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In this paper we show how the string landscape can be constrained using observational data. We illustrate
this idea by focusing on fiber inflation which is a promising class of string inflationary models in type IIB
flux compactifications. We determine the values of the microscopic flux-dependent parameters which yield
the best fit to the most recent cosmological datasets.
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I. INTRODUCTION

String theory is often said to be decoupled from experi-
ments. However, similarly to quantum field theory, string
theory is a framework rather than a model. Therefore it is
more sensible to talk about testing a particular model built
following the rules of string theory, rather than talking
about testing string theory per se.
Continuing the analogy with QFT, it is however true that

features like the existence of antiparticles are common to all
models which can be built in QFT. From the string theory
point of view, the generic prediction is the existence of
extended fundamental objects. However, due to the tech-
nical difficulty to perform experiments at energies close to
the string scale, this ubiquitous prediction of string theory is
presently untestable. Nonetheless we can build 4D string
models and try to confront them with observations, as it is
done in standard QFTwith models like the Standard Model
or generalizations thereof.
4D string models are characterized by interesting corre-

lations between different observables which originate from
the underlying UV consistency of the theory. These
correlations can be used to compare the predictions of
each 4D string model to observational data in a very
efficient way, resulting in the possibility to rule out very
large portions of the string landscape.
In this paper we illustrate this idea by focusing on a class

of string inflationary models called fiber inflation. This
class of models is particularly promising since it features a
landscape of examples within the framework of type IIB
large volume flux compactifications. Each fiber inflation
model is characterized by a different underlying choice
of discrete microscopic parameters like bulk background

3-form fluxes and gauge 2-form fluxes on D-branes.
Moreover, these models are ready to be compared with
observational data since they include inflation with moduli
stabilization, consistent Calabi-Yau constructions with
chiral matter and a detailed understanding of the reheating
process.
In this paper we confront therefore fiber inflation with the

most recent cosmological observations including data from
Planck, local measurements of the Hubble constant, Baryon
Acoustic Oscillation, the Dark Energy Survey and CMB
lensing. In doing so, we find the model in the fiber inflation
landscape which gives the best fit to these cosmological
datasets. Considering Planck 2018 temperature and polari-
zation data only, the bounds for the main cosmological
observables at 68% CL become ns ¼ 0.9696þ0.0010

−0.0026 and
r ¼ 0.00731þ0.00026

−0.00072 together with a number of effective
relativistic species Neff ¼ 3.062þ0.004

−0.015 . These predictions, in
turn, constrain the microscopic flux-dependent parameters.
This paper is organized as follows. In Sec. II we briefly

review the main features of fiber inflation models while in
Sec. III we describe the methodology of our analysis. Our
results are presented in Sec. IV and in Sec. V they are
translated into bounds on the microscopic flux-dependent
parameters. Finally in Sec. VI we discuss our results and
present our conclusions.

II. FIBER INFLATION MODELS: A BRIEF
OVERVIEW

Fiber inflation (FI) is a class of string inflationary models
built within the framework of type IIB large volume
scenarios [1,2]. Its name comes from the fact that the
inflaton is a Kähler modulus which controls the size of a K3
or T4 divisor fibred over a P1 base.
In the original model the inflationary potential is

generated by a combination of 1-loop open string
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corrections [3]. However subsequent examples of FI
models have been constructed by exploiting different
combinations of perturbative corrections to the effective
action [4,5]. This class of models originates very naturally
due to the presence of an effective shift symmetry which
protects the flatness of the inflationary potential [6,7].
Moreover FI models are not just at the level of a string-
inspired 4D supergravity since in [8–10] they have been
embedded into globally consistent Calabi-Yau orientifolds
with a chiral brane setup and moduli stabilization.
FI models have a behavior similar to Starobinsky

inflation [11] and supergravity α-attractors [12,13]. In fact,
their potential features a trans-Planckian plateau which
steepens at large inflaton field values due to higher
derivative or loop corrections that can be responsible for
a CMB power loss at large angular scales [14–16]. The
inflaton field range is constrained also by geometrical
bounds [17] but in generic FI models it is around 5 in
Planck units. This inflaton excursion yields primordial
gravity waves at the edge of detectability since the
tensor-to-scalar ratio is of order 0.007≲ r≲ 0.01.
The exact prediction for the amplitude of the primordial

tensor modes needs a proper understanding of the post-
inflationary evolution of these models. Relatively recently,
Ref. [18] found that preheating effects can be neglected in
FI models and Refs. [19,20] performed a detailed analysis
of perturbative reheating finding that the inflaton decay can
produce a thermal bath with an initial temperature which is
below the maximal one derived from requiring that finite-
temperature corrections to the inflationary potential do not
induce a decompactification limit [21]. Moreover the
inflaton decay tends to produce, on top of ordinary
particles, also hidden sector degrees of freedom like
ultralight bulk axions [20] which behave as extra dark
radiation parametrized by ΔNeff.
From the phenomenological point of view, it is very

interesting to notice that values of ΔNeff ≃ 0 correlate with
values of r ≃ 0.007 and no CMB power loss at large
angular scales, while values of ΔNeff ≃ 0.5 correlate with
values of r ≃ 0.01 and a low-lCMB power loss. From the
theoretical point of view, different values of ΔNeff and r
correspond to different choices for the underlying UV
parameters. In this paper we will confront FI models with
cosmological observations and see which values of ΔNeff
and r give the best fit to actual data. This will allow us to
constrain the values of the stringy parameters and to judge
the naturalness of these models from the theoretical point
of view.

