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ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS:
THE TWO-DIMENSIONAL CASE

By ANDREA PAscuccl AND ANTONELLO PESCE

Universita di Bologna

We prove existence, regularity in Holder classes and estimates
from above and below of the fundamental solution of the stochastic
Langevin equation. This degenerate SPDE satisfies the weak Hérman-
der condition. We use a Wentzell’s transform to reduce the SPDE to a
PDE with random coefficients; then we apply a new method, based on
the parametrix technique, to construct a fundamental solution. This
approach avoids the use of the Duhamel’s principle for the SPDE
and the related measurability issues that appear in the stochastic

framework. Our results are new even for the deterministic equation.

1. Introduction We consider the stochastic version of the Fokker-Planck equation

n

n 1
(1) oru + Z 00z ;U = 5 Z Oy U

j=1 ij=1

Here the variables t = 0, z € R™ and v € R™ respectively stand for time, position and velocity,
and the unknown u = wuy(z,v) = 0 stands for the density of particles in phase space. The
vector field Y := 0; + v - V, on the left-hand side of (1) describes transport; the coefficients
a;; describe some kind of collision among particles and in general may depend on the solu-
tion u through some integral expressions. Linear Fokker-Planck equations (cf. Desvillettes and
Villani (2001) and Risken (1989)), non-linear Boltzmann-Landau equations (cf. Lions (1994)
and Cercignani (1988)) and non-linear equations for Lagrangian stochastic models commonly
used in the simulation of turbulent flows (cf. Bossy, Jabir and Talay (2011)) can be written in
the form (1). In mathematical finance, (1) describes path-dependent financial contracts such
as Asian options (see, for instance, Pascucci (2011)).

In this note we study a kinetic model where the position and the velocity of a particle are
stochastic processes (X, V;) only partially observable through some observation process O;. We
consider the two-dimensional case, n = 1, which is already challenging enough, and propose an
approach that hopefully can be extended to the multi-dimensional case. If ]—'to =0(0g, s <)
denotes the filtration of the observations then, under natural assumptions, the conditional

density ps(z,v) of (Xy, Vi) given FC solves a linear SPDE of the form

(2) dyui(z,v) = W&vvut(:p,v)dt + o (x, v)Opu(z, v)dW, Y = 0; +vo,.
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2 A. PASCUCCI ET AL.

In (2) W is a Wiener process defined on a complete probability space (€2, F, P) endowed with
a filtration (F3),5 satisfying the usual conditions. The symbol dy indicates that the equation
is solved in the It6 (or strong) sense: a solution to (2) is a continuous process u; = w(z,v)
that is twice differentiable in v and such that

Ut (’yf(x,v)) = uo(z,v) + ;f

0

t t

(asOpptis) (’yf(a:, v))ds + L (0s0vus) (’yf(a;, v))dWs

where t — vP(z,v) denotes the integral curve, starting from (x,v), of the advection vector
field vd,, that is

B = etB(z,v) = (z + to,v = 01
3) v (,0) = e (z,0) = (x+tv,0), B (0 0>'

Clearly, in case the observation process O is independent of X and V', the SPDE (2) boils
down to the deterministic PDE (1) with n = 1.

The main goal of this paper is to show existence, regularity and Gaussian-type estimates of
a stochastic fundamental solution of (2). As far as the authors are aware, such kind of results
was never proved for SPDEs that satisfy the weak Hormander condition, that is under the
assumption that the drift has a key role in the noise propagation. We mention that hypoellip-
ticity for SPDEs under the strong Héormander condition was studied by Chaleyat-Maurel and
Michel Chaleyat-Maurel and Michel (1984), Kunita Kunita (1982), Krylov Krylov (2015) and
Jinniao Qiu (2018). Even in the deterministic case, our results are new in that they extend
the recent results Delarue and Menozzi (2010), Menozzi (2018) for Kolmogorov equations with
general drift.

Our method is based on a Wentzell’s reduction of the SPDE to a PDE with random coeffi-
cients to which we apply the parametrix technique to construct a fundamental solution. This
approach avoids the use of the Duhamel’s principle for the SPDE and the related measurability
issues that appear in the stochastic framework as discussed, for instance, in Sowers (1994). As
in Pascucci and Pesce (2019), Wentzell’s reduction of the SPDE is done globally: to control
the behavior as |z|, |v| — o of the random coefficients of the resulting PDE, we impose some
flattening condition at infinity on the coefficient o¢(x, v) in (2) (cf. Assumption 2.5). Compared

to the uniformly parabolic case, two main new difficulties arise:

i) the It6-Wentzell transform drastically affects the drift Y: in particular, after the random
change of coordinates, the new drift has no longer polynomials coefficients. Consequently,
a careful analysis is needed to check the validity of the Hormander condition in the new
coordinates. This question is discussed in more detail in Section 1.1;

ii) in the deterministic case, the parametrix method has been applied to degenerate Fokker-
Planck equations, including (2) with o = 0, by several authors, Polidoro (1994), Di Francesco
and Pascucci (2005), Menozzi (2011), Kohatsu-Higa and Yuki (2018), using intrinsic
Holder spaces. Loosely speaking, the intrinsic Holder regularity reflects the geometry of

the PDE and is defined in terms of the translations and homogeneous norm associated to
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ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 3

the Hormander vector fields: this kind of regularity is natural for the study of the singular
kernels that come into play in the parametrix iterative procedure. Now, under the weak
Hoérmander condition, the intrinsic regularity properties in space and time are closely
intertwined and cannot be studied separately. However, assuming that the coefficients
are merely predictable, we have no good control on the regularity in the time variable;
for instance, even in the deterministic case, the coefficients are only measurable in ¢ and
consequently they cannot be Holder continuous in (z,v) in the intrinsic sense. On the
other hand, assuming that the coefficients are Hélder continuous in (x,v) in the classical
Euclidean sense, the parametrix method still works as long as we use a suitable time-
dependent parametrix and exploit the fact that the intrinsic translations coincide with
the Euclidean ones for points (¢, z,v) and (¢,£,7n) at the same time level. We comment

on this question more thoroughly in Section 1.2.

The rest of the paper is organized as follows. In Sections 1.1 and 1.2 we go deeper into the issues
mentioned above. In Section 2 we set the assumptions, introduce the functional setting and
state the main result, Theorem 2.6. In Section 3 we prove some crucial estimate for stochastic
flows of diffeomorphisms: these estimates, which can be of independent interest, extend some
result of Kunita (1990). In Section 4 we formulate a version of the It6-Wentzell formula and
exploit the results of Section 3 to perform a stochastic change of variable in order to reduce the
SPDE to a PDE with random coefficients. In Section 5 we build on the work by Delarue and
Menozzi Delarue and Menozzi (2010) to develop a parametrix method for Kolmogorov PDEs

with general drift (Theorem 5.5). Finally, in Section 6 we complete the proof of Theorem 2.6.

1.1. Stochastic Langevin equation and the Hormander condition For illustrative purposes,
we examine the case of constant coefficients and introduce the stochastic counterpart of the
classical Langevin PDE.

Let B, W be independent real Brownian motions, a > 0 and o € [0,+/a]. The Langevin

model is defined in terms of the system of SDEs
dX, = Vidt,
(4)
dVy = vVa — 02dB; — odW;.

We interpret W as the observation process: if ¢ = 0 the velocity V is unobservable, while for
o = 4/a the velocity V is completely observable, being equal to W. To shorten notations, we
denote by z = (x,v) and ¢ = (£,7) the points in R2. Setting Z; = (X;,Y;), equation (4) can

be rewritten as

(5) dZy = BZydt + e2d(\/m3t —oWy), ey = <?>7

where B is the matrix in (3).

In this section we show in two different ways that the SPDE

(6) dyus = %&wutdt + 00w dWy, Y 1= 0 + 00y,
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4 A. PASCUCCI ET AL.

is the forward Kolmogorov (or Fokker-Planck) equation of the SDE (4) conditioned to the
Brownian observation given by F}V = o(W;, s < t). In the uniformly parabolic case, this is a
well-known fact, proved under diverse assumptions by several authors (see, for instance, Zakai
(1969), Krylov and Rozovskii (1977) and Pardoux (1979)).

In the first approach, we solve explicitly the linear SDE (5) and find the expression of the
conditional transition density I' of the solution Z: by Itd formula, we directly infer that I" is the
fundamental solution of the SPDE (6). The second approach, inspired by Krylov and Zatezalo
(2000), is much more general because it does not require the explicit knowledge of I': we first
prove the existence of the fundamental solution of the SPDE (6) and then show that it is the
conditional transition density of the solution of (4).

The following result is an easy consequence of the It6 formula and isometry.

PROPOSITION 1.1.  The solution Z = Z¢ of (5), with initial condition ( = (£,1) € R?, is
given by

t
Zf =!8 (( + J e *Beyd(v/a—02Bs — 0W3)>
0

with ey as in (5). Conditioned to F}V, ZtC has normal distribution with mean and covariance

matrix given by

b f—l—tn—aSt(t—s)dWS
7 = E|Zy fW=“9<— B dWS>: 0 :
(7) m+(C) [t| t] e | ¢ Ufoe e ( oW, >

t 22
(8) Ct := cov (ZtC | ]:tW> = (a — 0?)Qy, Qt = J (eSBeg) (eSBeg)*ds = (tSQ 2) :

0 2

In particular, if o = \/a then the distribution of Zf conditioned to F}V is a Dirac delta centered
at my(C); if o € [0,4/a) and t > 0 then ZtC has density, conditioned to F}V, given by

0 T(tz0.0) = (-5 = mon e —mi@)) . zem

1
———€X
QﬂW/detCt P

More explicitly, we have T'(t, z;0,¢) = To(t, 2 — my(()) where

(10) ro(t,x,v):*/g)exp(— 2 <”2—3”‘”+3x2>>, £>0, (,0)€R%

7t?(a — o2 a—o2 \ |t 23

By the Ito formula, T'(t, 2;0,C) is the stochastic fundamental solution of SPDE (6), with pole
at (0,¢).

