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Abstract
Statistical matching is progressively emerging as a straightforward approach to data
integration. This method of increasing importance and interest is useful to address
the unsolved challenges posed by data shortage as well as the several opportunities
occurring in the present data flood era. This paper offers an exhaustive review of the
methodology from its early beginnings up to the most recent developments, consid-
ering also the most relevant applications. The links that statistical matching has with
other integrationmethods are discussed, analysing how a 50-year-oldmethod has been
only recently proposed under a consistent but (yet) incomplete framework. Strengths
and weaknesses of statistical matching are compared, considering different data fea-
tures and sample representativeness frameworks, also, given future research ideas,
always keeping an eye on uncertainty, the key problem to which statistical matching
tries to answer.

Keywords Data integration · Data fusion · Imputation · Record linkage · Hot deck
techniques

Mathematics Subject Classification 62D10 · 62G86 · 62P20 · 62P25

1 Introduction

Time constraints and budgetary restrictions are two relevant drivers of the ongoing
process of rethinking the classic way of data collection operated nowadays by both
the Official Statistics (OS) and researchers from different disciplines. Data collected
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employing e.g., national censuses are being progressively cast off, while new sce-
narios for data integration emerge, offering new solutions for the OS, researchers,
policymakers, and the general public.

The massive generation of Big Data experienced in the last two decades fosters the
idea that information can be collected through countless approaches. Mobile devices,
apps, social media, and the Internet of Things concur to offer the idea that there is
no need to plan data collections anymore, rather, we only need modelling solutions
to exploit the already available information (Iaccarino 2019). Nevertheless, raw data
bring pending challenges in terms of quality, constraints due to privacy claims and
security reasons, problems of data ownership as well as organizational, technological,
and governance issues.

A gradual shift from data collection to data integration is already ongoing, primarily
in the OS that is elaborating strategies to keep recursively up-to-date the available data
sources, for example, by integrating both primary and secondary data, aggregating
administrative registers, web data, project surveys, satellite, and geo-data. Thus, data
integration represents the future of the incomingdata production and sharingprocesses.
The existing approaches lie in (1) traditional sources and administrative data, (2)
traditional sources and Big Data and, (3) micro and macro-level data (UNECE 2017).
There are different strategies with a common focus: to intensify the possibility to meet
and properly answer the users’ needs, assembling valuable information from multiple
sources in a really broad research spectrum (Pentland 2019).

The integration of information originally collected in two (ormore) data sources can
be performed with different methods. Relevant ones are record linkage (RL), multiple
imputation (MI), and statistical matching (SM).

RL consists of the exact and probabilistic approaches (Christen 2012). When two
or more different data sources which refer to the same population must be integrated,
exact RL allows us to merge on the basis of a common identifier for the units occurring
in both data sets. If a record in one data set has exactly the same value in the common
identifier as some records in the other data set, exact RL merges the records. This is
the simplest case for the integration of different e.g., administrative sources. However,
when (1) the sets of units collected by two or more data sources are (at least partially)
overlapping, (2) no unique identifiers exist/can be used and, (3) the variables that the
data sources have in common can serve as ‘pseudo-identifiers’ but they aremisreported
or change over time (Fellegi and Sunter 1969), probabilistic RL plays the role of the
first actor in the integration process. Therefore, probabilistic RL detects the records of
different data sets that refer to the same unit when exact identifiers cannot be used/are
not available.

MI handles variables missing values. This is done, at the individual level, by a two
steps approach. First, a small number of completed data sets are created and, from an
imputationmodel, missing values are filled in. Second, estimates are computed in each
completed data set and, finally, they are combined (Rubin 1987). MI can be used when
a partially observed data set must be ‘filled’, for each record, by an estimated substi-
tute of the variable’s value that is randomly generated from the unknown conditional
distribution of the missing variable given the observed one, using samples from an
imputation model (Murray 2018). MI usually completes the records’ missing entities
by exploiting only one data set (Denk and Hackl 2003) and, “roughly speaking, the
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missing data are imputed more than once (...) being these imputations based on some
distributional assumptions” (Rässler 2002, p. 5).

The present paper focuses on statistical matching and the methodology is depicted
in detail in the following sections. However, to briefly frame SM in general terms, it
allows us to integrate the information contained in two or more data sources when
the operational context is characterized by the fact that (1) the different data sources
collect information on (i) a set of common variables (x) and (ii) two sets of variables
that are disjointly observed (y and z) and, (2) the units observed in the data sets are
(potentially) disjoint sets of units (D’Orazio et al. 2006b). If RL deals with ‘the same’
units, SM deals with units that are as much as possible ‘similar’ (Judson 2005). The
main difference among SM and RL/MI lies in the final integration goal. RL evaluates
the coverage overlap between the data sets or the presence of duplicated records;
it is applicable to add/remove records, potentially augmenting data in one source.
Compared to MI, the integration focus of SM slightly differs from the one of MI
which instead goes beyond the conventional two-databases situation (Judson 2005).
Neither RL nor MI deals with the potentially widest goal of SM: building a synthetic
(complete) data set from two (or more) data sources. SM creates a data set that is
called ‘synthetic’ because it does not come from the direct observation/collection of
information or, in other words, it is artificial. On the other hand, it is ‘complete’ in the
sense that it ends up aggregating all the variables collected either in one or in the other
data source. Furthermore, neither RL nor MI considers the amount of uncertainty
behind the integration results, as, in contrast, SM allows us to do.1 Moreover, SM
serves the purpose(s) of data fusion more flexibly (Rässler 2002), being particularly
useful when the missing data structure is such that there is the need to either acquire
knowledge on the joint distribution function f (x, y, z) or transferring from one source
to the other the missing variable(s), only by exploiting the knowledge on x. In such
context, the random variables (r.v.s) y are observed only in one data set, while the r.v.s
z are observed only in another. The random variables x are observed in all the data
sets at our disposal and, hereinafter, we call them ‘matching’ variables.

Nowadays, however, fruitful combinations of SM and RL/MI are emerging to deal
with the challenges offered by Big Data integration, a field where non-probability
samples must be considered (to date, Bethlehem 2016 identifies the main practical
issues existing when matching different samples by dealing with mass imputation,
while Rao 2021 offers an exhaustive review of the probability sampling methods, also,
by focusing on models which bring valid inference from non-probability samples).

Two textbooks offer a cohesive dissertation of statistical matching: Rässler (2002)
and D’Orazio et al. (2006b). The contribution of the present paper to the literature on
SM and, more generally, to data integration is twofold. First, it reviews the latest SM
developments and discusses themain findings on the identification, quantification, and
treatment of the uncertainty behind data integration. Second, the paper considers these
topics by covering the earliest SMdevelopments up to the latest published articles.Both
the methodological peculiarities and the SM strengths and weaknesses are discussed.
The implications of the sampling frameworks in integrating data are investigated. The

1 The key issue when using MI with non-overlapping data sets is that all the relevant model parameters
cannot be estimated due to the fact that we measure sampling and imputation variance only. Hence, the
model uncertainty is not considered by MI.
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Table 1 Statistical matching: from the origins to the consecration, by schematically reading the state-of-
the-art

Period SM phases and main topics Main contributions

The ’70s SM when it was just ‘merging’: first
steps, trivariate normal, explanatory
power of x

Okner (1972, 1974), Ruggles
and Ruggles (1974) and
Kadane (1978)

The ’80s The ascent of a method: categorical x,
multivariate normal, alternative meth-
ods comparison, practical OS applica-
tions

Rodgers (1984), Walter
(1984), Gavin (1985), Barry
(1988), Singh et al. (1989)
and Cohen (1991)

The ’90s A turning point: criticisms to CIA,
comparisons among alternative
approaches, sampling weights

Rubin (1986), Singh et al.
(1993) and Renssen (1998)

The ’00s A look through cohesion: unequivocal
notation, formalized approaches

Rässler (2002, 2004) and
D’Orazio et al. (2006)

The ’10s Uncertainty and beyond: coherence,
uncertainty definition/estimation,
error measurement, independent
samples

Conti et al. (2008), Vantaggi
(2008), Conti et al. (2016),
Conti et al. (2019) and
Marella and Pfeffermann
(2019)

The ’20s Big data and non-probability samples:
the forthcoming integration

Chen et al. (2020), Kim et al.
(2020) and Castro-Martín
et al. (2022)

existing real data applications are not disregarded. The paper aims to provide casual
readers as well as the interested ones with a useful map for the complete understanding
of the method concerning its several shades of application.

