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ABSTRACT In next-generation mobile radio systems, multiple access schemes will support a massive
number of uncoordinated devices exhibiting sporadic traffic, transmitting short packets to a base station.
Grant-free non-orthogonal multiple access (NOMA) has been introduced to provide services to a large
number of devices and to reduce the communication overhead in massive machine-type communication
(mMTC) scenarios. In grant-free communication, there is no coordination between the device and base
station (BS) before the data transmission; therefore, the challenging task of active users detection (AUD)
must be conducted at the BS. For NOMA with sparse spreading, we propose a deep neural network (DNN)-
based approach for AUD called active users enumeration and identification (AUEI). It consists of two phases:
firstly, a DNN is used to estimate the number of active users; then in the second phase, another DNN identifies
them. To speed up the training process of the DNNs, we propose a multi-stage transfer learning technique.
Our numerical results show a remarkable performance improvement of AUEI in comparison to previously
proposed approaches.

INDEX TERMS Active user detection, deep neural network, grant-free, massive machine-type communi-
cation, non-orthogonal multiple access, transfer learning.

I. INTRODUCTION
In recent years, mMTC has gained a lot of attention due to
applications such as smart grid and metering, smart factories,
autonomous driving, and public health [1], [2]. In cellular
scenarios, mMTC has to provide connectivity between BSs
and a very large number of devices [3].

In a conventional multiple-access scenario consisting of a
relatively small number of human-type users, the BS assigns
radio resources in a coordinated fashion to each user. On the
contrary, inmMTC scenario, the resource allocation approach
will yield tremendous control signaling overhead which may
be large in comparison to the size of the data, making the
protocol highly inefficient.

To copewith these limitations, grant-free-based approaches
have been proposed. In grant-free random access, signalling
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overhead and latency are reduced as the active devices trans-
mit data without a grant procedure. In contrast to orthogonal
multiple access, NOMA permits sharing of the same time-
frequency resources, therefore, it can support a massive
number of devices in a limited radio spectrum. In the code
domain NOMA, each user is assigned a sparse spreading
sequence, known to the BS. The length of the spreading
sequences is kept low to efficiently utilize the radio spectrum.
Due to a large number of users, the sequences are non-
orthogonal. Despite this, decoding is possible in mMTC
because the number of active devices at any given time
is a small fraction of the total number of devices. Since
there is no previous coordination or grant procedure, the
BS must identify the active users to be able to decode
them by their respective spreading sequences. Thus, the first
crucial step is active user detection. Due to the sparseness
of the users’ activation pattern, compressive sensing (CS)-
based techniques have been proposed in NOMA to identify
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them [4], [5], [6]. In [7], the authors proposed a low-
complexity algorithm for active users detection using pilot
sequences with a massive number of antennas at the BS.
A receiver which works independently of parameters such
as signal-to-noise ratio (SNR) and user activity ratio in a
NOMA setting is proposed in [8]. However, it has been shown
that the performance of CS-based detection schemes degrade
considerably as the sparsity level (number of active devices)
increases [6]. Moreover, CS-based algorithms fail to consider
time constraint [9]. For instance, the number of iterations of
block iterative hard thresholding (BIHT) presented in [10]
depends on the sparsity level, i.e., the algorithm will take
more time to converge as the sparsity level increases.

To overcome some of these issues, deep learning (DL)
methods could be used instead of CS. Indeed, it has been
shown that a DNN can learn a large number of piecewise
smooth functions [11], and since then DL methods have
been successfully proposed in various fields, such as speech
recognition [12], computer vision [13], and language trans-
lation [14]. DL techniques find several applications in the
wireless communication domain as well [9], [15], [16], [17].
In contrast to CS solutions, DL requires a large amount
of data for training, but once the algorithm is trained the
complexity becomes low. Indeed, in the operational mode,
DL involves multiply-accumulate and element-wise nonlin-
ear evaluations, which are far less computationally expensive
than the CS-based techniques [9], [18]. Thus, some studies
have been carried out to identify active users in NOMA
scenarios using DL algorithms [3], [18]. Specifically, a
recurrent neural network (RNN) has been proposed for both
AUD and channel estimation considering a NOMA scenario
with sparse spreading sequences in [3]. Another approach
that deals with AUD using a DNN architecture with residual
connections has been proposed in [18]. The existing DNN-
based algorithms for AUD can be divided into three cate-
gories: i) assuming the number of active users is perfectly
known [19]; ii) without preliminary estimation of the number
of active users [3], [20], [21]; iii) estimating this number
through thresholding-based algorithms [18]. Assuming per-
fect knowledge of the number of active users is unrealistic.
Also, sparsity estimation by thresholding-based algorithms
is not an easy task, as the threshold level would depend on
several system parameters in an unknown way, leading to
poor results when compared with the other categories [3].

