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Electron-phonon interactions using the projector augmented-wave method and Wannier functions
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We present an ab initio density-functional-theory approach for calculating electron-phonon interactions within
the projector augmented-wave (PAW) method. The required electron-phonon matrix elements are defined as the
second derivative of the one-electron energies in the PAW method. As the PAW method leads to a generalized
eigenvalue problem, the resulting electron-phonon matrix elements lack some symmetries that are usually present
for simple eigenvalue problems and all-electron formulations. We discuss the relation between our definition
of the electron-phonon matrix element and other formulations. To allow for efficient evaluation of physical
properties, we introduce a Wannier-interpolation scheme, again adapted to generalized eigenvalue problems.
To explore the method’s numerical characteristics, the temperature-dependent band-gap renormalization of
diamond is calculated and compared with previous publications. Furthermore, we apply the method to selected
binary compounds and show that the obtained zero-point renormalizations agree well with other values found in
literature and experiments.
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I. INTRODUCTION

Electron-phonon interactions are exceedingly relevant for
the simulation of both zero and finite-temperature properties
[1–3]. Be it their theoretical importance in understanding
fundamental aspects of condensed matter or their great prac-
tical value in developing novel and superior technologies,
electron-phonon interactions are indispensable in modern
physics. They provide a rigorous framework for describing
thermal transport in semiconductors, the electrical resistivity’s
temperature dependence in metals, explain the emergence of
conventional superconductivity, and are responsible for the
formation of polarons, to name a few examples. Furthermore,
the importance of electron-phonon interactions in developing
batteries [4,5], solar cells [6,7], thermoelectrics [8–11], and
organic electronics [12] highlights their practical significance.

While their theoretical importance is unquestionable, the
inclusion of electron-phonon interactions in routine ab initio
simulations has been a relatively recent development. A lack
of efficient ab initio algorithms and the widespread use of
semiempirical model Hamiltonians were part of the reason
for this delay in development. Nevertheless, nowadays there
exists a broad spectrum of available computational models
that promise to describe electron-phonon interactions. They
can roughly be divided into two categories, as the methods
are either based on statistical sampling or perturbation theory.

For sampling methods, the conceptually simplest approach
is to average over atomic configurations from statistical en-
sembles. This can be achieved in a multitude of ways, for
example, via Monte Carlo integration [13,14] or molecular
dynamics [15,16]. Methods based on statistical sampling are
usually easy to implement and are capable of capturing an-
harmonic effects [17]. Due to their statistical nature, however,
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they also feature substantial disadvantages. In particular, their
reliance on large supercells and, potentially, vast numbers
of samples often incurs subpar computational scaling with
regard to system size. Furthermore, using a sampling method
might not be appropriate when the quantity of interest needs
to be resolved with respect to individual phonon modes. The
need for many samples has recently been challenged by a
one-shot method [18] that only requires a single supercell
configuration. It allows for efficient computations of the
phonon-induced renormalization of ab initio electronic band
structures if long-range electrostatic effects are not relevant
(e.g., Fröhlich-like interactions).

Alternatively, electron-phonon interactions can be calcu-
lated using perturbation theory. Contrary to the simplicity of-
fered by sampling methods, approaches based on perturbation
theory are usually more involved. In most cases, however,
they are substantially faster and provide direct computa-
tional access to intermediate quantities. The de facto standard
for treating electron-phonon interactions in this context is
density-functional perturbation theory (DFPT) [19,20]. This
may involve merely a single unit cell and allows for the calcu-
lation of phonon-related quantities at arbitrary wave vectors.

Many crystal-related properties, such as finite-temperature
transport, heat conductivity, and superconducting properties
require a very fine sampling of the Brillouin zone. This can
significantly increase the computational cost if methods such
as DFPT are used directly for a large number of phonon
wave vectors. Fortunately, there exist interpolation methods
based on Wannier functions [21–24] or atomic orbitals [25]
that offer a tremendous decrease in computation time while
maintaining reasonable accuracy. Starting from only a small
number of potentially expensive ab initio steps, this method
allows for the calculation of electron-phonon matrix elements
at arbitrary wave vectors through interpolation.