To simplify the reader’s journey across statistical matching, having a clearer look
through the complex development and achievements of the method under a complete
and shared theoretical framework, Table 1 shows the crucial contributions constituting
the backbone of the SM state-of-the-art. These works and the others cited are listed in
the References, but a schematic reading of the SM literature is proposed by grouping
the most relevant contributions by the decades from the ’70s up to nowadays, also,
by following the macro-area subjects interested by the SM developments. Table 1 is
meant to offer a clearer understanding of the SM evolution and to help the readers to
efficiently focus on the main aspects characterising the method.

The paper is structured as follows. Section2 briefly describes themethod, highlight-
ing its key features and presenting the twomain SMgoals (micro andmacro). Section3
reviews the ‘merging’ approach of the origins, discussing the need for formal cohesion
that the preliminary SM proposals left aside. Section4 investigates the non-parametric
andBayesian approaches, discussing the solutions offered to the problems ofmatching
noise quantification and uncertainty definition/estimation. The uncertainty in SM is
then analysed according to the most recent proposals in Sect. 5, with a specific focus
on both the non-representative samples and the problems related to Big Data. Section6
provides the concluding remarks and some considerations about further SM develop-
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Fig. 1 Data at hand in a statistical matching problem with two data sets (A and B)

ments. Appendix A offers an overview of the most considerable SM applications and
software solutions.

2 Method in brief

For the sake of simplicity, let’s consider two data sets: A and B. Let A be the ‘recipient’
data set, while B is the ‘donor’ data set. The number of observations in the two data
sets is nA and nB, respectively. Let x be the random variables observed both in A and
in B; y are the r.v.s observed only in A, while z are the r.v.s observed only in B. These
r.v.s refer to the i-th and j-th observations collected in A and in B, with i = 1, . . . , nA
and j = 1, . . . , nB. Therefore, the observed r.v.s are

• x = {X1, . . . , Xl , . . . , XL}, collected both in A and in B, (being XA
l a vector of

dimension nA, while XB
l is a vector of dimension nB).

• y
nA×M

= {YA
1 , . . . ,YA

m , . . . ,YA
M }, collected only in A (being YA

m a vector of dimen-

sion nA).
• z

nB×P
= {ZB

1 , . . . , ZB
p , . . . , Z

B
P }, collected only in B (being ZB

p a vector of dimen-

sion nB).

Therefore, the data sets at hand are A =

{
xA

nA×L
, yA
nA×M

}
and B =

{
xB

nB×L
, zB
nB×P

}
. The

whole set of information that we have at hand is depicted in Fig. 1.
Statistical matching is applied to aggregate the information collected from different

sources, by using two approaches: micro and macro (D’Orazio et al. 2006b). For the
sake of simplicity, let’s assume that l = 1, m = 1, and p = 1. In other words, let X ,
Y , and Z be univariate, continuous variables. Being F a family of distributions with
each f (X ,Y , Z; θ) ∈ F defined by a vector of parameters θ ∈ �, macro SM aims at
estimating the joint distribution function f (X ,Y , Z). On the other hand, micro SM
aims at generating a synthetic (complete) data set from A and B. Whereas the former
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purpose should be clear, the latter deserves more explanation. Let Sd be a generic
subset of d variables of interest (with d = 1, . . . , P) chosen among the r.v.s z. The
goal of micro SM is imputing Sd from B to A and thus, generating the synthetic

(complete) data set, named C, such that C =

{
xA

nA×L
, yA
nA×M

, zA
nA×Sd

}
.

In the most general SM framework, let assume that

A.1. A and B collect information on two representative samples of the same target
population (D’Orazio et al. 2006b).

A.2. The distinct samples A and B depicted in Fig. 1 can be considered as a unique
sample A ∪ B of the nA + nB i.i.d. observations from f (X ,Y , Z) (D’Orazio
et al. 2006b).

A.3. From the overall sample given by A ∪ B, i.e., the sample of nA + nB units from
f (X ,Y , Z), a synthetic (complete) data set can be derived where the structure
of missing information is missing completely at random (MCAR) or missing at
random (MAR) (Rubin 1987; Rässler 2002, 2004).

The key estimation problem related to f (X ,Y , Z) has been often approached
by resorting to the identifiable model derived from the conditional independence
assumption (CIA). Briefly, the whole information set is defined by the A ∪ B sam-
ple and X , Y , and Z are independent and normal distributed r.v.s. Usually, CIA has
been explicitly or implicitly adopted in SM for decomposing the aforementioned
estimation challenge into smaller estimation problems by the factorization of the
likelihood function (Anderson 1957). First, the solution was limited to the trivari-
ate normal, while it was successively extended to multivariate distributions. Indeed,
Rubin (1974) demonstrated that f (x, y, z) is decomposable such that: f (x, y, z; θ)

= f (x; θx) · f ( y|x; θy|x) · f (z|x; θz|x). In other words, CIA allows computing the
maximum likelihood estimator (MLE) for θx from the A ∪ B sample, while the MLEs
for θy|x and θz|x are computed from A and B, respectively.

3 Where is the cohesion?

3.1 Statistical matching when it was just ‘merging’

The key estimation problem in SM and a few solutions to overcome it were known
since the ’50s.However, only the availability of electronic computers gave spread to the
first merging/matching applications: “the increased interest in social problems at the
microeconomic level, as well as the chances offered by the developing technologies,
fostered the demand for disaggregated socio-economic and demographic information”
(Okner 1972, p. 325). The ‘1966merge file’ represents an early, rough approach in this
direction. It was built from the 1967 Survey of Economic Opportunity and the 1966
Tax File referred to the U.S. families (Okner 1972) in response to the lack of consistent
and comprehensive set of household data. The author answered to the need for official
statistics about the distribution of the U.S. personal income or cross-classification by
typical demographic characteristics of the population. He used the matching variables
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x (wage, salary income, farm income...)2 to set up a system of equivalence classes
based on major and minor income sources and consistency scores. These, in turn, are
used to assign ‘points’ to the units, thus to match them obtaining a new data file where
the punctual pattern of income is recorded in addition to people’s characteristics.

Sims (1972a, b) criticized such an approach since conditional independence was
just implicitly assumed, while a more explicit theoretical framework was needed.
Little is said about the outcome ‘quality’ and validity. Very limited considerations
involved the adjustments required for evaluating the under-reporting or non-reporting
that was eventually present in the original survey file. In this regard, a small improve-
ment is offered by Alter (1974) who proposed to evaluate the concordance of the
after-matching variables using cross-tabulation, integrating the 1970 Canadian Sur-
vey of Consumer Finances with the Family Expenditure 1970 Survey. However, the
same author stressed that “the X–Y–Z problem remains unsolved (...) since a joint
distribution of X , Y , and Z cannot be inferred from the known distributions of X with
Y , and X with Z” (Alter 1974, p. 374).

Other pending challenges which were not taken into account by these contributions
are related to the (implicit) assumption that the vector x is defined exactly in the same
way in A and in B, although the matching variables may be affected by errors of
different types, magnitude and frequency of occurrence.3 Moreover, the peculiar, but
not uncommon cases (e.g., in social sciences) of composite x or those of composite z
and y were considered neither.4

An important residual issue is related to the rationale applied for the selection of
the matching variables. Trivially, the choice of x was often data-driven, guided by
the explanatory power of R2. Using the coefficient of determination to assess the
relationship strength between (X ,Y ) or (X , Z ) (and, hence, the validity of the CIA) in
an imputation by regression is straightforward. However, the cases in which we are not
interested in assigning mean values but, rather, we want to reproduce the distributions
of values in the original data and transfer complex sets of information do present
further challenges. This was clear to Ruggles and Ruggles (1974) who made explicit
that for matching purposes, no specific functional relationship must be determined in
advance. Therefore, how to select the matching variables in the most efficient way?
The authors proposed to match on the L-dimensional cross-tabulation using all the x
variables between A and B. The matches will then be made stochastically with respect
to the units which fall in the same cell. The assessment of the quality of the X variable

2 Both originally observed and computed matching variables are used. Examples of computed matching
variables are the total business income or property income, calculated from the sum of the absolute amounts
of each of these components (taxable dividends, interests, savings, etc.).
3 When such differences did occur, the adopted solutions consisted of mere clerical revision, as it is in
Okner (1972).
4 Composite variables are made up of two (or more) variables or measures that are highly related to one
another, either conceptually or statistically. Scales, ratings, or categorical variables are usually used to make
a composite variable (Grace 2006). The consequences related to the integration of composite variables can
be linked to alterations of the relationship strength with potential outcome variables, modifications in
statistical power, over(under)reduction of information, interpretation issues about the relationship of the
composite variable with the outcome variable of interest. However, such variables offer potential pros; e.g.,
those linked to the possibility to exploit the information of proxies (observed in A) of the variable imputed
from B.
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intervals (i.e., the assurance that, within a specific interval of X , the distribution of Y
and Z are invariant) is done with the Chi-square test on the Y and/or Z distributions.
When significant differences are found, a correlation measure is computed to estimate
how much the distributions differ. It is worth noticing that this discussion about the
‘quality’ of x, also, embeds the considerations on the overall goodness and reliability
of the final synthetic (complete) data set.