In this paper, we assume that at the beginning of the trans-
mission the BS is unaware of the number of active users. The
main contributions of this paper are summarized as follows
• we propose a new solution to active users detection com-
prised of two novel DNN architectures, one for sparsity
estimation called active users enumeration (AUE), and
the other one for identifying the active users called active
users identification (AUI);

• we compare our solution with previous approaches to
assess the performance improvement;

• we also report the false alarm rate to completely char-
acterize the performance of our model. The false alarm

FIGURE 1. Depiction of GF-NOMA uplink communication scenario where
only a few devices are active.

rate has never been analyzed in the literature on AUD to
the best of our knowledge;

• we investigate a multi-stage transfer learning approach
to reduce the training time of the DNNs.

The rest of the paper is organized as follows. We present the
system model along with the concept of spreading sequences
and multiple measurements in Section II. In Section III,
we explain the DNN architecture for AUD and sparsity
estimation. Section IV contains the simulation settings and
results. Section V concludes the study.

We use boldface uppercase, boldface lowercase, and
lowercase letters to denote matrices, vectors, and scalars
respectively. Also, abs(v) and arg(v) denote the magnitude
and argument of the complex number v, respectively. The
operator diag(v) outputs a diagonal matrix with entries of the
vector v along the diagonal, and ‖ . ‖p represents the p-norm.

II. SYSTEM MODEL
We consider a synchronized uplink grant-free NOMA system
scenario as in [18] and [3], in which N machine-type devices
can transmit to the BS (see Fig. 1), both machine-type devices
and BS are equipped with a single antenna, and each device is
assigned a preconfigured sequence (or codeword), known by
the BS. A small number of devices K are active at a given
time, with 1 ≤ K ≤ Kmax and Kmax � N , where Kmax
is a system parameter representing the maximum number
of active users under consideration. The symbols generated
by each active device are spread with its device-specific
non-orthogonal codeword. Then, the samples are transmitted
through parallel frequency-flat channels, e.g., by Orthogonal
Frequency-Division Multiplexing (OFDM).

For instance, if the ith device wants to send at time t a
symbol s(t)i ∈ C, it encodes it into q(t)i = c(t)i s

(t)
i ∈ CS ,

where c(t)i = [c(t)i,1, · · · , c
(t)
i,S ]

T
∈ CS is the codeword of length

S associated with the ith device. The S elements of q(t)i are
sent over S parallel additive white Gaussian noise (AWGN)
channels with gains h(t)i = [h(t)i,1, h

(t)
i,2, . . . , h

(t)
i,S ]

T . Overall, the
received vector at the BS at time t can be written as

y(t) =
N∑
i=1

δi diag(c
(t)
i )h(t)i s

(t)
i + n

(t) (1)
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where n denotes the complex Gaussian noise vector n ∼
CN (0, σ 2

n I). The device indicator δi ∈ {0, 1} indicates the
activity status of the ith device, with δi = 0/1 for inac-
tive/active devices, respectively.

To minimize the interuser interference, we employ low-
density signature (LDS) codewords, i.e., each codeword has
only a small number nS of non-zero values [22]. Similarly to
[22], [18], and [3], to generate a codeword we first randomly
pick nS positions, and then generate the non-zero entries as
independent and identically distributed (i.i.d.) according to a
complex Gaussian distribution CN (0, σ 2

w).
Assuming the devices transmit Nd consecutive symbols,

the received measurements can be arranged in a vector as
follows

ỹ =
[
81 · · ·8N

] δ1x1...
δNxN

+
 n(1)

...

n(Nd )

 (2)

where8i = diag[(c(1)i )T · · · (c(Nd )i )T ] are the codebookmatri-
ces of dimension (Nd ·S)×(Nd ·S), c

(t)
i are the randomly gen-

erated codewords, and xi = [(s(1)i h(1)i )T · · · (s(Nd )i h(Nd )i )T ]T ∈
CNd ·S denote the composite channel vectors and data sym-
bols. For example, consider the case where only the 2nd and
4th users are active. Then, (2) reduces to

ỹ =
[
8284

] [x2
x4

]
+

 n(1)
...

n(Nd )

 . (3)

Assuming a maximum number of active users Kmax, AUD
can be formulated as the support identification problem

�̂ = argmin
�, |�|≤Kmax

‖ ỹ−8�x� ‖2 (4)

where � are the subsets of {1, 2, . . . ,N }, and the �̂ contains
the indexes of the estimated active users.

