C, that are conditioned on the

sample up to period t, obtained by applying the last point filter, and the final estimates

Sit, t = m + 1, . . . , N − m, based on the full sample. The comparisons are based on the

relative filter revisions between the final and the last point estimates at each point in time,

12



that is,

eit =
Sit − A0

it

Sit

, t = m+ 1, . . . , N −m; i = TK,H,C. (13)

For each series, we assess the loss associated with each estimator by considering the squared

revision errors e2it since we are interested in the revisions’ size and not their sign. Their

mean ē2i provides a point estimate of the revision accuracy, E(e2it), for the i-th estimator.

Following the idea behind the Diebold and Mariano (1995) test developed to evaluate differ-

ences in the accuracy of two competing forecasts, we account for the sampling uncertainty

of ē2i and ē2j to test the null hypothesis of equal revision accuracy of filters i and l, that is

H0 : E(e2it) = E(e2lt) or H0 : E(dilt ) = 0,

with i ̸= l, i, l = TK,H,C, and where dilt = e2it − e2lt is defined as the loss differential.

Under the assumption that the process {dilt }t∈T is weakly stationary, the large sample

N(0, 1) statistic for testing the null hypothesis H0 : E(dilt ) = 0 versus the alternative

H1 : E(dilt ) ̸= 0 is given by

DM il =
d̄il√

2πf̂
dil

(0)

N−2m

where d̄il = 1
N−2m

∑N−m
t=m+1 d

il
t is the sample mean loss differential, being dilt = e2it − e2lt.

f̂dil(0) is a consistent estimate of the spectral density of {dilt }t∈T at frequency zero

fdil(0) =
1

2π

∞∑
k=−∞

γdil(k),

where γdil(k) is the autocovariance function at lag k, defined as

γdil(k) = E[(dilt − µ)(dilt−k − µ)], being µ the expected value of the process {dilt }t∈T .

Following standard practice, a consistent estimate of fdij(0) is obtained by taking a weighted

sum of the available sample autocovariances as

f̂dil(0) =
1

2π

γ̂dil(0) + 2

S(N)∑
k=1

(
1− k

S(N)

)
γ̂dil(k)

 ,

where S(N) is the truncation lag. Diebold and Mariano (1995) fixed it to h − 1, under
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the assumption that optimal h-step-ahead forecast errors are at most (h − 1)-dependent.

Analogously, we choose S(N) to include only those estimated autocovariances that are

significantly different from zero.

4.2 Timely detection of turning points

Most literature has recently discussed nowcasting based on real-time data (Giannone et al.,

2008; Banbura et al., 2013). Indeed, timeliness in identifying true turning points plays an

essential role in the decision-making process, as the information on the current state of the

economy gives a more detailed picture of the future economic situation. The faster the

upcoming turning point is detected, the faster new policies can be applied to counteract

the impact of the business cycle stage.

In analysing the short-term trend of socioeconomic indicators, given the smoothness of

the trend-cycle data, Zellner et al. (1991) have defined that a turning point occurs at time

t if (downturn):

yt−3 ≤ yt−2 ≤ yt−1 > yt ≥ yt+1

or (upturn)

yt−3 ≥ yt−2 ≥ yt−1 < yt ≤ yt+1.

For a short-term trend estimator, the reduction of revisions in real-time trend-cycle

estimates has not to be achieved at the expense of increasing the time lag to detect the

upcoming true turning point, being the latter affected by the convergence path of its

asymmetric filters to the symmetric one. To determine the time lag needed by a filter to

detect a true turning point, we calculate the number of months it takes for the real-time

trend-cycle estimate to signal a turning point in the same position as in the final trend-cycle

series. From this latter, the sequence of true turning points {Rit, t = m+1, . . . , N −m} is

identified by applying the Zellner et al. (1991) definition given above, such that Rit = 1 if

Si(t−3) ≤ Si(t−2) ≤ Si(t−1) > Sit ≥ Si(t+1) (downturn) or Si(t−3) ≥ Si(t−2) ≥ Si(t−1) < Sit ≤

Si(t+1) (upturn), whereas Rit = 0 otherwise. Since symmetric filters do not introduce phase

shift effects in the estimates, the same set of true turning points is generally identified by

considering different filters, that is Rit = Rt for all t = m+1, . . . , N−m, and i = TK,H,C.
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The comparison between different estimators is performed in terms of average delay (in

months) for each method in identifying all the peaks and troughs in the series. A formal

statistical test for comparing the time lag in turning point detection is needed to assess

the different behaviour of the competing filters. At this regard, preliminary trend-cycle

estimates {Aq
it, t = m + 1, . . . , T − m}, i = TK,H,C, are obtained by applying the q-th

asymmetric filters to the sample conditioned up to period (t + q), for q = 1, . . . ,m − 1.

