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Aiming to Complex power quality disturbances:
A Novel Decomposition and Detection

Framework
Kunzhi Zhu, Zhaosheng Teng, Wei Qiu, Member, IEEE , Alessandro Mingotti, Member, IEEE , Qiu Tang,

Wenxuan Yao, Senior Member, IEEE

Abstract— In recent years, due to the penetration of
renewable energy and the widespread use of power
electronic equipment, power quality disturbances (PQDs)
have become more complex and hazardous. As the premise
of power quality control, complex PQDs require more
accurate and efficient detection. To address this issue, this
paper proposes a novel automatic method for detecting
complex PQDs based on integrated intrinsic variable time
scale decomposition (I-IVTD) and weighted recurrent layer
aggregation network (WRLA). The proposed I-IVTD method
reduces aliasing and endpoint effects, and improves
anti-noise performance by innovative use of variable
time scales and multiple integrations. The improved
WRLA network enhances learning ability and accelerates
convergence by adding three weights to each unit. The
proposed framework can effectively detect 27 complex
disturbances automatically and does not require manual
feature design. Finally, a large number of experiments are
conducted, including simulation experiments and tests on
a PQDs analysis platform. The test results based on the
analysis platform indicate that the accuracy for complex
disturbances is higher than 98 %, which demonstrates the
superior performance of the proposed framework. Notably,
it is effective for detecting nonlinear disturbances as well.

Index Terms— Complex power quality disturbances
(PQDs), Integrated intrinsic variable time scale
decomposition (I-IVTD), Weighted recurrent layer
aggregation networks (WRLA)

I. INTRODUCTION

RECENTLY, the penetration of renewable energy is
growing rapidly [1]. However, due to the unstable

and randomness of renewable energy and the application
of a large number of power electronic equipment, power
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quality disturbances (PQDs) are becoming more complex
and hazardous. These complex PQDs can interfere with the
operation of precision equipment and affect the stability of the
power grid [2], even causing economic losses [3]. According
to IEEE-1159 standard [4], 9 types of single disturbances are
defined. However, steady-state disturbances such as harmonics
and flicker could persist for a long time, while voltage dips
and transients only exist for a short period. Therefore, different
disturbances may occur simultaneously to form complex
disturbances. Due to the complexity and diversity of complex
PQDs signals, it is more difficult to accurately detect. As
the premise of power quality control, accurate detection of
complex PQDs is more challenging and necessary than single
disturbances.

In general, power quality detection consists of signal
preprocessing and classification. For the convenience of
understanding, existing frameworks are introduced based on
this narrative logic. It should be noted that the introduction
includes both methods applied in the traditional power grid
and renewable energy scenarios. In the first stage, the fast
Fourier transform (FFT) is the basic spectrum analysis method.
However, FFT is only applicable to extract spectral features
[5] and analyze power system parameters [6]. The short-
time Fourier transform (STFT) is used to process PQDs
signals [7] as it increases the feature dimension. However,
STFT is not sensitive to mutation signals that are smaller
than the window width. Discrete wavelet transformation
(DWT) and Stockwell transform (ST) are also applied to
power quality detection [8] [9] [10] [11]. Unlike STFT
and DWT, ST has variable time-frequency resolution, but
the time-frequency resolution is not self-adaptive. Different
from DWT and ST, hilbert huang transform (HHT) [12],
ensemble empirical mode decomposition (EEMD) [13] and
variational mode decomposition (VMD) [14] [15] are self-
adaptive decomposition methods, they are also widely used
in power quality detection. Although EEMD and VMD have
better anti-noise performance, endpoint effects and mode
aliasing are unavoidable [16]. The fast independent component
analysis (FICA) is also used for disturbance identification
under strong noise [17], but FICA is only used for denoising,
and signal features still need to be further extracted. Singular
value decomposition (SVD) [18] and instantaneous frequency
estimation (IFE) are also applied to power quality analysis
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[19] and detection [20]. Although SVD can reduce the size
of the feature map, it is difficult to determine the effective
singular value. IFE is suitable for non-stationary signals, but it
needs to calculate the instantaneous frequency and perform the
signal compression transformation after performing the time-
frequency transformation, so its computational complexity still
needs to be reduced.

