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From zero to infinity: minimum to maximum diversity1

of the planet by spatio-parametric Rao’s quadratic2

entropy3

4

November 8, 20205

Abstract6

Aim: The majority of work done to gather information on Earth diversity has been7

carried out by in-situ data, with known issues related to epistemology (e.g., species8

determination and taxonomy), spatial uncertainty, logistics (time and costs), among9

others. An alternative way to gather information about spatial ecosystem variability10

is the use of satellite remote sensing. It works as a powerful tool for attaining rapid11

and standardized information. Several metrics used to calculate remotely sensed12

diversity of ecosystems are based on Shannon’s Information Theory, namely on the13

differences in relative abundance of pixel reflectances in a certain area. Additional14

metrics like the Rao’s quadratic entropy allow the use of spectral distance beside15

abundance, but they are point descriptors of diversity, namely they can account16

only for a part of the whole diversity continuum. The aim of this paper is thus to17

generalize the Rao’s quadratic entropy by proposing its parameterization for the18

first time.19
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Innovation: The parametric Rao’s quadratic entropy, coded in R, i) allows to20

represent the whole continuum of potential diversity indices in one formula, and ii)21

starting from the Rao’s quadratic entropy, allows to explicitly make use of distances22

among pixel reflectance values, together with relative abundances.23

Main conclusions: The proposed unifying measure is an integration between24

abundance- and distance-based algorithms to map the continuum of diversity given25

a satellite image at any spatial scale.26

Keywords: biodiversity; ecological informatics; modelling; remote sensing; satellite27

imagery.28

29
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1 Introduction30

Since Alexander von Humboldt (1769-1859), the spatial component of nature has played31

a relevant role in natural science. In the development of theoretical and empirical models32

in ecology, spatial structure represents a key concept to allow scientists to link ecological33

patterns to the generating processes and to the functional networking among organisms34

(Borcard and Legendre, 2002).35

The majority of the work done to gather information about Earth diversity has been36

carried out by in-situ data, with known issues related to epistemology (e.g., species de-37

termination and taxonomy), spatial uncertainty, logistics (time and costs), among others38

(Rocchini et al., 2011).39

Using satellite remote sensing can at least help attaining rapid and standardized40

information about Earth diversity (Gillespie, 2005; Rocchini et al., 2005). Furthermore,41

remote sensing can also be used to monitor some ecosystem functions and parameters42

such as temperatures, photosynthesis, vegetation biomass production and precipitation43

(Schimel et al., 2019; Zellweger et al., 2019) that can be useful to define the different niches44

of in-situ species, following first Goodall (1970) ideas, who envisaged future diversity45

measures as those based on niche theory (Hutchinson, 1959). The free access to remote46

sensing data (see Zellweger et al., 2019) has opened new ways to study ecosystem diversity47

and biodiversity issues (Rocchini et al., 2013). The spectral data related to pixels, as48

operational geographical units, are descriptions of pieces of land that allow us to define a49

new kind of Earth “diversity”, which may complement in-situ biodiversity measurement.50

Diversity varies with area, thus investigating multiple spatial grains, until wide ex-51

tents, is important to effectively monitor spatial diversity change in space and time52

(MacArthur et al., 1966). This is especially true in macroecology, where the primary aim53
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is to model large-scale spatial patterns to infer the ecological processes which generated54

them, particularly considering the recent effect of global changes worldwide (Hobohm et55

al., 2019). In order to determine the horizontal distribution of diversity within a satellite56

image (i.e. which areas within the image are more diverse than others), diversity indices57

are usually spatially referenced by calculating the index within a moving window.58

Several metrics that measure diversity from satellites rely on the Shannon’s theory of59

entropy (Shannon, 1948), with diversity being measured as H = −∑N
i=1 pi log pi, where60

pi is the proportion of the i-th pixel value (e.g., digital number, DN) found within a61

moving window containing N pixels. Shannon’s H basically summarizes the partition of62

abundances (sensu Whittaker, 1965) by taking into account both relative abundance and63

richness of DNs (Figure 1).64

However, Shannon’s entropy is a point descriptor of (remotely sensed) diversity. As65

such, it shows only one part of the whole potential diversity spectrum at a glance. The66

use of generalized entropies has been advocated to face such problem. In this case, one67

single formula represents a parameterized version of a diversity index, thus providing a68

continuum of potential diversity indices. In the context of the measurement of diversity,69

the Rényi (1970) parametric entropy70

Hα =
1

1− α log
N∑

i=1

pαi (1)