Binary sequences {Rq
it, t = m+1, . . . , T −m} are then derived by each preliminary series to

describe at which point in time the corresponding asymmetric filter detects turning points,

that is Rq
it = 1 if Aq

i(t−3) ≤ Aq
i(t−2) ≤ Aq

i(t−1) > Aq
it ≥ Aq

i(t+1) or A
q
i(t−3) ≥ Aq

i(t−2) ≥ Aq
i(t−1) <

Aq
it ≤ Aq

i(t+1), and Rq
it = 0 otherwise.

To evaluate the error committed by each asymmetric filter in the identification of a

turning point, we focus only on those occasions t in which a peak or trough occurred, that

is T ∗ = {t1, t2, ..., tTp}. In this context, q can be interpreted as the time horizon (in months

or quarters) after the occurrence of the turning point. Hence, we define the turning point

detection error as

eqitj = Rq
itj

−Rtj , j = 1, . . . , Tp.

It will be equal to -1 if the turning point is not signalled by the q-th asymmetric filter, and

zero otherwise. By assessing the loss in accuracy in terms of squared detection errors eq
2

itj
,

the expected value E
(
eq

2

itj

)
is the probability pqi that, q months after the turning point

occurred, the filter i still does not identify it.

Since the time points tj, j = 1, . . . , Tp, are distant over time (more than 11 months or three

quarters) and not necessarily equally spaced, the squared errors {eq
2

itj
, j = 1, . . . , Tp} are

assumed to be independent. In comparing two different filters, i and l, we want to test if

q observations after a turning point occurred, the two methods have the same probability

to fail in detecting it. That is,

H0 : p
q
i = pql or H0 : E

(
dil

q

t

)
= 0. (14)

{dilqt }t∈T ∗ is the loss differential process, whose realisations are dil
q

tj
= eq

2

itj
− eq

2

ltj
,

j = 1, . . . .Tp. Given the independence of the error series, {dilqt }t∈T ∗ is an independent
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and identically distributed process, where each variable dil
q

t assumes value -1 if the filter

l fails in the identification of a turning point but filter i does not, value 0 if both the

filters behave similarly, or value 1 if the filter i does not identify the turning point but

filter l does. Given the joint distribution of the bivariate error process {(eq
2

it , e
q2

lt )}t∈T ∗ , the

expected value and the variance of the loss differential process are equal to

E(dil
q

t ) = pq10 − pq01

and

V (dil
q

t ) = E(dil
q2

t )− [E(dil
q

t )]2 = (p10 + p01)− (p10 − p01)
2,

where pqkk′ corresponds to the joint probability that eq
2

itj
= k and eq

2

ltj
= k′, being k, k′ = 0, 1.

The null hypothesis (14) of equal probability in the identification of a true turning point at

the time horizon q can be reformulated as H0 : E(dil
q

t ) = pq10−pq01 = 0 or H0 : p
q
10 = pq01, and

tested against the alternative hypothesis H1 : E(dil
q

t ) ̸= 0 or, equivalently, H1 : p
q
10 ̸= pq01.

An unbiased estimator of the expected value of the loss differential process {dilqt }t∈T ∗ is

given by

d̄il
q

=
1

Tp

Tp∑
j=1

dil
q

tj
=

∑Tp

j=1(d
ilq

tj
= 1)−

∑Tp

j=1(d
ilq

tj
= −1)

Tp

=
T q
10 − T q

01

Tp

,

where T q
kk′ corresponds to the number of observed pairs {(eq

2

itj
, eq

2

ltj
), j = 1, . . . , Tp}, with

outcome eq
2

itj
= k and eq

2

ltj
= k′, being k, k′ = 0, 1. It follows that

E(d̄il
q

) =
1

Tp

Tp∑
j=1

E(dil
q

tj
) = p10 − p01

and

V (d̄il
q

) =
1

T 2
p

Tp∑
j=1

V (dil
q

tj
) =

1

Tp

[(p10 + p01)− (p10 − p01)
2].