As an alternative approach, we construct the fundamental solution of the SPDE (6) by
performing some suitable change of variables. First we transform (6) into a PDE with random
coefficients, satisfying the weak Hoérmander condition; by a second change of variables, we
remove the drift of the equation and transform it into a deterministic heat equation. Going back

to the original variables, we find the stochastic fundamental solution of (6), which obviously

imsart-aop ver. 2014/10/16 file: PP2019.tex date: October 14, 2019



ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 5

coincides with I' in (9). Eventually, we prove that I'(¢,-; 0, () is a density of ZtC conditioned to
FV. We split the proof in three steps.

[Step 1] We set
(11) U (x,v) = w(x,v — o Wy).

By It6 formula, u solves (6) if and only if @ solves the Langevin PDE

2
(12) vt + (v — oWy) Oyt = = 2“ Boul.

By this change of coordinates we get rid of the stochastic part of the SPDE; however, this is
done at the cost of introducing a random drift term. For the moment, this is not a big issue
because o is constant and, in particular, independent of v: for this reason, the weak Hormander

condition is preserved since the vector fields 0,, d; + (v — cW})0, and their Lie bracket
[5,,, (9t + (’U — aWt)@v] = 6,;

span R3 at any point.

[Step 2] In order to remove the random drift, we perform a second change of variables:

(13) a(2,0) = w(u(z,0)), (@) = (x o — ”Lt Wsds,v> .

V(z,y) = ((1) j)

so that 74 is one-to-one and onto R? for any ¢. Then, (12) is transformed into the deterministic

The spatial Jacobian of ; equals

heat equation with time-dependent coefficients

0.2

(14) dgi(x,v) = 2=

5 (t2020 — 2t0p0 + Ovv) gt(, ).

Equation (14) is not uniformly parabolic because the matrix of coefficients of the second order

o2 t? —t
=l )<—t 1)

is singular. However, in case of partial observation, that is o € [0, 1/a), the diffusion matrix

t e
Atzfasds:(a02)<32 2)
0 -t

is positive definite for any ¢ > 0 and therefore (14) admits a Gaussian fundamental solution.

part

For o = 0, this result was originally proved by Kolmogorov Kolmogorov (1934) (see also the
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6 A. PASCUCCI ET AL.

introduction in Hérmander (1967)). Going back to the original variables we recover the explicit
expression of I" in (9).

Incidentally, we notice that (14) also reads

a—02

0tgt(ac,v) = Vggt(xﬂj)a Vt =0y — ta:m

where the vector fields ¢; and V; satisfy the weak Hérmander condition in R3 because [Vt, o] =

Oz

[Step 3] We show that I" is the conditional transition density of Z: the proof is based on a
combination of the arguments of Krylov and Zatezalo (2000) with the gradient estimates for

Kolmogorov equations proved in Di Francesco and Pascucci (2007).

THEOREM 1.2. Let Z¢ denote the solution of the linear SDE (5) starting from ¢ € R?
and let T' = T'(t,+0,() in (9) be the fundamental solution of the Langevin SPDE (6) with

o € [0,~/a). For any bounded and measurable function ¢ on R?, we have

Bo(z0) | 7] = | et 50,0
PROOF. It is not restrictive to assume that ¢ is a test function. Let
0O = [ p@PEa0.0d 120, (R
R2

By (7)-(9), I;(¢) is F}V-measurable: thus, to prove the thesis it suffices to show that, for any

continuous and non-negative function ¢ = ¢s(w) on [0,¢] x R, we have
(15) B |e=Soe Wt 70) | = | e Soe Wb ¢)) .

Let

L) = Z (84 — 2000w + Cuw) + Vs

a
2
be the infinitesimal generator of the three-dimensional process (X,V,W). For o € [0,+/a),
O + £(9) satisfies the weak Hormander condition in R* and has a Gaussian fundamental solution

(see, for instance, formula (2.9) in Di Francesco and Pascucci (2007)). We denote by f =

fs(z,v,w) the classical solution of the backward Cauchy problem
(05 + £)) £y, 0,w) — cs(w) fs(w,v,w) = 0, (5,2,v,w) € [0,1) x R,
fi(z,v,w) = p(z,v), (z,v,w) € R3,

and set

M, = o~ o er(Woyir f Fo(2 W (s, 2:0,O)dz, s e0,4].
RQ
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ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 7

By definition, we have

E[M]=E [efgg cS(Ws)dsIt(C)]
and, by the Feynman-Kac representation of f,

B[Mo] = fo(¢.0) = B | ber ¥t z5) |
Hence (15) follows by proving that M is a martingale. By the It6 formula, we have

0. W) = (0uf+ 500 ) (00, Wa)ds + (0 0, W)W,
= (—L’(")fs + csfs + ;8wwfs> (x,v,Ws)ds + (O fs) (z, v, Ws)dWs.

Moreover, since I' solves the SPDE (6), setting e := e~ §o er(Wr)dr gor brevity, we get

dMs = —cs(Ws)Msds + esf

<_£(U)fs +csfs + ;awwfs) (z,v, Ws)I'(s, 2, v; 0, {)dzdv ds
R2

+ esj (Owfs) (x,v, Ws)T'(s, z,v;0,)dzdv dW;
RQ
a
+ e fs(x, v, W) (,am - v@w> (s, z,v;0,()dzdvds
R2 2
+ eso f fs(x,v,W5)0, (s, x,v;0,()dzdv dWy
R2
+ esaf Ow fs(x,v, Ws)0,I'(s, 2,v; 0, ()dxdv ds.
RQ
Integrating by parts, we find
dM, = esf (Owfs — 00y fs) (x,v, Ws)T'(s, 2, v; 0, ()dzdv dWs,
RQ

which shows that M is at least a local martingale.
To conclude, we recall the gradient estimates proved in Di Francesco and Pascucci (2007),

Proposition 3.3: for any test function ¢ there exist two positive constants e, C' such that

|0vfs(:v,v,w)| + |é’wfs(x,v,w)| < (C;lv (S,l‘,U,QU) € [Oat) X R3'
t—s)2"°¢

Thus, we have

E
0

t C 2
< L mE [(J;RQ F(s,x,v;O,C)dmdv) ] ds

t C
:L(t—s)l—%d5<oo

and this proves that M is a true martingale. O

2
J*t (J (Owfs — 00y fs) (v, Ws)T'(s, 2,030, C)dmdv) ds]
R2
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8 A. PASCUCCI ET AL.

1.2. Intrinsic vs Buclidean Hélder spaces for the deterministic Langevin equation The parametrix
method requires some assumption on the regularity of the coefficients of the PDE: in the uni-
formly parabolic case, it suffices to assume that the coefficients are bounded, Holder continuous
in the spatial variables and measurable in time (cf. Friedman (1964)).

In this paper, we apply the parametrix method assuming that the coefficients of the Langevin
SPDE (2) are predictable processes that are Holder continuous in (z,v) in the Euclidean sense.
From the analytical perspective this is not the natural choice: indeed, it is well known that the
natural framework for the study of Hérmander operators is the analysis on Lie groups (see, for
instance, Folland and Stein (1982)). In this section, we motivate our choice to use Euclidean
Hoélder spaces rather than the intrinsic ones.

We recall that Lanconelli and Polidoro Lanconelli and Polidoro (1994) first studied the

intrinsic geometry of the Langevin operator in (6) with o = 0:

a

L, = 551”, — V0y — Ot

They noticed that £, is invariant with respect to the homogeneous Lie group (R?, %, §) where

the group law is given by

(16) (1,6,m) * (t,x,v) = (t+ 1,2+ &+ tn,v+ 1), (1,€6,m), (t,z,v) € R?,
and § = (d))x>0 is the ultra-parabolic dilation operator defined as

(17) Ox(t, ,v) = (N2, N3z, M), (t,z,v) e R3, A > 0.

More precisely, £, is invariant with respect to the left-+-translations £ ¢ y(t, z,v) = (7,§,7) *

(t,z,v), in the sense that
La(f oliren) = (Laf) o liremy,  (1,6m) €R?,
and is 6-homogeneous of degree two, in that
Lo(foby) =X (Laf)ody, A>0.

It is natural to endow (R3, *,§) with the §-homogeneous norm

(8,2, 0) |z = [t]2 + 2|5 + o]
and the distance
(18) dﬁ ((t,$,'l))7 (7—7577])) = |(T7€7n)71 * (tvxav)|£'

The intrinsic Holder spaces associated to d are particularly beneficial for the study of existence
and regularity properties of solutions to the Langevin equation because they comply with the

asymptotic properties of its fundamental solution I' near the pole: let us recall that

T(t,z,v;7,&m) =TDo (1. &,m) 7 * (t,2,0)),  7<t,
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ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 9

where T is the fundamental solution of £ in (10) with o = 0 and (7,&,1) ™! = (=7, =& + ™0, —1)
is the =-inverse of (7,&,7n). Notice also that I' is 4-homogeneous of degree four, where four is
the so-called -homogeneous dimension of R2.