We present an implementation based on perturbation the-
ory and Wannier orbitals, distinguished from others by the
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employment of the projector augmented-wave (PAW) method
[26,27] and a finite-difference scheme in real space [28–31].
Despite having to rely on using large supercells, this ap-
proach has multiple advantages. The PAW method strikes
an excellent compromise between speed and precision, ri-
valing the accuracy of FLAPW methods [32]. Furthermore,
finite differences are universally applicable to any functional,
including hybrid or metagradient functionals, since linear-
response theory is avoided. While the present formalism is
fully adiabatic and neglects the energy transfer during phonon
emission and absorption, as well as long-range electrostatic
effects, the inclusion of these effects is in principle possible
in a finite-difference scheme. Finally, the implementation has
been integrated into the VIENNA AB INITIO SIMULATION PACK-
AGE (VASP) [33–36], which boasts a solid and feature-rich
simulation environment.

The approach is tested for a number of materials. We
seize this opportunity to compare numerical results with the
one-shot method previously implemented in VASP [37]. This
provides both a way to verify the credibility of our imple-
mentation as well as a meaningful way of comparing the
two computational approaches as they are part of the same
software package.

The outline of the paper is as follows. In Sec. II, the
phonon-induced renormalization of the electronic band struc-
ture is derived within the PAW framework using perturbation
theory. This leads to the definition of a PAW electron-phonon
matrix element that is discussed in more detail in Sec. III.
Subsequently, the Wannier-interpolation algorithm used to
calculate such matrix elements is outlined in Sec. IV. Numer-
ical results and a discussion thereof are presented in Sec. V,
followed by a short conclusion in Sec. VI.

II. ELECTRON SELF-ENERGY IN THE PAW
FRAMEWORK

Most ab initio methods for determining the electronic
ground state rely on the Born–Oppenheimer approximation
that completely neglects the ionic vibrational degrees of free-
dom. A common approach aiming to include lattice dynamics
and electron-phonon interactions is to expand the quantity
of interest in a perturbation series. The derivation presented
here follows the spirit of the perturbation theory developed by
Allen, Heine, and Cardona (AHC) [38,39].

To begin, the fully temperature-dependent energy, εnk(T ),
of a single Kohn–Sham (KS) electron with band index n and
Bloch vector k is expanded with respect to individual atomic
displacements, ulκ ,

εnk(T ) = εnk +
∑
lκα

∂εnk

∂ulκα

〈ulκα〉T

+ 1

2

∑
lκα

∑
l ′κ ′β

∂εnk

∂ulκα

ul ′κ ′β〈ulκαul ′κ ′β〉T + . . . , (1)

where εnk are the KS eigenvalues of the purely electronic
ground state and l , κ , α are cell, atom, and Cartesian indices,
respectively. Where appropriate, these indices are absorbed
into a compound index, τ ≡ (l, κ, α), and the shorthand no-
tation ∂τ ≡ ∂

∂ulκα
is used. By convention, ∂τ here only acts on

the term immediately following the differential operators.

Neglecting the first-order, third-order, as well as all higher-
order terms in Eq. (1) leaves the quadratic, harmonic term as
the sole contribution to the shift in energy, �εnk(T ), due to
electron-phonon interactions:

�εnk(T ) ≡ 1

2

∑
τ

∑
τ ′

∂τ ∂τ ′εnk〈uτ uτ ′ 〉T . (2)

Needless to say, this approximation breaks down if the system
exhibits strong anharmonicities. However, this formulation
allows for a simple treatment of the vibrational degrees of
freedom in terms of phonons.