Proposition 4.1. To test the null hypothesis H0 : E(dil
q

t ) = 0 versus the alternative

H1 : E(dil
q

t ) ̸= 0, the test statistic, under H0, is given by
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Zilq

d =
d̄il

q√
V (d̄ilq)

=
T q
10 − T q

01√
T q
10 + T q

01

. (15)

It is equivalent to the McNemar (1947) test statistic, which is the statistic used for testing

marginal homogeneity of paired binomial proportions (Fagerland et al., 2014).

The formal proof of Proposition 4.1 is provided in the Supplementary Material.

Under the null hypothesis, the McNemar test statistic, and also Zilq

D , is approximated by

the standard normal distribution. The asymptotic McNemar test is often presented as the

equivalent statistic

χ2 = Zilq
2

d =
(T q

01 − T q
10)

2

T q
01 + T q

10

that, under the null hypothesis, is approximately chi-squared distributed with one degree

of freedom. The common advice (Agresti, 1990) has been to apply the McNemar test in its

classical (asymptotic) form unless the values in the two discordant cells were small, that

is T q
01 + T q

10 < 25. In this latter situation, which generally occurs even over 60 years, the

classical version of the test cannot be guaranteed to preserve the type I error rate, and the

exact binomial test or the continuity correction to the classical test (Edwards, 1948) should

be applied. However, the use of these latter has recently been challenged on the evidence

of extensive simulations by Fagerland et al. (2013, 2014). The authors have pointed out

that these two tests do control the type I error rate below the nominal value but tend

to be overly conservative. They suggest the use of a mid-p (or quasi-exact) version of

the binomial test (Hirji, 2005) since they have found that it is almost as powerful as the

asymptotic McNemar test but without exceeding the nominal significance level. While it

has not been demonstrated analytically in all circumstances, it never exceeded the nominal

level in their extensive simulations.

5 Illustrations

In this section, the proposed methodology is used to estimate the short-term trend of two

main indicators commonly used to study the current socioeconomic conditions of the US

economy. The evaluation of groups of cyclical indicators to assess the stage at which the
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economy stands has been performed by the National Bureau of Economic Research (NBER)

program since the work of Burns and Mitchell (1946), and also used by the Bureau of

Economic Analysis (BEA) of the US Department of Commerce, and the Conference Board.

The aim is to monitor and analyse the position of the economy and the current phase of

the business cycle. Some indicators, called leading indicators, can predict the economy’s

development and promptly identify upcoming turning points. Policymakers, the press, and

the public analyse these series to gauge whether a recession is forthcoming. On the other

hand, coincident indicators are those whose time course refers to the development of the

gross domestic product. They confirm or refute the economy’s current stage and thereby

contribute to characterising its stability and sustainability. The importance of using these

indicators to assess the current stage at which the economy stands is evident when we

consider, as an example, the series of the average weekly hours in manufacturing in the

United States from January 1960 to December 2020 (Figure 3).

- FIGURE 3 NEAR HERE -

There is no clear long-term trend in this series over the last half-century, but there is

quite a dramatic tendency for the average weekly hours to decrease sharply during periods

characterised as economic recessions, which are represented as shaded regions in Figure

3. These are those determined by the Business Cycle Dating Committee of the National

Bureau of Economic Research. One of the first things we want to know about these series

is how their fluctuations are related to movements in and out of economic recessions.

In addition to this series, we also consider as illustrative example the index of industrial

production. The span of both series extends from January 1960 to December 2020 to cover

several periods of recession and expansion. Following the X11 variable trend-cycle routine

(Findley et al., 1998), the variability of these series is measured by the noise-to-signal ratio.

For monthly data, the ratio is computed by obtaining a preliminary estimate of the trend-

cycle ĝt via the application of the 13-term Henderson filter to the seasonally adjusted data.

The irregular component ût results from removing this trend estimate from the seasonally

adjusted series. With C̄ denoting the sample mean of the available values of the absolute

trend changes | ĝt − ĝt−1 | and Ī the sample mean of | ût − ût−1 |, the value of the noise to

signal ratio, Ī/C̄, is used to determine the length of the filters based on specific threshold
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values (Shiskin et al., 1967). For monthly data, if the noise-to-signal ratio is smaller than

1, the 9-term filter is selected; if 1 ≤ Ī/C̄ < 3.50, the 13-term filter is chosen, whereas

when Ī/C̄ ≥ 3.5, the 23-term is used.

5.1 Average weekly hours in manufacturing

The average weekly hours in manufacturing series comes from the Current Employment

Statistics program, also known as the payroll or establishment survey, published by the US

Bureau of Labor Statistics. It is a monthly survey of approximately 140000 businesses and

government agencies representing about 440000 worksites throughout the United States.