The aforementioned proposals have a common root: the (implicit) use of a pseudo-
distance that is based on a hierarchically nested set of cross-tabulated cells, built on
the variables x which are in common between A and B. Indeed, by successively parti-
tioning these variables in narrower intervals, it is possible to tag and re-tag the units,
then, by sorting the tags, the units can be selected for matching. This pseudo-distance
is then similar to the weights attached to each matching variable X in a multivariate
regression analysis that uses x (regressor) and y and z (dependent variables).

The works discussed so far proposed the SM approach under a methodological
framework that was different from that of Record Linkage, even if the procedures
implemented were often named equivocally like ‘linkage’, ‘fusion’, ‘concatenation’,
etc. (Rässler 2002). The first, specific matching proposal that was presented within
a framework characterised like the one described in Sect. 2 appeared only later, in
Kadane (1978). Considering a triple of normal-distributed variables (X ,Y , Z ), the
author concludes that the assumption of joint normality leads to the fact that all the
regressions (X ,Y ), (X , Z ) are linear, which is unlikely when real-world data are
used. The solution proposed as a “way around the problem” (Kadane 1978, p. 424)
is thus to adopt the aforementioned assumption limitedly, region-by-region, in the X
space and, hence, to resort to separate estimates of the covariances (but for σY Z that is
unobservable). Residual cases inwhich the information onσY Z can be retrieved consist
of coarse sampleswhich are yet perfectlymatched, fromwhich certain elements ofσY Z

can be known or, opting for the CIA. However, given that σY Z cannot be consistently
estimated from the data at hand, the solution proposed by the author was to use a
particular value for σY Z with the goal of getting results that would yield to a certain
expected value (e.g., the expected amount of taxes willing to be raised by a specific tax
schedule).Making assumptions about the distribution of σY Z and, hence, taking values
for the latter from the distribution, finally bring results which could be weighted with
the probability of the particular value of σY Z , such that σY Z is sampled. A drawback
of this approach is that the more the assumption of normality loses reliability, the more
methodological coherence diminishes. In addition, the proposed solution disregards
any consideration about the validation of the final integration outcome.

3.2 The ascent of a method: applications from national agencies

The shortage of both theoretical foundations and empirical justification in Statistical
Matching was made explicit for the first time by Rodgers (1984), pointing out that any
finding that is drawn from thematched data sets is questionable as far its validity largely
depends on the assumptions made, at first, on the matched variables. However, since
these assumptions cannot be tested, it is compulsory to check for the consequences of
the possible lack of validity. Then, the author proposed a first attempt for a cohesive
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SM notation, introducing the fundamental concepts of distance function and donation
classes. A distance function is defined as the absolute difference in the values of X
(e.g., age) computed between two observations that come from different data sets.
For example, a generic, basic distance is definable by |xi − x j |, for i = 1, . . . , nA
and j = 1, . . . , nB.5 The donation classes are defined as homogeneous sub-groups of
observations that help restrain the matched units’ pairs (for example, by partitioning
the units between male and female gender). Given that the data sets at hand collect
information on the whole set of pairs made by the nnAB combination of donors and
recipients, let X� be a discretized variable whose categories X�

f , with f = 1, . . . , F ,
identify the donation classes such that the size of the potential number of donor-

recipient pairs can be restricted to (nB,X�
f
)
nA,X�

f .
Rodgers (1984) also hinted at a new integration perspective based on the usefulness

of SM raising the topic of the validity of findings which result from analyses based
on statistically matched data. Such a validity strongly depends on the accuracy of
the underlying assumptions about the relationships between the variables. Given that
A and B, separately considered, do not contain information about the relationships
among variables y and z, and SM only reflects the assumptions (implicit or explicit)
made during the matching procedure, the matched data set we end up with is “a risky
basis for analyses of such relationships” (Rodgers 1984, p. 96). The author considers
SM simulations and empirical applications in different scenarios, testing the validity
of CIA and discussing how much confidence to be placed in matching procedures
and when, according to the set of variables at disposal. Namely, the topics of (1)
unconstrained or constrained matching, (2) which matching variables to include in a
distance function and, (3) the minimum size of the input data set that is required to
carry out a matching process are investigated.

The integrated data set is valuable for the analyses which involve the relationships
on x, y, and z as far as the assumptions on such relationships made (or implied) by the
analyst for the scopes of the integration procedure are robust. For example, let the case
be that the following linear regressionmodel has to be estimated: z = xL−1 ·β+y·λ+ε

(on the left side of the equation we have endogenous outcome variables which are
explained by both endogenous and exogenous explanatory variables—on the right side
of the equation—; there are vectors of non-zero parameters plus stochastic errors).6

As Klevmarken (1982) points out, the possibility of estimating the parameters of such
a linear model depends on the availability, for each Y included in the model, of at least
one of the r.v.s x used in the argument of the distance function that is excluded from
the set of xL−1 variables. Briefly, let the case be that x, y, and z are all included in the
system defined by the expression x ·B+y ·�+z·� = U, where we have the parameter
matrices as well as the matrix of stochastic disturbances U, with E(U) = 0 (y and
z are endogenous, x exogenous). This system clearly includes the previous equation,
while another component is y = x · π + V, a reduced form of the complete system
where π andV are the corresponding sub-matrices of the parameters of interest. From
the data set (sample) A, it is possible to estimate π and, hence, predict the values ŷB

5 For the sake of brevity, concerning the properties that must hold for defining a generic distance function,
we refer to Mardia et al. (1980).
6 Namely, the matching variables X1, . . . , Xl . . . , XL−1 are all included in the model but one.
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based on the observed values of the matching variables. In addition, using sample B
it is possible to estimate zB = xBL−1 · β + ŷB · λ + ε. By rewriting the latter equation

as zB = MB · δ + ε, where MB = (xBL−1|ŷB) and δ = (β|λ), the parameters in δ can

be estimated by ordinary least square, i.e., δ̂ = (M′M)−1M′z, given that the inverse
matrix (M′M)−1 exists. Therefore, the issue is that the rank of (M′M)−1 cannot exceed
the number of variables x, implying that at least as many of the matching variables be
omitted from z = xL−1 · β + y · λ + ε, as the number of y variables that are included.

Yet on the assessment ofmatchinggoodness, limited to categoricalmatching,Walter
(1984) investigated the sampling effort required to obtain matches for all the units in
a given sample. Using Markov chains, the author derived the first two moments of
the exact distribution of the sample size required to complete the match quotas in
all the categories of the chosen matching variable(s). Hence, the dependence of the
matching difficulty in relation to samples size, the number of matching categories,
as well as the distributions of category probabilities and quotas are considered. The
author approached the problem assuming that the sample from the first population is
given and by sampling the second population repeatedly (until all units of the first
sample have been matched). Walter (1984) demonstrates that (1) for a fixed number of
matching categories, larger samples are easier to match than small ones, (2) the mean
sample size increases with the number of matching categories and, (3) matching gets
easier if the category sampling probabilities are proportional to their quotas.

The latter situation occurs often when the matching variables are distributed sim-
ilarly and there are only weak confounders. In addition, substantial oversampling is
anticipated whenever the category probabilities and the quotas are far from being pro-
portional. The problem is then the required, optimal degree of similarity that must
exist between the matching variables in samples A and B in order to carry out an eas-
ier matching and not lose precision. In this regard, the case of continuous x emerges,
while it was disregarded so far. In this direction, no further developments were pro-
posed during the ’80s: most of the contributions focussed on real data applications,
with national departments and federal offices of the U.S. and Canada in the front
line (see, for example, Radner et al. 1980; Rodgers and DeVol 1981; Gavin 1985;
Armstrong 1989, and the references therein).

Despite these gaps, the practical contributions of the ’80s still had a fundamental
role in moving forward the whole SM framework which began to be thought, at that
time, like a ‘file-merging technique’ distinct fromRecord Linkage. For example, Barry
(1988) points out that RL is an ‘exact matching’ method, stressing that it is structured
on pseudo-identifiers that allow linking entities fromdifferent data sources. In contrast,
statistical matching deals with units that are similar but not (necessarily) the ‘same’.
The main goal of SM was stated such as “integrating data on an individual, from one
source, with data on a different observation (from another source) if the two units are
identified as the best matching or the most similar units” (Gavin 1985, p. 183). In other
words, it became clear that statistical matching contrasts RL “because the set of units
in the two files for statistical matching may be completely disjoint or have only a small
unknown overlap” (Singh et al. 1988, p. 672). Such considerations spread light on the
usefulness of SM for integrating data, particularly when privacy claims constraints do
hold. Indeed, consequently to the data privacy concerns and the growing debate on
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this topic, a progressive shortage/lack of information (e.g., due to the removal of units’
unique identifiers) made more complex the linkage among records from different data
sources fostering, in turn, the diffusion of new data integration solutions.