Based on the use of intrinsic Holder spaces defined in terms of d., a stream of literature has
built a complete theory of existence and regularity, analogous to that for uniformly parabolic
PDEs: we mention some of the main contributions Polidoro (1994), Polidoro (1997), Manfredini
(1997), Lunardi (1997), Di Francesco and Pascucci (2005), Di Francesco and Polidoro (2006),
Pagliarani, Pascucci and Pignotti (2016) and, in particular, Polidoro (1994), Di Francesco and
Pascucci (2005), Konakov, Menozzi and Molchanov (2010) where the parametrix method for
Kolmogorov PDEs was developed.

On the other hand, intrinsic Hélder regularity can be a rather restrictive property as shown

by the following example.

ExamMpPLE 1.3. Forz,£e€R andt # 7, let

(19) z= <x,—;c__f>, ¢= <§>—f__§>

Then we have

(7-7 C)_l * (t,Z) = (t - 7-7070)7

and therefore
de((t,2), (r,¢)) = |t — 72

Since x and & are arbitrary real numbers, we see that points in R that are far from each other
in the Buclidean sense, can be very close in the intrinsic sense. It follows that, if a function
f(t,x,v) = f(x) depends only on x and is Holder continuous in the intrinsic sense (i.e. with

respect to dr ), then it must be constant: in fact, for z,( as in (19), we have

[f(@) = FOI = [f(t,2) = f(m, QI < Clt — 7[*
for some positive constants C,« and for any x,£ € R and t # T.

When it comes to studying the stochastic Langevin equation, the use of Euclidean Holder
spaces seems unavoidable. The problem is that we have to deal with functions f = fi(z,v)

that are:

- Holder continuous with respect to the space variables (x, v) in order to apply the parametrix
method;
- measurable with respect to the time variable ¢ because f plays the role of a coeflicient of

the SPDE that is a predictable process (i.e. merely measurable in t).

As opposed to the standard parabolic case, in terms of the metric d, there doesn’t seem to
be a clear way to separate regularity in (z,v) from regularity in ¢: indeed this is due to the

definition of #-translation that mixes up spatial and time variables (see (16)). On the other
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10 A. PASCUCCI ET AL.

hand, we may observe that the Euclidean- and #- differences of points at the same time level

coincide:
(tvé-un)_l*(th’?}):(Oax_gav_n>7 $707§;UGR-

Thus, to avoid using #-translations, the idea is to combine this property with a suitable def-
inition of time-dependent parametriz that makes the parametrix procedure work: this will be
done in Section 5.

Concerning the use of the Euclidean or homogeneous norm in R?, let us denote by bC(R?)
and bC2(R?) the space of bounded and Holder continuous functions with respect to the Eu-
clidean norm and the homogeneous norm |x|% + |v], respectively. Since |(z,v)| < \$|% + |v] for

|(x,v)] < 1, we have the inclusion
(20) bC*(R?) < bOZ(R?).

Preferring simplicity to generality, we shall use Holder spaces defined in terms of the Euclidean
norm (cf. Assumption 2.3): by (20), this results in a slightly more restrictive condition compared
to the analogous one given in terms of the homogeneous norm. On the other hand, all the
results of this paper can be proved using the homogeneous norm ]m\% + |v| as in Polidoro
(1994), Di Francesco and Pascucci (2005) and Konakov, Menozzi and Molchanov (2010): this

would be more natural but would greatly increase the technicalities.

We close this section by giving some standard Gaussian estimates that play a central role
in the parametrix construction. After the change of variables (13) with ¢ = 0, the Langevin

operator L, is transformed into

La = gvg - 8t, Vt = é’v - t&x

Since L, is a heat operator with time dependent coefficients, its fundamental solution is the

Gaussian function T'y(t, 2;8,() = Ty (t, 2 — (; 5,0) where

V3 2 2 242 2
(21) Tu(t,z,y;s,0,0) = mexp <_a(t—s)3 (3z% 4 3ay(t + s) + y* (1" +ts + s )))
for s <t and z,y € R.

LEMMA 1.4. For every € > 0 there exists a positive constant ¢ such that

— &
|Vtra(t7x7y;57070)’ < \/ﬁra+8(t7$7y;57070)7
(22) ‘V?Fa(tawvy;s707o>‘ < tLPa-l-é‘(umay;S?O?O)v
— S

for every 0 < s <t <T and z,y € R.

PRrROOF. We remark that T'y(t,z,y;s,0,0) has different asymptotic regimes as t — s de-

pending on whether or not s is zero: in fact, if s = 0 then the quadratic form in the exponent
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ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 11

of Iy is similar to that of the Langevin operator, that is

L
On the other hand, if s # 0 we see in (21) that all the components of the quadratic form are

O((t—s)3) ast — sT.

The thesis is a consequence of the following elementary inequality: for any € > 0 and n € N

N Tc\

there exists a positive constant c. , such that

A2 A2
(23) IA"e  n < cpee wtE, AeR.

Indeed, we have

1
\Vt—s

6x + 2v(t + 2s)
3
a(t —s)2

’Vtra(t7$ay;87070)‘ = Fa(tax7y;37070) <

(by (23) with n = 1)
C
< JE—
Vit—s

The proof of (22) is similar, using that

Fa+6(t7 T, Y58, 07 O)

V 4 3 t + 25))2
Vil.(t, z,y;5,0,0) = <(1*+U( +25))

a(t—s) a(t—s)3 _1> I‘a(t,x,y;s,0,0).

O]

2. Assumptions and main results We introduce the functional spaces used throughout
the paper. For convenience, we give the definitions in the general multi-dimensional setting even
if, except for Section 3, we will mainly consider dimension d = 2.

Let k,de N, 0 <o <1and 0 <t <T. Denote by mB; 1 the space of all real-valued Borel

measurable functions f = fs(z) on [¢,T] x R? and

[0}

o CPr (resp. b f‘T) is the space of (resp. bounded) functions f € mB; r that are a-Holder

continuous in z uniformly with respect to s, that is

sup ’fs(z) - fs(C)|

st |2 —(]*
2#(

< o

k+a k+a

o C; 7% (resp. bCy1.®) is the space of functions f € mB;r that are k-times differentiable

with respect to z with derivatives in C{ (resp. bC).

We use boldface to denote the stochastic version of the previous functional spaces. More pre-

cisely, let P; 1 be the predictable o-algebra on [¢,T'] x €.

DEFINITION 2.1.  We denote by Cf}o‘ the family of functions f = fs(z,w) on [t,T] x RIx Q
such that:
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12 A. PASCUCCI ET AL.

i) (z,x) — fs(z,w) € Cf}a for any w € §;
i) (s,w) = fs(z,w) is Py r-measurable for any z € R%.

Similarly, we define bCﬁ}a.

DEFINITION 2.2. A stochastic fundamental solution T' = T'(t,x,v;7,&,n) for the SPDE (2)
is a function defined for 0 < 17 <t < T and x,v,&,n € R, such that for any (1,¢) € [0,T) x R?

we have:

i) T(-,+,+7,C) belongs to Cy, 7(R?), is twice continuously differentiable in v and with prob-
ability one satisfies

t

Dt (0,0)57.0) = T2, 0:7,0) + | 5au(r(0,0)) () (5,92 (w,0)i7. O

(24) t
T f 0u(vB (2, 0)) (,T) (8,72 (2, 0); 7, C)dW,s

0
for T <ty <t<T and z,v e R, with v? = vP(z,v) as in (3);
ii) for any bounded and continuous function o on R? and zo € R?, we have
i [ Psm 0RO = pla) P
R2

(t,2)—=(7,20)
t>T1

Next we state the standing assumptions on the coefficients of the SPDE (2).
AssuMPTION 2.3 (Regularity). a € bC{ for some ae (0,1) and o € bCte.

AssuMPTION 2.4 (Coercivity). There exists a random, finite and positive constant m
such that

ai(z) — o2 (z) = m, te[0,T], z€R?, P-a.s.

One of the main tools in our analysis is the following It6-Wentzell transform: for 7 € [0,T)
and (z,v) € R%, we consider the one-dimensional SDE

¢
(25) Vg (T, 0) = v — J os(w, sy (z,0))dWs.

-
Assumption 2.3 ensures that (25) is solvable in the strong sense and the map (z,v) —
(2,71 (z,v)) is a stochastic flow of diffeomorphisms of R? (see Theorem 3.1 below). In Sec-
tion 4 we use this change of coordinates to transform the SPDE (2) into a PDE with random
coefficients whose properties depend on the gradient of the stochastic flow: to have a control

on it, we impose the following additional

ASSUMPTION 2.5.  There ezist e > 0 and a random variable M € LP(Q), with p > max {2, %},

such that with probability one

sup (1+ %+ v2)5|8518520t(x,v)| < M, b1+ B2 =1,
te[0,T]
(z,v)eR2
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ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 13

sup (1+ 2%+ 1)2)%“]651652@(35,1})\ <M, b1+ B =2,3.
te[0,T]
(z,v)eR?2

Assumption 2.5 is the main ingredient in the estimates of Section 3: it requires that o;(x, v)
flattens as (x,v) — o0. In particular, this condition is clearly satisfied if o = oy depends only

on t or, more generally, if the spatial gradient of ¢ has compact support.

We are now in position to state the main result of the paper.