71

with 0 ≤ α ≤ ∞ represents a powerful tool to account for the continuum of diversity72

(Figure 1).73

One particularly convenient property of Hα is that by varying the parameter α there74

is a continuum of possible diversity measures, which differ in their sensitivity to rare and75
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abundant DNs, becoming increasingly dominated by the most common DNs for increasing76

values of α. Note that for α→ 1, H1 equals the Shannon’s entropy. A similar formulation77

was then proposed by Hill (1973) who expressed parametric diversity as the “numbers78

equivalent” of Rényi generalized entropy. Appendix S1 provides the original formulation.79

Rényi (and Hill) parametric functions summarize diversity by taking into account the80

pixel values of a satellite image and their relative abundances. However, they do not allow81

to explicitly consider the differences among these values. As an example, two arrays of82

9 pixels with maximum richness and evenness (i.e. both containing 9 different DNs with83

relative abundances pi = 1
9
) but differing in their values will attain the same Shannon84

diversity irrespective of the values of the DNs in both arrays.85

By introducing a distance parameter dij among each pair of values i and j, Rao’s86

quadratic entropy (Rao , 1982)87

Q =
N∑

i,j=1

pipjdij (2)

88

explicitly considers the differences among the pixel values in the calculation of diversity89

(Figure 1). Hence, two different pixels with values [2,3] will attain a lower diversity with90

respect to two pixels with values [0,100]. For instance, to make an ecological parallel, this91

is somewhat similar to the phylogenetic distance between two species: the values [2,3]92

would be equivalent to two sister species closely related on the tree of life while [1,100]93

would be equivalent to two very distant species on the tree of life.94

The aim of this paper is thus to propose, for the first time, a parameterization of95

Rao’s quadratic entropy in order to provide a generalized entropy which accounts for96

both relative abundances and distances among pixel values. The proposed approach is97
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now part of the rasterdiv R package, a package dedicated to diversity measures of98

spatial matrices, increasing its capability to discern among different diversity measures99

by a single formula.100

2 Spatio-parametric Rao’s quadratic entropy101

Inter-pixel spectral distances are directly related to landscape heterogeneity and they102

are capable of describing species habitats, starting with a satellite image (Rocchini et al.,103

2005). A satellite image can be viewed as a matrix of numbers describing Earth reflectance104

in different dimensions stored as pixels. A sensor per each light wavelength records the105

reflectance of a certain object in that wavelength which are stored into numbers in a106

certain range (e.g., digital numbers in 8 bits, ranging from 0 to 255). In general, the107

higher the variability in the spectral space defined by the pixel reflectance values, the108

higher the diversity of the ecosystem under study.109

Consider a window of N pixels moving across the whole image to calculate a diversity110

index. Let i and j be two pixels randomly chosen with repetition within the moving111

window. Let dij be a symmetric measure of the (multi)spectral distance between i and j112

such that dij = dji and dii = 0. Rao’s Q (Rao , 1982) is defined as:113

Q =
N∑

i,j=1

pipjdij =
N∑

i,j=1

1

N
× 1

N
dij (3)

114

Therefore, Q measures the expected (i.e. mean) distance between two randomly115

chosen pixels and 1
N

is the probability to extract each pixel. Note that, unlike Hα or116

Kα the calculation of Rao’s quadratic entropy is not limited to single bands but can117

6



be extended to multispectral systems of any dimension. For the connection between118

quadratic entropy and variance, see Rocchini et al., 2019.119

Two parametric versions of quadratic entropy have been proposed by Ricotta and120

Szeidl (2006) and Leinster and Cobbold (2012). These parametric formulas were aimed121

at reconciling Rao’s Q with parametric entropies. However, they have only been rarely122

used in practice.123

A more direct approach for developing a parametric version of quadratic entropy124

stems from the work of Guiasu and Guiasu (2011). Let ωij = 1
N
× 1

N
be the combined125

probability of selecting pixels i and j in this order. Guiasu and Guiasu (2011) noted that126