To begin with, we focus on the thermal expectation value
〈uτ uτ ′ 〉T . Using phonon creation and annihilation operators, it
is straightforward to cast this term into a useful expression,

〈ulκαul ′κ ′β〉T =
∫

BZ

d3q

	BZ

∑
ν

h̄
(
nνq(T ) + 1

2

)
ωνq

√
mκm′

κ

× eiq·(Rlκ−Rl′κ′ )eκα,νqe∗
κ ′β,νq, (3)

with ωνq and eκα,νq being the angular frequencies and eigen-
vectors, respectively, of a phonon with wave vector q and
branch index ν. mκ is the mass of ion κ , Rlκ the equilibrium
position of that ion in cell l , and nνq(T ) is the Bose–Einstein
distribution function for a phonon with energy h̄ωνq.

Equation (3) describes the average thermal fluctuations of
the ionic system in terms of independent phonon modes. It
is the only temperature-dependent quantity that enters the
energy shift in Eq. (2). Obviously, for T → 0 ⇒ nνq(T ) → 0,
there is still a contribution due to zero-point vibrations of the
lattice, commonly referred to as zero-point renormalization
(ZPR).

Recalling Eq. (2), the second derivative of the KS eigen-
values is yet to be determined. In the PAW framework, the KS
equations generalize to

H̃ |�̃nk〉 = εnkS̃ |�̃nk〉 , (4)

where H̃ and S̃ are the PAW Hamiltonian and overlap operator,
respectively, and |�̃nk〉 are smooth pseudo-Bloch orbitals.
These quantities are related to their all-electron (AE) coun-
terparts via the usual linear transformation, T̂ :

|�nk〉 = T̂ |�̃nk〉 , (5)

H̃ = T̂ †Ĥ T̂ , (6)

S̃ = T̂ †T̂ . (7)

Differentiation of Eq. (4) with respect to a single atomic
displacement, ulκα , yields a special instance of the Hellman–
Feynman theorem for the PAW method:

∂τ εnk = 〈�̃nk|∂τ H̃ − εnk∂τ S̃|�̃nk〉 . (8)

Repeating this process once again leads to an expression
for the second derivative that can be split into two distinct
contributions,

∂τ ∂τ ′εnk = δεFM
nk,ττ ′ + δεDW

nk,ττ ′ , (9)
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where δεFM
nk,ττ ′ and δεDW

nk,ττ ′ will be referred to as the Fan–
Migdal (FM) and Debye–Waller (DW) contributions, respec-
tively. The corresponding energy shifts, �εFM

nk and �εDW
nk , are

given by Eq. (2):

�εnk(T ) ≡ �εFM
nk (T ) + �εDW

nk (T ), (10)

�εFM
nk (T ) ≡ 1

2

∑
τ

∑
τ ′

δεFM
nk,ττ ′ 〈uτ uτ ′ 〉T , (11)

�εDW
nk (T ) ≡ 1

2

∑
τ

∑
τ ′

δεDW
nk,ττ ′ 〈uτ uτ ′ 〉T . (12)

The FM contribution subsumes all terms containing factor-
izable first derivatives, while the remaining terms containing
only second derivatives comprise the DW contribution. A
detailed derivation of these terms in the atomic-coordinate
basis is given in Appendix A.

Here, we simply state the final results in the phonon-mode
basis. In that representation, the FM self-energy takes the form

�εFM
nk (T ) = −

∑
ν

g̃nnk,ν0g̃S
nnk,ν0(2nν0(T ) + 1)

+
∫

BZ

d3q

	BZ

∑
ν

′∑
m

|̃gmnk,νq|2
εnk − εmk+q

(
2nνq(T ) + 1

)
,

(13)

with

g̃mnk,νq ≡ 〈�̃mk+q|∂νqH̃ − εnk∂νqS̃|�̃nk〉 , (14)

g̃S
mnk,νq ≡ 〈�̃mk+q|∂νqS̃|�̃nk〉 . (15)

The quantity g̃mnk,νq will be referred to as PAW electron-
phonon matrix element. Its properties are discussed in more
detail in Sec. III. The primed sum appearing in Eq. (13) ex-
cludes all divergent terms with (nk) = (mk′) and the domain
of integration spans the first Brillouin zone with volume 	BZ.
In practice, potential divergence problems due to degeneracies
can be avoided by introducing a small imaginary shift in the
denominator.