In the stage of disturbance detection, machine learning
methods are the general trend. Machine learning does not
rely on mathematical models and can learn from training data
independently. An artificial neural network (ANN) is used for
single and combined power quality disturbances detection in
[5] and [21]. Decision tree (DT) [15], support vector machine
(SVM) [22], random forest (RF) [23], and improved k-nearest
neighbor (KNN) [24] are also applied in PQDs detection.
However, limited by the performance of traditional machine
learning methods, these frameworks require manual design
features, which means that they rely on expert experience.
With the rapid development of the convolutional neural
network (CNN), it is widely used in PQDs detection due to its
stronger feature learning ability. In [25], a three-level multiply
connected Bayesian network (TLBN) is proposed to classify
PQDs, and the deep convolutional neural network (DCNN)
is also applied in [26]. In [27], a typical network structure
of the residual neural network (ResNet) is used. In [28],
the correlation between PQDs is considered and a detection
method based on bidirectional recurrent neural models is
proposed. The generative adversarial network (GAN) is also
applied to PQDs identification in data loss scenario [29].
In [30], the explainability of the classifier is considered
by using explainable artificial intelligence (XAI). Although
the above frameworks have achieved passable results, most
of them focus on the design of classifiers and ignore the
pre-processing of signals, which will lead to information
loss and affect the robustness of the framework. With the
development and extensive application of new energy, power
quality disturbances are becoming more and more complex,
which challenges the accurate detection of PQDs.

To improve the effectiveness of complex power quality
disturbances detection, this paper proposes a novel detection
framework. The contributions of this paper are outlined below:

1) To fully utilize information in the PQDs signal, the
integrated intrinsic variable time scale decomposition (I-
IVTD) is proposed. The advantage of I-IVTD is that
it avoids repeated decomposition through the variable
time scale mechanism, which reduces modal aliasing.
And it also reduces the endpoint effect and improves
anti-noise performance by incorporating Gaussian noise
and multiple integration mechanisms. Additionally, the
paper provides a selection method for key parameters of
I-IVTD.

2) To accurately detect complex power quality
disturbances, an improved weighted recurrent layer
aggregation network (WRLA) is proposed. WRLA
enhances the feature learning ability of the network
by giving different weights to the feature maps.
Compared to recurrent layer aggregation networks
(RLA), WRLA reduces the parameter amount while

ensuring performance.
3) A novel complex PQDs detection framework is

proposed based on I-IVTD and WRLA networks. The
framework is automatic and does not rely on expert
experience to manually design features. It reduces
redundant parameters by adjusting the structure of the
deep network. Experiments show that the proposed
framework has high detection accuracy and strong anti-
noise performance.

4) To verify the validity of the proposed framework,
a real-time detection system for complex PQDs is
designed. The tests on experimental platforms proved
the effectiveness of the proposed framework.

The paper is organized as follows: Section II presents the
principle and performance comparison of I-IVTD, and Section
III introduces the proposed WRLA. Section IV proposes the
I-IVTD & WRLA framework, and Section V shows the
experiments. Finally, Section VI presents the conclusion.

II. PROPOSED I-IVTD METHOD

Feature extraction plays a crucial role in accurately
detecting complex PQDs signals. In 2007, Frei and Osorio
introduced the intrinsic time scale decomposition (ITD)
method [31], which decomposes signals into a combination
of baseline and proper rotation components. Due to its
efficiency and effectiveness, ITD has significant potential for
various applications. However, its performance is limited by
mode aliasing and the endpoint effect. In order to overcome
these limitations, the Integrated Intrinsic Variable Time Scale
Decomposition method is proposed in this paper.

A. Principle of I-IVTD

In the proposed I-IVTD, the variable time scale and the
multi-integration are its unique characteristics. Defining the
discrete PQDs signals as x(t), and the number of integrations
as J , the decomposition process of I-IVTD is shown as
follows.