To completion of the SM framework, Singh et al. (1988) and Armstrong (1989)
analysed alternative approaches to SM, above all, through log-linear modelling impu-
tation. The novelty of the proposal lies in the estimation of the conditional distribution
that must be imputed in the categorical framework represented by f (X�,Y �, Z�),
where the star-variables are categorical covariates, and the related joint distribution
f (·) is a probability mass function. The idea is to transform the classic SM problem
related to f (X ,Y , Z), to one that involves the categorical variables. After having suit-
ably selected the partitioning of the (X ,Y , Z) space into categories for f (X�,Y �, Z�),
first, Z is imputed up to a Z� category by exploiting f (Z�|X�) within the imputation
class (X�, Z�), second, a value of Z within the Z� category is chosen. Themain advan-
tage of such an approach is that CIA violations can be easily controlled in a categorical
framework that is ‘approximately the same’ of f (X ,Y , Z). Hence, a subset of X as
suitable predictors can be obtained, ending up with optimal imputation classes (as per
an instability measure definable on the coarseness of the categorical partitions).

Such a solution is particularly relevant when the integration is oriented towards
microsimulation models and there is a need for specific information that has a low
probability to occur. In this sense, non-exhaustive examples can be high-income obser-
vations, frequent response errors, and/or poor information details. These problems can
be addressed by feeding microsimulation modelling with SM imputation such that (1)
the computational effort required by data integration can be reduced and, (2) the poten-
tial drawbacks from non-linear relationships among X ,Y , Z (which could bias the
results obtained from the analysis of the integrated data set) may be avoided or miti-
gated bymeans of a punctual control of the transformed categorical framework (Cohen
1991).

3.3 Finally, it came themethodology

“Micro-simulation databases which are frequently used by policy analysts and plan-
ners, are created by several datafiles that are combined by StatisticalMatching” (Singh
et al. 1993, p. 59), a method whose development was drastically speeded up by the
discussion of the simulation results of three, alternative SM ‘techniques’: regression-
based, distance-based, and log-linear ones. The empirical evidence offered by Singh
et al. (1993) suggested that distance-based SM (i.e., the hot deck techniques that are
discussed in detail in Sect. 4) performs better than regression-based SM. In contrast,
log-linear methods should be preferred if auxiliary information is available and, hence,
CIA can be relaxed by adopting categorical constraints. Similar conclusions are drawn
by Schulte Nordholt (1998) who compared the results from simulations and real-world
applications using Dutch data. Significantly, to date, this work can be considered, in
addition to Renssen (1998), the first SM application with data referred to a European
country (Netherlands), beyond the original German and French ‘data fusion’ attempts
of the late ’80s/first ’90s (discussed in Appendix A).
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At the dawn of the new millennium, considerations like “statistical matching has
been widely used by practitioners without always adequate theoretical underpinnings”
(Moriarity and Scheuren 2001, p. 407) and “throughout the world, today, we find
synonyms used to describe the Statistical Matching process including ‘data fusion’,
‘data merging’ or ‘data matching’, ‘mass imputation’, ‘microsimulation modelling’
and ‘file concatenation’ (...) with a dragged discussion about a suitable and clarifying
denotation” (Rässler 2002, p. 2) were suggesting the urge for more cohesion in SM
formalization. The widespread idea behind SMwas that it was largely used, mainly for
practical purposes, by the OS (Moriarity and Scheuren 2003), as also Rässler (2002)
states: “much of the literature describing traditional approaches and techniques are
working papers, technical or internal reports” (p. 44).

Two main contributions answered the urge for more solid theoretical foundations:
Rässler (2002) and D’Orazio et al. (2006b). They provided a cohesive theoretical
framework for the SM methodology, discussing the main implications of the CIA
and the use of auxiliary information (D’Orazio et al. 2006b), and comparing several
alternatives to SM with a specific focus on Bayesian solutions (Rässler 2002). The
latter was developed by Rässler (2003) who adapted and further implemented the
framework of Rubin (1987), employing a non-iterative Bayesian alternative to his
regression model.

The key challenge in SM became then finding a reliable alternative to the CIA.
By approaching the SM problem as a non-response issue, the core idea embraced the
fundamental ‘identification problem’. Whereas the missing mechanism is ignorable,
the association of the variables which are not jointly observed is not identifiable and,
hence, it cannot be likelihood-estimated. Therefore, either there is additional informa-
tion on f (X ,Y , Z), or the researcher must resort to several imputations, eventually
based on informative priors. In such a context, Rässler (2004) proposed to frame
the identification problem according to four levels of validity that SM may achieve.
Namely, they are: 1st level—Preserving the individual values; 2nd level—Preserving
the joint distributions; 3rd level—Preserving the correlation structures; 4th level—
Preserving the marginal distributions. Usually, the latter level is the one that can be
widely controlled in SM. If the conditional association (i.e., the one of the variables
not jointly observed, given the variables in common between A and B) cannot be
estimated from the data at hand, admissible values for the unconditional association
of Y and Z can be estimated instead. How? Depending on the explanatory power of
the matching variables, smaller/wider range of admissible values can be estimated
(Rässler 2004).

4 The non-parametric and Bayesian approaches

During the last two decades, non-parametric SM gained relevant attention due to the
fact that (1) it exploits, entirely, the ‘live’, observed information (D’Orazio et al.
2006b), (2) it reduces the possible model misspecification bias deriving from the
assumption(s) made on the parameters of the joint family distribution f (X ,Y , Z)

(Conti et al. 2017b) and, (3) it decreases the computational effort required by para-
metric SM (D’Orazio 2015). Even though non-parametric techniques require no
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‘assumption’, it should be noticed that their application undergoes (1) the choice
of the distance function to apply, (2) whether (and how) to build donation classes or
not and, (3) the sampling mechanism for the selection of donors.

Themethodological advances conveyed by the non-parametric SMare related to the
concept of ‘matching noise’, its definition, quantification, and to the role that it plays
in the integration procedure. The starting point is the joint distribution f (X ,Y , Z)

obtained after statistical matching which may not coincide with the ‘true’ (unobserv-
able) distribution. Hence, “the imputed data set is not a real data set and the statistical
conclusions drawn from it are questionable” (Marella et al. 2008, p. 1593). When-
ever the two distributions differ, there is matching noise and researchers must aim at
minimizing it.

We have two data sets: A =
{

xA
nA×L

}
and B =

{
xB

nB×L
, zB
nB×P

}
. Let the case be that

we want to build the synthetic (complete) data set.

C =
{

xA
nA×L

, zA
nA×Sd

}
. Marella et al. (2008) pointed out that this generated data set

will result from the distribution f (xA, zA) = ∫
f (xB

j̃
|xA) f (zA|xB

j̃
)dxB

j̃
, where xB

j̃

are the r.v.s observed for the donor units matched with the recipient ones (i.e., the j̃-th
donor that has been matched with the i-th recipient), while zA are the r.v.s imputed in
the recipient data set based on the matched units’ pairs. It follows that the matching
noise is a composite element of the donor distribution f (xB

j̃
|xA) and the values of the

imputed variables observed for the matched donor.
Conti et al. (2008) compared the performances (in terms of matching noise min-

imization) that are obtained from different non-parametric imputation strategies: hot
deck techniques, k-Nearest Neighbour method (kNN), and local linear regression
(when the assumption of linearity for the underlying population regression function is
not mandatory). In addition, in previous works, the authors considered, specifically,
the kNN method (Marella et al. 2008), evaluating the matching noise produced by
imputation with both a fixed and variable number of donors. In the former case, the
class of imputation procedures that includes distance-based and random hot deck tech-
niques is defined by assuming that the k donors to a unit i ∈ A are given by the k
nearest neighbours of xi in B (with i = 1, . . . , nA). Let d be the Euclidean distance

such that d(xAi , xBj ) =
[
(xBj − xAi )′D(xBj − xAi )

]1/2
, with D being a positive definite

matrix. The k nearest neighbours of xAi are the k ≥ 1 observations in B which result to
be the closest to xAi according to d, i.e., the observations xBj(i) = (xBj1(i), . . . , x

B
jk (i)

).
With a number of fixed donors, it happens that some donors could be sparse and hence,
the kNN method brings observations which are far from xAi to be equally informative
on zAi . The authors suggest that it is fruitful that the optimal value of k varies with xAi
to allow a different number of donors k to be matched with each xAi . This is done by
fixing a threshold such that the observations which have a distance d(xAi , xBj ) smaller

than the threshold are selected to be neighbours of xAi .
The simulation study results of Marella et al. (2008) hint at using (large) donor data

sets with a variable number of k donors, possibly adjusting the mean imputation with
residuals. In Conti et al. (2008), to evaluate the closeness between the data-generating

123



R. D’Alberto, M. Raggi

model and the imputation-generating model, the authors propose a simulation study
elaborating a Kolmogorov–Smirnov distance-based measure of divergence. Results
show that kNN performs the worst when there are fixed k donors, underestimating
variability since f (zA|xB

j̃
)dxB

j̃
is condensed on the expectation of z|x. Moreover, the

authors suggest preferring local linear regression estimators when a complex func-
tional relationship holds between the variables.