One possible approach to solve (4) consists of applying
CS-based techniques, which however could be challenging
for real-time applications [6], [10], [23], [24], [25]. On
the contrary, once a DNN is trained, estimating �̂ will be
less computationally expensive with respect to CS-based
approaches. In the next section, we will discuss our approach
which is based on DL.

III. DEEP LEARNING-BASED AUD
Different approaches based on DNNs have been proposed
in the literature for AUD, all employing thresholding-based
algorithms for determining the number of active users [18],
[26]. Here we present a different solution composed of two
separate DNN architectures, one for active users enumeration
and the other for active users identification. To the best of our
knowledge, this is the first work which utilizes a DNN-based
architecture for enumerating the active users in a NOMA
scenario. The task of theAUEnetwork is to output the number
of active users, while a set of AUI networks, each trained
for a different sparsity level, identifies the active users. More

precisely, the former learns the mapping between the received
vector ỹ and the estimated number of active users K̂ , while the
latter learns the mapping between the received vector ỹ and �̂
for the cardinality |�̂| = K̂ . The networks provide the result
as follows

K̂ = f (ỹ;9)

�̂ = gK̂ (ỹ;2K̂ ) (5)

where9 and2k are the sets of weights and biases associated
with the enumeration DNN and the identification DNN for
sparsity k ∈ {1, 2, . . . ,Kmax}, respectively.

A. DNNs ARCHITECTURE
The received vector obtained through (2) has complex ele-
ments. To work with common DNNs, which assume real
numbers as input, we split the magnitude and phase parts.
More precisely, for a received vector ỹ = [y1, . . . , ym]T ∈
Cm then the input to the DNNs would be ŷ =

[abs(y1), arg(y1), . . . , abs(ym), arg(ym)]T .
Fig. 2 shows the architecture for the AUE and AUI. Both

DNNs consist of convolutional layers, fully-connected layers,
batch normalization layers, dropout layer, and activation lay-
ers. The difference between the AUE and AUI is in the output
layer, which is a softmax for the AUE, and a sigmoid layer for
the AUI. These output layers are described precisely below.
The input to the DNNs ŷ is reshaped to a 2-D feature map
(Nd , 2S) using the reshape layer, where the first dimension
corresponds to the channels analogous to the channels in a
colour image. The 1-D convolution operation is performed
using filters of size 2 and 4, with a stride equal to the filter
size. We perform valid convolution, i.e., the output is only
considered when the filter is fully contained in the feature
map and the output feature map is reduced according to
the input feature map, filter size and stride [27]. The out-
put feature maps from the convolutional layers are passed
through a Rectified Linear Unit (ReLU) activation function
(described below). The output from the activation function is
reduced to 1-D and then concatenated through the concate-
nation layer. The rationale behind using convolutional layers
is to reduce the computational complexity and to extract the
features shared among Nd multiple measurements. The fully
connected layer, with input a ∈ Rin and output z ∈ Rout , can
be expressed as

z = Wa+ b (6)

where W ∈ Rout×in represents the weight matrix matching
the dimension of output (out) and input (in) vector, and
b ∈ Rout describes the bias [27]. The fully-connected layers
consist of α neurons, except for the last one. In fact, the last
fully-connected layer dimension must agree with the output
layer dimension, so it contains Kmax and N neurons for the
enumeration and the identification DNNs, respectively.