Retrieving the DW self-energy in a similar fashion is
more involved, since Eq. (12) involves a double sum over all
atoms of the lattice. In practice, the amount of independent
displacements renders this expression challenging to compute
efficiently such that approximations become necessary.

Allen and Heine [38] have used the invariance of the total
energy with respect to lattice translations to relate the FM
to the DW contribution. A generalization to crystals featur-
ing a multiatom basis was subsequently suggested by Allen
and Cardona [39]. AHC used the rigid-ion approximation to
retrieve a workable expression for the DW self-energy. The
crucial simplification is that the second derivatives appearing
in δεDW

nk,ττ ′ shall only yield on-site contributions, e.g.,

δεDW
nk,lκαl ′κ ′β = 0 if l 	= l ′ ∨ κ 	= κ ′ . (16)

The DW contribution can thus be calculated similarly to the
FM contribution. Carrying out the algebra results in

�εDW
nk (T ) =

∫
BZ

d3q

	BZ

∑
ν

�S
nk,νq(2nνq(T ) + 1)

−
∫

BZ

d3q

	BZ

∑
ν

′∑
m

�mnk,νq

εnk − εmk
(2nνq(T ) + 1),

(17)

where

�mnk,νq ≡ h̄

4ωνq

∑
κα

∑
κ ′β

�
νq
κα,κ ′β g̃0∗

mnk,κα g̃0
mnk,κ ′β, (18)

�S
nk,νq ≡ h̄

4ωνq

∑
κα

∑
κ ′β

�
νq
κα,κ ′β g̃0

nnk,κα g̃S0
nnk,κ ′β, (19)

�
νq
κα,κ ′β ≡ eκα,νqe∗

κβ,νq

mκ

+ e∗
κ ′α,νqeκ ′β,νq

mκ ′
, (20)

g̃0
mnk,κα ≡

∑
ν

√
2mκων0

h̄
eκα,ν0g̃mnk,ν0, (21)

g̃S0
mnk,κα ≡

∑
ν

√
2mκων0

h̄
eκα,ν0g̃S

mnk,ν0. (22)

Equation (17) is written such that it takes a form reminis-
cent of Eq. (13). A more detailed derivation is found in
Appendix B.

It is worth mentioning that the aforementioned FM and DW
terms are, in fact, not identical to the ones usually obtained
from nongeneralized eigenvalue problems. In both contri-
butions, additional terms appear due to the PAW method.
Nevertheless, the presented formulation guarantees numerical
stability for calculating derivatives in the PAW framework.
This aspect is discussed in more detail in Sec. III. Finally,
it is easy to confirm that by setting S̃ equal to the identity
operator, one obtains the usual results for norm-conserving
pseudopotentials. In this case, all terms of the form ∂τ S̃
vanish.

III. ELECTRON-PHONON MATRIX ELEMENT IN THE
PAW FRAMEWORK

In Sec. II, the electron-phonon matrix element has been
defined via the second derivative of the one-electron energies
with respect to a collective ionic displacement. In this section,
a closer look is taken at some of its more peculiar properties
and the nuances arising from the PAW formalism.

In the context of DFT, a common definition for the
electron-phonon matrix element is [1]

gmnk,νq ≡ 〈�mk+q|∂νqĤ |�nk〉 . (23)

Chaput et al. recently suggested using the following formally
equivalent matrix element [40]:

gmnk,νq = (εnk − εmk+q) 〈�mk+q|∂νq�nk〉 , (24)

which will be referred to as the AE matrix element. They
suggested inserting the PAW transformation �nk = T̂ |�̃nk〉
in this equation and then using the PAW completeness relation
to simplify the matrix element. This approach implies that
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explicit derivatives of the operator T̂ , and thus of the partial
waves, need to be calculated.