A. Inflationary potential and observables

All FI models feature a qualitatively similar shape of the
inflationary potential. Without loss of generality, we there-
fore focus on the potential of the original model [3] which

looks like (where Mp is the reduced Planck mass
Mp ¼ 1ffiffiffiffiffiffi

8πG
p ≃ 2.4 × 1018 GeV):

VðϕÞ ¼ V0M4
pUðϕÞ ð1Þ

with:

UðϕÞ ¼ 3 − 4e
− ϕ

Mp
ffiffi
3

p þ e
− 4ϕ

Mp
ffiffi
3

p þ R
�
e

2ϕ

Mp
ffiffi
3

p
− 1

�
ð2Þ

where V0 and R are two independent parameters which
depend on different combinations of the microscopic
parameters. In the regime where the effective field theory
is under control both V0 ≪ 1 and R ≪ 1. Figure 1 shows
the potential (2) for different values of R.
The expression for the number of efoldings Ne as a

function of the point of horizon exit in field space ϕ� cannot
be solved analytically. Following [20], we therefore con-
sider a simplified case where an approximated analytical
solution can be provided.
The scalar spectral index takes the form:

nsðNe; RÞ ¼ 1 −
8

9
C −

16

9
C2ð1þDÞ

�
1þ R

2
e
ffiffi
3

p
ϕ�

Mp

�
2

; ð3Þ

where:

FIG. 1. Inflationary potential in Planck units for different values
of R setting V0 ¼ 1. The plot shows also the endpoint of inflation.
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The tensor-to-scalar ratio is given by:

rðNe; RÞ ¼ 6ðns − 1Þ2ð1þDÞ
�
1þ R

2
e
ffiffi
3

p
ϕ�

Mp

�
2

; ð4Þ

while the scalar power spectrum reads:

PðkÞ ¼ As

�
k
k�

�
ns−1

; ð5Þ

with k� ¼ 0.05 Mpc−1 and:

As ¼ AsðNe; R; V0Þ ¼
Vðϕ ¼ ϕ�Þ
24π2M4

pϵ
; ð6Þ

where:

ϵðϕ�; RÞ ¼
8

27
C2ð1þDÞ

�
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2
e
ffiffi
3

p
ϕ�

Mp

�
2

: ð7Þ

Figure 2 shows ns and r as functions of Ne for R ¼
2.7 × 10−5 (blue lines) and R ¼ 0 (red lines). The red line
represents the case where the positive exponential in (2) is
negligible throughout the whole inflationary dynamics.
Notice that, for the same value of Ne, the red line gives
smaller ns and r. In particular, for the red line, ns cannot be
larger than about 0.97 for Ne ≲ 65.
Figure 3 shows instead r versus ns for two different

values of R. The green curve represents the relation r ¼
6ðns − 1Þ2 which is a good approximation for R ¼ 0.
Interestingly, values of R of order R ¼ 2.3 × 10−6 agree
with the green curve rather well while for R ¼ 2.7 × 10−5

already the relation r ¼ 6ðns − 1Þ2 is violated.

B. Number of efoldings, reheating, and dark radiation

After the end of inflation the inflaton oscillates around
the minimum and behaves as nonrelativistic matter. Hence
reheating is characterized by an equation of state p ¼ wrhρ

with wrh ¼ 0. Moreover the inflationary energy scale
M4

inf ¼ Vðϕ ¼ ϕ�Þ turns out to be around the GUT scale.
Thus Ne can be written in terms of the reheating temper-
ature Trh as:

FIG. 2. ns and r as functions of Ne for R ¼ 2.7 × 10−5 (blue
lines) and R ¼ 0 (red lines).

FIG. 3. r as a function of ns for two different values of R (red
and blue lines). The green curve represents the relation
r ¼ 6ðns − 1Þ2.
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Ne ≃ 58 −
1

3
ln

�
Mp

Trh

�
: ð8Þ

In turn, the reheating temperature can be written as:

Trh ¼ 3γ · 1010 GeV; ð9Þ

where γ is a parameter independent from V0 and R which
controls the branching ratios for the inflaton decay into
different visible and hidden sector degrees of freedom [20].
This gives:

Ne ¼ 52þ 1

3
ln γ: ð10Þ

Plugging this value in (3), (4) and (6), the cosmological
observables become functions of the underlying parameters
γ, R and V0: ns ¼ nsðγ; RÞ, r ¼ rðγ; RÞ and As ¼
Asðγ; R; V0Þ. In Fig. 4 we show how these parameters γ,
R and V0 affect the CMB temperature power spectra.
Therefore they can be constrained by the requirement of
matching Planck data which however depend on the number
of extra neutrinolike species ΔNeff that in this model is
given by:

ΔNeff ¼
0.6
γ2

; ð11Þ

As studied in [20], the main inflaton decay channels are
into Standard Model gauge bosons and hidden sector
ultralight axions. In the data analysis which we will present
in Sec. IV, we will focus on the following three different
ranges for γ:
(1) 1 < γ ≤ 20 corresponds to the case where the

branching ratio for the inflaton decay into hidden
axions is suppressed by a nonzero gauge flux on the
D7-brane stack wrapped around the inflaton divisor
which realizes the Standard Model. Therefore in this
case ΔNeff is negligibly small. The upper bound γ ≤
20 can be easily derived by combining moduli
stabilization with two requirements: (i) a correct
matching of the observed value of the density
perturbations, and (ii) an effective field theory which
remains in the controlled regime where perturbation
theory does not break down. See Appendix for
technical details.

(2) γ ¼ 1 corresponds to the case where the branching
ratio for the inflaton decay into hidden axions is
maximized due to the fact that the gauge flux on the
Standard Model D7-branes is vanishing. In this
case ΔNeff ¼ 0.6.