Instead of a single training example, we trained DNNs
on a batch of training examples called a mini-batch, B =
[a(1), . . . , a(n)]. The batch normalization layer normalizes the
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FIGURE 2. Architecture of the proposed DNNs.

mini-batch B to zero mean and unit variance, and then scales
it using the trainable parameters γ and β

z(k)i =
γ (a(k)i − µi)√

σ 2
i

+ β i = 1, . . . , α (7)

where µi and σ 2
i are estimates of the mean and variance

of the ith element of the vector, respectively, obtained by
moving average [28]. The activation layers are introduced
so that the DNNs can learn non-linear functions. ReLU is a
common choice as an activation function in the hidden layers
for numerous DNN architectures [27], [29] and ReLU can be
mathematically described as

a = max(0, z) (8)

where the operation is to be considered element-wise.
A DNN consists of many hidden layers, and it becomes

challenging to train due to the vanishing/exploding gradient
problem [30]. Therefore, we adopt the residual connections

scheme proposed in [31]. Residual connections directly pass
information from the previous layer to the next layer as
depicted in Fig. 2.

The output layer of the AUE has dimension equal to the
maximum sparsity level Kmax. The softmax layer takes as
input a vector and normalizes it to a probability distribution

p̂i =
ezi∑Kmax
j=1 ezj

(9)

where zi and zj are the ith and jth element of z, while p̂i is the
ith element of p̂. The final estimate is

K̂ = argmax
i

p̂i. (10)

For active user identification we use Kmax neural networks
g1(·), g2(·), . . . , gKmax (·), as defined in (5). The architecture
of all the Kmax AUI networks remains the same as shown
in Fig. 2b, only the dataset used for training each AUI is
different. For instance, for training gk (·), a dataset comprising
of k active users is considered. Here, a dropout layer is
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Algorithm 1 Deep Learning-Based AUEI
Input: ỹ, Kmax
Output: �̂
1: Pass ỹ through the enumeration DNN to obtain p̂
2: K̂ ← argmax

i∈{1,...,Kmax}

p̂i

3: �̂← gK̂ (ỹ,2K̂ )

Return: �̂

employed to avoid overfitting of the model on the training
dataset. In this layer, during the training phase, a fraction
of the input and output connections from the neurons are
dropped [28]. To identify active users, we adopt as output a
sigmoid layer with N outputs, one per user. Each output is
calculated as

q̂i =
1

1+ e−zi
i = 1, . . . ,N (11)

where q̂i represents the likelihood of user i being active.
In previous approaches, a comparison with a threshold was
proposed to decide which users were active, but these meth-
ods suffer from the difficulties in finding a suitable threshold
value. In our approach, summarized in Algorithm 1, we rely
on K̂ from the AUE network and then consider the AUI net-
work trained for K̂ active users. With this network, using ỹ as
input, the K̂ users with the largest likelihoods are considered
as active

�̂ = argmax
�,|�|=K̂

∑
i∈�

q̂i. (12)

B. DNNs TRAINING
Sparsity estimation can be seen as a multi-class classifica-
tion, in which we are categorizing the input ỹ in one of the
categories ranging from 1 to Kmax. To this aim, we employ a
categorical cross-entropy loss. Let us indicate the true label
vector as p = [p1, p2, . . . , pKmax]. If the number of active
users is k , it will be pk = 1 and pj = 0∀j 6= k . For instance,
if the number of active users is 2, then p = [0, 1, 0, . . . , 0].
The categorical cross-entropy JS (p, p̂) loss is defined as

JS (p, p̂) = −
Kmax∑
i=1

pi log p̂i = − log p̂K . (13)

User activity identification can be seen as a multi-label
classification problem, in which we are selecting K̂ out of
N users. To this aim, we employ binary cross-entropy loss.
Let us indicate the true label vector as q = [q1, q2, . . . , qN ]
where each element represents the user as active (qi = 1)
or inactive (qi = 0). For instance, if � = {2, 4} then
q = [0, 1, 0, 1, . . . , 0]. The binary cross-entropy loss is
defined as

JA(q, q̂) = −
N∑
i=1

(qi log q̂i + (1− qi) log(1− q̂i)). (14)

In order to determine the parameters9 and2k in (5), we need
to minimize the loss functions JS (p, p̂) and JA(q, q̂) for enu-
meration and identification, respectively. For that purpose,
we employ the well-known Adam optimizer [32].

With the proposed approach, we have to train Kmax AUI
networks which is a time and computationally expensive task.
To counter that, we propose a multi-stage transfer learn-
ing technique. To train the AUI network gk (·) in (5) for
k ≥ 2 through this technique, we start from the weights of
gk−1(·). More precisely, the weights of g1(·) are initialized
according to [33]. Then, g1(·) is trained until the network
converges, i.e., there is no significant change in the network
weights. Instead of initializing the weights of g2(·) randomly,
they are initialized with the trained weights of g1(·); this way,
g2(·) leverages the information learnt by g1(·) and converges
faster than its randomly initialized counterpart. In general,
the weights of gk (·) are hence initialized through the trained
weights of gk−1(·), for k = 2, . . . ,Kmax.