As per the non-parametric SM, the approach proposed by Rässler (2002) represents
a turning point for the suitable ‘alternatives’ to traditional SM. Indeed, the author
innovated the SM framework by embedding it in Multiple Imputation, by proposing
the transfer of information through Bayesian inference, while the results are validated
in a frequentist way. Trivially, Rässler’s starting pointwas the need for providing public
use files for end-users by integrating two or more data sources. She stressed that the
‘public use file’ is characterized by the fact that the matched data are passed forward to
others, usually outside the OS. Therefore, file users/data analysts often differ from the
user who made the imputation. This problem poses a classical imputation challenge
that, the authors says, cannot be solved by weighting, calibration, or the EM algorithm
(Rässler 2002). Indeed, theSMproblemcannot be handled byobserved-data likelihood
nor by theEMalgorithmwithoutmaking explicit assumption about the variableswhich
are never jointly observed. Due to the inestimability of certain parameters (whenever
the underlying model cannot be specified by the data at hand), SM poses a problem
of identification, i.e., there are several feasible associations potentially describing the
joint distribution of the variables not jointly observed.

At its core, the identification problem treated by Rässler (2002) can be framed as
follows. Let n be a sample of individuals. To them, a question is asked and n0 represents
the number of people refusing to answer. We are interested in an outcome variable W
taking values 0, 1. Let p be the proportion of the n1 = n−n0 individuals for whomwe
observeW = 1.Aiming to estimate P(W = 1), oftenwe resort just to p. Consequently,
the unobserved outcomes of W have the same distribution of the observed ones. But,
if we consider p only as a good estimate of P(W = 1|R = 1), where R = 1 indicates
that the outcome variable W has been observed, while R = 0 indicates that a person
decided not to answer, we have that P(W = 1) = P(W = 1, R = 1) + P(W =
1, R = 0) = P(W = 1|R = 1)P(R = 1) + P(W = 1|R = 0)P(R = 0). Of course,
P(W = 1|R = 0) is not known and, by using p as an estimate for P(W = 1), we
are assuming that P(W = 1|R = 0) is also estimated by p. However, what is known
is just that P(W = 1|R = 0) lies in [0, 1] and, thus, the lower and upper bounds of
P(W = 1) can be estimated by P(W = 1) ≤ P(W = 1|R = 1)P(R = 1) + P(R = 0)
and P(W = 1) ≥ P(W = 1|R = 1)P(R = 1). P(R = 1) and P(R = 0) can be
estimated by n1/n and n0/n, respectively, thus the bounds are estimated by p n1

n ≤
P̂(W = 1) ≤ p n1

n + n0
n . This concept of ‘identification’ is further developed by

Rässler (2002) who uses MI to estimates upper and lower bounds of the unconditional
association.

The solution proposed is based on Bayesian inference and the data augmentation
algorithm. A probability model for the observed data is specified given the vector of
unknown parameters θ ∈ �. Then, θ is treated as a randomvariable with a certain prior
distribution, and inference about it is summarized by its posterior, given the data at
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hand. Rässler (2002) proved that the joint distribution likelihood receives contributions
from both the observed data and the prior. Moreover, when data are unobserved,
the prior (predictive) distribution does not condition on previous observations. The
identification problem is then replaced using prior information and MI procedures.
CIA is overcome by MI techniques using informative priors. Different prior settings
on the conditional associations allow us to show the sensitivity of the unconditional
association, as per the common variables occur in determining it.

The embryonic framework proposed by Rässler (2002) was further extended by
Rässler (2003) through the Non-Iterative Bayesian Approach to Statistical Matching
(NIBAS). No distributional assumptions are made on x, while the only requirement
is that the matching variables can serve as predictor matrices in a linear regression
model. Due to the particular structure of missingness characterising SM, it is possible
to define both a data model and a prior distribution and, consequently, derive the
observed data posterior from them. By means of MI procedures, prior information is
used for imputingmissing data and, from the imputed data, lower and upper bounds can
be estimated to achieve a range of values of the unconditional association parameters.
Such a range serves as a quality measure for SM.

Bayesian solutions to the identifiability problem of SMwere fundamental for devel-
oping the method because they made explicit that whenever two variables are not (or,
better, they are never) jointly observed, the related conditional association parame-
ters cannot be estimated by likelihood inference. In contrast, the nearest neighbour
solutions proposed and applied over the years are often undermined by the fact that
conditional independence is produced de facto, even if it is not assumed. To overcome
this drawback and its consequences, NIBAS assumes (at least) univariate normality for
Y and Z , while f (y, z|x) is assumed to be multivariate normal. Then, NIBAS assumes
independence between the regression parameters of the general linear models for data
sets A and B and the covariance matrix 
y,z|x and, with a suitable non-informative
prior, the observed-data posterior distribution and the conditional predictive distribu-
tions can be derived. From the latter, random draws for the parameters as well as the
imputed y and z can be obtained.

Aiming to evaluate the predictive power of the matching variables x, by employing
simulations, Rässler (2004) demonstrated that the Bayesian approach offers a relevant
advantage:whereas regression imputation ends upwith estimates of the true population
correlation that are not unbiased (not even asymptotically), Bayesian SM allows us
to preserve the prior values of the conditional correlation, outperforming all the other
approaches. This hints at the fact that, when auxiliary data are at disposal and prior
information must be used, the Bayesian multiple imputation procedure proposed by
the author is the best choice at hand.
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5 Uncertainty: old issue, new challenges

5.1 Amatter of constraints

The first half of the ’00s saw the rise of the ‘third way’ to solve the identification
problem7 in SM. Usually, this had been addressed by means of specific modelling on
(Y , Z) or, auxiliary information on f (Y , Z). Different approaches to the problemwere
named ‘uncertainty analysis’, ‘partial identification’, or ‘lower and upper probabilities
study’. All these contributed to raise knowledge about the fact that themain goal of SM
(at least from a macro point of view) had to be the estimation of the range of potential
values identifying the unidentifiable parameters, consistently with the estimable ones
(Di Zio and Vantaggi 2017). In other words, the focus must have been the reduction of
the uncertainty about the association parameters of the variables never jointly observed,
by means of the common variables.

D’Orazio et al. (2006a) state that, even if there could be complete knowledge
of the distributions f (X ,Y ) and f (X , Z), it is not possible to conclude anything
about f (X ,Y , Z) merely due to the fact that the joint distribution can be predicted
only if there is a deterministic relationship between the two bivariate distributions.
Considering the cross-tabulation approach in relation to the variables X , Y , and Z
(a rather common practice of the ’70s), let (X�,Y �, Z�) be a triplet with number
of categories F , G, H , respectively, such that the table’s cells are definable as ι =
{( f , g, h) : f = 1, . . . , F; g = 1, . . . ,G; h = 1, . . . , H}. Therefore, the joint
distribution f (X�,Y �, Z�) is multinomial, unknown, and defined by θ f gh = P(X =
f ,Y = g, Z = h) for f = 1, . . . , F , g = 1, . . . ,G, h = 1, . . . , H . Thus, the true,
unknown vector of parameters θ∗

f gh define the distribution. D’Orazio et al. (2006a)
state that this vector is totally uncertain but, by assuming complete knowledge on
the marginal distributions of the pairs (X�,Y �), (X�, Z�), it can be restricted. The
parameter θ∗

f gh lies in the interval defined by lower and upper limits such that all
the plausible values for it determine a density function (made by the frequencies of
all θ∗

f gh). By resorting to the MLEs for θ̂ f g. and θ̂ f .h , it can be proved that suitable
constraints help ruling out illogical values from �.