FIG. 4. Theoretical variation of the temperature power spec-
trum obtained by varying the microscopic parameters of FI
models: R, V0 and γ. R (top panel) affects the temperature power
spectrum increasing the amplitude of the peaks when decreasing.
V0 (middle panel) does exactly the opposite, increasing the
amplitude of the peaks when increasing. Finally, γ (bottom panel)
suppresses the amplitude of the low multipole range when
increasing.
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(3) 0 < γ < 1 corresponds to the case where the amount
of extra dark radiation gets further increased by the
model-dependent presence of additional inflaton
decay channels into hidden sector degrees of free-
dom like for example hidden gauge bosons living on
D7-branes wrapped around the divisor containing
the P1 base of the fibration.

Reference [20] pointed out that there are two qualita-
tively different regimes:

(i) Small extra dark radiation: If γ ≳ 2, ΔNeff ≲ 0.1
which requires a spectral index centered around ns ≃
0.965 [22]. As can be seen from Fig. 2 and 3, this
can be achieved if R ≪ 2.7 × 10−5 (notice that from
the microscopic point of view, no fine-tuning is
involved to get such a small value of R). In this case
horizon exit takes place in the plateau region where
r ≃ 0.007. An explicit example presented in [20] is:

R ¼ 1.78 × 10−7 V0 ¼ 7.78 × 10−11 γ ¼ 3.316;

which gives ϕend ¼ 0.917Mp where ϵðϕendÞ ¼ 1

and ϕ� ¼ 5.801Mp where Neðϕ�Þ ¼ 52 and:

ΔNeff ≃ 0.05 ns ¼ 0.965 r ¼ 0.0065:

(ii) Large extra dark radiation: For γ ≃ 1, the amount of
extra dark radiation is larger since ΔNeff ≲ 0.5.
Ref. [20] used 2015 Planck data to infer that such
a large value of ΔNeff requires a spectral index
centered around ns ≃ 0.99 [23]. As shown in Figs. 2
and 3, this is possible if R≳ 2.7 × 10−5. In this case
the potential is steeper close to horizon exit, and so
r ≃ 0.01. An explicit example presented in [20] is:

R ¼ 2.76 × 10−5 V0 ¼ 1.24 × 10−10 γ ¼ 1.268;

which gives ϕend ¼ 0.918Mp where ϵðϕendÞ ¼ 1

and ϕ� ¼ 5.945Mp where Neðϕ�Þ ¼ 52 and:

ΔNeff ≃ 0.37 ns ¼ 0.99 r ¼ 0.01:

However, more recent 2018 Planck data including
lowE polarization data [22] give a strong lower
constraints on the optical depth τ than 2015 Planck
measurements. For this reason, and thanks to the
positive correlation with Neff and ns, both the extra
dark radiation component ΔNeff and the spectral
index ns will have lower mean values. In fact, as we
shall see in our analysis in Sec. IV, when γ ≃ 1, the
central value of the spectral index raises to ns ≃
0.973 but not more. In turn this gives a tensor-to-
scalar ratio of order r ≃ 0.0085 which requires
values of R slightly smaller than R≳ 2.7 × 10−5.

III. METHODOLOGY

To analyze the effect of the FI scenario on the constraints
on the cosmological parameters, we consider some of the
most recent cosmological datasets, listed below:

(i) Planck: we make use as a baseline of the Planck 2018
temperature and polarization CMB angular power
spectra plikTTTEEEþ lowlþ lowE [22,24].

(ii) R19: we assume a gaussian prior on the Hubble
constant H0 as obtained from the SH0ES collabo-
ration in [25], i.e., H0 ¼ 74.03� 1.42 ðkm=sÞ=Mpc
at 68% CL.

(iii) BAO: we consider the baryon acoustic oscillation
data from the same compilation adopted in [22],
composed of the 6dFGS [26], SDSS MGS [27], and
BOSS DR12 [28] data.

(iv) DES: we add the 3 × 2pt analysis of the first-year of
the Dark Energy Survey measurements [29–31], as
used in [22].

(v) lensing: we use the 2018 CMB lensing reconstruction
power spectrum as obtained from the CMB trispec-
trum analysis [32].

(vi) Pantheon: we consider the luminosity distance
measurements of 1048 type Ia Supernovae from
the Pantheon catalog [33].

We consider as a baseline a 7-dimensional parameter
space described by: the baryon and cold dark matter energy
densities Ωbh2 and Ωch2, the ratio of the sound horizon at
decoupling to the angular diameter distance to last scatter-
ing 100θMC, the optical depth to reionization τ, and three
combinations of microscopic parameters characterizing FI
models: γ, R and V0. We impose flat uniform priors on
these parameters, as showed in Table I, where we distin-
guish three different cases, depending on the range of γ. In
our analysis the amplitude and the spectral index of the
primordial scalar perturbations As and ns, as well as the
effective number of relativistic degrees of freedom Neff and
the tensor-to-scalar ratio r are, instead, derived parameters,
obtained by using Eqs. (6), (3), (4), and (11), respectively.
In order to do this computation, we stop the series used in
the code at n ¼ 65, after checking that the changes on the
parameters for a larger number were below the numerical
sensitivity of the code.

TABLE I. Flat priors on the cosmological parameters assumed
in this work.