C. COMPUTATIONAL COMPLEXITY
In this subsection, the computational complexity of the AUEI
is presented in terms of floating point operations (FLOPs).
We assume the addition, subtraction, multiplication, division
and exponential computation as a single floating point oper-
ation, as in [18]. The FLOPs of the convolutional layers are
given by

Cconv2 = 2 · Nconv2 · Fconv2 · Nd · outconv2
Cconv4 = 2 · Nconv4 · Fconv4 · Nd · outconv4

where Nconv∗ , Fconv∗ and outconv∗ represent the number
of convolution filters, size of the filter and output shape,
respectively. The output of the convolutional layers is fed into
a ReLU, having computational complexity

CReLU2 = Nconv2 · outconv2
CReLU4 = Nconv4 · outconv4 .

The number of FLOPs in a fully-connected layer (6) is dic-
tated by the input (in) and output (out) size

CFC = in · out + (in−1) · out + out.

The number of multiplication and addition operations in
Wa is given by the term (in · out) and (in · out − out),
respectively. The last term (out) is the number of addition
operations due to the bias b. The computational complexity
of the fully-connected layer simplifies to

CFC = 2 · in · out.

Consequently, the FLOPs of the input fully-connected layer
can be defined as

CFCin = 2α · [Nconv2 · outconv2 + Nconv4 · outconv4 ].

The batch normalization (7) involves four operations, there-
fore, the complexity of the input batch normalization layer
can be expressed as

CBNin = 4α.
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The hidden layer is composed of two fully-connected layers,
two batch normalization layers, two activation functions, one
dropout layer and one residual connection. The dropout layer
and residual connection are elementwise multiplication and
addition operations; therefore, each will contribute α com-
plexity to the algorithm. The overall complexity of L hidden
layers is given by

Chidden = (2α2 + 2α2 + 4α + 4α + 2α + α + α)L

= 4α2L + 12αL.

The computational cost incurred at the output fully-connected
layer of AUE and AUI is

CAUE
FCout = 2αKmax

and

CAUI
FCout = 2αN

respectively. The softmax layer (9) in AUE invokes Kmax
exponential,Kmax divisions andKmax−1 additions operations

Csoftmax = 3Kmax − 1.

Similarly, the number of floating point operations in a sig-
moid layer (11) is:

Csigmoid = 3N .

According to [34], finding the largest probabilities in (10)
and (12) yields the following complexity

CAUE
max = Kmax − 1

and

CAUI
max = KN −

K (K + 1)
2

respectively. The overall computational complexity of the
AUE is described below

CAUE = Cconv2 + Cconv4 + CReLU2 + CReLU4 + CFCin

+CBNin + Chidden + CAUE
FCout + Csoftmax + CAUE

max

= 2 · (Nconv2 · outconv2 )(Fconv2 · Nd + α)

+ 2 · (Nconv4 · outconv4 )(Fconv4 · Nd + α)

+ 4α+4α2L+12αL+2αKmax+4Kmax−2. (15)

Likewise, the computational complexity of AUI is given as

CAUI = Cconv2 + Cconv4 + CReLU2 + CReLU4 + CFCin

+CBNin + Chidden + CAUI
FCout + Csigmoid + CAUI

max

= 2 · (Nconv2 · outconv2 )(Fconv2 · Nd + α)

+ 2 · (Nconv4 · outconv4 )(Fconv4 · Nd + α)

+ 4α + 4α2L + 12αL + 2αN + 3N + KN

−
K (K + 1)

2
. (16)

Finally, the complexity of the AUEI is

CAUEI = CAUE + CAUI. (17)

In the next section, we compare this complexity with that of
the algorithm presented in [18].

IV. IMPLEMENTATION AND RESULTS
A. SIMULATION SETUP
We generate samples according to the system model
described by (2) for training and testing our DNNs networks.
To compare our proposal with other algorithms from the lit-
erature, we choose the same simulation parameters as in [18],
namely a total number of usersN = 100, a maximum number
of active users Kmax = 8, spreading codewords with sparsity
nS = 2 and length S = 10, and Nd = 7 successive mea-
surements. The case of zero active users can be handled with
less computationally expensive spectrum sensing techniques
or machine learning algorithms, as described, e.g., in [35],
[36], and [37]. The non-zero values of the LDS codewords
are generated from the distribution CN (0, σ 2

w) with σ
2
w = 1.