Our g̃mnk,νq are formally equivalent to

g̃mnk,νq = (εnk − εmk+q) 〈�̃mk+q |̃S|∂νq�̃nk〉 , (25)

as shown, for instance, in Ref. [41]. The difference between
both approaches is rather subtle. In the first case, one starts
from the derivative of the full-potential orbital, then inserts the
PAW transformation, �nk = T̂ |�̃nk〉, and finally applies the
completeness relation to simplify the equations. In our case,
we first use the PAW transformation to phrase the problem
in terms of a generalized eigenvalue problem [26,27]. The
transformed problem does not have an explicit reference to
the operator T̂ . We then calculate how the eigenvalues in the
generalized eigenvalue problem change when ions are moved.
This approach does not involve explicit derivatives of the
partial waves with respect to the ionic positions.

By expanding the AE orbitals according to Eq. (5), the
following relation between both expressions can be found:

gmnk,νq − g̃mnk,νq

= (εnk − εmk+q) 〈�̃mk+q|T̂ †(∂νqT̂ )|�̃nk〉 . (26)

More details are presented in Appendix C. The difference
between the two matrix elements is in general not zero but,
notably, if S̃ = 1, they coincide.

Furthermore, while the AE electron-phonon matrix is Her-
mitian, the same is not true for the one defined in Eq. (14).
Hermitian conjugation, in this context, means the following:

(gmnk,νq)† ≡ g∗
nmk+q,ν−q . (27)

Since ∂∗
νq = ∂ν−q, the Hermicity of the AE matrix element is

easily established. In the case of Eq. (14), we obtain

(̃gmnk,νq)† = 〈�̃mk+q|∂νqH̃ − εmk+q∂νqS̃|�̃nk〉
	= g̃mnk,νq . (28)

This behavior is a direct consequence of dealing with a
generalized eigenvalue problem. Any physical observable,
however, will involve terms of the form ‖̃g‖2 = g̃̃g∗ which are
self-adjoint, hence, all observables are well defined and real.

As a matter of fact, it is also possible to calculate the
FM and DW self-energies using the AE matrix element
Eq. (25), e.g., Ref. [40]. At first glance, this might seem like
a reasonable proposal as it removes the necessity of dealing
with non-Hermitian operators and perturbation theory for a
generalized eigenvalue problem. However, the matrix element
〈�̃mk+q|T̂ †∂νqT̂ |�̃nk〉 that needs to be evaluated in this case
contains explicit derivatives of PAW partial waves. In our
experience, this means that the results will be dependent on
the completeness of the PAW partial waves, for instance, all
summations should include core orbitals. That being said,
PAW potentials including many partial waves and treating
many core states as valence orbitals (such as the GW PAW
potentials) might enable accurate calculations of the AE
electron-phonon matrix element using Eq. (26).

The greatest merit in having defined the PAW matrix ele-
ments in Eqs. (14) and (15) is undoubtedly their fast conver-
gence with respect to the included partial waves. Furthermore,
the matrix elements involving H̃ , S̃, and their derivatives are

already computationally available in most PAW implementa-
tions. This is a significant advantage as it becomes possible to
reuse existing routines.

IV. WANNIER INTERPOLATION

So far, a perturbative approach for calculating the phonon-
induced electron self-energy inside the PAW framework has
been presented. Additionally, it has been shown how an
electron-phonon matrix element could be defined in this
context. In practical applications, it is often necessary to
sample the first Brillouin zone densely, in turn requiring
the calculation of a vast number of electron-phonon matrix
elements. When using a perturbative method such as DFPT
directly, this approach can become very expensive. In this
section, an interpolation method based on Wannier functions
that promises to reduce the computational cost is presented.