By approaching the problem from the point of view of the ecological inference,
Conti et al. (2013) estimate the joint distribution of ordered categorical variables
f (X�,Y �, Z�) starting from a contingency table where the population counts pro-
vide the marginals. If the rows and columns counts arranging the table come from
different samples (A and B), the problem is purely how to estimate the joint distribu-
tion function, i.e., a macro SM issue. The proposed solution is to estimate a class of
possible distributions for (X�,Y �, Z�), identifying a measure of uncertainty for the
estimated model. The uncertainty is defined using the upper and lower bounds of the
cells counts, with conditional and unconditional measures of uncertainty eventually
restrained by means of structural zeros constraints. In SM, these are frequently used
constraints for the parameters when the r.v.s of interest are categorical. Such con-
straints consist of defining θ f gh = 0 for some ( f , g, h) (Agresti 2013). A structural
zero occurs when (1) at least one pair of categories in ( f , g, h) is not compatible or,

7 This is framed in Sect. 4, as per the definition of Manski (1995) and Rässler (2002).
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(2) each pair in ( f , g, h) is plausible but the triplet is not compatible. Such a con-
straint is useful for integration purposes since its main effect is to potentially reduce
the likelihood ridge to a unique distribution. How? When the goal is to restrict � to a
subspace � ⊂ � (closed and convex), we have to find the set of θ ∈ � such that the
likelihood function L(θ |A∪B) is maximized. Having P parameter subsets, when the
case is that �

⋂P
θ̂x θ̂y|x θ̂z|x 	= ∅, i.e., the subspace has a non-empty intersection with

the unconstrained likelihood ridge, structural zeros can be so informative that, e.g.,
�

⋂P
θ̂x θ̂y|x θ̂z|x = θ̂ . For example, by defining (G−1)(H −1) independent structural

zero constraints for each X = f , f = 1, . . . , F is sufficient for a unique ML esti-
mate. In such a context, the simulation study results of Conti et al. (2013) show that
the uncertainty reduction is directly proportional to the reduction of the support of the
conditional distribution of Y � and Z� given X�. In addition, the uncertainty largely
depends on the informativeness of the structural zero constraint.

The class of possible distributions for (X�,Y �, Z�) (being these variables cat-
egorical, but Conti et al., 2017b considered continuous Z and Y , and discrete X ,
as discussed later here) is estimable by means of the so-called Fréchet bounds (or
‘uncertainty class’) (D’Orazio et al. 2017). Indeed, the latter allows us identifying
the plausible lower and upper bounds for the parameters which must be estimated to
define the marginal distributions (Z |X ) and (Y |X ). Namely, the cell frequencies θyz

of the (Y , Z ) contingency table, given the estimates θ̂y|x from A, θ̂z|x from B, and θ̂x
from A ∪ B can be obtained by means of the class identified by

max{0; θ̂y|x + θ̂z|x − 1} ≤ θ̂yz|x ≤ min{θ̂y|x ; θ̂z|x }. (1)

By means of this uncertainty class, we can evaluate the uncertainty in SM but
we can, also, proceed in validating the whole integration. Indeed, Rässler (2002)
proposed to evaluate the length of such class for the unidentifiable parameters in the
normal multivariate case to finally define a measure of the reliability of the estimates
under CIA. The author’s results hint at the fact that, when short uncertainty classes do
hold, the parameter estimates obtained by differentmodels slightly differ from the ones
obtained under CIA. In addition, a measure of uncertainty is defined by Rässler (2002)
as 1

K

∑
θ̂

(U)
k − θ̂

(L)
k , where θk with k = 1, . . . , K are the unidentifiable parameters in

a parametric model for (X ,Y , Z ), while θ̂
(U)
k , θ̂ (L)

k are the estimated upper and lower
bounds of the uncertainty class defined on these parameters.

The intuition was further developed by Conti et al. (2017b) who proposed a mea-
sure of uncertainty and studied its properties in the specific non-parametric context.
From the parametric point of view, SM uncertainty is quantifiable in terms of the esti-
mates range of the unidentifiable parameters. In contrast, non-parametrically speaking,
such a measure relates to the ‘intrinsic’ association between the pair of variables
(Y , Z ). By using the Fréchet bounds as a starting point, a measure of uncertainty is
given by the suitable functional that quantifies the length of the uncertainty class.
Let dF(x, y, z) = dQ(x) dS(y, z|x) be the joint distribution function of three r.v.s
(X ,Y , Z ), where Q(x) is the marginal distribution function of X , while S(y, z|x) is
the distribution function of (Y , Z ) given X . The latter is a discrete matching vari-
able, while Y and Z are continuous. Conditionally on X , the set of plausible models
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(or, in other words, the Fréchet class) of all distribution functions S(y, z|x) can be
obtained, in such a way that it is compatible with the univariate distribution functions
G(y|x) and H(z|x). Let us consider L and U, the lower and upper bounds where
L [G(y|x), H(z|x)] = max [H(z|x) + G(y|x) − 1, 0] and U [G(y|x), H(z|x)] =
min [H(z|x),G(y|x)] (defined analogously in Eq.1). Then, let us consider, for every
(y, z), the inequalities L [G(y|x), H(z|x)] ≤ S(y, z|x) ≤ U [G(y|x), H(z|x)]. If this
pair of inequalities does hold, where the bounds L and U are joint distributions func-
tions with margins G(y|x) and H(z|x), the Fréchet class of these two distributions is
defined as follows

S = {S(y, z|x) : L [G(y|x), H(z|x)] ≤ S(y, z|x) ≤ U [G(y|x), H(z|x)]} . (2)

Therefore, the set of distribution functions S defines the uncertainty class in the
non-parametric SM framework. Taking the expectation with respect to the distribution
of X , the unconditional Fréchet class can be defined as

S = {S(y, z) : E [L (G(y|x), H(z|x))] ≤ S(y, z) ≤ E [U (G(y|x), H(z|x))]} . (3)

Clearly, the uncertainty class in Eq.3 does not take advantage of the common
variables observed between A and B.

Being each category of X observed in A and B, the estimator of the Fréchet class
can be obtained by re-writing Eq.1 as follows

{
max

[
ĤnB(z|x) + ĜnA(y|x) − 1, 0

]
, min

[
ĤnB(z|x), ĜnA(y|x)

]}
. (4)

In addition, the unconditional Fréchet bounds are estimated by

{ ∑
x

p̂(x) max
[
ĤnB(z|x) + ĜnA(y|x) − 1, 0

]
,

∑
x

p̂(x) min
[
ĤnB(z|x), ĜnA(y|x)

] }
,

(5)

where p̂(x) =
(
nA,x+nB,x
nA+nB

)
is an estimate of P(X = x),8

Conti et al. (2017b) built a confidence region for the estimator of the Fréchet class
depicted in Eq.4 and, from it, by exploiting the Kolmogorov–Smirnov (KS) statistic,
they set the confidence bands for G(y|x) and H(z|x), which are given by

GnA,x =
(
ĜnA(y|x) − kα√

nA,x
, ĜnA(y|x) + kα√

nA,x
; y ∈ R

)
,

HnB,x =
(
ĤnB(z|x) − kα√

nB,x
, ĤnB(z|x) + kα√

nB,x
; z ∈ R

)
, (6)

8 nA,x and nB,x are defined as nAx = ∑nA
i=1 I(Xi = x) and nB,x = ∑nB

i=1 I(Xi = x), respectively, with
I(x ∈ D) being an indicator function of the set D. It is equal to 1 if x ∈ D, 0 otherwise.
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respectively, with kα being the 1 − α quantile of the KS distribution. By defining

Ŝ(y, z|x) = max

{
ĤnB(z|x) − kα√

nB,x
+ ĜnA(y|x) − kα√

nA,x
− 1, 0

}
,

Ŝ(y, z|x) = min

{
ĤnB(z|x) + kα√

nB,x
, ĜnA(y|x) + kα√

nA,x

}
, (7)

we end up with a confidence region for the Fréchet class given by Sx
n ={

S(y, z|x) : Ŝ(y, z|x) ≤ S(y, z|x) ≤ Ŝ(y, z|x)
}
. The measure of pointwise uncer-

tainty is given by the interval {L [G(y|x), H(z|x)] , U [G(y|x), H(z|x)]} in terms of
its length (i.e., U − L). Also, Conti et al. (2017b) summarized the pointwise mea-
sures of uncertainty (due to the fact that we have one measure for every triple x, y, z)
into the uniquemeasure of average length. Indeed, they define aweight function onR3,
T (x, y, z), and compute

∫
R3 {U [G(y|x), H(z|x)] − L [G(y|x), H(z|x)]} dT (x, y, z).

Therefore, taking dT (x, y, z) = dQ(x) d [G(y|x), H(z|x)], the overall measure is
given by

∫
R

{∫
R2

{U [G(y|x), H(z|x)] − L [G(y|x), H(z|x)]} d [G(y|x), H(z|x)]
}
dQ(x).

The main finding related to such an uncertainty measure is that this intrinsic uncer-
tainty (when no external auxiliary information is available) does not depend on neither
the support nor the marginal distribution of f (Y , Z), i.e., G(y|x), H(z|x). Indeed,
independently of the sample data, Conti et al. (2017b) proved that the maximal uncer-
tainty is 1/6. In contrast, such an uncertainty can be reducedwhen auxiliary information
is available by imposing logical constraints.