From the sample, the survey produces and publishes employment, hours, and earnings

estimates for the nation, states, and metropolitan areas at detailed industry levels. Average

weekly hours relate to the average hours per worker for which pay was received. As a

sensitive measure of labour demand, this series serves as an indicator in The Conference

Board’s Leading Economic Index for the United States. For this monthly series, observed

over the span January 1960 - December 2020, the noise-to-signal ratio is equal to 2.456,

such that 13-term symmetric triangle, Henderson and cascade filters have been selected.

First of all, we assess the revision accuracy of the three considered estimators under square

error loss. In terms of point estimates, the last point triangle filter provides the most

accurate estimates. Indeed, its mean square revision error ē2TK is equal to 0.0000358 as

opposed to the last point Musgrave filter whose mean square revision error ē2H is 0.0001.

The ratio between these two quantities is around 0.370, implying that, applied to these

real data, the triangle filter produces, on average, a reduction of almost sixty percent of

the revisions introduced in the real-time trend-cycle estimates concerning the Musgrave

filter. Figure 4 (left) shows the corresponding loss differential series, in which no obvious

nonstationarity is visually apparent. Approximate stationarity is also supported by its

sample autocorrelation function shown in Figure 4 (right), which decays quickly, being

only the first three autocorrelation coefficients significantly different from zero.

- FIGURE 4 NEAR HERE -

We test the null hypothesis of equal expected revision accuracy between the two filters,

that is H0 : E(dTK,H
t ) = 0 versus the alternative assumption H1 : E(dTK,H

t ) ̸= 0. We focus
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on the test statistic DMTK,H setting the truncation lag at three in light of the preceding

discussion. We obtain DMTK,H= -5.302, implying a p-value of 0.000. Thus, we reject the

hypothesis of equal expected square revision errors; that is, the last point triangle filter is

significantly better than the Musgrave one in terms of revisions.

Similarly, in comparison with the cascade filter, the mean square revision error for the

latter results in 0.000043, which implies that, for this specific series, the last point triangle

kernel provides similar revisions. However, it still shows an average reduction of around

ten percent. The loss differential series associated with the triangle and cascade filter

is illustrated in Figure 5 (left) together with the corresponding autocorrelation function

(right), both supporting the stationarity of the series. The test statistic DMTK,C results

equal to -4.989, with a p-value of 0.000, such that the last point triangle filter results also

significantly better in terms of revisions than the last point cascade one.

- FIGURE 5 NEAR HERE -

The comparison between the three filters is then performed in terms of the average time

taken to detect the turning points of the average weekly hours in manufacturing series.

For the latter, from all three final estimates, the same set of sixteen turning points has

been identified. Over the entire set of peaks and troughs, the triangle filter takes about

two months (2.3125 on average) to detect a turning point. In contrast, the cascade and

Henderson filters require around three months, with an average delay of 2.9375 and 3.3125,

respectively. To assess if the triangle kernel significantly outperforms respect to the Hen-

derson and cascade filters, the squared turning point detection errors eq
2

itj
, j = 1, . . . , 16,

are computed for each asymmetric filter and estimator. To assess the independence over

time of each of these error sequences, we apply the exact test developed by Hirji (2005)

(pp.438-439) used to assess the null hypothesis of independence of a binary series against

the alternative hypothesis of a first-order Markovian dependence structure. Table 3 (a)

reports the associated p-values. As expected, the null hypothesis is accepted for all the

error sequences {eq
2

itj
, j = 1, . . . , 16}, q = 1, . . . , 5, i = TK,H,C.

- TABLE 3 NEAR HERE -

At each time horizon q, the probability of failing in detecting a turning point is compared

for the triangle filter and the Henderson one. Table 3 (b) shows that at each horizon q,
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the number of discordant cells, that is T q
01 + T q

10, is always smaller than 25. Hence, the

one-sided exact binomial test is applied to assess the null hypothesis of equal detection

accuracy, H0 : pqTK = pqH , against the alternative hypothesis of the worst performance for

the Henderson filter, that is H1 : p
q
H > pqTK . Under the null hypothesis, the one-sided exact

p-value is then given by
T q
01+T q

10∑
k=T q

01

 T q
01 + T q

10

k

 0.5T
q
01+T q

10

Following the suggestions by Fagerland et al. (2013, 2014), we also computed the (quasi-

exact) mid-p-value equal to

T q
01+T q

10∑
k=T q

01

 T q
01 + T q

10

k

 0.5T
q
01+T q

10 − 0.5

 T q
01 + T q

10

T q
01

 0.5T
q
01+T q

10 .