THEOREM 2.6. Let Assumptions 2.3, 2.4 and 2.5 be satisfied. Then the Fokker-Planck
SPDE (2) has a fundamental solution T' such that, for some positive random variables puy and

w2, with probability one we have
(26pflrheat (Mlet_ﬂgIW,fl(z) i 7;7() < I‘(t,z; T, C) < Hl—\heat (MQt—r,gIW’il(Z) B ,Y;GC) ’

(27) |0, T (t, x,v;7,C)| < \/%Fheat (MQth,gIW’_l(Z) _ ’YtT’C> ,

'LL - B
;Fhe% (MQt—ngIW’ Hz2) - ’YtTC) )

for every 0 < 7 <t < T and z = (z,v),( € R, where g™V~ ! denotes the inverse of the

(28) 0T (t, 2,07, 0)] <

stochastic flow (z,v) — (2,71 (z,v)) defined by (25) and 'yg-’c is the integral curve (see Theorem
3.1 below), starting from C, of the vector field

IwW IwW
Y, — W rYt,TaIIYt,’T
tr = ’Yt,rv—ﬁ )

'U’Yt,T

Q: is defined as in (8) and

1 1yg-1
Theat A, z) = 6_§<A 2,2)
4,2) 2mv/det A

18 the two-dimensional Gaussian kernel with symmetric and positive definite covariance matrix
A.

The proof of Theorem 2.6 is postponed to Section 6.

3. Pointwise estimates for It6 processes In this section we prove some estimate for
stochastic flows of diffeomorphisms that will play a central role in our analysis. Information
about stochastic flows in a more general framework can be found in Kunita (1990). Since the
following results are of a general nature and may be of independent interest, in this section we
reset the notations and give the proofs in the more general multi-dimensional setting.

Specifically, until the end of the section, the point of R? is denoted by z = (21,...,z4) and
we set V., = (s, ...,0,,) and 0° = of =l ... 8;8;‘ for any multi-index 5. We will also employ
the notation

(z):=4/1+ |2]?, ze R4,

First, we recall some basic facts about stochastic flows of diffeomorphisms. Let £ € N. A
R?-valued random field ori(z), with0<7<t<T and z€ RY, defined on (Q, F, P), is called

a (forward) stochastic flow of C*-diffeomorphisms if there exists a set of probability one where:

imsart-aop ver. 2014/10/16 file: PP2019.tex date: October 14, 2019



14 A. PASCUCCI ET AL.

i) ¢14(2) = 2 for any t € [0,7] and z € R%
i) prt =pstoprs for 0 <7 <s<t<T;

ii) pryt: R? — R? is a C*-diffeomorphism for all 0 < 7 <t < T.

Stochastic flows can be constructed as solutions of stochastic differential equations. Let B a
n-dimensional Brownian motion and consider the stochastic differential equation

t t

ba(s(2))ds + f 0u(s(2))dB,

T

(29) o(2) = = + f

T

where b = (bi(2)), 0 = (aij(z)) are a d-valued and (d x n)-valued processes respectively, on
[0, T] x R? x Q. The following theorem summarizes the results of Lemmas 4.5.3-7 and Theorems
4.6.4-5 in Kunita (1990).

THEOREM 3.1. Letb, o € bCIS’% for some k € N and o € (0,1). Then the solution of the
stochastic differential equation (29) has a modification p.; that is a forward stochastic flow of
C*-diffeomorphisms. Moreover, ¢, € Cf’%/ for any o/ € [0,a) and 7 € [0,T), and we have the

following estimates: for each p € R there exists a positive constant 1, such that

(30) E[{pra(2))?"] Serpz)?,  zeRY,

and for each p = 1 there exists a positive constant cap such that

(31) E H@Bgom(z)‘p] < cgp, zeRY p=1, 1<|B| <k

Now, consider ¢, as in Theorem 3.1, F; = F;;(2;¢) € Cf,(R??), i = 1,2, and a real
Brownian motion W. The goal of this section is to prove some pointwise estimate for the It

process
t t

(32) Ir4(z) := J F1s(z5076(2)dWs + f Fy s(z; 07 5(2))ds, 0<7<t<T, zeR%
T T

in terms of the usual Hoélder norm in R?

fla = sup |7(2)] + sup LE SO
2eR4 zfiﬁd |Z‘_ C|

ae (0,1),

under the following

ASSUMPTION 3.2. There exist €1,69 € R with € := €1 + €9 > 0 and a random variable
M e LP(Q), withp > (2 v d v %), such that

> Sup]<Z>€1<C>‘52\5f,<Fz-,t(z;C)\ <M  i=1,2, P-as

te[0,T
Iﬁl <k Z,CE]Rd

The main result of this section is the following theorem which provides global-in-space

pointwise estimates for the process in (32).
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ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 15

THEOREM 3.3. Let ¢r; be as in Theorem 3.1 and FO) ¢ C'g}T(RM), i = 1,2, for some

keN. Let I = I.4(z) be as in (32) and set
19(2) == (2L (2).

T,t

Under Assumption 3.2, for any p,a and & such that
1 1
0<d<e——,
p

d
<2vdv><p<p, I<a< - ——
£ 2 p

P-a.s.

there exists a (random, finite) constant m such that
B 7(5) o
(33) >, 1LYl e <m(t—T)
|Bl<k—1 :
PROOF. The proof is based on a combination of sharp LP-estimates, Kolmogorov continuity

theorem in Banach spaces and Sobolev embedding theorem.
Let us first consider the case k = 1. We prove some preliminary LP-estimates for I; and

0°I,, with | 3| = 1. Below we denote by ¢ various positive constants that depend only on p,d, T

and the flow ¢. By Burkolder’s inequality we have

VS|

[ F2,5<z;¢7,s<z>>ds)p] <

T

E[lI9E)P] < eE [( [ pra(2)as) ] v (

t

< et — 1) J

et -t J

(by Holder’s inequality)
E|F1s(2;0r5(2))[P] ds

E [|F2,S(Z; SO’T,S(Z))‘p] ds <

(by Assumption 3.2)
t

< -7yt j B [MP(py.(2))~] ds <

(by Holder’s inequality with conjugate exponents g := g and r)

—2 ¢ 1
< E<Z>(5f€1)P(t — T)pT HMHIEﬁ(Q) J FE [<¢T7S(z)>*€2pr] rds <

(by (30))
(34) = ()P — )2,
The same estimate holds for the gradient of I ;, that is
(35) BIVIR P <20 -
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16 A. PASCUCCI ET AL.

Indeed, let us consider for simplicity only the case = 0 since the general case is a straight-

forward consequence of the product rule: for j = 1,...,d, we have
|
|

it )’z Z [ s B et ra P + (T cFinC (), 2D

f ((aszl,s)(Z§ 907,5(2')) + <V§F175(z; 907,3(2)), aZjSOT,S(Z») dWs

T

E[|0:,1r4(2)]P] < cE {

| (@ Fo) 10ma(2) + (Ve Paals prae)), 250 )

T

+CE[

The terms containing 0., F; s can be estimated as before, by means of Assumption 3.2. On the

other hand, by Holder’s inequality with conjugate exponents ¢ and r with 1 < ¢ < g, for every

i,7=1,---,d we have
E [}<VCFi,S(Z;SOT,S(z)) ZJSOTS >| ] E[|VcF (2 07,5(2 ))|pq]é E [|azj‘p‘r,8(2)|pr]% <
(by Assumption 3.2 and (31))
<8 [MW@T,S(Z»—@W]% & <
(by Holder inequality with conjugate exponents q : 2g > 1 and 7)
< B | M 175 ) B [(or (277 (2757 <
(by (30))

< M2 ).

This proves (35) with § = 0.

Now, we have

B ||

o] = B[ (1960 4 1v190)r) 2| <
(by (34) and (35))

<é(t—1) d<z>(5*€)sz =
(since (¢ — 0)p > d by assumption)
.

(36) =c(t—71)2.

Estimate (36) and Kolmogorov’s continuity theorem for processes with values in the Banach
space W1P(RY) (see, for instance, Kunita (1990), Theor.1.4.1) yield

||I£i) e ey < m(t —7)%, 0<7<t<T, P-as.
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ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 17

for some positive and finite random variable m and for « € [0, %). This is sufficient to prove
(33) with £ = 1: in fact, by the Sobolev embedding theorem, we have the following estimate

of the Holder norm
E) 1
(37) L5 —a < NI lwge

where N is a positive constant that depends only on p and d. Thus, combining (33) and (37),
we get the thesis with & = 1.
Noting that

t

Oz 1r4(2) = J

T

((aZj Fl,s)(z§ @T,s(z)) + <VCF1,S(Z§ SOT,S(Z», aZj (PT,S(Z)>> dWy

(00 P31 r2)) + (TP 0al2)), 0 0 (21 ) s,

-
for j = 1,...,d, the thesis with k& = 2 can be proved repeating the previous arguments and
using (33) for £ = 1 and Assumption 3.2 with k = 2.

We omit the complete proof for brevity and since in the rest of the paper we will use (33)
only for £ = 1,2. The general result can be proved by induction, using the multi-variate Faa

di Bruno’s formula. O

REMARK 3.4. Let I.; as in (32) with coefficients F\,Fy e bCé,T(Rw) and let § > 0 and
a € [0, %) Applying Theorem 3.3 with Fj (z; () := <z>*5}~7,~7t(z; ¢), 1 =1,2, we get the existence

of a (random, finite) constant m such that, with probability one,

N

ILi(2)] <m0t —1)%,  0<7<t<T, zeR%

4. It6-Wentzell change of coordinates We go back to the main SPDE (2) and suppose
that Assumptions 2.3, 2.4 and 2.5 are satisfied. In this section we study the properties of a
random change of variables which plays the same role as transformation (11) in Step 1 of
Section 1.1 for the Langevin SPDE. The main result of this section is Theorem 4.3 which
shows that this change of variables transforms SPDE (2) into a PDE with random coefficients.