Rao’s Q can be expressed as a linear function of the combined probabilities of all pairs127

of pixels:128

Q =
N∑

i,j=1

ωijdij =
N∑

i,j=1

1

N
× 1

N
dij =

N∑

i,j=1

1

N2
dij (4)

129

In practice, Rao’s Q is the arithmetic mean of the distances dij between all pairs of130

pixels i and j. Hence, in order to implement a parametric version of Rao’s Q, it seems131

natural to substitute the arithmetic mean in Equation 4 with a generalized mean (Hardy132

et al., 1952):133

Qα =

(
N∑

i,j=1

ωijd
α
ij

) 1
α

=

(
N∑

i,j=1

1

N2
dαij

) 1
α

(5)

134

This operation connects Qα with other diversity metrics that are expressed as gener-135

alized means, such as Hill’s (Hill, 1973) or Jost’s (Jost , 2006) numbers (Appendix S1)136
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equivalents (see also Leinster and Cobbold, 2012).137

The Rao’s Q, viewed as an arithmetic mean, is one of all the possible means in its138

generalized form Qα:139

Qα =





α→ 0, Q0 = N2
√∏N

i,j=1 dij

geometric

α = 1, Q1 = Q =
∑N

i,j=1
1
N2dij

arithmetic

α = 2, Q2 =
√∑N

i,j=1
1
N2d2ij

quadratic

α = 3, Q3 = 3

√∑N
i,j=1

1
N2d3ij

cubic

α→∞, Qα→∞ = max dij

maxd

(6)

140

The mathematical proof that i) for α → 0 Q0 corresponds to the geometric mean,141

and ii) for α→∞ Q∞ corresponds to the maximum distance between pixel values pairs142

is provided in Appendix S1.143

Each generalized mean always lies between the smallest and largest of its values.144

Increasing the parameter α will increase the weight of the highest values of dij, thus145

providing a continuum of potential diversity indices (Figure 1).146

3 The algorithm147

Starting from a satellite image, a spatial moving window might be used to make the

calculation on predefined extents of analysis. The grain (sensu Dungan et al., 2002) will

be the resolution of the image while the extent of analysis will be the size of the moving
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window (Figure 2). The calculation is based on a distance matrix of type:

Md =




dλ1,λ1 dλ1,λ2 dλ1,λ3 · · · dλ1,λn

dλ2,λ1 dλ2,λ2 dλ2,λ3 · · · dλ2,λn

dλ3,λ1 dλ3,λ2 dλ3,λ3 · · · dλ3,λn

...
...

...
. . .

...

dλn,λ1 dλn,λ2 dλn,λ3 · · · dλn,λn




(7)

148

among all the potential pairs of pixels inside the moving window. The diagonal terms149

of the matrix (which equal zero) will have no effect for α > 0 (Equation 6), since they150

would enter the
∑

term. On the contrary, for α → 0, they would enter the
∏

term by151

nullifying Q0.152

We coded the proposed parameterization of Rao’s quadratic entropy as an R function,153

implementing the previously developed rasterdiv package (Marcantonio et al. (2020),154

https://CRAN.R-project.org/package=rasterdiv). The calculation of different Qα155

by automatically changing the range of potential α values is done by the function paRao,156

as:157

1> paRao(x, alpha=c(0:4,Inf), method="classic",158

dist_m="euclidean", window=9, na.tolerance =0.5, simplify=3,159

3np=8, cluster.type="SOCK", diag=TRUE)160

where x is the input dataset which can be a RasterLayer or a matrix class object,161

alpha is the α parameter of Equation 5, which can be a single value or a vector of inte-162

gers. In the example above, α is a vector of integers ranging from 0 to 4, plus Inf, which163

in the R language is a reserved word representing positive infinity (α→∞). The option164
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method decides if paRao is calculated with 1 single layer (classic) or with more than165

one layer (multidimension). With method="multidimension" then x must be a list of166

objects. dist m is the type of distance considered in the calculation of the index, and can167

be set to any distance class implemented in the R package proxy, such as "euclidean",168