1) First, Gaussian noise g(t) is generated, the length of g(t)
is equal to x(t) and its amplitude is P . Add g(t) to x(t),
it can be expressed as

X(t) = x(t) + g(t). (1)

The purpose of this step is to adjust the local extreme
point changes caused by the original noise in the signal.

2) Then search the local extremum of X(t) and record
as X(τm), (m = 1, 2, 3, ...,M), where the minimum
distance between X(τm) meets Mind1 > 0 and τm is
the time corresponding to the X(τm), definition τ0 = 0.
When t ∈ [τm, τm+2], the baseline signal L(t) is defined
as

L(t) =

Lm +

(
Lm+1 − Lm

X(τm+1)−X(τm)

)
(X(t)−X(τm)),

t ∈ (τm, τm+1],

(2)
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where, L0 and Lm+1 is defined as

L0 = (X(τ0) +X(τ1))/2,
Lm+1 =

α

[
X(τm) +

(
τm+1 − τm
τm+2 − τm

)
(X(τm+2 −X(τm))

]
+ (1− α)X(τm+1), α ∈ (0, 1).

(3)
In Equation (3), the value of α is typically taken as 0.5.

3) It can be found that L(t) is a linear transformation of
X(t), it represents the low-frequency component of the
original signal, the high-frequency component (“proper
rotation”) H1(t) is defined as

H1(t) = X(t)− L(t). (4)

4) After obtaining H1(t), take L(t) as the signal to be
decomposed, repeat steps (2)-(3), and the signal can
be decomposed continuously. Differently from ITD, I-
IVTD uses variable time scales to search for the local
maximum point of the signal according to the following
equation:{

Mind1 > 0,
Mindk > Maxdk−1, (k > 1, k ∈ N), (5)

where Mindk represents the minimum distance between
local extreme points of the signal in the k-th
decomposition, and Maxdk−1 represents the maximum
distance between local extreme points which were
previously searched. The purpose of this step is to skip
scales that have already been extracted.

5) When the stop condition is met, the decomposition will
stop. Setting the stop condition to L(t) is monotone or
the amplitude of L(t) is less than the threshold. Assume
that the signal is decomposed K times, X(t) can be
written as:

X(t) =
K∑

k=1

H(t)k + L(t). (6)

As I-IVTD employs the variable time scale mechanism
in its search for local extreme points of signals, it
prevents redundant searching for the same time scale,
and thus reduces mode aliasing. Fig. 1 illustrates the
decompose details of ITD and I-IVTD.

Fig. 1. Decompose details of ITD and I-IVTD.

where, (a) and (c) is the first decomposition of ITD
and I-IVTD respectively, (b) and (d) is the second
decomposition of ITD and I-IVTD. The black line
denotes the signal waveform, the blue line represents
the connection between local maximum and local
minimum, and the red line signifies the decomposed
L(t). Upon comparing (a) and (c), it can be observed
that the first decomposition of ITD and I-IVTD are
identical. However, with the second decomposition, I-
IVTD mitigates mode aliasing by utilizing variable time
scale.

6) Finally, to integrate multiple decompositions, repeat
steps (1)-(5) J times, and use zero filling to align
the decomposition results, so that the number of all
decomposed components remains the same, and then
take the average value of the corresponding components.
Hence:

L(t) = 1
J

J∑
j=1

L(t)j ,

H(t)k = 1
J

J∑
j=1

H(t)jk, (k = 1, 2, . . . ,K).

(7)

It is important to note that during this step, Gaussian
noise is added to the signal before each decomposition
in an independent and identically distributed manner.
This introduces slight variations in the results of each
decomposition. However, the added Gaussian noise is
almost eliminated during the averaging process, and the
integration of multiple decomposition results enhances
the anti-noise performance of I-IVTD.