Parameter Prior Prior Prior

Ωbh2 [0.005, 0.1] [0.005, 0.1] [0.005, 0.1]
Ωch2 [0.001, 0.99] [0.001, 0.99] [0.001, 0.99]
τ [0.01, 0.8] [0.01, 0.8] [0.01, 0.8]
100θMC [0.5, 10] [0.5, 10] [0.5, 10]
γ [0, 1] ¼ 1 [1, 20]
R ½0; 10−5� ½0; 10−5� ½0; 10−5�
1011V0 [1, 10] [1, 10] [1, 10]

FITTING STRING INFLATION TO REAL COSMOLOGICAL … PHYS. REV. D 102, 043521 (2020)

043521-5



In order to extract the posterior distribution of these
cosmological parameters, we use our modified version of
the publicly available Monte-Carlo Markov Chain package
CosmoMC [34], with a convergence diagnostic based on the
Gelman and Rubin statistics [35], that implements an
efficient sampling of the posterior distribution using the
fast/slow parameter decorrelations [36], and includes the
support for the 2018 Planck data release [24] (see http://
cosmologist.info/cosmomc/).

IV. RESULTS

In this section we show and discuss the results for the
three different ranges of γ.

A. 0 < γ < 1

In Table II we report the constraints at 68% C.L. for the
independent cosmological parameters of the FI model with
0 < γ < 1 (above the horizontal line), and for some derived
ones (below the horizontal line), making use of several
combination of present cosmological probes. Moreover, in
Fig. 5 we show a triangular plot, i.e., the 1D posterior
distributions and 2D contour plots for some interesting
parameters of the FI model with 0 < γ < 1.
If we compare now our results obtained for Planck alone

(first column of Table II) with those obtained in a ΛCDM
model for the same dataset, we see a shift of most of the
cosmological parameters. In particular, we have that in FI
models with 0 < γ < 1 both Ωbh2 and Ωch2 move toward
larger values at many standard deviations, while θ shifts
down. In our model, the amplitude and the spectral index of
the primordial scalar perturbations As and ns, as well as the
effective number of relativistic degrees of freedom Neff and

the tensor-to-scalar ratio r are computed by using Eqs. (6),
(3), (4), and (11), respectively, and the constraints obtained
for the free parameters γ, R and V0. This is the reason why
we have a strong prediction for r ¼ 0.00846þ0.00045

−0.00011 at
68% C.L. different from zero, both As and ns larger than the
ΛCDM scenario, and an Neff > 3.046 at many sigmas.
Regarding the parameters of FI models, we find at 68% CL
and for Planck alone γ > 0.974, R > 7.86 × 10−6 and
V0 ¼ ð7.69þ0.31

−0.15Þ × 10−11. An interesting feature is the
possibility of increasing the Hubble constant parameters
due to the strong correlation between Neff and H0. In fact,
in this scenario H0 is estimated to be H0 ¼ 70.12�
0.47 ðkm=sÞ=Mpc at 68% CL, alleviating below 3 standard
deviations the very well know 4.4σ tension between the
Planck [22] and the SH0ES [25] collaborations measure-
ments of this parameter. Unfortunately, this scenario is
disfavored by the data that show a worsening of the χ2 of
17.87 with respect to the ΛCDM model, even if our
scenario has one more degree of freedom.
If we now look at the other columns of the same Table II,

or the contour plots in Fig. 5, we see that our results are
very robust, showing minimal shifts in the cosmological
parameters by combining Planck with other independent
cosmological probes. In fact, the larger shifts we can see on
the cosmological parameters are for the combination
Planckþ DES, that however keeps almost unaltered the
bounds on the cosmological parameters characteristic of FI
models.

B. γ = 1

In Table III we report the constraints at 68% C.L. for the
independent cosmological parameters of FI models with

TABLE II. Observational constraints at 68% C.L. on the independent (above the line) and derived (below the line) cosmological
parameters of FI models with 0 < γ < 1, for the different combinations of data considered in this work. In the bottom line we quote the
difference in the best-fit χ2 values with respect to the ΛCDM case for the same Planck data.

Planck Planck Planck Planck Planck Planck

Parameters þR19 þBAO þDES þlensing þPantheon

Ωbh2 0.02260�0.00013 0.02267�0.00013 0.02264�0.00012 0.02273�0.00013 0.02263�0.00013 0.02261�0.00013
Ωch2 0.1320þ0.0011

−0.0013 0.1313þ0.0010
−0.0013 0.1313þ0.0009

−0.0010 0.1297�0.0010 0.1314þ0.0010
−0.0011 0.1318þ0.0010

−0.0012
100θMC 1.03944�0.00030 1.03953�0.00029 1.03951�0.00029 1.03962�0.00029 1.03948�0.00030 1.03945�0.00030
τ 0.0526�0.0072 0.0534�0.0075 0.0526�0.0073 0.0484�0.0077 0.0493�0.0067 0.0524�0.0072
γ >0.974 >0.971 >0.976 >0.980 >0.976 >0.975
106R >7.86 >8.32 >8.22 >8.41 >8.00 >7.94
1011V0 7.69þ0.31

−0.15 7.75þ0.26
−0.16 7.72þ0.27

−0.15 7.66þ0.25
−0.15 7.64þ0.29

−0.13 7.70þ0.30
−0.15

H0½ðkm=sÞ=Mpc� 70.12�0.47 70.46�0.43 70.38�0.37 70.97�0.41 70.32�0.42 70.16�0.45
σ8 0.8406�0.0074 0.8388�0.0076 0.8382�0.0071 0.8282�0.0068 0.8352�0.0059 0.8400þ0.0068

−0.0076
S8 0.862�0.014 0.855�0.013 0.855�0.011 0.834�0.011 0.853�0.011 0.861�0.013
109As 2.149�0.033 2.150�0.034 2.146�0.033 2.120�0.033 2.130�0.028 2.148�0.033
ns 0.9724þ0.0014