We denote by (z,7}¥ (z,v)) the stochastic flow of diffeomorphisms of R? defined by equation
(25), that is

t
69 o) =o- [ ole e o)dW.,  0sT<t<T, (o) e R

T

By Theorem 3.1, 7'} € Ci:%/ for any o’ € [0, ). Global estimates for 4"V and its derivatives

are provided in the next:

LEMMA 4.1. There exists € € (O, %) and a (random, finite) constant m such that, with

probability one,

(39) (2 0)] < my/1+ 22 + 02,
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18 A. PASCUCCI ET AL.

(40) T < o (,v) < O
41 Oy W (z,v)| < m(t —7)°
(41) |0zt (2, ;
_\e
(42) P (a0)] < 2T

V1+ a2+ 02

for any (z,v) e R?, 0 <7<t < T and |B| = 2.

PRrOOF. Estimate (39) follows directly from Remark 3.4 (with 6 = 1). Differentiating (38),
we find that 0,7;% solves the linear SDE

t
o) = 1— j (0203) (272 (1, 0)) 2 2, 0) VY,

T

where 020 denotes the partial derivative of oy(, -) with respect to its second argument. Hence

we have

t

t
i) = exp (= [ @t opaw. — 3 |

T T

(@20, A0 )

Now we apply Theorem 3.3 with ¢, (z,v) = (2,%%(x,v)) and Fy(z;z,V) = (d204(z, V)",
i = 1,2: thanks to Assumption 2.5, we get estimate (40). Incidentally, from Theorem 3.3 we

also deduce that the first order derivatives of 0,7} are bounded:
(43) 070 (z,0)l Sm(t—7)°, | =1.

This last estimate is used in the next step, for the proof of (41).
Similarly, we have

t
OV (T, 0) = —f ((C109) (@, 757 (2, v)) + (0205) (x, 1y (%, ) 02 yey (2, 0) ) AW

T

Thus, we have a linear SDE whose solution is given by

! (@100) (Y )
Qfi(e.0) = ~dnfi(ee) [ IS

W P (0105) (@, Yoy (2, 0))(0205) (2, veir (2, V)
— OvYpy (x,v) o (. 0)

dW,

ds,

Again, (41) follows from Theorem 3.3 thanks to Assumption 2.5 and estimates (40) and (43).

Eventually, the same argument can be used to prove (42): indeed, differentiating (38) we
have that 04V satisfies a linear SDE whose solution is explicit. Thus, for |3| = 2, 0%}V can
be expressed in the form (32) with the coefficients satisfying Assumption 3.2 for some € > 1.

Applying Theorem 3.3 with § = 1 we get estimate (42). O

Next, we provide a version of the [t6-Wentzell formula for an equation of the form

(44) dYUt,T(ma U) = ft(l‘a U)dt + gt(l‘, U)th7 Y = at + Uagm

imsart-aop ver. 2014/10/16 file: PP2019.tex date: October 14, 2019
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with u, f, g € C; 7. Equation (44) is solved in the strong sense which means

um&ﬁ#%@)=%ﬂ%w+ffHﬁL@wD%+ngﬁ¢@me® te[nTl,

T

with probability one, where v (z,v) = (z +tv,v) is the integral curve in R? of the vector field
v0y, starting from (z,v). The following lemma shows how (44) is modified by the Ito6-Wentzell

transform
(45) thJ(l‘, U) = utﬁ(x?/}/z{,?;\'](x? 1))),
with 4% as in (38).

LEMMA 4.2 (It6-Wentzell formula). Let Oouy 7, 020ty 7, O2g; € Cr1 and assume that (44)
holds. Then 1y in (45) solves

(46) dg 7 (z,v) = F(x,v)dt + Gi(x,v)dWs,

where

A 1. A N
Ft(JJ,U) = ft(xav) + 50'152(-73,7))5221/,,577—(15‘,7)) - a2gt($a7})0t($av),

Gi(w,v) = Gu(,v) = 61(x, v)pur 7 (x,v),

(47) ¥ = 4 1 opve, - il
= Ut 'Yt,T T a W v
Uﬁyt,T
Moreover, we have
5vat T 81”}1175 T 5%7;‘531;@1‘, T
(48) Dot = o 02Ut s = — — ’ ’
X TP T @Ry

Proor. We have to show that

t t

Fs(7s,(z,v))ds + f Gs(vs,r(x,v))dWs, te[0,T],

Ut r (V.0 (7,0)) = Go(z,v) + J 0

0

where ;- (x, v) is the integral curve, starting from (z,v), of the vector field

v _ [ ErOeiy
t,T ’yt’Ta a,u’}/l{w .

Notice that, with the usual identification of vector fields with first order operators, we have
Y =0 + Y; . Moreover, v is well defined thanks to the estimates of Lemma 4.1.
If u € C2 ;. then (44) can be written in the usual Ito sense
du (x,v) = (fi(z,v) — vozur(x,v))dt + g¢(x,v)dW;.

Then, by the standard It6-Wentzell formula (see, for instance, Theor. 3.3.1 in Kunita (1990)),

we have
R A — 1l o5— — . R L
(49) diy . = ((ft - ’Y;,,VTV@lUt,T) + 5036§ut,r - 529t0t> dt + <9t - Ut52ut,7> dWy.
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From the chain rule we easily derive equations (48) and also

o a Iw

a . 6 N $’}/t77'a ~

1Ut,r = OxUtr — w Cvlt,r-
a’UﬁYt,T

Plugging these formulas into (49) we get (46).
In the general case, it suffices to apply what we have just proved to a smooth approximation

in (x,v) of u;, and then pass to the limit. O
Applying the It6-Wentzell formula to SPDE (2) we get the following

THEOREM 4.3. Let ugr, 02U s, Oourr € Crp and let Assumptions 2.3, 2.4 and 2.5 be
satisfied. If u; . solves the SPDE (2) then Uy, in (45) is such that Uy, Oyt 7, Opplitr € Crr

and
(50) dg s - (z,v) = (&M(x, V) Oyl 7 (x,v) + Bm(m,v)avﬂm(m,v))dt,

with Y as in (47) and

(51) arr =

a; — 67 ; L (oo, (0= 80) Qi
a9/ _IW\9? T = T A 1w t t .
2(0117;7;/)2 (avﬁ)/;,v}r/)Q ! 28@7}%}1

PROOF. The thesis follows from the Ito6-Wentzell formula of Lemma 4.2 with f; = %até’ggut,T

and g; = 0102uy 2 the assumptions Oouy 7, 022Ut 7, 0291 € Cr 7 are clearly satisfied. O

5. Time-dependent parametrix method In this section we study equation (50) for
fixed we Q and 0 < 7 < T < o0. More generally, we consider a deterministic equation of the

form
(52) Kiup(z) = Lyug(2) — Gpug(z) = 0
where
Liug(z) := %at(z)&vvut(z)—l—bt(z)avut(z) —Yi(2), Vo (2)), te[r,T], z = (z,v) € R?

and Y; = (Y14, Y2,) is a generic vector field. We assume the following conditions on the coeffi-

cients.

ASSUMPTION 5.1.  There exist positive constants o, A\1 such that a,b € C¢ with Holder

constant \1 and
(53) ME<a(z) <M, |(z)| <M (t,2)e[r,T] x R

ASSUMPTION 5.2. Y € Crr and is uniformly Lipschitz continuous in the sense that

sup &) =Yl

te[r,T] ‘2 - C|
z#¢
for some positive constant \a. Moreover 0,Y1; € Cf‘,T and
(54) Al <oYiu(z) <X, (L) e [nT] xR
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REMARK 5.3.  When the coefficients are smooth, conditions (53) and (54) ensure the va-
lidity of the weak Hdérmander condition: indeed the vector fields /a0, and Y, together with
their commutator, span R? at any point. In this case a smooth fundamental solution exists by

Hérmander’s theorem.

Since the coefficients are assumed to be only measurable in time, a solution to (52) has to

be understood in the integral sense according to the following definition.

DEFINITION 5.4. A fundamental solution T' = T'(t,z;s,() for equation (2) is a function
defined for 7 < s <t < T and z,¢ € R?, such that for any (s,¢) € [7,T) x R? we have:

i) for s <ty <t < T and 2 € R%, T(-,+5,C) belongs to Cy, 1, is twice continuously
differentiable in v and satisfies
t e t t t t
z
L(t,v"%s,() = F(to,Z;s,C)JrJ (2ag(7@°’z) (OuuT) (0,775 8, () Do (7,27) (0uT) (o, 'YQO’Z;s,C)) do
to
where 7" stands for the integral curve of the field Y with initial datum yfgz =z

i) for any bounded and continuous function ¢ and zo € R?, we have

lim f P(t, 255, Op(C)dC = (z0).
RQ

(t,2)—(s,20)
t>s
The main result of this section is the following

THEOREM 5.5.  Let Assumptions 5.1 and 5.2 be in force. Then the PDE (52) has a funda-

mental solution T' such that, for any z = (z,v),(eR? and 7 < s <t < T,

(55) T (T Qe 2 =) STt 258,0) < ™ (1Qimyy 2 = 7C)
(56) [0,T(t, z,v;8,()] < \/%Fheat (,MQt—& P ,ﬁﬁ) ’
(57) 0L (E, 2, 058, Q)] < %Fheat </’LQt—87 Z - ’Yf’c) .