B. Parameter selection of I-IVTD
In I-IVTD, the amplitude of the added Gaussian noise P

and the number of integrations J are two key parameters.
An optimal P value should satisfy two objectives: adjusting
the local extreme point change caused by noise in the
original signal and not inducing additional decomposition
errors. Moreover, the value of J is directly proportional to the
computational effort. Therefore, J needs to be appropriately
selected to limit the decomposition errors resulting from added
Gaussian noise and to ensure that the computational effort is
acceptable. In this paper, we use a typical nonlinear signal,
frequency modulation and amplitude modulation (FM-AM)
signal S(t), to determine the key parameters of I-IVTD. S(t)
is defined as:

S(t) = Gn(t) + d1(t) + d2(t), (8)

where, Gn(t) represents the original noise in the signal.
The signal-to-noise ratios (SNR) of S(t) can be changed by
adjusting the amplitude of Gn(t). d1(t) and d2(t) are defined
as follows:{

d1(t) = sin(2π5t) sin(2π15t),
d2(t) = (1 + 0.5 cos(2π60t)) cos(2π100t+ 2 sin(2π20t)).

(9)
where, the signal duration is 0.2 s and the sampling frequency
is 10 kHz. It should be noted that the parameters of s(t)
should be random to ensure representativeness. Considering
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that I-IVTD is based on time-domain linear transformation,
the Pearson correlation coefficient ρ is used to measure
the effectiveness of decomposition. For convenience, all
decomposed levels are recorded as Li(i = 1, 2, ..., q), then
the correlation between Li and the original signal S(t) can be
calculated with the following equation:

ρ =
1

q

q∑
i=1

cov(S(t), Li)

σS(t)σLi

, (10)

where, cov(S(t), Li) is the covariance of S(t) and Li, σS(t)

and σLi
is their standard deviation.

To better select the key parameters, we utilize the control
variable method. Initially, J is set to a sufficiently large value
to achieve an ideal influence. Next, we add Gaussian noise
with various P values to S(t) and determine the optimal P
value based on the Pearson correlation coefficient. In this step,
we set J to 100 and adjust the amplitude of the added noise,
P . The SNR of the tested signal ranges from 20 dB to 60
dB in increments of 10 dB, while the added noise amplitude
varies from 0.01 to 0.1 per unit (p.u.) in increments of 0.01
p.u. The test results are illustrated in Fig. 2.

Fig. 2. ρ value trend under different P .

As depicted in Fig. 2, for a given P value, ρ increases as the
signal’s SNR becomes higher. This is because the presence of
less noise in the original signal makes I-IVTD more effective.
When P changes from 0.01 p.u. to 0.1 p.u., ρ initially increases
and then decreases. The reason for this is that a small P value
cannot effectively alter the local extreme points of the signal
but when P is greater than 0.06 p.u., the added Gaussian noise
will cause an obvious decomposition error. From the changing
trend of ρ, it can be found that I-IVTD performs best at P =
0.04, so it is selected as the optimal value.

Once the optimal P value is obtained, we determine
the integrated number J . As the J value increases, the
decomposition error caused by the added Gaussian noise
decreases. However, this is accompanied by a linear increase in
the computational cost. Thus, it is necessary to strike a balance
between the decomposition error and the computational
burden. To meet the real-time requirements of complex PQDs
detection, we test the J values ranging from 10 to 50, and the
results are presented in Table I. It can be found that the value
of ρ increases fastest when J is from 10 to 20, and then the
growth rate slows down. Finally, J=20 is taken as the optimal
value.

TABLE I
ρ VALUE UNDER DIFFERENT J

Integrated number (J)
ρ

20 dB 30 dB 40 dB 50 dB 60 dB

10 0.5214 0.5478 0.5573 0.5601 0.5751
20 0.5308 0.5645 0.5676 0.576 0.5913
30 0.535 0.5679 0.5682 0.5785 0.5935
40 0.5385 0.5687 0.5739 0.5798 0.5987
50 0.5399 0.5704 0.5765 0.5846 0.6016

C. Performance comparison with ITD
In this part, the decomposition results of I-IVTD and ITD

are shown in the same figure to compare their performance
visually.

Fig. 3. Decomposition results of ITD and I-IVTD. (a) Waveform of S(t).
(b) Gn(t) and H1(t). (c) d1(t) and H2(t). (d) d2(t) and L(t).