"canberra" or "manhattan". Moreover, dist m can also be an user-defined matrix of169

distances. However, if method is set to "classic" (unidimensional paRao) all distance170

types reduce to the Euclidean distance. The argument window is the side length in cells171

of the moving window (in this case set to 9), whereas na.tolerance is the proportion172

(0-1) of NA’s cell allowed in a moving window: if the proportion of NA’s cells in a moving173

window exceeds na.tolerance then the value of the moving window central pixel will be174

NA. The option simplify allows to reduce the number of decimal places to ease the cal-175

culation by reducing the number of numerical categories, i.e., if simplify=3 only the first176

three digits of data will be considered for the calculation of the index. np is the number177

of parallel processes used in the calculation. If np>1 then the doParallel package will178

be called for parallel calculation, and cluster.type will indicate the type of cluster to be179

opened (default is "SOCK", "MPI" and "FORK" are the alternatives). The diag argument180

refers to the diagonal term of Equation 7. It will have no effect on the function for α > 0,181

while it will nullify the value of Qα if set to TRUE, as previously explained in Equation 7.182

183

3.1 Global test of the parametric Rao’s Q variation over the184

planet185

We applied the algorithm to a Copernicus Proba-V NDVI (Normalized Difference Vege-186

tation Index) long term average image (June 21st 1999-2017) at 5km grain, also provided187
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in the rasterdiv package as a free Rasterlayer dataset which can be loaded by the188

function data() (Figure 2). The parametric Rao algorithm can also be applied to mul-189

tispectral data; in such a case distances are calculated in the multisystem created by190

the values of the pixels in each axis/band. The moving window passing throughout the191

whole image will return MQα matrices/layers where α is the value chosen in the R function192

paRao.193

With α→ 0 the
∏

in Equation 6 leads to zeroes throughout the whole map (Figure194

3). Increasing α will increase the weight of higher distances among different values until195

reaching the maximum distance value for α→∞. In this case the maximum turnover is196

reached and areas with maximum β-diversity will be apparent. In this case, a multitem-197

poral set is used (long term average NDVI from June 21st 1999-2017). Hence, areas with198

the highest spatial and temporal turnover are enhanced, namely major mountain ridges.199

We expect that using single frame images would lead to the enhancement of the spatial200

component of diversity.201

Since the whole process is based on distances in a spectral space between pairs of pixels202

in terms of their “spectral characters” or in the “spectral space”, it is important to notice203

some cornerstone aspects on the use of distances from satellite images, especially when204

comparing different images or the same image in different times. In satellite images, the205

measure of distances could be impacted by: ii) the use of different sensors with different206

radiometric resolutions, as an example an 8-bit (28 = 256 values) with respect to a 16-bit207

(216 = 65536 values) image, or ii) the radiometric calibration which has been performed,208

e.g. with a non-linear transform. Therefore, care should be taken when making use209

of distances in remote sensing data, explicitly taking into account how the vector of210

proportions between pixels belonging to some defined classes (e.g., digital numbers, DNs)211
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was obtained.212

The complete code of the function can be directly seen in R by typing the paRao213

function name. Moreover, a complete R coding session, to perform the above described214

analysis is provided in Appendix S2.215

3.2 Local case study: the diversity of vegetation greenness and216

the ecoregions of California217

A comparison between in-situ and remotely sensed diversity at worldwide scale might218

be difficult due to known biases in e.g. sampling effort, taxonomies, spatial uncertainty219

(Rocchini et al., 2017). Hence, we decided to calculate the Rao’s Q index on a NDVI220

raster layer of California (USA) to be compared with data in the field on native plant221

species diversity provided in Thornhill et al. (2017) from Baldwin et al. (2017). We chose222

California as a case study due to its high ecological diversity as well as to the availability223

of plant species field-data for this region.224

In practice, we aimed at visualizing and describing differences in both diversity and225

structure of vegetation for the state of California, USA. First, an NDVI raster layer226

was derived from Copernicus Sentinel-2 data (European Space Agency, reference period:227