We use a Rayleigh fading channel model with perfect power
control, so that hi,j ∼ CN (0, 1) are i.i.d. complex Gaussian.
Note that owing to perfect power control, the distance of
the devices from the BS does not contribute towards the
received vector. The data symbols si are unit energy quadra-
ture phase-shift keying (QPSK), so that the SNR is defined
as SNR = 1/σ 2

n .
For the AUE network dataset, the number of active users in

each sample varies from 1 toKmax. For the training, we gener-
ate 13.5 ·106 samples. The dataset generation for the k th AUI
network gk (·) involves randomly activating k users from a
total ofN .We generate 9·106 training samples and 106 testing
samples per AUI network.

The architecture of both the AUE and AUI DNNs consists
of L = 2 hidden layers. The convolutional layers consist
of 64 filters. Except the last fully-connected layer, each
fully-connected layers consists of α = 1000 neurons. In case
of AUE and AUI, the last fully connected layer contains
Kmax = 8 and N = 100 neurons, respectively.
We train the sparsity estimation DNN for 10 epochs.

Regarding the AUI networks, in order to minimize the train-
ing time, we adopt the multi-stage transfer learning approach.
Hence, the first AUI network, g1(·), is trained for 10 epochs
with He initialization [33], while for the gk (·) network the
weights are initialized from the trained weights of gk−1(·).
We employ the Adam optimizer for learning the weights
in both DNN networks. For the optimizer, we consider the
following configuration: learning rate= 0.001, β1 = 0.9, and
β2 = 0.999. In the training phase, we consider a mini-batch
of size |B| = 1000. The drop out rate is set to 0.1.
For the implementation of the deep learning algorithms,

we employ Keras deep learning framework with Tensor-
flow as backend [28], [38]. We trained the DNN algorithms
on a GPU server consisting of two Nvidia Quadro RTX
5000 cards, two Intel XeonGold 5222 Processors and 128GB
RAM.

B. RESULTS
As for performance metrics, we use the recall defined as R =
TP/(TP+ FN) and the false alarm rate F = FP/(FP+ TN),
where TP, TN, FP, and FN stand for true positive, true
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TABLE 1. Recall, K = 8, SNR = 10 dB.

negative, false positive, and false negative, respectively. True
positives (TP) and true negatives (TN) indicate the number
of occurrences when the active/inactive users are correctly
identified as active/inactive, respectively. Similarly, false pos-
itives (FP) and false negatives (FN) represent the number of
occurrences when the inactive/active users are misclassified
as active/active, respectively. In the following one iteration
means updating the weights over a mini-batch.

Let us first investigate the training phase, specifically the
rate of convergence of the weights for the AUI networks.
In this regard, in Fig. 3 we report the loss versus the number
of iterations. Comparing the curves with and without transfer
learning, where gk (·) for k = 2, 4 and 8 is trained for
3 epochs for the transfer learning approach, a considerable
improvement in the speed of convergence of the training can
be observed. The improvement is substantial for all sparsity
levels K , and it is particularly important for the networks
designed for large K (see, e.g., the case K = 8). In the case
K = 2 the advantage due to transfer learning is less pro-
nounced. We can appreciate the improvement also in terms
of recall in Table 1, where we report the results with and
without transfer learning for K = 8 and SNR = 10 dB. For
obtaining the recall values through the multi-stage transfer
learning, g1(·) is trained for 10 epochs while gk (·) for 2 ≤
k ≤ 8 are trained for epochs as in the first column of the
Table 1. The networks which are trained without the transfer
learning approach are initialized through [33].

We compare the recall for the proposed architecture with
the points taken from the literature proposing other algo-
rithms, under the same simulation parameters, namely the
Deep AUD (D-AUD) [18], and the compressed-sensing
Approximate Message Passing (AMP) [18]. The curves for
the proposed AUEI are obtained through the multi-stage
transfer learning approach. The g1(·) is trained for 10 epochs
while gk (·) for 2 ≤ k ≤ 8 is trained for 3 epochs. The
proposed approach shows improved recall values with respect
to the other algorithms, as can be seen in Fig. 4 and Fig. 5 for
SNR = 10 dB and SNR = 20 dB, respectively. In contrast
to our approach, the other algorithms suffer from substantial
performance degradation for high sparsity levels. We present

TABLE 2. False Alarm rate, Transfer Learning, epochs= 3.