In Fig.3, the SNR of S(t) is 20 dB. It can be found
that compared with ITD, I-IVTD performs better in modal
aliasing because the variable time scale of I-IVTD avoids
repeated decomposition of the same scale. At the same time,
the error of I-IVTD at the endpoint is smaller. The reason is
that the multiple integration mechanism of I-IVTD inhibits the
endpoint effect. This test uses a signal with SNR of 20 dB,
which also means that I-IVTD performs better than ITD under
strong noise.

III. PROPOSED WEIGHTED RECURRENT LAYER
AGGREGATION NETWORK

To accurately detect complex power quality disturbances,
this section proposes an improved machine learning method:
the weighted recurrent layer aggregation network.

A. Structure of RLA
Machine learning has become increasingly prevalent in the

analysis of complex power quality disturbances. There are two
typical types of networks used in machine learning methods:
feedforward neural networks (FNN) and recurrent neural
networks (RNN). FNNs excel at extracting features from
single inputs, while RNNs possess memory capabilities and
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can learn correlations between different inputs. The recurrent
layer aggregation network (RLA) [32] is a lightweight
module that combines the principles of FNNs and RNNs
by introducing the concept of layer aggregation. RLA can
be combined with existing convolutional neural networks
(CNNs) to enhance the network’s feature extraction ability.
A schematic diagram of RLA is shown in Fig. 4.

Fig. 4. The schematic diagram of RLA module.

In Fig. 4, x represents the hidden feature map in CNN, and
h is the hidden state. At different stages of CNN, information
will be exchanged with h by layer aggregation. Because the
history information of different hidden feature maps of CNN is
stored in h, this process can improve the information exchange
within CNN and strengthen the feature extraction ability.

B. Structure of the Proposed WRLA unit
In [32], the authors list six kinds of network structures

based on ResNet-50 and the concept of layer aggregation. The
per-test shows that RLA-V6 performs best in complex power
quality detection and the structure of RLA-V6 is shown in Fig.
5(a).

Fig. 5. The structure of RLA and WRLA unit.

From Figure 5(a), it can be observed that the different
feature maps are fused with equal weight. However, in reality,
the influence of each feature map may not be equal. Taking this
into consideration, the Weighted Recurrent Layer Aggregation
(WRLA) unit is proposed, and its structure is illustrated in
Fig. 5(b). In WRLA unit, the mapping functions of Xt and ht

become: x(t) = λ1x(t−1) + f1(λ2x(t−1), λ3h(t−1)),
h(t) = f2(x(t−1), h(t−1)),
s.t.λ1 + λ2 + λ3 = 3.

(11)

where, λ1, λ2, λ3 ∈ (0, 3) and their initial values are set to
1. It can be found that there is no difference between RLA

and WRLA in the initial state. But with the training of the
network, λ1, λ2, λ3 will be automatically updated through a
gradient descent method to weighting different feature maps,
which makes WRLA further enhances feature extraction and
accelerates convergence.

IV. COMPLEX PQDS DETECTION FRAMEWORK BASED
ON I-IVTD AND WRLA NETWORK

In this section, we propose a complex PQDs detection
framework based on the I-IVTD & WRLA network. The
framework is divided into two parts: complex PQDs signal
decomposition and detection. Unlike the common PQDs
detection framework, this approach does not require manual
design features such as skewness or kurtosis of the signal [22].

In the first part, the complex PQDs signal is decomposed
using I-IVTD into 8 × 640 matrices, which are then
downsampled to 8 × 320. Downsampling is performed to
reduce the network burden, while a higher sampling rate
benefits the I-IVTD process. The data is normalized and fed
into the WRLA network.

In the second part, the structure and parameters of the
WRLA network need to be determined. For instance, smaller
kernel sizes are beneficial for capturing details but lack
receptive fields, while larger kernel sizes enhance the receptive
field but increase the number of parameters. Deeper networks
can improve feature extraction but risk overfitting. On the other
hand, it is necessary to redesign the depth of the network
and the number of channels in the convolutional layer. The
advantage of this operation is that it can further reduce network
parameters. To address these issues, we use the grid search
method, and the structure of the framework is shown in Figure
6.