−0.0003 0.9727þ0.0011
−0.0003 0.9726þ0.0011

−0.0002 0.97275þ0.00099
−0.00022 0.9725þ0.0013

−0.0003 0.9725þ0.0013
−0.0003

Neff 3.674þ0.005
−0.028 3.678þ0.007

−0.032 3.673þ0.004
−0.027 3.667þ0.004

−0.021 3.672þ0.005
−0.026 3.673þ0.008

−0.027
r 0.00846þ0.00045

−0.00011 0.00855þ0.00036
−0.00009 0.00853þ0.00038

−0.00009 0.00857þ0.00034
−0.00008 0.00849þ0.00042

−0.00010 0.00848þ0.00043
−0.00011

Δχ2bestfit þ17.87
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TABLE III. Observational constraints at 68% CL on the independent (above the line) and derived (below the line) cosmological
parameters of FI models with γ ¼ 1, for the different combinations of data considered in this work. In the bottom line we quote the
difference in the best-fit χ2 values with respect to the ΛCDM case for the same Planck data.

Planck Planck Planck Planck Planck Planck

Parameters þR19 þBAO þDES þlensing þPantheon

Ωbh2 0.02259�0.00013 0.02266�0.00013 0.02264�0.00013 0.02274�0.00013 0.02262�0.00013 0.02261�0.00013
Ωch2 0.1315�0.0011 0.1306�0.0010 0.13073�0.00087 0.12928�0.00088 0.13085�0.00098 0.1312�0.0010
100θMC 1.03950�0.00029 1.03960�0.00029 1.03959�0.00028 1.03967�0.00028 1.03955�0.00030 1.03952�0.00029
τ 0.0522�0.0074 0.0531�0.0073 0.0530�0.0075 0.0490�0.0075 0.0498�0.0069 0.0526�0.0073
106R >7.70 >7.99 >8.08 >8.47 >7.87 >7.93
1011V0 7.66þ0.33

−0.15 7.70þ0.29
−0.16 7.71þ0.28

−0.15 7.66þ0.25
−0.14 7.62þ0.31

−0.15 7.69þ0.30
−0.17

H0½ðkm=sÞ=Mpc� 69.97�0.46 70.36�0.43 70.30�0.38 70.90�0.39 70.23�0.43 70.08�0.42
σ8 0.8394�0.0074 0.8368�0.0073 0.8372�0.0073 0.8276�0.0067 0.8346�0.0060 0.8388�0.0073
S8 0.862�0.014 0.852�0.013 0.853�0.012 0.833�0.011 0.852�0.011 0.859�0.013
109As 2.146�0.033 2.146þ0.030

−0.034 2.146�0.034 2.121�0.033 2.131�0.030 2.146�0.033
ns 0.9723þ0.0015

−0.0003 0.9725þ0.0013
−0.0003 0.9726þ0.0012

−0.0003 0.97277þ0.00098
−0.00019 0.9724þ0.0014

−0.0003 0.9725þ0.0013
−0.0003

r 0.00842þ0.00048
−0.00011 0.00849þ0.00042

−0.00011 0.00851þ0.00040
−0.00010 0.00858þ0.00033

−0.00007 0.00846þ0.00045
−0.00011 0.00848þ0.00043

−0.00011

Δχ2bestfit þ16.41

FIG. 5. One dimensional posterior distributions and two-dimensional joint contours at 68% and 95% C.L. for 0 < γ < 1, for the
different combinations of data considered in this work.
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γ ¼ 1 (above the horizontal line), and for some derived
ones (below the horizontal line), making use of several
combinations of present cosmological probes. Moreover, in
Fig. 6 we show a triangular plot, i.e., the 1D posterior
distributions and 2D contour plots for some interesting
parameters of FI models with γ ¼ 1.
Even in this γ ¼ 1 case, if we compare our results for

Planck alone dataset (first column of Table III) with those
obtained in a ΛCDM model, we see almost the same shift
of the cosmological parameters we saw already in the 0 <
γ < 1 case, because γ was consistent with 1. For the very
same reason, the constraints in FI models with γ ¼ 1 are
very similar to those obtained in the 0 < γ < 1 case. In fact,
when γ ¼ 1 we find at 68% C.L. and for Planck alone that
R > 7.70 × 10−6 and V0 ¼ ð7.66þ0.33

−0.15Þ × 10−11. Regarding
the prediction of the model, in this case γ ¼ 1 which is

equivalent to Neff ¼ 3.646 [see Eq. (11)]. Moreover, we
find r ¼ 0.00842þ0.00048

−0.00011 at 68% C.L. different from zero,
and again both As and ns larger than in theΛCDM scenario.
Even in this case, and because of the strong correlation
between Neff and H0, we have a large Hubble constant
parameter, H0 ¼ 69.97� 0.46 (km/s)/Mpc at 68% C.L.,
relaxing the tension below 3 standard deviations.
Unfortunately, even this scenario is disfavored by the data
since they show a worsening of the χ2 of 16.41 with respect
to the ΛCDM model, for the same number of degrees of
freedom.
If we now look at the other cases of the same Table III,

and the plots in Fig. 6 showing Planck combined with the
other cosmological probes, we see again that our results are
almost unmodified, and the larger shifts are due to the
combination of Planckþ DES data.