It is evident that one and two months after the turning point occurred, the two filters

have the same probability to fail in identifying it correctly. In contrast, after three (or

more) months of the occurrence of the turning point, at 5% level, the Henderson filter has

a significantly higher probability of failing to correctly signal the turning point with respect

to the triangle kernel, which results to be superior in terms of turning point detection.

On the other hand, comparing the triangle and cascade filter, there are no significant

differences in turning point detection independent of the time horizon considered. This is

illustrated in Table 3 (c), which reports the one-sided exact binomial and mid- p-values

to test the null hypothesis H0 : pqTK = pqC against the alternative one H1 : pqC > pqTK , for

q = 1, . . . , 5.

5.2 Index of industrial production

The Index of Industrial Production measures the real output of all stages of production

in the manufacturing, mining, gas and electric utility industries for all facilities in the

United States. This coincident indicator is published by the US Federal Reserve and

compiled every month to bring attention to short-term changes in industrial production.

From January 1960 to December 2020, the seasonally adjusted series is characterised by

a smoother pattern than the average weekly hours series, as highlighted by its noise-to-
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signal ratio equal to 0.913. Hence, the comparison in terms of both revisions and turning

point detection is performed between the 9-term triangle and Henderson filters, whereas

the cascade filter is not applied, being available only with 13 terms.

The last point triangle filter provides a point estimate of the revision accuracy, as expressed

by the mean square error ē2TK , equal to 0.0002, whereas, for the last point Musgrave filter, it

is equal to 0.0006. Also, in this case, the triangle filter produces, on average, a reduction of

more than fifty percent of the revisions introduced in the real-time trend-cycle estimates.

To assess the significance of this empirical finding, we consider the corresponding loss

differential series illustrated in Figure 6 (left), together with its sample autocorrelation

function (right). In both these figures, stationarity is evident.

- FIGURE 6 NEAR HERE -

We then test the null hypothesis of equal expected revision accuracy between the two filters

and focus on the test statistic DMTK,H setting the truncation lag at four since only four

autocorrelation coefficients are significantly different from zero. We obtain DMTK,H= -

3.379, with p-value of 0.001. Thus, we can conclude that the last point triangle filter is

significantly more accurate than the Musgrave one.

To compare the performance of the two filters in terms of detection of turning points, 19

peaks and troughs have been identified from both the final estimates. To detect all these

points, the triangle filter takes, on average, 1.68 months, whereas the Musgrave filters

more than two months (2.47 on average). To evaluate if the triangle filter is a significantly

faster detector of turning points with respect to the Henderson one, the squared error

series eq
2

itj
, j = 1, . . . , 19, are derived for each asymmetric filter, q = 1, 2, 3, and estimator

i = TK,H. As for the previous series, we assess the independence over time of each of

these sequences through the exact test by Hirji (2005), for which Table 4 (a) reports the

associated p-values. As expected, the null hypothesis is accepted for all the error sequences

{eq
2

itj
, j = 1, . . . , 19}, q = 1, 2, 3, i = TK,H.

- TABLE 4 NEAR HERE -

We then compare the probability of failing in detecting a turning point one, two or three

months after its occurrence for the triangle and the Henderson filter. Based on the one-

sided exact binomial and the corresponding quasi-exact p-values, it is evident that one and
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two months after the turning point occurred, the two filters have the same probability of

failing to identify it correctly. On the other hand, the Henderson filter has a significantly

higher probability of failing its identification three months after the turning point occurred.

Hence, the triangle filter is significantly more timely in detecting true turning points.

6 Discussion

This study deals with the problem of assessing, in real-time, the direction of the short-term

trend with an application to some key indicators of the US economy due to its important

role from an international macroeconomic perspective. Official statistical bureaus, central

banks and organisations that produce real-time short-term trends apply the Musgrave or

cascade linear filters. We have proposed a reproducing kernel representation of the cascade

filter that allows deriving filters of any length and we have shown that they significantly

perform better than the cascade and Musgrave filters in terms of revisions and time lag

in detecting true turning points. Specific asymptotic and exact tests have been developed

and illustrated to assess the significance of these main empirical findings.

In the paper, the properties of the proposed filters have been discussed theoretically

and empirically, focusing on the revisions due to filter changes when new observations are

added to the series. This has allowed us to directly compare our proposed filters with

those available in the literature and account just for the filter effects. However, it would be

important to evaluate if and how using different data vintages affects our main findings.