January 2017 to July 2018) and processed through Google Earth Engine to filter out228

cloud cover, select the greenest pixel of the time series and resample at 100 m pixel229

resolution. Then, the paRao R function was used to derive Rao’s Q index, considering230

both the original formulation of the Rao’s Q (α = 1, Equation 6) and the formulation231

with α→∞ maximuzing β-diversity (Figure 3), with a moving window of 9x9 pixels.232

A map of plant species richness was derived using the potential distribution range of233

5,222 native California vascular plants modelled by Thornhill et al. (2017). Moreover,234
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a vector map reporting the ecoregions of California (level III) was downloaded from the235

United States Environmental Protection Agency. In Figure 4, we showed NDVI, the Rao’s236

Q indices with α = 1 and α → ∞ and plant species richness, reporting the boundaries237

of the different ecoregions for California. This comparison revealed macro-ecological and238

bio-geographical patterns which can be better interpreted considering the information239

condensed in the Rao’s Q index.240

For example, the ecoregion “Coast range” (labelled with 1 in Figure 4) is composed241

by low mountains covered by highly productive, rain-drenched evergreen forests. As a242

result, this region showed very high NDVI values but a low Rao’s Q index (low vegetation243

structural diversity) and low to medium plant species richness. The adjacent “Klamath244

Mountain” ecoregion (2) is instead characterized by highly dissected ridges, foothills,245

and valleys. This region still showed high NDVI values but higher Rao’s values with246

respect to region 1, which resulted in a high plant species richness. The diverse flora of247

this region, a mosaic of both northern Californian and Pacific Northwestern conifers and248

hardwoods, is rich in endemic and relic species. A similar pattern, although caused by249

opposite factors, was recognizable for the “Central Valley” region of California (3), which250

is composed of flat, urbanized and intensively farmed plains. The extensive presence of251

irrigated crops intersected with urbanized areas caused medium to high NDVI values and252

a very high apparent structural diversity. However, the same factors caused a low native253

species richness, especially in the drier southern portion of the valley. Finally, very dry254

and warm broad basins and scattered mountains characterize the “Mohave and Sonora255

ranges” ecoregions (4) which showed very low NDVI and Rao’s Q values (with scattered256

higher values associated with local topographical variability) and low native plant species257

richness.258
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Passing from the pure Rao’s Q index (α=1) to its parameterization with α → ∞259

helped to increase the discrimination among areas, due to the fact that when α → ∞260

the Rao’s Q corresponds to the maximum distance (β-diversity) among pixel values in a261

site. Very similar gradients of the spatial heterogeneity of California (including BIOMOD262

variables, NDVI, elevation) as well as environmental DNA (eDNA) data are found in Lin263

et al. (2020).264

4 Discussion265

In this paper, we provided a straightforward solution to: i) account for distances in an266

Information Theory based metric, and ii) provide a generalized formula in order to avoid267

point description and account for the continuum of diversity. Diversity can be represented268

by different dimensions (Nakamura et al., 2020). Considering one single metric to account269

for the whole continuum of diversity metrics might be a powerful addition to the main270

framework. On the contrary, fragmenting the concept of diversity when trying to capture271

single aspects of the whole spectrum could be counterproductive.272

The proposed unifying measure succeeded to integrate abundance- and distance-based273

algorithms over a wide variety of diversity metrics. We demonstrated that such integra-274

tion is not only theoretical but also applicable to real spatial data, considering several275

dimensions of diversity at the same time. Being part of the rasterdiv R package, the276

proposed method is expected to ensure high robustness and reproducibility.277

Remote sensing is obviously not a panacea for all the organismic based diversities like278

taxonomic-, functional-, genetic-diversity but it can represent an important exploratory279

tool to detect diversity hotspots and their changes in space and time at the ecosystem280

level. First of all, it measures heterogeneity of the environment with indirect links to281
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the biodiversity of both plant and animal taxa, but also with potential discrepancies282

with species diversity, as in the presented case study of the native plant species diversity283

of California. This said, depending on the complexity and the resolution at which the284

proposed parameterized Rao’s Q is applied, it might allow finding new insights on the285

ecological processes acting in a certain ecosystem to shape its diversity. In this paper,286

the examples provided were based on a single NDVI layer since i) it is a valuable index287

of vegetation health and ii) it is freely available in the rasterdiv package to reproduce288

the code proposed in this paper. We are aware that NDVI has very limited capacity289

to track diversity in some habitats like dense forests, because it is saturated at dense290

vegetation. From this point of view, imaging spectroscopy offers higher information291

content, also enabling plant functional trait retrievals (Jetz et al., 2016; Schneider et al.,292