¢

where Qy is as in (8), v, is as in Definition 5.4 and p is a positive constant that depends only

on A, A, a and T

5.1. Proof of Theorem 5.5 We prove the Gaussian bounds (55)-(57) under the assumption
that the coefficients ¢ and Y are smooth; by Remark 5.3, this guarantees the existence of a
smooth fundamental solution. Our estimates extend and sharpen classical Gaussian bounds
for Hormander operators (e.g. Jerison and Sanchez-Calle (1986)). Moreover, our estimates are
independent of the regularity of the coefficients and, by standard regularization arguments,

lead to a priori Gaussian bounds for operators satisfying Assumptions 53-54.
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5.1.1. Parametriz expansion For fixed (s,n) € [7,T) x R?, let
t
S
(55) =+ [ Volgn)de. el

S
be the integral curve of Y; starting from (s,n). Following Delarue and Menozzi (2010) we

linearize Y; = Yi(2) at (s,7) setting
Y 2) = Ya") + (DY) (") (2 =), te[s,T], zeR™

where DY; stands for a reduced Jacobian defined as

0 Y,
DY, = Ly
0 0

Then we consider the linear approximation of £; defined as

~s 1 s 5
»Ctﬂ7 = §at(’7t 777)81111 - <1/t 777(2)7 v>

The diffusion coefficient of E_f "I depends on t only (apart from s, that are fixed parameters),
while the drift coefficients depend on t and linearly on x, v. Notice that £;7 — ¢, is the forward

Kolmogorov operator of the system of linear SDEs

(59) dH; = Y/;S’n (Ht) dt + 4/ at(fyf’”)edet.

Let Htto’c denote the solution of (59) starting from ¢ at time ¢y € [s,T"). Then Hfo’c is a
Gaussian process: the mean 7,3 (¢) := F [HIO’C] solves the ODE
t —
WO = ¢+ | Ve (3O de. telto.T)
0

and the covariance matrix is given by

t
A = f a0(187) (ESTey) (E5e2)* do,

0
where E} is the fundamental matrix associated with (DY;)(v;"), that is the solution of

t
By =1d+ f (DY) (") Eggdu,  teo.T],
4

with Id equal to the (2 x 2)-identity matrix.
LEMMA 5.6. ForanyneR? and 7 < s <tg<t<T, we have det Afgj > 0.

PRrROOF. By Assumption 5.1 it is enough to prove the assertion for a = 1. Suppose that
there exist ¢ € R*\ {0}, n € R? and 7 < s <t <t < T such that (A7} (,¢) = 0. Since A7} is

positive semi-definite, this is equivalent to the condition
(B Je2)*¢P =0, ae. g€ (to,1),
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that is ((E;7))*()2 = 0, for a.e. g € (to,t). We have

Bu B¢ = ~DY (M (B,

t,o t,o

and therefore

0 = 0((E5)* O = duY1o(v" ) (B ) Oh-

Since ((E;))*¢)2 = 0 and 0,Y1, € [A\;1, A2] by Assumption 5.2 we have (Ep)*¢ =0, for ae.

0 € (to,t), which is absurd. O

Lemma 5.6 ensures that the Gaussian process in (59) admits a transition density that is the
fundamental solution of £;""" — d;. To be more precise, let us recall the notation T'h**( A, 2) for

the two-dimensional Gaussian kernel with covariance matrix A (cf. Theorem 2.6).
PROPOSITION 5.7. Forany 0 <7< s<ty<t<T and z,(,n € R2, the function
Loy(ts zito,¢) = T (Ap 2 = 7,70 ()
is the fundamental solution of L{" — 0, evaluated at (t,z) and with pole at (to,().
We are now in position to define the parametrix Z for K; in (52). We set
Z(t,2;5,C) =g c(t,255,C), r<s<t<T, z(eR2

Since
¢ " st .
€= ¢+ [ Ve = ¢+ [ 700
S S

we have 7 = ﬁfyf(g ) and therefore the parametrix reads

Z(t,z5,¢) = T (A, 2 7))

for 7 < s <t < T and z,( € R%. The parametrix is an approximation of the fundamental

solution I' of K;: indeed, since Z(s,;s,() = d¢ and I'(t, z;t,-) = 0., we have
(60)

D(t, 2;8,¢) = Z(t, 25 5,C) = fn@ (L', 25 8,mZ(s,m38,¢) = T(t, 2 6,m)Z(t, m;5,¢)) dn
= : fRQ —0o (T'(t, 250,m) Z (0, m; 5, ) dnde
= Lt fRQ (EZT(t, z0,mZ(0,m;5,¢) = T(t, 25 0, Ly Z(0,m; 5, C)) dndo =
= [ [ vtz enes — 25920 s, oindo =
= f fRQ L'(t, 25 0,m1)KoZ (0,15 5, ¢)dndo.
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Iterating the formula, for N > 1 we get the expansion

N—-1 ¢
(t,25,C) = Z(t,2:5,C) + Y. f f Z(t, z;0,m) (Ko Z)i(0,m; 8, C)dndo
k=1 Js JR?

(61) t
|| s e (e, 2n s, e
s JR2
where
(KeZ)1(t, 258,0) = KiZ(t, 258, ()
(62)

t
(iZsstoz5.0) = | | Kzt 0 (€ Z)el0.:5. e

As N tends to infinity we formally obtain a representation of I' as a series of convolution kernels.
Unfortunately, as already noticed in Delarue and Menozzi (2010), such an argument cannot
be made rigorous because of the transport term. The problem is that, using only the Gaussian
estimates for the parametrix, it seems difficult to control the iterated kernels uniformly in k.
For this reason, we first prove some bound for expansion (61) and estimate the remainder
via stochastic control techniques as in Delarue and Menozzi (2010). Once we have obtained
the Gaussian bounds for the fundamental solution I'; a posteriori we prove the convergence of

the series and the bounds for the derivatives of I'.
5.1.2. Gaussian bounds for the parametrix

PROPOSITION 5.8. There exists a positive constant c, only dependent on A1, Ao and T,
such that

(63) D 2 <(AVSz 2) < oD =2l T<s<t<T, 2, (eR?

where, for X > 0, Dy is the diagonal matriz diag(\3, \) that is the spatial part of the ultra-

parabolic dilation operator (17).

PROOF. By Assumptions 5.1 it is enough to prove the assertion for ¢ = 1. For A > 0, let
U, be the set of 2 x 2| time-dependent matrices )y, with entries uniformly bounded by A, and
such that ()4)12 € [A\71, A]. Let Y € Uy, and

¢
At s = f (Et.0€2) (Erpe2)™ do, T<s<t<T,

S
where & , denotes the resolvent associated with V;. We split the proof in two steps.

Step 1. First we prove that
(64) 22 < Aoz, 2) < o2,

where c is a positive constant which depends only on A. As in Delarue and Menozzi (2010) (see

Proposition 3.4), we consider the map
U L2([0,1], M2(R)) — R, (V) := det A o,

imsart-aop ver. 2014/10/16 file: PP2019.tex date: October 14, 2019



ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 25

where M2(R) is the space of 2 x 2 matrices with real entries. Notice that U, is compact
in the weak topology of L?([0,1], M2(R)) because it is bounded, convex and closed in the
strong topology (cf., for instance, Brezis (1983), Corollary I11.19). On the other hand, ¥ is
continuous from L2([0, 1], M2(R)), equipped with the weak topology, to R. Therefore the
image W(Uy) is a compact subset of R.g by Lemma 5.6. Thus there exists A > 0 such that
inf{det A1 o | Y € Up} = A1 and sup{| A1 0| | Y € Up} < A. This suffices to prove (64).

Step 2. We use a scaling argument. For every 7 < s <t < T we show that D 1 A; ;D 1

Vies O Viss

coincides with some matrix fll,g to which we can apply the result of Step 1. We have

where

5t,s
ot = Pt Rospit-s)stort-9) Dy

solves the differential system

5t,s o 5t,s . vot,s otys
aé’lgm,gz - (t S)ID\/%ySJrQl(t*S)ID\/t*Sng,m _' le 5.91792

with éé:‘z = I5. A direct computation shows that

V)12 = Vsrous)12€ AL V50 < (1 + T Vo)oo-

Therefore (64) holds for fli’f), uniformly in ¢, s, with ¢ dependent only on A and T'. ]

REMARK 5.9. Since, fort < s <t <T, Af’f 1§ a symmetric and positive definite matrix,

(63) also yields an analogous estimate for the inverse: we have

(65) ¢! , r<s<t<T, z(eR%

The following result is a standard consequence of (63) and (65) (cf., for instance, Proposition
3.1 in Di Francesco and Pascucci (2005)).

PROPOSITION 5.10. There exists a positive constant c, only dependent on A1, Ao and T,
such that

(66) ¢~ Irheat (c_lDt,s, z— ’yf’c) < Z(t,2;5,¢) < eIheat <0Dt,s, z— 'yf’<> ,
for every 1 < s <t<T and z,( € R

REMARK 5.11. Since Q; = D 01D, s, where Q1 is symmetric and positive definite, esti-
mate (66) equally holds by replacing Dy—s with Q¢—s.

Next we prove some estimate for the derivatives of Z(t, z; s, (). We start with the following
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LEMMA 5.12. We have

(67) (t—s)*7" <

((ar9)"w)
(A7)

for every i,je {1,2}, 7 <s<t<T and w,( € R2.

i

(68) (t — )t <

ij t—s

Proor. We have

=0 |(ar) M) | = = | (P DDy w)
< \/tl_is HD\/Q(A;’SC)*DM D\/t%w‘.
In order to get (67) it suffice to notice that, by (65), we have
Dy (AS) Dy <
Taking w = e; we also get (68). O

We are ready to state the last result for this section, which is a standard consequence of
estimates (67), (68) and Proposition 5.10 (cf., for instance, Proposition 3.6 in Di Francesco
and Pascucci (2005)).