Figure 6 shows multiple WRLA units with the same channel
described as a ‘stage’. The number of WRLA units for stages
1, 2, and 3 is 3, 4, and 6, respectively. ‘C1’ and ‘C2’ denote
the number of channels for xt and ht, respectively. It should
be noted that due to the stronger feature extraction ability of
WRLA, the performance of WRLA is better compared to RLA
with the same number of parameters. If increase the depth or
the number of channels in the convolutional layer of RLA, it
can also achieve similar performance as WRLA, but the cost
is to increase the number of parameters. Under the premise
of similar performance (accuracy difference less than 0.1 %),
WRLA reduced 77.4 thousand parameters.

V. EXPERIMENTS AND ANALYSIS
In this section, several experiments are described to verify

and compare the performance of the proposed framework. The
CPU and GPU used in the experiment are the i5-8300h and
the GTX1050 respectively.

A. Test data of complex PQDs
According to IEEE-1159 standards [4] and [33], nine

single PQDs signals and sixteen complex disturbances are
generated. Additionally, this paper considers two types of
non-linear disturbances to enhance the robustness of the
proposed framework, including voltage transients with swells
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and voltage flicker with transients. The non-linear disturbance
is generated by modulating different disturbance signals, and
the basis for this consideration is that different disturbances
occurring simultaneously can mix in modulation. Finally, all
disturbances are listed in Tab. II.

TABLE II
ALL PQD SIGNALS

Class PQ disturbance Class PQ disturbance

C1 Normal C15 Sag + transient
C2 Swell C16 Spike + transient
C3 Sag C17 Transient + harmonics + sag
C4 Interrupt C18 Transient + harmonics + swell
C5 Transient C19 Transient + harmonics + interrupt
C6 Flicker C20 Transient + harmonics + flicker
C7 Harmonics C21 Flicker + harmonics + interrupt
C8 Notch C22 Flicker + harmonics + swell
C9 Spike C23 Flicker + harmonics + sag
C10 Swell + harmonics C24 Notch + transient + swell
C11 Sag + harmonics C25 Spike + transient + swell
C12 Flicker + harmonics C26 Transient with swell
C13 Interrupt + harmonics C27 Flicker with transient
C14 Swell + transient

The simulation signal is generated in MATLAB with a
sampling rate of 3.2 kHz, and the number of sampling points
is 640. Each disturbance randomly generates 2000 samples
that differ from each other, with 60 % as the training set, 20
% as the validation set, and 20 % as the testing set. Gaussian
noise will also be added to the signal during the experiment
to alter the signal-to-noise ratio.

B. Performance under different SNR
Considering the fact that the SNR of the signal changes

over time, this section tests the performance of the frameworks
under different SNRs, and the results are listed in Table III.

Table III shows that decreasing SNR reduces detection
accuracy, but the proposed framework consistently achieves
high accuracy under different SNRs due to I-IVTD’s superior
anti-noise performance. Even at 20 dB, the proposed
framework still has an accuracy of 98.71 %. Comparing

TABLE III
COMPARISON BEFORE AND AFTER IMPROVEMENT

Framework
Accuracy(%) Test time per

sample (ms)20 dB 30 dB 40 dB clear

ITD & RLA 96.04 96.95 97.46 97.95 4.73+0.569

ITD & WRLA 96.88 97.52 97.92 98.33 4.73+0.63

I-IVTD & WRLA 98.71 99.06 99.35 99.52 97.65+0.63

WRLA and RLA, WRLA only adds three parameters per unit
than RLA, but has an 0.84 % improvement in accuracy when
SNR is 20 dB. While the cost of I-IVTD is a longer running
time, it still detects complex PQDs in real-time because the
PQDs signal’s sampling duration is 200 ms.

Table IV lists the accuracy of each disturbance under 20
dB. Overall, ITD & RLA performs worst, ITD & WRLA is
better, and I-IVTD & WRLA is the best. For some single
disturbances, their performance is similar as these disturbances
are easier to detect. For most complex disturbances, the
accuracy of the proposed framework is higher than 98 %.
In particular, the proposed framework has a clear advantage
in detecting nonlinear disturbances because I-IVTD is more
effective for nonlinear signals, and the improved WRLA
network has stronger learning abilities.