Following Croushore and Stark (2003) and Arouba (2008), different data vintages of

a set of fifteen leading, coincident and lagging indicators of the US economy have been

analysed. For each series, we have considered their first releases - as available in the

ALFRED database (https://alfred.stlouisfed.org) - and their last available vintage at the

time of the analysis - October 2022 - as final observation. For each series, final relative data

revisions have been computed by accounting for the difference between the latest available

observation and its first available release.

- TABLE 5 NEAR HERE -

The series considered are all seasonally adjusted. We have about fifty years of obser-
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vations for the quarterly series, while we have between 20 and 60 years of data for the

monthly indicators. The first column of Table 5 reports the mean of the final relative

data revisions for each variable. All of them are different from zero, indicating that the

first available releases are biased estimates of the final values. Greater values are observed

for the index of industrial production, manufacturing and trade sales, and labour cost per

unit of output in manufacturing, which have been subject to benchmark revisions due to

changes in the base year in the two considered releases. For the remaining series, the means

range from -0.366% to 6.249%. We also computed each variable’s minimum and maximum

final relative revision, reported in the second and third columns. The range of the data

revisions is quite large for all variables, as also shown by their standard deviations - in the

fourth column.

For each series at each vintage release, the performance of the proposed triangle kernel

filters is compared with the Musgrave and - when applicable - cascade filters in terms of

both accuracy in real-time and delay in detecting true turning points. In the sample, for

the monthly series, the noise-to-signal ratio ranges from 0.572 to 3.307. Hence, filters of

lengths 9 and 13 terms are applied. On the other hand, it is always smaller than 3.50 for

the quarterly series, such that 5-term filters are selected.

To evaluate the accuracy in real-time, the comparisons are based on the relative filter

revisions eit, i = TK,H,C; t = 1, . . . , T , as defined in eq. (13). In particular, we calculate

the ratio between the mean square revision error corresponding to our last point filters,

ē2TK , and those corresponding to the last point Musgrave, ē2H , and - when applicable -

cascade filters, ē2C .

Independently on the data vintages, for all series, the results - illustrated in the sixth

and seventh column in Table 5 - show that the ratio is always smaller than one, indicating

that the kernel last point predictors introduce smaller revisions than the Musgrave and -

when available - cascade filters. In particular, the ratio with the last point Musgrave filter

is always less than one-half, and when the 13-term filter is selected, the ratio with the

cascade filter is, on average, around 0.90. All these differences are statistically significant

based on the test discussed in Section 4.1.

The last three columns of Table 5 show that, independently of the data release, the
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newly proposed filters can capture turning points faster than or with the same delay as

their competitors. For all the series and data releases considered, the proposed filter has

a better or not statistically different performance than the others, as evaluated using the

exact tests discussed in Section 4.2.

In summary, data vintages do not affect the better statistical properties of the proposed

method both in terms of accuracy in revisions and timely detection of turning points.

SUPPLEMENTARY MATERIAL

Elementwise formula of the cascade filter: we show how each element of the convo-

lution matrix (4) depends on single, pairs and triplets of Henderson weights.

Proofs: detailed proofs of Propositions 2.1, 2.2, 2.3, and 4.1.
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Table 1: Bandwidth parameters.

Filter length 21 23 25 27 29 31 33 35 37 39
m 10 11 12 13 14 15 16 17 18 19
b 11.46 12.37 13.29 14.20 15.11 16.03 16.94 17.85 18.77 19.68

Table 2: Weight Systems for 13- and 23-term cascade filters and kernels

Length Filter

13 Cascade -0.027 -0.007 0.031 0.067 0.136 0.188 0.224

KT
3 , b = 7.409 -0.027 -0.010 0.028 0.079 0.134 0.185 0.224

KT
3 , b = 7.808 -0.023 -0.002 0.035 0.081 0.130 0.175 0.209

23 Cascade -0.015 -0.016 -0.012 -0.005 0.007 0.028 0.046 0.071 0.095 0.110 0.125 0.133

Triangle Kernel -0.015 -0.016 -0.010 -0.000 0.014 0.031 0.049 0.068 0.087 0.105 0.121 0.133

Table 3: Average weekly hours in manufacturing: (a) p-values associated with the ex-
act test for assessing the null hypothesis of independence of the sequence of the errors

{eq
2

itj
, j = 1, . . . , 16}, q = 1, . . . , 5, i = TK,H,C, versus the alternative of first order Markov

dependence (Hijri, 2005); (b) one-sided exact binomial and (quasi-exact) mid- p-values
to test H0 : pqTK = pqH versus H1 : pqH > pqTK ; and (c) to test H0 : pqTK = pqC versus
H1 : p

q
C > pqTK .