PRrOPOSITION 5.13.  There exists a positive constant c, only dependent on A1, Ay and T
such that

|6xZ(t, Z5 8, C)| < (C)isl-\heat (Cths, z — 'yf’<> ,
t—s)2
(69) |0uZ(t, z,v;8,()| < \/%Fheat (Cthsv P ’7;74) ’
(70) |Ovu Z(t, x,v;8, ()] < irheat (CDt—87 . 7:7C) 7

for every t < s <t <T and z = (x,v),( € R?.

5.1.3. Upper bound for the fundamental solution In this section we assume 7 = 0 for sim-
plicity. We start with some preliminary lemmas.
LEMMA 5.14 (Reproduction formula). For any ¢,¢” > 0 we have

dac

A(, ") (2 Dy (" - c’) < fR2 TR (¢ Dr g, ¢ =) T ("D = (")l
< A(Cl, c//)rheat ((C/ v C//)Dt—s, C” - C/) ,

2(cve)
c'ne’

forevery 0 <s<o<t<T,(, (" eR? where A(c,c") =
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PRrROOF. It is a direct consequence (see also Delarue and Menozzi (2010), Lemma B.1) of
the following trivial estimate

cd A’

2

Dt—s < C/Dt_g + C”Dg_s < (C/ \ C”)Dt—s-
]

REMARK 5.15. Let7=0,T = 1. IfY is a vector field satisfying Assumption 5.2 and 4 is

the integral curve
t A
Su(2) = 2+ f Vi(3u(2))ds,  teo,1],
0
then 41(-) is a diffeomorphism of R%. Moreover, since Y s Lipschitz continuous, we have
(71) m_1|z—%(§)| < ﬁ/l_l(z)_d <”K)IL|Z_':)’1(C)|7 ZvCERQa
for a constant m which depends only on As.

LEMMA 5.16. Let 'yﬁ’z be as in (58). There exists a positive constant m, only dependent on
Ao and T, such that

m—l

D_1 (» —’Vf’g)‘ < ‘D

Vi—s

L0 =0 <mlp_-ar).

t—s —s

for every 0 < s <t <T and z,( € R?.

PRrROOF. We use again a scaling argument: we set 2’ = D vi—s% and

To(2) = D_L 7 lou sy Yel2) = (E=9)D_r Yopors(=),  0€[01].

Then we have .
Fo(2) = 2 +J Yo (Au(2))du, o€ [0,1].
0

As in the proof of Proposition 5.8, we have that Y satisfies Assumption 5.2. By Remark 5.15,
estimate (71) holds for 4,(z). To conclude, it suffices to substitute z and ( with Z2 =D_1 =z

t—s

andg_zD%Cin(ﬂ). O

Vit—s

LEMMA 5.17.  Let (KiZ)k be as in (62). There exists a constant ¢ > 0, only dependent on
A1, Ag, a and T such that

M,
(K Z)i(t, 21, Ol € —— 2 T (em Dy, 2= 7€), 0<s<t<T, (R

(t— )

_ k(o

where m is the constant in Lemma 5.16 and M = Q%Ckmq’“;%(,fa)), with q1 = 0, qo = %, Q. =
B(%%

Qk—1 + % fork = 2.
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Proor. We give the proof for k = 1. The general case follows by induction, exploiting
Lemmas 5.16 and 5.14 as in the proof of estimate (72).

(KiZ)1(t, 235,0) = (Lo — L) Z(t, 2 5,0)

1

=3 (at(z) - at(yf’<)> OvZ (t, 258, C)+bi(2)0u Z (L, 238, () +

+(Yi(2) = Y, (2), VZ(t, 255, 0))
=: F1 + Fy + Ej5.

By Assumption 5.1 and Proposition 5.13 we have

|Er| <

|Z o ,yf,§|a11hcat (CDt—sa P 7;,()

cl

S ————=
(t—s) 3

t—s

o
D1 (22— ’Y{f’c)’ [heat <CDt—57 z— ’Yf’<> <

t—s

(by (23))

cl/

< ———=
(t—s) 3

Fheat (C”Dt—57 y ,.va<) )
By Assumption 5.1 and Proposition 5.13 we also have
‘E2| < \/%Fheat (C’ths, P ,yt&C) .

As for E3, we have
|(Yi(2) = V2 (D] = [Via(2) = Yia(3) = Y1 (00 ) (2 = 70O < el 2 = ¢,

because 0, Y1 is Holder continuous by Assumption 5.2: here we use the elementary inequality

1
jo (' + 1z — ) — F @)@ — y)dt] < calz — y[I*e.

which is valid for f € C1T®. On the other hand, we have
|(Yi(2) = ¥ (2))2] < ez = 9.

Therefore, by Proposition 5.13, we have

1 1
|Es| < ¢ ((t )3 E —,yt&C’Ha I ; ); 2 — ,yts,C|) heat (th_S’Z . %s,C>
— 5)2 — s)2

/ 1+a
c S’C
< % D%(z —%")

T—

»

+ ‘Dﬁ (z — 'ytSC)D [heat (th,s, z— '7ts’<> <

O
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The following result is proved in Delarue and Menozzi (2010), Proposition 5.2.

LEMMA 5.18.  For any e > 0 there exist a positive constant ¢, only dependent on A1, Ao, a, T

and €, such that
| Dtz 0m) 0 = P T Dy = 95V < T (D2 =27,
R2
fors<o<t<T and z,¢ € R?.

We close this section by proving the Gaussian upper bound in (55). Consider the parametrix
expansion (61) with 0 < ¢ — s < 1. By Proposition 5.10, the first term in the RHS of (61) is
bounded by ¢TI (¢Dy_,, 2 — ’yf’g). On the other hand, if N > g then (o — 3)1_% < (0—5)?
and therefore the last term in the RHS of (61) is bounded by the same quantity, by Lemmas
5.17 and 5.18.

Finally, denoting with c; a positive constant dependent on Aj, A2, , T and k, we have

t
f JRQZ(t, 230,M) (Ko Z)i(0,1; 5, ¢)dndo <

(by Lemmas 5.17 and 5.18)

t ka
<a (-9 1JR2 PH (D, 2 — 42T (0D, — 75€)dido <

s

(by Lemma 5.16)

t ka
< f oz ! J T Dy, 7™ = T ek Dossm — 75 )l <
s R

(by Lemma 5.14)

¢
<o | I aDi iy~ e <
S
(again by Lemma 5.16)
(72) < eIt (¢ Dy, 2 — fyf’c).

This proves the upper bound for 0 < ¢ — s < 1. The general case can be recovered by a scaling

argument, similar to that of Proposition 5.8.

5.1.4. Lower bound for the fundamental solution We first derive a local bound, starting

from the parametrix expansion (60) and exploiting the results of Section 5.1.3. We have

t
D(t.25.0) > 2(t5.0 — | [ Dltosiom) a2 (005, dndo >
s JR
(by Lemmas 5.10 and 5.17 and the upper bound (55))
> C—lrheat(C—I«Dtis’ ”— ,ytS,C)
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t
C
| S | Dz AT (D2 = e >

s (0—8) 2
(by Lemma 5.14)

C

> Cflrheat(cflpt_sj 5 — ,Y?C) 2(t _ S)%Pheat(cpt_s7 P ,.Y?C)

Let di, 1, (22, 21) = |Diy—t, (22 — fy;l’zl)| denote the “control metric” of the system. A direct

computation shows that I'"*a(c¢D;_,, 2 —’yf’c) < rheat(c=Ip, 2 — fyf’g) if d¢ 5(2,¢) < o where

Oc = i%lff . Then we have
1 (t—s)2 1
(73) F(ta 238, C) = (02 - (28)2> Fheat(c_lptfsa Z — 'Yf’c) = ?Crheat(c—lptis’ z — ’}/ts’c)

ifdis(2,() <ocand 0 <t—s<T.:= ca.

In order to pass from the local to the global bound, we use a chaining procedure: we first
need to define a sequence of points (¢, zx) such that tg = s,20 = (,tyr41 = ¢, 2041 = 2 for
some integer M (to be defined later), along which we can control the increments with respect
to the control metric dy, |+, (2k+1, 2k). Let us consider the controlled version of the system
(58):

v = [ (Vo) +vea) s, gelsal
s

We have the following (see Polidoro (1997), Pascucci and Polidoro (2006) and Delarue and
Menozzi (2010), Propositions 4.1 and 4.2):

LEMMA 5.19.  There exists a control (v,)s<o<t with values in R? such that

i) the solution ¢f,’< associated with v, reaches z at time t, that is d)f’c =z;
i1) there exist two constants my1,mg > 0, only dependent on the constants of Assumptions
5.1-5.2, such that

t 2 2
2 5,¢ 2 o M2 5,¢
do = m |D — , sup |v,|” < D z—
L‘Ud e 1 ﬁ('z V) s<92t| o s 175( V)
We set

b= st it = s tie SC =1, M
;= S VA = S 1 z = ) 1 = ...
) M + 1 ) k () 9 9 9

where Q/JZ’C is the optimal path of Lemma 5.19 and M is the smallest integer greater than

{K%l?,s(z,o T}
max —_—, — .