FIG. 6. One dimensional posterior distributions and two-dimensional joint contours at 68% and 95% C.L. for γ ¼ 1, for the different
combinations of data considered in this work.
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C. 1 < γ ≤ 20

Finally, in Table IV we report the bounds at 68% C.L. for
the independent cosmological parameters of FI models
with 1 < γ ≤ 20 (above the horizontal line), and for some
derived ones (below the horizontal line), combining differ-
ent present cosmological probes. Moreover, in Fig. 7 we
show a triangular plot, comprising 1D posterior distribu-
tions and 2D contour plots for some interesting parameters
of FI models with 1 < γ ≤ 20.
In this 1 < γ ≤ 20 case, if we compare our results

obtained for Planck alone (first column of Table IV) with
those obtained in a ΛCDM model for the same dataset, we
see that most of the cosmological parameters are perfectly
in agreement within a standard deviation, on the contrary of
the previous γ cases. Moreover, in this FI scenario with
1 < γ ≤ 20, we find at 68% C.L. for Planck alone γ > 7.41,
and therefore Neff ¼ 3.062þ0.004

−0.015 at 68% C.L. is here in
agreement with its expected value 3.046 [37,38]. In this
case, instead of having a lower limit for R as in the previous
γ cases, we find an upper limit R < 4.80 × 10−6 at
68% C.L., while V0 shifts too toward lower values V0 ¼
ð6.76þ0.25

−0.49Þ × 10−11 at 68% C.L. because of the positive
correlation between these two parameters, as we can see in
Fig. 7. Even in this FI scenario with 1 < γ ≤ 20 we have a
strong prediction for r ¼ 0.00731þ0.00026

−0.00072 at 68% C.L.
different from zero, while both As and ns are consistent
with the constraints obtained in a ΛCDM scenario. The
possibility of increasing the Hubble constant parameters
because of the correlation between Neff and H0 is lost in

this case, because Neff is in agreement with the standard
expectation. In fact, here we have H0 ¼ 67.82�
0.47 ðkm=sÞ=Mpc at 68% C.L., shifted one sigma toward
a larger value, but still at 4.1σ tension with the R19 estimate
[25]. FI models with 1 < γ ≤ 20 are the most favored by
the data between those explored in this work, worsening the
χ2 of 0.39 with respect to the ΛCDM model, having just
one more degree of freedom.
If we now look at the other cases of the same Table IV, and

the plots in Fig. 7 showing Planck combined with the other
cosmological probes, we see again that our results are more
dataset dependent than the other γ cases we explored before.
The only combinations that give similar results to the Planck
alone case are Planckþ lensing and Planckþ Pantheon,
while the other ones deserve a more complete discussion.
In particular, in the Planckþ R19 case, i.e., the third

column of Table IV, we are adding to the Planck data a
gaussian prior onH0 similar to R19, and this prior is at 4.1σ
tension with the Hubble constant estimated by Planck
alone. Hence we are combining datasets in disagreement
and the results are not completely reliable. For this very
same reason, we see one sigma shift of H0 in the R19
direction, and due to a positive correlation with this
parameter, we have also a one sigma shift of V0 toward
higher values, i.e., V0 ¼ ð7.06þ0.47

−0.43Þ × 10−11 at 68% C.L.,
and Neff larger than the expected value at more that one
standard deviation. Consequently we obtain γ ¼ 8.4þ11

−7.2 at
68% C.L., instead of just a lower limit. Moreover, due to
the strong V0-R positive correlation, we see that instead of

TABLE IV. Observational constraints at 68% CL on the independent (above the line) and derived (below the line) cosmological
parameters of FI models with 1 < γ ≤ 20, for the different combinations of data considered in this work. In the bottom line we quote the
difference in the best-fit χ2 values with respect to the ΛCDM case for the same Planck data.

Planck Planck Planck Planck Planck Planck

Parameters þR19 þBAO þDES þlensing þPantheon

Ωbh2 0.02244�0.00014 0.02256�0.00014 0.02246�0.00013 0.02254�0.00014 0.02244�0.00014 0.02245�0.00014

Ωch2 0.1194þ0.0010
−0.0012 0.1189þ0.0009

−0.0022 0.1191þ0.0009
−0.0010 0.11794�0.00095 0.1195þ0.0010

−0.0011 0.1193þ0.0010
−0.0012

100θMC 1.04098�0.00030 1.04105þ0.00040
−0.00032 1.04101�0.00029 1.04111�0.00029 1.04096�0.00030 1.04098þ0.00032

−0.00028
τ 0.0563�0.0079 0.0576þ0.0071

−0.0085 0.0567þ0.0070
−0.0082 0.0549�0.0075 0.0565�0.0072 0.0561�0.0078

γ >7.41 8.4þ11
−7.2 10.7þ4.2

−7.5 >8.31 >7.56 >7.37

106R <4.80 >4.13 <5.07 unconstr. <4.51 <5.02

1011V0 6.76þ0.25
−0.49 7.06þ0.47

−0.43 6.79þ0.28
−0.49 6.88þ0.39

−0.48 6.73þ0.24
−0.47 6.78þ0.27

−0.50

H0½ðkm=sÞ=Mpc� 67.82�0.47 68.56þ0.46
−0.57 67.95�0.40 68.44�0.41 67.80þ0.41

−0.46 67.89þ0.44
−0.50

σ8 0.8110�0.0076 0.8090þ0.0079
−0.0089 0.8102�0.0073 0.8034�0.0065 0.8115�0.0061 0.8107�0.0076