(a) independence test for {eq
2

itj
, j = 1, . . . , 16}

i \ q 1 2 3 4 5
TK 0.516 0.545 1.000 1.000 1.000
H 0.267 0.294 0.725 0.725 0.593
C 0.516 0.595 0.363 0.629 0.629

(b) H0 : pqTK = pqH versus H1 : pqH > pqTK

q 1 2 3 4 5
T q
01 + T q

10 6 5 5 5 5

Exact binomial p-value 0.8906 0.8125 0.0312 0.0312 0.0312
(Quasi-exact) mid-p-value 0.7734 0.656 0.0156 0.0156 0.0156

(c) H0 : pqTK = pqC versus H1 : pqC > pqTK

q 1 2 3 4 5
T q
01 + T q

10 0 1 3 3 3

Exact binomial p-value 0 0.50 0.1250 0.1250 0.1250
(Quasi-exact) mid-p-value 0 0.25 0.0625 0.0625 0.0625
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Table 4: Index of industrial production: (a) p-values associated with the exact test for

assessing the null hypothesis of independence of the sequence of the errors {eq
2

itj
, j =

1, . . . , 19}, q = 1, 2, 3, i = TK,H, versus the alternative of first-order Markov depen-
dence (Hijri, 2005); (b) one-sided exact binomial and (quasi-exact) mid- p-values to test
H0 : p

q
TK = pqH versus H1 : p

q
H > pqTK .

(a) independence test for {eq
2

itj
, j = 1, . . . , 19}

i \ q 1 2 3

TK 0.499 1.000 1.000
H 0.501 0.439 0.583

(b) H0 : p
q
TK = pqH versus H1 : p

q
H > pqTK

q 1 2 3

T q
01 + T q

10 4 5 8

Exact binomial p-value 0.6875 0.1875 0.004
(Quasi-exact) mid-p-value 0.5000 0.109 0.002
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Table 5: Summary statistics of the final data revisions and comparison between short-term
filters in terms of accuracy and turning point detection.