2019) as well as structural traits by LiDAR data (Schneider et al., 2020). The application293

of the proposed algorithm to future spaceborne imaging spectroscopy is promising. In294

other words, the algorithm has been thought to be used with multiple layers, like a295

whole multispectral image or the most meaningful Principal Components (Peres-Neto et296

al., 2005), or land use classes probabilities derived from fuzzy set theory (Rocchini and297

Ricotta, 2007; Feoli, 2018). This is even one of the major advantages of the Rao’s Q298

metric which allows considering both abundance and distance among pixel values, thus299

being applicable to any continuous raster layer, or to any matrix combination, even in a300

multiple spectral system.301

Creating a unique “umbrella” under which all of the potential metrics of diversity can302

be used is highly beneficial for e.g. monitoring the variation in time of biological systems303

considering two major axes: i) the α parameter in Equation 5 providing information304

about the type of diversity at time t0, ii) the temporal dimension from time t0 to time tn305
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given the same α parameter. For the future, exploring such temporal dimension would306

allow gathering information of ecosystem changes in different diversity types at a glance.307

Moreover, generalized entropy allows us to characterize the dimensionality of diversity308

(sensu Stevens and Tello, 2014) of different habitats/ecosystems. Those areas with a309

higher diversity dimensionality, namely a higher variability into the diversity spectrum310

would need a generalized measure to be fully undertaken. On the contrary, ecosystems311

with a lower dimensionality would have a lower difference among the different diversity312

measures with a flat curve of the diversity spectrum (Nakamura et al., 2020).313

From a functional point of view, when all indices of diversity are highly correlated to314

each other (low dimensionality), it is expected that the ecological processes underlying315

diversity are just a few. On the contrary, with a lower correlation among indices (higher316

dimensionality) there might be a higher number of axes of variation coming out from317

different processes shaping ecological heterogeneity in space (Stevens and Tello, 2014).318

There might be the possibility that a completely random matrix produces a pattern319

of diversity (Type I error). On the other side, a structured matrix could produce a very320

low diversity pattern (Type II error, Gotelli (2000)). In both cases, the parametric Rao’s321

Q could allow to determine, thanks to the use of a continuum of diversities, i) why a322

diversity pattern is still produced even in case of a random matrix, and ii) why a certain323

landscape shows a very low diversity in a certain point of the whole diversity spectrum.324

With point descriptors of diversity such inference cannot be done since the investigation325

is limited to a small window of the entire diversity spectrum, by basically relying on a326

single final number. In other words, the commonly asked question about what is the327

index which best describes diversity has no certain answer (Gorelick, 2011). Hence, the328

use of a trend of diversities will lead to the comprehension of hidden parts of the whole329
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diversity dimensionality.330

Furthermore, it is expected that the ecological processes shaping diversity should act331

at defined spatial scales (Borcard and Legendre, 2002). Hence, different diversity types of332

the whole dimensionality spectrum are expected to show scale dependent patterns, being333

apparent only at certain scales and not at some others. The use of a continuum allows334

measuring the different diversity types altogether in a single step. Changing the extent335

of analysis by different moving windows would then allow to encompass different spatial336

structures at different scales.337

While geographic gradients of diversity over space are complex to catch in their very338

nature, biodiversity measurement has mainly relied in the past on few formulas which339

represented an hegemony (Stevens et al., 2013). In this paper, we demonstrated that340

diversity is actually multifaceted and should be necessarily approached through a gener-341

alized approach.342

5 Conclusion343

In order to unfold the dimensionality of diversity methods to directly account for several344

aspects of diversity at a time are needed. From this point of view, generalized entropy345

undoubtedly represents a powerful approach for mapping the diversity continuum.346