C. Comparison with different feature extraction and
classifier methods

To verify the performance of the proposed I-IVTD &
WRLA framework, this section compares it with different
feature extraction and classifier methods. Similar to ITD, both
VMD and EEMD is adaptive feature extraction methods. VMD
estimates signal components using the Lagrange multiplier
method, while EEMD filters the intrinsic mode function by
calculating the mean value of the boundary envelope. To
ensure a fair comparison, the ensemble number of EEMD is
the same as that of I-IVTD, and the feature map size of VMD
and EEMD is set to 8×320. Additionally, different classifiers
are set to the same number of layers and nodes. The SNR of
the test signal is 20 dB, and the accuracy trend of different
frameworks during the training process is shown in Fig. 7.

Fig. 6. The structure of the proposed framework.
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TABLE IV
PERFORMANCE OF EACH PQD UNDER 20DB

Class Accuracy(%)
ITD&RLA ITD&WRLA I-IVTD&WRLA

C1 98.68 98.85 100.00
C2 95.74 96.75 99.17
C3 94.12 94.97 98.78
C4 98.85 99.54 99.49
C5 98.67 99.05 99.67
C6 95.51 97.44 98.42
C7 96.29 98.72 98.69
C8 96.65 97.52 98.27
C9 96.30 98.69 99.21

C10 96.64 97.57 99.35
C11 100.00 100.00 100.00
C12 99.50 99.54 99.97
C13 95.45 96.25 98.23
C14 94.59 96.60 98.68
C15 95.62 97.59 98.03
C16 96.28 96.96 97.64
C17 93.68 95.70 98.34
C18 95.80 96.92 97.30
C19 95.52 93.66 98.43
C20 93.29 94.52 97.20
C21 94.64 93.95 98.29
C22 93.85 93.35 98.02
C23 92.08 93.72 98.79
C24 100.00 98.33 99.33
C25 96.69 97.66 99.35
C26 94.58 96.83 98.34
C27 94.04 95.04 98.13

It can be observed that the accuracy of ITD & ResNet is
the lowest, and over-fitting occurs at the end of training. ITD
& RLA perform better, as RLA is an improved version of
ResNet. Comparing different feature extraction methods, it can
be found that EEMD and VMD have better feature extraction
performance than ITD, but the test shows that they have a
higher amount of computation, with each sample requiring
170.83 ms and 124.33 ms, respectively. This is because the
variational mode needs to be solved by repetitive iterative,
and EEMD requires a lot of interpolation calculations. The
comparison between ITD & WRLA and ITD & RLA
shows that WRLA maintains a stable advantage. Combining
the proposed I-IVTD, I-IVTD & WRLA achieves the best
performance among the listed frameworks.

D. Comparison with advanced frameworks
To further verify the performance of the proposed

framework, this section compares with the advanced
frameworks reported in recent years. For fairness, the key
parameters of the test are listed. The comparison is expanded
from four dimensions: the number of disturbances, feature
extraction method, SNR of the test signal, and detection
accuracy. The best results reported by different advanced
frameworks are listed in Table V, where ’Year’ refers to the

Fig. 7. The training process of different frameworks.

reported time of the frameworks, ’Manual’ means manual
design feature, and ’Auto’ represents automatic frameworks.

TABLE V
COMPARISON WITH THE EXISTING ADVANCED METHODS

Framework (Year) Num.
of PQDs

Feature
Extraction SNR(dB) Accuracy

(%)

DWT+RF [23] (2020) 21 Manual pure 96.21
ICEEMD&AdKNN [24] (2021) 21 Manual 50 97.33
DNN [26] (2019) 16 Auto 20 98.13
IHT&ResNet50 [27] (2022) 28 Manual 30 97.18
LGAN [28] (2022) 48 Auto 20 96.85
XAI [30] (2022) 16 Auto 20 96.1
ACMP&GOA-SVM [34] (2021) 16 Manual 20 97.13
I-IVTD&WRLA 27 Auto 20 98.71

In Table V, all frameworks are designed to detect complex
disturbances, but they differ in their ability to detect them.
XAI [29] considers the interpretability of the judgment basis
when detecting complex disturbances, but it has an average
accuracy of only 96.1 %. LGAN [27] considers 48 types
of disturbances, but its detection accuracy is relatively low.
DNN [25] has an accuracy of over 98 % at 20 dB, but it
can only identify 16 types of disturbances. The other methods
require manual design of features [22] [23] [26] [34], and
their detection accuracy is lower than 98 %. In contrast, our
proposed framework can detect nonlinear disturbances and
achieved an accuracy of 98.71 % at 20 dB SNR, indicating
that our framework performs better than the other methods.