0? T

with K = %, where m, m; and mo are the constants in Lemmas 5.16 and 5.19. Finally

we define the sets
ti—1,2i— i
Bi(r) i= {2 € R | [D1 (2 =7 )] + D1 (s — ol < 7,

imsart-aop ver. 2014/10/16 file: PP2019.tex date: October 14, 2019



ON STOCHASTIC LANGEVIN AND FOKKER-PLANCK EQUATIONS 31

and write
(74)

M—
['(t,2;5,() ZJ f D(t, 23t Cur) H (tj+1, G+13ty G (B, Ciy s, Q) dCa - - - dCur

Bi1(0c/3) B (0c/3) j=1
By definition of M we have
t—s T
<

e =ti= gy Sareg St

On the other hand, if ¢; € B; (%) for i = 1,..., M — 1 we have

7,+17 t:(Cit1,G) = |D ((H—l - 'Yt:ff”

=|D 7(Cz+1 - %f;f)| + |D 1 (Zz+1 %Z;f)| + \D 1 (Zz+1 - Wff)| =: By + FE2 + E3,

where Fi + E3 < % . By Lemma 5.19, we have
ma dis(2,0) _ 0

1
tz+1 2 m
75) o 2d0p0) <2 < .
( < o Q) my mi M +1 - 12m?

Therefore dy, ,, +,(Ci+1, i) < 0c and we can use (73) repeatedly in (74) to get

(W)Mﬂ exp (—ggg(M + 1)) .

(3
D _ S7< —
—5 P (2=

D(t,2;5,C) = (2c)"M+D

Lt 0
[15:(5)
i=1
Assume for a moment the validity of the inequality

) (%)) am (3775)

for some positive constant Cy (only dependent on the constants of Assumptions 5.1-5.2). Then

we have
1 Cc Cg 04
D(t,z;8,¢) = C1CM ———— ex (—f 2M> Zz ——————eX <—M>,
(75,0 = OO ey, P 2% ory/det Dy, T\ 2
2 72
for some positive constants Cj,...,Cy. Now, if TT, 1 < %Z(Z’O and M < 2&, we
have

I(t,z;5,() = Cgexp( Cs dtzs(z C)) Fheat(C’ngt_s,z —’yf’c).

271'\ /det Dt—s
On the other hand, if M < 2TT; ! then

Cr Cy

=
27r«/det Dt—s 27r«/det Dt—s

and this proves the lower bound.

N(t,215.0) > exp (= Pa(:,0)) = G (C5 D221,
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We are left with the proof of (76). Let B;(r) = {z, |DT( )| r}: a direct computation

shows |B;(r)| = w£2r2. Then it is enough to show that B; (%) (%) for a positive constant
(r) w

C' (only dependent on A1, A2, and T'). For any z € B we h

tl <L —
\Dﬁ(z—% o 1)IJrID%(Zm T <
tl <L — (2 S kad
<|Dﬁ(z—zz~)|+lp%ﬁ( — 1)!+m|D%(z—Zi)|+mQID%(%+1 YLE| <

(by (75))

(1+m)r+%

Then it is sufficient to take r < G(fjfm)

and this concludes the proof.

5.1.5. Gaussian bounds for 0,I' and 0,,I" The following lemma provides an alternative
representation formula for I' which will be used to prove the bounds for the derivatives. As a
general rule, until the end of the section we will always denote with ¢ a positive constant, only

dependent on A1, Ao, & and T in Assumptions 5.1-5.2.
LEMMA 5.20. We have

t
r(t,z;s,o:Z(t,z;s,ch f 2(t, 2 0m)p(rmi s, C)dndo, T <s<t<T, 2CeR
s JR2

where

90('7 58, C) = Z (ICZ)k(a 5 S, C)

k=1

is uniformly convergent in (s,T) x R2. Moreover, there exists a positive constant c such that

c

P =)

(77) [EEENQIES

(78)

e ((t2), (1, 2)

|(70(t’z;57<) - @(tazl;37<)| < (t _ 8)1—%

<Fheat(Cthsa Z = ,vaC) + Fheat(CDt*S, Z/ - 7;7C)) )
for every T < s <t <T and z,2',( € R?, where d. is the intrinsic distance in (18).
PrOOF. We start from the parametrix representation (61) and show that the remainder

t
Rn(t,2;8,¢) = f JRZ L(t, 25 0,m) (Ko Z) N (0,m; 8, ¢)dnde

converges uniformly to 0 as N tends to infinity. By the Gaussian upper bound (55), Lemmas
5.17 and 5.14, we have

t
|RN(t,Z,S,g)| < CMNJ

— f Fheat(CDt,Q, ,yz),z _ n)rheat(CNngis’ n— vﬁ’z)dndg
s (t—p) 2 Jr2
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t
< CMNJ jrheat(cpt—sa ’YZ’Z —73%)do
S (t — Q) 2

t
_ 1
< cMpy(t — s) Zf 1_Md9
s (t—0) 2
M a
< CTN(t —5) T2
N(a
with My = cNmin FFE((NQQ)), converges to zero by the properties of the Euler Gamma function
B(5

I'g.
Next, exploiting the lower bound for I' we can replace the Gaussian function I'**2* in Propo-
sitions 5.10 and 5.13 by an appropriate fundamental solution satisfying an exact reproduction

formula. Then, repeating the arguments in the proof of Lemma 5.17, we get

M;.
ko
2

(t—s)

Then estimate (77) easily follows. Estimate (78) can be proved by standard arguments (see,

(K Z)i(t 2 5,0)| < et (Dyy,z—97¢),  r<s<t<T, z(eR?

for instance, Lemma 6.1 in Di Francesco and Pascucci (2005)). O

Now we show that

t c s
(79) f ij 0uZ(t, 25 0,m)¢(r,m; 8, C)dndg’ < mrh‘m (cDH, z— ’C) :
t
(80) P Z(t, 25 0,m)(r, s 5, C)dndg| < ——Theat (cDH, z— %e“) ;
s JR2 t—s

for 7 < s <t < T and 2 (e R2 Formula (79) is a standard consequence of Lemma 5.14 and

estimates (69) and (24). Estimate (79) is less obvious. We have
JRQ 0w Z(t, 25 0,m)¢(0,70; 8, ()51 = fw OuZ(t, 2 0,0)(p(0, 15 8, C) — (0, w; 5, C))dn
+ (0, w; s, () fRQ Ovo(Z(t, 2;0,m) = Tou(t, 25 0,m))dn

+ 4,0(97 w; s, C) f ) a’U’UFQ,w(tv Z5 0, n)dﬁ
R
=0+ I, + Is.

Then, by choosing w = 'yé’z we can rely on the Holder regularity of ¢ and 'y, to remove

the singularity in ¢ = p. Here we show how to handle I; in detail: by estimates (70) and (78)

we have
ac ((0.767), (e.m)”
|Il‘ - c _ J v 1o ) ’ ]_—\heat(cth_Q’ 5 ,thvn) X
(Q — 8)1_5 R2 t - Q
% (Fheat(czDg_s’ n— 737C) + Fheat(cpg_s, 7272’ _ 7274)) dn
=:J(n)

(07
Theat(¢Dy_ g, 2 — 42" I ()dn <
L

<0,D\/t17 (z— 75’"))

< ¢ f
T(t—0) 30— s) 7 Jre

[S)
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(by (23))

<

where

Iy < TP (eDy g 2 — ’)’f’c)a

by Lemma 5.14, and
heat 5,C heat o heat 5,6
Iy <T*(cDp—s, 2 — )JQ P*%(cDi—g, 2 — ;" )dn < cI"**(cDy—s, 2 — 1),
R

because the integral is bounded by a constant and the matrix D,_; is increasing in g. Iz can

be treated similarly, once we notice that

de ((s,y), (s,w))”
|avvrs,y(tvz;‘37C) - a’uvrs,w(taz;s7<.)| <c £ (( ty)—i )) Fheat(cptfsaz - 71587C)7

for 7 <s<t<Tand 2y, we R? (see also Di Francesco and Pascucci (2005), Lemma 5.2).

Lastly, I3 = 0: indeed, for every s < o < t and w € R? we have SW Ipw(t,z;0,m)dn = 1 and

therefore
Ovo JRQ Lo (t, 25 0,m)dn = 0.
Integrating in g over the interval (s,t) we get estimate (80).
6. Finale: proof of Theorem 2.6 For any fixed 7 € [0,7) and w € Q, let K, the operator
of the form (52), as defined by (50) and (51) through the random change of variable 77}. By

Assumptions 2.3-2.4 and Lemma 4.1, K, satisfies Assumptions 5.1-5.2 for a.e. w € 2. Then, by

Theorem 5.5, I admits a fundamental solution I';: we set
(81) F(t,l’,U;T,C) :FT(tvxa’YiY7‘{7_1(x7v);7_7C)a 7—<t<T7 .%',UER, ZERQ'

Combining Theorems 4.3, 5.5 and Lemma 4.1 we infer that T'(-,-,-;7,() € C?O,T for any tg €
(1,71, is twice continuously differentiable in the variable v and satisfies (24) with probability

one. Now, for any bounded and continuous function ¢ and zg € R?, we have

|t 70001~ ptaa) = || Tt 257, 0p(0)dC — plao)+

R2
# |, (et z ™ 0, Q) = Dol 257.0)) Q)G =
R2

=ILi(t, z,7)+ I2(t, 2, 7).
Now, by Theorem 5.5 and the dominated convergence theorem, we have

Li(t,z,7) =0 i=1,2.
(tyz)t—%‘ﬁzo) l( P ad] ) ’ ’
>T
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This proves the first part of the thesis.
The Gaussian bounds (26) follow directly from the definition (81) and the analogous esti-

mates (55) for I'; in Theorem 5.5. Moreover, since

ALt i, €) = (L) (ta, gy (@ 0)im, ) Q™ (w,v),

the gradient estimate (27) follows from the analogous estimate (56) for I'; and from Lemma

4.1. The proof of (28) is analogous.
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