Furthermore, it might be profitably used to plot multitemporal trends (see e.g. Dor-347

nelas et al., 2014) of diversity metrics and discover previously imperceptible differences348

when making use of single metrics (Figure 5).349

Metrics grounded in Information Theory ensure to make use of relative abundance of350

pixel values given the same richness in the moving window of analysis. However, distance351

metrics allow to also account for the relative dispersion in the spectral space of the cloud352

17



of pixels in a certain area (Laliberté et al., 2020). The proposed parameterization of the353

Rao’s Q explicitly considers the dispersion of pixel values in a spectral space (and their354

relative abundance) by allowing catching the whole dimensionality of diversity.355

6 Data availability356

The code and the data used in this paper are based on completely Free and Open Source357

Software, and they are available at the CRAN repository of the R package rasterdiv:358

https://CRAN.R-project.org/package=rasterdiv.359
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H., Féret, J.-B., Foody, G.M., Gavish, Y., Godinho, S., Kunin, W.E., Lausch, A.,459

Leitão, P.J., Marcantonio, M., Neteler, M., Ricotta, C., Schmidtlein, S., Vihervaara,460

P., Wegmann, M., Nagendra, H. (2018). Measuring β-diversity by remote sensing: a461

challenge for biodiversity monitoring. Methods in Ecology and Evolution, 9: 1787-1798.462

Rocchini, D., Marcantonio, M., Da Re, D., Chirici, G., Galluzzi, M., Lenoir, J., Ricotta,463

C., Torresani, M., Ziv, G. (2019). Time-lapsing biodiversity: an open source method464

for measuring diversity changes by remote sensing. Remote Sensing of Environment,465

231: 111192.466

Rocchini, D., Ricotta, C. (2007). Are landscapes as crisp as we may think? Ecological467

Modelling, 204: 535-539.468

Schimel, D., Schneider, F.D., JPL Carbon and Ecosystem Participants (2019). Flux tow-469

ers in the sky: global ecology from space. New Phytologist, 224: 570-584.470

Schneider, F.D., Ferraz, A., Schimel, D. (2019). Watching Earth’s Interconnected Systems471

at Work. Eos, 100.472

Schneider, F.D., Ferraz, A., Hancock, S., Duncanson, L.I., Dubayah, R.O., Pavlick, R.P.,473

Schimel, D.S. (2020). Towards mapping the diversity of canopy structure from space474

with GEDI. Environmental Research Letters, 15, 115006.475

Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical476

Journal, 27: 379-423, 623-656.477

Stevens, R.D., Tello, J.S. (2014). On the measurement of dimensionality of biodiversity.478

Global Ecology and Biogeography, 23: 1115-1125.479

23



Stevens, R.D., Tello, J.S., Gavilanez, M.M. (2013). Stronger tests of mechanisms under-480

lying geographic gradients of biodiversity: insights from the dimensionality of biodi-481

versity. PLOS ONE, 8: e56853.482

Thornhill, A.H., Baldwin, B.G., Freyman, W.A., Nosratinia, S., Kling, M.M., Morueta-483

Holme, N., Madsen, T.P., Ackerly, D.D., Mishler, B.D. (2017). Spatial phylogenetics484

of the native California flora. BMC Biology 15: 96.485

Whittaker, R.H. (1965). Dominance and diversity in land plant communities. Science,486

147: 250-260.487

Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., Coomes, D. (2019). Advances in488

microclimate ecology arising from remote sensing. Trends in Ecology & Evolution, 34:489

327-341.490

24



Figures491

Figure 1: Grounding theory of this paper. Diversity measures can encompass abundance-
based as well as abundance-distance-based metrics (yellow and green boxes, respectively).
Abundance-distance-based metrics allow multiple layers to be used. The black lines
represent the theoretical flow of this paper, with the thickness representing the complexity
of each index, starting from Shannon’s Information Theory (point descriptor) to Rényi’s
Hα (generalized entropy), which do not make use of distance. Distance enters the Rao’s
Q formula, but this is still a point descriptor of diversity. Finally, parametric Rao’s
Qα comprises the use of distances and the generalized entropy concept. The red arrows
represent the properties of the Rao’s Qα: i) it is grounded in Information Theory starting
from Shannon’s H, ii) it is a generalized entropy like the Rényi Hα, and iii) it makes use
of distances like the Rao’s Q.