S8 0.824�0.013 0.812�0.014 0.821�0.012 0.805�0.011 0.825�0.011 0.823�0.013

109As 2.105�0.035 2.110þ0.033
−0.037 2.106þ0.032

−0.036 2.092�0.032 2.107�0.030 2.105þ0.032
−0.036

ns 0.9696þ0.0010
−0.0026 0.9709þ0.0028

−0.0015 0.9698þ0.0012
−0.0026 0.9705þ0.0019

−0.0026 0.9695þ0.0010
−0.0025 0.9697þ0.0011

−0.0026
Neff 3.062þ0.004

−0.015 3.098þ0.004
−0.054 3.062þ0.004

−0.015 3.059þ0.003
−0.012 3.063þ0.005

−0.016 3.064þ0.006
−0.018

r 0.00731þ0.00026
−0.00072 0.00774þ0.00076

−0.00060 0.00735þ0.00030
−0.00073 0.00756þ0.00046

−0.00083 0.00726þ0.00025
−0.00067 0.00734þ0.00029

−0.00074

Δχ2bestfit þ0.39
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an upper limit like in the Planck alone case, we have now a
lower limit for R > 4.13 × 10−6 at 68% C.L.
If we now look at the Planckþ BAO combination, i.e.,

the fourth column of the same Table IV, we see that the
constraints on the cosmological parameters are very similar
to the ones obtained in the Planck alone case, with the
exception of γ that is now fully bounded at 68% C.L., i.e.,
γ ¼ 10.7þ4.2

−7.5 . However, looking at the 1D posterior dis-
tribution of γ in Fig. 7, we see that in the Planckþ BAO
combination there is no actual peak that can justify
this bound.
Finally, in the Planckþ DES case, as in the other γ

scenarios, S8 is shifted toward lower values, more in
agreement with the cosmic shear findings, and conse-
quently H0 moves toward slightly larger values due to
their negative correlation, as we can see in Fig. 7.

V. BOUNDS ON MICROSCOPIC PARAMETERS

In this section we shall follow the notation of [20] and
translate the bounds on γ, R and V0 into bounds on the
microscopic parameters of the FI landscape which depend
on discrete 3-form bulk fluxes and 2-form brane fluxes.
FI models are characterized by the following micro-

scopic parameters:
(i) 2 topological properties which depend on the choice

of the underlying Calabi-Yau manifold: the Calabi-
Yau Euler number ξ which is expected to be of order
unity and the intersection number k122 which takes
in general Oð1 − 10Þ values, and so we shall
set k122 ¼ 5.

(ii) 1 discrete quantity which depends on the number
N of D7-branes wrapped around the blow-up
cycle which supports nonperturbative effects. N is

FIG. 7. One dimensional posterior distributions and two-dimensional joint contours at 68% and 95% C.L. for 1 < γ ≤ 20, for the
different combinations of data considered in this work.
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constrained by tadpole cancellation, and in general
one obtains Oð1 − 10Þ values.

(iii) 6 discrete parameters which are functions of either
the dilaton or complex structure moduli, and so
depend on the choice of 3-form background fluxes:
the string coupling gs, the value of the tree-level
superpotential W0, the prefactor of nonperturbative
effects A3 and 3 coefficients of string loop correc-
tions to the Kähler potential cKK1 , cKK2 and cW.
Natural values of these last 3 quantities are expected
to be in the range between 0.1 and 10. In what
follows we shall therefore set cKK1 ¼ cW ¼ 4 and
cKK2 ¼ 0.1.

(iv) 1 discrete quantity n2 which determines the quan-
tized 2-form gauge flux on the world volume of the
D7-branes wrapped around the fiber divisor which
realize the visible sector.

Notice that the 3 microscopic parameters ξ, N and A3

enter only in the determination of the extradimensional
volume V. Hence in our analysis, we shall trade ξ, A3 andN
for the single parameter V.
The 3 underlying parameters γ, R and V0 are functions of

the 4 microscopic parameters which we left over as free:
γ ¼ γðgs;W0;V; n2Þ, R ¼ RðgsÞ, V0 ¼ V0ðgs;W0;VÞ. We
can therefore constrain gs, W0, V and n2 by using the
observational constraints on γ, R and V0 obtained in
Sec. IV, supplemented with the phenomenological require-
ment αvis ¼ αvisðgs;W0;V; n2Þ ¼ 1=25.

Moreover, notice that γ can be written as in (A2) where
τ1 depends on gs and V. Hence we can consider αvis ¼
αvisðgs;W0;V; n2Þ ¼ 1=25 as a constraint which gives n2
once gs,W0 and V have already been bounded by using the
results of Sec. IV with γ ¼ γðgs;VÞ, R ¼ RðgsÞ and
V0 ¼ V0ðgs;W0;VÞ.
We shall focus on the case with 1 < γ ≤ 20 since this is

the one which is statistically favored by observations, and
consider Planck data alone. Our results are displaced in
Fig. 8 for the ðV; gsÞ-parameter space. The yellow region
corresponds to γ > 7.41 and R < 4.8 × 10−6, the two blue
and red lines correspond to the upper and lower bounds on
V0 at 68% CL for W0 ¼ 150 and W0 ¼ 300 respectively,
whereas the green and black lines correspond to α−1vis ¼ 25

for n2 ¼ 2 and n2 ¼ 3 respectively.
Notice that the comparison with cosmological observa-

tions constrains the discrete gauge flux parameter n2 very
well since the curve corresponding to α−1vis ¼ 25 intersects
the yellow region only for n2 ¼ 2 and n2 ¼ 3. Given that
W0 is upper bounded by tadpole cancellation which gives
maximal value of order 500, we also realize that the string
coupling is forced to lie in the range 0.065≲ gs ≲ 0.125
and the Calabi-Yau volume 2500≲ V ≲ 9000.