E. The test based on power quality analysis platform
To verify the performance of the proposed framework in

the given application, a test was conducted on a power quality
analysis platform. The structure of the test platform is depicted
in Fig. 8.

In this test, the PQDs signal was generated using Fluke
6105A. The disturbance signal was modulated in amplitude
to ±5V using an analog circuit and then converted into a
digital signal using AD7606 at a sampling rate of 3.2 kHz.
The data was then transmitted to a PC using a transmission
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Fig. 8. The structure of power quality analysis platform. (a) Schematic
of the signal sampling, (b) The hardware platform.

module with a maximum transmission rate of 480 Mbps.
The transmission module also included an SRAM cache to
prevent data loss. Finally, the disturbance signal was detected
on the PC, which applied the proposed framework using C++.
Due to the functional limitations of Fluke 6105A, only 12
types of power quality signals (C1, C2, C3, C4, C6, C7,
C10, C11, C12, C21, C22, C23) were tested in this test. The
test signal includes 6 types of single-disturbances, 3 types of
2-mixed disturbances, and 3 types of 3-mixed disturbances.
Compared to existing frameworks, this section has conducted
more comprehensive testing. The results are listed in Table VI.

TABLE VI
THE TEST RESULT IN POWER QUALITY ANALYSIS PLATFORM

Class Accuracy(%) Class Accuracy(%) Average
accuracy (%)

Test time per
sample (ms)

C1 100.00 C10 98.00

98.00 113.5
C2 99.00 C11 97.00

C3 99.00 C12 98.00

C4 99.00 C21 97.00

C6 98.00 C22 96.00

C7 99.00 C23 96.00

In Table VI, 100 tests were conducted for each type of
disturbance. The results show that the detection accuracy based
on the power quality disturbance experimental platform is
lower than that of the simulation, as this is not an ideal
experimental condition. However, the average accuracy still
reaches 98.00 %. Each sample takes 113.5 ms, which is due to
the additional time required for data transfer, but the proposed
framework can still detect complex PQDs in real time. These
results demonstrate that the proposed framework performs
satisfactorily in experimental tests.

VI. CONCLUSION

This paper proposes a novel framework for complex
power quality disturbance detection based on I-IVTD and
WRLA network. The proposed I-IVTD utilizes a variable time
scale and multi-decomposition integration mechanism, which
experiments show reduces mode aliasing and endpoint effects
of ITD, and improves anti-noise performance. The proposed
WRLA enhances the learning capabilities and accelerates the
convergence of the network by adding weights to the feature
maps. Under the premise of similar performance, WRLA
reduced 77.4 thousand parameters than RLA. Simulation
experiments demonstrate the advantages of the proposed
framework, particularly in improving the robustness of the
framework under non-linear perturbations. Compared to the
unimproved framework, the accuracy improvement at 20
dB reaches 2.67 %. Additionally, the proposed framework
outperforms existing methods, even under strong noise
(98.71 % at 20 dB). Finally, experiments conducted on the
experimental platform show that the processing time of each
sample (duration 200 ms) only needs 113.5 ms, which means
the proposed framework can detect complex power quality
disturbances in real time with high accuracy.

However, this work still has limitations. I-IVTD still exists
modal aliasing and endpoint effects, and detecting complex
disturbances can only be done in frames with a period of
200 ms. In future works, the authors hope to further improve
the performance of I-IVTD, seeking the more efficient CNN
network and accurately detecting and locating the time span of
disturbances. At the same time, it is also hoped that a sufficient
number of disturbance signals can be collected in the power
grid.
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