25



−40

0

40

80

−100 0 100
Longitude

La
tit

ud
e

0

50

100

150

200

250
NDVI

(∑
Πdαij

) 1
α

Min =



λ1 λ2 · · ·
· · · · · · · · ·
· · · · · · λn


 Min =



λ1 λ2 · · ·
· · · · · · · · ·
· · · · · · λn






λ1 λ2 · · ·
· · · · · · · · ·
· · · · · · λn






λ1 λ2 · · ·
· · · · · · · · ·
· · · · · · λn




dist: dist:

alpha = 1 alpha = 2 alpha = 3

−100 0 100 −100 0 100 −100 0 100

−40

0

40

80

Longitude

La
tit

ud
e

50 100 150

MQ0
=



Q01 Q02 · · ·
· · · · · · · · ·
· · · · · · Q0n


 MQ... =



Q...1 Q...2 · · ·
· · · · · · · · ·
· · · · · · Q...n




MQ∞ =



Q∞1

Q∞2
· · ·

· · · · · · · · ·
· · · · · · Q∞n




Figure 2: Starting from Copernicus Proba-V NDVI (Normalized Difference Vegetation
Index) long term average image (June 21st 1999-2017) at 5km grain, parametric Rao’sQ is
calculated in a moving window. In this paper NDVI was used as a single layer to calculate
distances on one axis, but several layers can be used as well. In this example, three layers
(blue, green and red matrices) are shown to calculate distances. The algorithm is based
on a moving window passing throughout the whole image, calculating the Rao’s Qα and
saving the output in the central pixel. In this example a moving window of 5x5 pixels
is passing (red arrow) from one position (orange) to the other (green). The output is a
stack of layers each of which represents a different mean of the whole generalized mean
spectrum of Equation 5.
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Figure 3: Output of the application of the algorithm shown in Figure 2, achieved by
applying different α values: from 0 to 4 until α → ∞. The higher the value of the
parameter α, the higher the weight of highest distances among pixel values, until reaching
the maximum potential β-diversity (maximum distance) at α→∞.
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Figure 4: Comparison between NDVI, Rao’s Q Index, native plant species richness for the
ecoregions of California. The NDVI values shown in the top-left box (100 m resolution)
were derived from the ESA Copernicus Sentinel-2 dataset then processed with Google
Earth Engine and range between -0.26 (red) and 0.99 (green). The Rao’s Q index shown
in the top-right box was calculated from the NDVI map with alpha=1 and alpha to infinite
and a moving window of 9x9 pixels. High values are shown in dark green and represent
pixel whose sorrounding NDVI values are more “diverse” than pixel reported in red. The
map reporting the potential native plant species richness of California (resolution: 810
m) was derived summing the binary potential distribution range of 5,222 native plant
species modelled by Thornhill et al. (2017) and ranges between 134 (red) to 1029 (green)
species per pixel (1 km2). The ecoregions considered in this paper are overlapped to the
NDVI image: 1) Coast range (low mountains covered by highly productive, rain-drenched
evergreen forests), 2) Klamath Mountain (highly dissected ridges, foothills, and valleys),
3) Central Valley (flat, urbanized and intensively farmed plains), 4) Mohave and Sonora
ranges (very dry and warm broad basins).
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Figure 5: A theoretical example of the power of using generalized entropy for monitoring
purposes. Given a landscape at times t0 (pink) and tn (blue), calculating generalized
entropy will allow the formation of a graph showing the continuum of Rao’s Q values
observed over a range of values for α. The same landscape in different times might show
an abrupt change (e.g., a catastrophic event) with an apparent diversity decrease (top).
In this case, point descriptors (e.g., single α values) of diversity may be sufficient to
describe this pattern. When the change in diversity is subtle (bottom), using a point
descriptor might fail to detect it but it becomes manifest in the continuum of diversities
based on generalized entropy. The complete code for reproducing this theoretical example
is available in Appendix S3. 29
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