Establishing boundaries for the illogical occurrences in the set of parameters finds
practical relevance in real data applications. There are at least two reliable cases in
which, either the existence of some information is doubtable, or it ismarked by inequal-
ity. For example, the occurrence of an eight years old employee clearly belongs to the
first case. For the second case, let’s consider the probability of being a casual worker
with a diploma to be higher than the probability of a manager without a degree. If “log-
ical constraints naturally arise from applications” (Vantaggi 2008, p.710), constraints
must be properly managed. Indeed, by re-adapting the probability theory of de Finetti
(1974) and Vantaggi (2008) proposed to exploit coherent conditional probability for
combining data from different sources without necessarily uptake strong assumptions
on the relationships of (X ,Y , Z). Furthermore, logical constraints can be considered
but, when they are not present, the author proves that the conditional assessment can
still be coherent even if we have to assume conditional independence. To date, in the
case of same population and, same sample scheme, the proposal of Vantaggi (2008)
is the only one that exploits the coherent conditional probability for integrating data
(she considered both the case of two sources and multiple ones).

While Vantaggi (2008) proposed a setting for incoherences reduction based on
MLEs, further developments towards the reduction of incoherences based on distance
minimization are proposed by Brozzi et al. (2012). They suggested using specific

123



R. D’Alberto, M. Raggi

adjustments which, by targeting weighted localization of parameters sub-domains
from which the incoherences must be removed, prove to perform better than the orig-
inally coherent assessment of Vantaggi (2008).

A peculiar issue is tackled by Di Zio and Vantaggi (2017) in relation to the partial
identification problem when the matching variables are misclassified. By disregarding
the effect of the sampling variability of the estimates on the identification regions, the
authors evaluate different scenarios of misclassification. By dealing with categorical
variables, they describe the partially identifiable region (i.e., the class of probabilities
which extend the conditional probabilities obtained by the information available in
different sources) by means of lower and upper bounds on the consistent probabilities.
When the common variable(s) is(are) misreported in only one of the two data sets that
the researcherswant tomatch, the authors demonstrate that the potential consistency of
the distributions increases due to assumptions on the misclassification mechanism. In
otherwords, it is possible to refine the identifiable region bymeans of such assumptions
about the matching variables misclassification.

Howmuch the integration uncertainty affects the quality of the synthetic (complete)
data set is investigated by Conti et al. (2016, 2017a) by taking into account a stratified
sampling design. In the first work, the authors propose a specific measure of the ‘error’
introduced by matching, estimating the distribution function for the variables not
jointly observed as well as the corresponding measure of error (upper bounds of which
are also introduced). If a class of plausible distributions for (X ,Y , Z), conditional
or unconditional on the matching variable, can be identified, the size of this class
defines the measure of uncertainty. The authors prove that the difference between
the admissible distributions in such class (that is a constrained Fréchet class) and the
chosen matching distribution, basically gives the error of the matching procedure. The
latter is estimable using iterative proportional fitting, offering the maximal error that
can occur in choosing a distribution from such a class, i.e., by drawing a surrogate of
the true but unknown f (X ,Y , Z).

5.2 Sampling frameworks and Big Data

Mainly, the different integration approaches discussed so far considered probability
samples. Nevertheless, due to (1) the increasing rates of non-response, (2) the actual
costs for data collection and, (3) the potentialities offered by Big Data, the trade-off
between data quality and resources needed hinted at investigating other opportunities,
e.g., non-probability samples which represent, to date, the most profitable solution for
data integration (Lohr and Raghunathan 2017). Relevant examples are web surveys,
social media data, mobile phone records, and web crawling software data. Rivers
(2007) considered web surveys data proposing a nearest neighbour mass imputation
approach that trains a predictive model of Y given X on the non-probability sample
(e.g., a web panel) and uses it to predict the distribution f (Y |X) for the probability
sample, i.e., a conventional random sample from a population frame. This idea aims to
tackle the non-response problems in probability-based surveys: individuals selected
from the sampling frame (that covers the target population and contains some auxiliary
variables) do not have to directly answer the questionnaire. Instead, they are allocated

123



Integrating rather than collecting...

to a panel (that, also, contains the aforementioned set of auxiliary variables) that
mimics the selected people who are then asked to complete the questionnaire. This
sort of ‘sample matching’ is further investigated by Bethlehem (2016) who explores
the conditions under which it works in the most efficient way. The author points out
that such an imputation approach depends on the capacity of the auxiliary variables
in explaining the participation behaviour completely: the non-response bias removal
is higher as far as such capacity holds.

Alternatively, the ‘propensity to respond’ as a function of the covariates x for the
non-probability sample is estimated and thus used to weight the non-probability data.
By adapting the approach of Lee (2006) and Castro-Martín et al. (2022) estimate the
individual propensity to participate in the non-probability sample by considering the
hypothetical scenario of how would the sample have been if a probability sampling
design was used to draw it. Selection bias reduction benefits from the training method
proposed by the authors, offering “more importance in the prediction to the individuals
who are more likely to appear in the population” (Castro-Martín et al. 2022, p. 17).
Residual limitations lie in the fact that wider replicability of the results is envisaged
(different data sets, more scenarios, etc.), additional prediction algorithms could be
considered, and theoretical properties must be further developed.

A relevant challenge is represented by the fact that by combining Big Data from
different sources (e.g., by incorporating large survey data) the promising matching-
based imputation is essentially based on the MAR assumption. For example, this
happens in Chen et al. (2020a) who propose a weighting adjustment based on para-
metric model assumptions on the selection mechanism of the non-probability sample,
further extended by Chen et al. (2020b) to the non-parametric framework. Kim et al.
(2021) go beyond MAR by proposing a sampling mechanism for Big Data that allows
us to consider systematic differences among the samples even after having adjusted
for the covariates. The probability sample is then used to estimate the missing data,
correcting for the under-coverage bias of Big Data (that is considered an incomplete
sampling frame for the finite population).

6 Conclusions (and the world beyond)

Recently, Statistical Matching has been (re)gaining attention within the OS, due to
the role played by Big Data but, also, because of the increasing necessity of data
providers for producing more detailed and punctual information, at the quickest time
(de Waal 2015). If Multiple Imputation can be used when the missing information is
partially present in a single data set, while probabilistic Record Linkage deals with
the absence/misreporting of unique identifiers for the units observed in different files
(which, in turn, must not be subjected to incompleteness), statistical matching (that is
closely related to these methods) offers the possibility to deal with variables that are
never jointly observed in two ormore data sets. This feature is a strength for addressing
many practical challenges in a world that is more and more characterised by several
potential sources and tools for data collection and information sharing.

A relevant proposal aiming to shrink the gap between RL and SM is offered by
Gessendorfer et al. (2018)who use SMas a supplement for RLwhen, dealingwith non-
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consenter individuals observed in e.g., ad hoc surveys, the information collected on
them in the administrative data cannot be aggregated with that of the surveys. In such a
peculiar context ofmissing information, the proposal is to use SM to provide the values
of the variables for the individuals who refused to give their consent for the linkage
and, hence, for integrating the information that could not be integrated otherwise.
However, the authors stressed that matching the non-consenter individuals previous
to linking the observations does provide conflicting results hinting at problems which
can be potentially worse than just ignoring the lack of consent.

Considering high-dimensional problems, Ahfock et al. (2016) deal with multivari-
ate (x, y, z) aiming to identify the parameters characterizing the joint distribution
function f (x, y, z). They propose to draw values from the identified set of param-
eters, such that the range of sampled values offers a measure of uncertainty of the
partially identified parameters (i.e., the ones requiring a joint observation of y and
z). The solution proposed consists of a Gibbs sampler-based approach for estimating
a set of positive-defined completions of a partially specified covariance matrix and
it is a generalizable exit strategy for real-world data problems involving multivariate
normal, skewed-normal, and normal mixture models. Comparing the results from both
a simulation study and real data with those generated by a Bayesian approach, Ahfock
et al. (2016) offer proofs that their frequentist sampling method largely outperforms
the Bayesian one in providing correlation estimates in the neighbourhood of the true,
observed one. In addition, the method shows flexibility and remarkable computational
speed.

Beyond the role potentially played by Big Data in the integration context, the near
future of SM is linked to different theoretical challenges. While parametric SM has
been extensively analysed, non-parametric SM left unsolved some challenges which
are related, for example, to the optimality of the distance function to be used with
distance-based hot deck techniques, or to the ‘size’ of the donation classes, and the
discussion on how much these elements may affect the variance estimates in the
synthetic (complete) data set.