VI. CONCLUSIONS

In this paper we showed that predictions from string
theory can indeed be put to the experimental test. In
particular we focused on fiber inflation which is a class
of type IIB string inflationary models that feature an under-
lying landscape of microscopic flux-dependent parameters.
Similar studies in string cosmology have also been per-
formed in [39,40] using however a different methodology.
FI models have been studied in great detail, determining

not just the inflationary dynamics but also the postinfla-
tionary evolution including reheating and the potential
production of extra neutrinolike species. Thanks to this
detailed analysis, these models are ready to be confronted
with observations.
In our analysis we included several recent cosmological

data coming from Planck, direct measurements of H0,
BAO, DES, CMB lensing and Pantheon. We focused on a
7-dimensional baseline space described by the standard
parameters Ωbh2, Ωch2, 100θMC and τ, with in addition 3
combinations of microscopic parameters γ, R, and V0

which characterize fiber inflation. After imposing flat
priors on each of these parameters, we derived bounds
on As, ns, r, and Neff for different ranges of γ.
We found that the range of γ which gives the best fit to

these recent cosmological data is 1 < γ ≤ 20. In particular,
for Planck data alone we find at 68% CL γ > 7.41, R <
4.80 × 10−6 and 1011V0 ¼ 6.76þ0.25

−0.49 together with ns ¼
0.9696þ0.0010

−0.0026 , Neff ¼ 3.062þ0.004
−0.015 and r ¼ 0.00731þ0.00026

−0.00072 .
The prediction for the tensor-to-scalar ratio is particularly

FIG. 8. Phenomenological bounds on the microscopic param-
eters V and gs for γ in [1,20] and Planck data alone. The yellow
region corresponds to γ > 7.41 and R < 4.8 × 10−6. The two
blue and red lines correspond to the upper and lower bounds on
V0 at 68% CL forW0 ¼ 150 andW0 ¼ 300. The green and black
lines correspond to α−1vis ¼ 25 for n2 ¼ 2 and n2 ¼ 3.
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promising since it might be tested by the next generation of
cosmological observations.
From the microscopical point of view, this implies that

the models in the fiber inflation landscape which are
statistically favored by cosmological data are the ones
leading to the case small extra dark radiation of Sec. II B.
In this case horizon exit takes place in the plateau far away
from the exponential steepening of the potential, so leading
to no power loss at large angular scales. Moreover Neff is
very close to the Standard Model values, implying that the
inflaton decay into bulk ultralight axions has to be sup-
pressed by the presence of a nonzero gauge on the D7-
brane stack wrapped around the fibre divisor which realizes
the visible sector.
In Sec. V we finally translated the previous bounds into

constraints on the microscopic flux dependent quantities,
showing how agreement with cosmological observations
forces the string coupling to lie in the range 0.065≲ gs ≲
0.125 and the Calabi-Yau volume in 2500≲ V ≲ 9000.
Let us stress again that this analysis illustrates how large

portions of the string landscape can be ruled out by
comparison with observations, in particular thanks to the
presence in string models of correlations between different
theoretical and phenomenological features. A crucial corre-
lation, which could constrain further the parameter space of
these 4D string models and which we did not take into
account in this analysis, is the connection with particle
physics predictions like those concerning supersymmetry
and the QCD axion. We leave this investigation for future
work.
Let us finally mention that several “swampland conjec-

tures” have been recently proposed based on different
quantum gravity arguments [41]. According to these con-
jectures, models of inflation from string theory lack control
over the effective field theory, and so are incompatible with
quantum gravity. However at the moment this issue is far
from being settled and it is the subject of a lively debate.
A recent critical discussion of progress and open issues in
controlling perturbative and nonperturbative corrections in
string compactifications can for example be found in [42].
Focusing in particular on fiber inflation, these models

have been shown to be embeddable in Calabi-Yau com-
pactifications built as hypersurfaces in toric varieties with
an explicit orientifold involution and a chiral brane setup
which satisfies global consistency requirements like tad-
pole cancellation [8–10]. These compactifications have
also all the required higher-dimensional features to give
rise to the desired corrections to the low-energy effective
action which stabilize the moduli and generate the inflation
potential given in (2). Moreover so far no quantum
correction to the inflationary potential has been found
which could destroy fiber inflation. Hence these models
seem to be counterexamples to swampland conjectures.
However in order to provide a final answer to this crucial
open issue, one should be able to perform a systematic

analysis of all possible α0 and gs corrections to the 4D
effective action which is at present a hard technical problem.
A step forward toward achieving this goal has been recently
performed in [43] where the authors tried to classify all
possible perturbative corrections to the effective action of
string compactification by using approximate symmetries
like supersymmetry, scale invariance and shift symmetries.
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APPENDIX: UPPER BOUND ON γ

In this appendix we shall again follow the notation of
[20] and estimate an upper bound on γ based on the
consistency of the underlying UV theory. The parameter γ
looks like:

γ ¼ 2αvishτ1i ðA1Þ
where αvis ¼ g2=ð4πÞ gives the visible sector gauge cou-
pling while hτ1i is the value at the minimum of the Kähler
modulus whose real part controls the volume of the K3 or
T4 divisor. This modulus is stabilized at:

hτ1i ¼ g4=3s λV2=3 ðA2Þ
where gs is the string coupling, V is the Calabi-Yau volume
in string units and λ is expressed in terms of the coefficients
of string loop corrections to the Kähler potential as (setting
k122 ¼ 5):

λ ¼ 2 · 51=3
ðcKK1 Þ4=3
ðcWÞ2=3 : ðA3Þ

Hence γ becomes:

γ ¼ 4 · 51=3αvisðgscKK1 Þ4=3
�
V
cW

�
2=3

: ðA4Þ

We now impose the following phenomenological and
theoretical consistency constraints:
(1) A realistic GUT-like value of the gauge coupling:

α−1vis ¼ 25

(2) Effective field theory in the perturbative regime:
gs ≲ 0.125

(3) Correct amplitude of the density perturbations:
V ≲ 104

(4) Natural values of the coefficients of the string loop
corrections: cKK1 ¼ cW ¼ 4

Applying these constraints to (A4), we end up with the
following upper bound on γ:

γ ≲ 20: ðA5Þ
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