Final relative data revisions (%) I/C Filter revisions Turning points

mean min max std.dev. (filter length)
ē2TK
ē2
H

ē2TK
ē2
C

number Avg TK Avg H Avg C

Average weekly hours in manufacturing
Period: 1939/01-1961/10
First release: 1961/11 1.743 (13) 0.4121∗ 0.9066∗ 8 2.375 2.375 2.125
Vintage: 2022/10 0.217 -1.028 2.089 0.361 1.696 (13) 0.4103∗ 0.9054∗ 8 3.000 2.625 3.250
New orders for consumer goods
Period: 1992/02-2011/04
First release: 2011/06 1.629 (13) 0.3999∗ 0.8930∗ 5 2.800 4.200∗∗ 3.000
Vintage: 2022/10 0.091 -0.832 1.997 0.402 1.582 (13) 0.4056∗ 0.8950∗ 6 3.167 3.667 3.500
New orders for nondefense capital goods
Period: 1992/02-2010/01
First release: 2010/03 3.307 (13) 0.4110∗ 0.9045∗ 3 3.333 4.333 4.333
Vintage: 2022/10 0.476 -3.206 5.996 1.608 3.176 (13) 0.4106∗ 0.9037∗ 2 2.500 3.000 3.000
New private housing permits
Period: 1960/01-1999/07
First release: 1999/08 2.000 (13) 0.3937∗ 0.8935∗ 15 2.933 2.733 3.067
Vintage: 2022/10 0.018 -2.587 3.717 0.347 1.989 (13) 0.4106∗ 0.9037∗ 15 2.933 2.733 3.067
Capacity utilisation
Period: 1967/01-1996/10
First release: 1996/11 1.050 (13) 0.4022∗ 0.9015∗ 11 2.909 5.091∗∗ 3.636
Vintage: 2022/10 -0.084 -2.736 2.537 0.964 1.025 (13) 0.4053∗ 0.9043∗ 8 2.750 3.750 2.750
Employees on non-agricultural payroll
Period: 1939/01-1990/04
First release: 1990/05 0.572 (9) 0.4200∗ NA 11 1.730 2.270 NA
Vintage: 2022/10 0.1753 -0.788 0.844 0.194 0.578 (9) 0.4216∗ NA 12 1.920 2.000 NA
Industrial production index
Period: 1921/01-1989/12
First release: 1990/01 0.833 (9) 0.3560∗ NA 26 2.077 2.500∗∗ NA
Vintage: 2022/10 -52.550 -56.850 -51.080 1.045 0.842 (9) 0.3559∗ NA 25 2.000 2.360∗∗ NA
Manufacturing and trade sales
Period: 1967/01-2013/05
First release: 2013/06 1.713 (13) 0.4511∗ 0.9156∗ 9 2.111 3.000 2.566
Vintage: 2022/10 22.25 21.53 25.73 1.004 1.728 (13) 0.4510∗ 0.9155∗ 9 2.222 3.333 2.660
Retail sales
Period: 1992/01-2010/05
First release: 2010/06 1.734 (13) 0.4632∗ 0.9195∗ 1 4.000 6.000 6.000
Vintage: 2022/10 -0.366 -2.982 0.391 0.533 1.673 (13) 0.4536∗ 0.9156∗ 1 4.000 6.000 6.000
Gross National Product
Period: 1947/Q1-1992/Q2
First release: 1990/Q2 0.355 (5) 0.4173∗ NA 2 1.000 1.000 NA
Vintage: 2022/Q2 6.249 4.367 9.906 1.110 0.349 (5) 0.4191∗ NA 2 1.000 1.000 NA
Average duration of unemployment
Period: 1948/01-1971/12
First release: 1972/02 1.719 (13) 0.4122∗ 0.9057∗ 11 2.364 3.000 2.730
Vintage: 2022/10 -0.189 -8.51 2.542 1.074 1.769 (13) 0.4124∗ 0.9060∗ 11 2.727 3.909∗∗ 2.909
Inventory to sales ratio
Period: 1992/01-2010/01
First release: 2010/02 1.865 (13) 0.4038∗ 0.9017∗ 3 3.333 5.667 4.000
Vintage: 2022/10 -0.034 -1.504 2.362 0.510 2.077 (13) 0.4052∗ 0.9000∗ 7 2.715 4.143 3.000
Labour cost per unit of output - manufacturing
Period: 1960/Q1-2013/Q1
First release: 2013/Q2 0.655 (5) 0.3758∗ NA 3 1.000 1.000 NA
Vintage: 2022/Q2 -10.092 -14.953 -7.049 1.538 0.803 (5) 0.3738∗ NA 3 1.000 1.000 NA
Commercial and industrial loans
Period: 1947/01-2010/11
First release: 2010/12 0.490 (9) 0.421∗ NA 14 1.929 2.143 NA
Vintage: 2022/10 -0.159 -2.971 0.390 0.489 0.494 (9) 0.421∗ NA 14 1.786 2.071 NA
Unemployment rate
Period: 1948/01-1990/02
First release: 1990/03 1.364 (13) 0.433∗ 0.9192∗ 19 2.895 3.211∗∗ 2.474
Vintage: 2022/10 -0.004 -1.887 1.887 0.267 1.367 (13) 0.433∗ 0.9192∗ 19 2.895 3.211∗∗ 2.684

*: significant at 5% level based on the statistic DMil (see Section 4.1).
**: significant at 5% level based on the quasi-exact binomial test (see Section 4.2).
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Figure 1: Gain functions of the 13-term cascade symmetric and asymmetric filters (left)

and 13-term symmetric and asymmetric triangle kernels (right).

Figure 2: Phaseshift functions of the last point cascade and kernel filters corresponding to

13-term symmetric weights (right).

Figure 3: Average weekly hours in manufacturing in the United States. Shaded areas rep-

resent contractions of business cycle according to NBER chronology.

Figure 4:Average weekly hours in manufacturing: loss differential (triangle vs Henderson

filter) series (left) and autocorrelations (right). The estimated autocorrelations are graphed,

together with Bartlett’s approximate 95% confidence interval (series: average week.

Figure 5: Average weekly hours in manufacturing: loss differential (triangle vs cascade fil-

ter) series (left) and autocorrelations (right). The estimated autocorrelations are graphed,

together with Bartlett’s approximate 95% confidence interval.

Figure 6: Index of industrial production: loss differential (triangle vs Henderson filter) series

(left) and autocorrelations (right). The estimated autocorrelations are graphed, together

with Bartlett’s approximate 95% confidence interval.
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