Another pending issue is related to the use of survey weights and the sampling
design used to build the different data sets at hand. Marella and Pfeffermann (2019)
recently proposed a solution for combining the information when this is collected by
different samples. Under informative sampling designs, the uncertainty of SM results
is compared to the one generated by matching under a ‘blind’ CIA, or, in other words,
by ignoring the informative sampling mechanisms. The simulation study proves that
ignoring the sample selection process and its effects, the predictions on X , as well
as those on Y and Z are negatively impacted. Hence, the synthetic (complete) data
set generated differs from the underlying population distribution of f (X ,Y , Z), thus
producing bias. This can happen even if the estimates generated by ignoring the sample
selection effects may show a smaller variance.

Conti et al. (2019) stress that SM applications are not very common because data
are obtained by means of different complex survey designs which, in turn, prevent the
straightforward reconciliation of information. However, the authors suggest that, if
ecological inference made effective the drawing of conclusions at the individual level
starting from aggregated data, SM, also, could be re-directed for drawing inference
by using the matching variables which can be thought of as a sort of ‘grouping’.
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Considering that no solution has been shared between these two fields, the authors hint
at exploring this possibility. In addition, further developments could target the hidden
incompleteness of the measure of uncertainty that the authors proposed. Indeed, if
their proposal is very useful to capture the ‘uncertainty of the data sets’, it somehow
lacks of measuring the ‘quality of the matching’. An indicator that measures such a
SM quality may be relevant for future research.

The inclusion of the sampling weights in the matching procedure and, more gener-
ally, the considerations related to the characteristics of the samples to be aggregated
is of particular relevance since only two other works treated such challenges: Rubin
(1986) and Renssen (1998). The former proposed to compute new sampling weights
from the units produced by the A ∪ B supersample. This idea found scarce applicabil-
ity, in practice, because the inclusion probabilities in the A sample, under the sampling
design of B are not known. The latter proposed to calibrate the actual weights of the
distinct A and B samples to the common information and, hence, obtain distributions
that are compatible with the marginals (Y , X), (X , Z). However, D’Orazio (2009)
demonstrated that the two proposals lead to very similar results.

Practically speaking, the main future improvement to take into account is related
to auxiliary information. Which kind of auxiliary variables have to be used, in the
most efficient way, for obtaining sufficiently accurate statistics from the integrated
data? Which kind of information exploited from an additional source can be more
proficiently used in integrating data? The knowledge about population totals or the
knowledge about the relationship(s) of the variables at hand? Furthermore, would it
be beneficial to recursively conduct ad hoc surveys to obtain information on a subset
of the variables of interest from different data sources? How, then, would be possible
to assess the quality of the inference drawn from the integrated data, when the latter is
not available in complete form, in practice? In other words, how to assess this quality
when we are the users carrying out the integration? These questions go with the need
for additional simulation studies that investigate different parameters specification
and dependence structures behind the imputation performances. Moreover, real-data
applications should be addressed to set up straightforward data quality criteria for the
matched data sets.
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Appendix A Applications and software

This Appendix focuses on several SM contributions which share the following key
features: (1) they are (mainly) practical applications of the method, (2) empirical
examples, or (3) technical reports based on real-world data.

A.1 ’70s–’90s applications

The decades from the early ’70s up to the late ’90s are characterized by two major
‘data integration schools’: the North-American one of which Okner (1972) is the first
representative (see, in this regard, Sect. 3.1) and the European one. The latter, which is
less known in the SMstate-of-the-art, can be divided into at least three schools (French,
German, and British) with different authors applying matching methods above all in
the field of marketing research.

In theU.S. and Canada, StatisticalMatchingwas appliedmainly to integrate admin-
istrative registers andprimarydata from theOSand/or national departments and federal
offices.

• Budd (1971) integrated micro-data files to be used for estimating the size distri-
bution of income, resulting from the matching of various sources. The main aim
is to correct and/or supplement the income estimates in the original U.S. Current
Population Survey (context: Office of Business Economics, U.S. Department of
Commerce).

• Okner (1972) integrated micro-data files from the 1967 U.S. Survey of Economic
Opportunity and the 1966 U.S. Tax File (context: U.S. Office of Economic Oppor-
tunity).

• Alter (1974) integrated data set from the 1970 Canadian Survey of Consumer
Finances with the 1970 Family Expenditure Survey (context: Expenditure Divi-
sion, Statistics Canada).

• Ruggles and Ruggles (1974) offers an empirical example of integration between
the 1970 U.S. Public Use Sample and the Social Security Longitudinal Employer-
Employee Data File.

• Radner et al. (1980) discussed several empirical examples for evaluating the inte-
gration of different data sources produced byU.S. departments, research institutes,
and the OS.

• Gavin (1985) integrated data from the Survey of Income and Education and the
1976 National Health Interview Survey (context: U.S. Department of Health and
Human Services).

• Armstrong (1989) integrated data from the Survey of Consumer Finance and the
Revenue Canada’s Tax (context: Business Survey Methods Division, Statistics
Canada).

In Europe, Statistical Matching was developed more or less independently
among France, Germany, and the United Kingdom but under the same field of
(media)marketing research. Indeed, SM was used by both public agencies and pri-
vate institutes, on the one hand, to integrate television and other media data, while, on
the other hand, media data and purchasing information.
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• Bergonier et al. (1967) is, to the best of our knowledge, the first contribution that
applied matching techniques to media marketing analysis.

• In Rässler (2002) (pp.46–47, and the references therein) there are several German
empirical examples of the ’70s from the German Media Analysis Association and
the Bureau Wendt which carried out and integrated annual surveys on magazine
readership and radio-television watching information.

• Wiegand (1986) integrated data of different characteristics and media schedule
figures for transferring broadcast media information into press media surveys.

• Antoine and Santini (1987) integrated data from various media survey informa-
tion, e.g., cinema audience survey and readership self-administered survey, in the
context of the ‘media-market programme’.

• Baker et al. (1989) and O’Brien (1991) integrated data sets from the British Target
Group Index (TGI) data and the Broadcasters’ Audience Research Board (BARB)
data.

• Roberts (1994) integrated BARB data and the AGB Superpanel, a large market-
tracking panel of the United Kingdom.

• Adamek (1994) offers empirical examples for analysing the integration techniques
performances using TGI and BARB data.

• Darkow (1996) integrated data from ad hoc surveys on television viewing
behaviour and other media data.

• Kamakura andWedel (1997) integrated data from surveys on customer satisfaction
related to multi-branch banks in Latin America with internal records.

A.2 ’00s: today applications

The last two decades are characterised by SM applications carried out in several
research fields but with a common, coherent, and cohesive, theoretical framework.

• Sutherland et al. (2002) integrated data for use in fiscal policy simulations from
the British Family Expenditure Survey and the British Family Resources Survey.

• Denk and Hackl (2003) offers empirical examples of integration of different data
sources on income and tax returns within the context of the EU-funded Project
‘Development of a System of Indicators on Competitiveness and Fiscal Impact on
Enterprises Performance’ (DIECOFIS).

• Abello and Phillips (2004) integrated data from the National Health Survey and
the Household Expenditure Survey (context: Methodology Advisory Committee,
Australian Bureau of Statistics).

• Ballin et al. (2009) integrated data from the Farm Accountancy Data Network
(FADN) and the Farm Structure Survey (FSS) (context: Italian National Institute
of Statistics).

• Agafitei and Leulescu (2013) discussed two empirical examples of data integra-
tion related to (1) quality-of-life data, by matching European Union Statistics on
Income and Living Conditions with the European Quality of Life Survey and,
(2) labour and wages data, by matching European Union Statistics on Income
and Living Conditions data with the Labour Force Survey (context: EUROSTAT,
European Commission).
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• Gutman et al. (2013) integrated micro-data files for use in estimating and forecast-
ing health care costs and end-of-life expenditures, by matching data from the U.S.
Centers for Medicare and Medicaid Services with Visual Statistics Mortality data.

• Roesch and Lips (2013) integrated data from FSS and FADN on Swiss agricultural
holdings.

• D’Orazio and Catanese (2016) integrated data for estimating the energy produc-
tion performances of the Italian agricultural holdings by combining the Economic
Outcomes of Agricultural Holdings annual survey and the FADN data (context:
Economic and Social Development Department, Food and Agriculture Organiza-
tion of the United Nations).

• D’Alberto et al. (2018) integrated data for agricultural policy impact evaluation
by combining Italian FADN data and an EU-funded FP7 Project survey.

A.3 Software

• Rässler (2003): non-iterative Bayesian based imputation (NIBAS) algorithm, S-
PLUS 2000 (MathSoft, Inc.)

• Alpman (2016): smpc and smmatch commands for Statistical Matching, Stata 14
(StataCorp, LLC.)

• D’Orazio (2020):StatMatch package, R (RFoundation for Statistical Computing)
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