TABLE 3. Computational Complexity in FLOPs, Nd = 7.

in Table 2 the false alarm rate for the proposed architecture
with multi-stage transfer learning. It can be observed that our
approach, besides the previously discussed high recall, yields
a negligible false alarm rate.

In Fig. 6, we compare the performance of our algorithm
with D-AUD and AMP in terms of recall for the SNR range
0 − 20 dB, Nd = 7 and K = 4. It can be observed that our
approach outperforms the other approaches, especially in the
low SNR regime. To check the robustness of our algorithm,
we illustrate the performance for overloading factors 125%
and 250% in Fig. 7 and 8, respectively. The overloading factor
is defined as N/(NdS). For different overloading factors,
we assume a fixed length of the spreading sequence, S, and
a number of users, N , while varying the number of mea-
surements, Nd . A significant performance improvement can
be observed for Nd = 8 in comparison to Nd = 4 for
all the algorithms. In other words, increasing the number of
measurements Nd or reducing the overloading factor yields
better performance. We observe that the proposed algorithm
outperforms the D-AUD and AMP in both scenarios, con-
firming the reliability of AUEI.

Finally, we present the numerical comparison of compu-
tational complexity between AUEI (see Section III-C) and
D-AUD, whose complexity for a given sparsity K is stated
in [18] as

C ′D−AUD = 2Lα2 + (4NdS + 7L + 2N + 4)α

+ (K + 3)N −
K (K + 1)

2
− 1.

For calculating the overall D-AUD complexity, we also take
into account the algorithm proposed in [18] for sparsity esti-
mation. In this algorithm, the received vector is passed first
through the D-AUD trained for sparsity level K = 1. If the
output satisfies the threshold-based condition, this is consid-
ered as the sparsity level. Otherwise, the received vector is
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FIGURE 3. Training Loss with Transfer Learning and without Transfer Learning, SNR = 10 dB.

FIGURE 4. Recall vs. sparsity level, SNR = 10 dB.

FIGURE 5. Recall vs. sparsity level, SNR = 20 dB.

passed through the D-AUD network trained for K = 2, and
so on. The procedure is repeated until the threshold-based
condition is met or the maximum sparsity level is reached.
Thus, for a given sparsity K , the received vector is passed
through K D-AUDs. For this reason, the complexity of
the D-AUD algorithm grows linearly with the sparsity
level. Considering that, the overall computational complexity

FIGURE 6. Recall vs. SNR, Nd = 7, K = 4.

FIGURE 7. Recall vs. SNR, Nd = 4, K = 4.

expression for D-AUD is

CD−AUD = KC ′D−AUD. (18)

Table 3 shows the computational complexity of AUEI and
D-AUD for Nd = 7 and K = 1, 2, 4, and 8, calculated
through (17) and (18). The number of hidden layers for
AUEI and D-AUD is L = 2 and L = 6, respectively. As
observed, the computational complexity of D-AUD increases
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FIGURE 8. Recall vs. SNR, Nd = 8, K = 4.

linearly with the sparsity level, while the complexity of AUEI
remains practically constant. This is due to the fact that the
dependence on the sparsity level K in (16) has a negligible
effect on the overall computational complexity. Specifically,
for all cases with more than one active user, the AUEI shows
a significant gain in terms of complexity. So, despite having
two separate architectures instead of one as in D-AUD, our
approach yields a lower complexity and better performance.

V. CONCLUSION
In this paper, we have proposed an active users detection
method, realized by one DNN for active users enumeration
and one for active users identification. We designed the deep
neural network architectures to extract relevant features from
the multiple measurements for enumeration and identifica-
tion. Besides the fully-connected layers, both DNNs consist
of convolutional layers to reduce the computational com-
plexity. To minimize the training time for the active users
identification networks, we adopted the multi-stage trans-
fer learning technique. The numerical results demonstrate
that our approach is more effective than previously known
methods in identifying the active users, especially for high
sparsity levels and low SNR.We also analyzed the false alarm
rates, which are negligible for the scenarios of interest, and
the computational complexity, which results lower than other
approaches.

Future work will include analysis of the scalability of the
proposed algorithm for a different number of users and further
reduction of the computational cost.
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