A. Generalized Wannier orbitals

A generalized Wannier orbital, |Wml〉, may be defined as

|Wal〉 ≡ 1√
Nk

∑
nk

e−ik·ξla |�nk〉Una,k, (29)

such that its real-space wave function, Wal (r) ≡ 〈r|Wal〉, is
localized [23]. In each cell, which is labeled by l , multiple
Wannier orbitals may exist that are distinguished by the
Wannier index a. The vector ξla points toward the spatial
center of the Wannier function Wal (r). Nk is the number
of k points in the first Brillouin zone. The unitary matrix
Una,k, referred to as the Wannier transformation matrix, will
be discussed below. An inverse transformation can easily be
specified, transforming a set of Wannier orbitals back into
Bloch orbitals:

|�nk〉 = 1√
Nk

∑
la

eik·ξla |Wal〉U †
an,k . (30)

Notably, the transformation matrices Una,k are nonunique.
A popular choice for them is the one that gives maximum
localization with respect to a well-defined spread functional.
The resulting, so-called maximally localized Wannier func-
tions need to be obtained from an iterative procedure [42].
Contrarily, in the present paper, Wannier orbitals are utilized
that are generated from a simple projection scheme such as
the one used in Ref. [43], as detailed in the following section.

B. Wannier functions via projection

A simple way of constructing a set of symmetric Wannier
functions suitable for interpolation is via projection. To begin,
the Bloch manifold is projected onto a set of localized trial
orbitals, |ζa〉:

Ana,k ≡ fnk 〈�nk|ζa〉 . (31)

Let NB be the number of Bloch orbitals involved in the
projection and NW be the number of trial orbitals, then the
dimension of the matrix Ana,k is NB × NW .

The weight factors fnk provide a smooth cutoff for the
Bloch orbitals as higher-lying states are assigned increasingly
smaller weights. This is important in the case of entangled
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bands, such as for metals, as opposed to an isolated manifold.
Including these weighting factors can substantially increase
the suitability of the resulting Wannier orbitals for interpo-
lation. In practice, the fnk are modeled by a Fermi–Dirac
distribution function, albeit with the “Fermi” energy at an
appropriate point in the conduction band.

Generally, the rectangular projection matrix, Ana,k, has
a rank not greater than the dimension of the trial orbitals’
span. Emphasis is put on the fact that the |ζa〉 need not be
orthonormal.

The projection matrix is then expressed as a matrix product
using a singular-value decomposition,

Ana,k =
NB∑
m

NW∑
b

Xnm,k�mb,kY †
ba,k, (32)

where Xnm,k and Yba,k are unitary square matrices with dimen-
sions NB × NB and NW × NW , respectively. The matrix �mb,k
has a rank min (NB, NW ), the same dimensions as Ana,k and
contains the latter’s singular values on the main diagonal and
zero everywhere else.

Finally, the Wannier transformation matrix is constructed
using the unitary matrices obtained from the singular-value
decomposition:

Una,k =
NB∑
m

NW∑
b

Xnm,kδmbY
†

ba,k . (33)

One can easily verify that the resultant Wannier orbitals are
orthonormal if the original Bloch orbitals are orthonormal.
Experience shows that Wannier orbitals constructed this way
are suitable for Wannier interpolation [43]. This is discussed
in the following section.

C. Interpolation of the electron-phonon matrix element

The interpolation scheme described in this section follows
the same basic principles as outlined in Refs. [21] and [24].
Using Wannier interpolation, the electron-phonon matrix ele-
ment can be obtained in the Bloch representation as

gmnk,νq =
∑

al

∑
bl ′

∑
κα

1√
mκ

eκα,νq

× e−i(k+q)·(ξla−R0κ )eik·(ξl′b−R0κ )

×Uma,k+qgWalbl ′,0καU †
bn,k, (34)

with

gWalbl ′,pκα ≡ 〈Wal |∂pκαĤ |Wbl ′ 〉 . (35)

The equilibrium position of ion κ in cell l is denoted by Rlκ

and ξla is the center of the Wannier function. Small differences
to the original formalism in Ref. [21] exist deliberately to
better match the present implementation. For example, the
translational invariance of the Wannier-space matrix element
is used to confine the vibrational degrees of freedom to a
single unit cell. This is favorable in a finite difference scheme
since the number of required independent displacements is
minimized.

The cell indices l and l ′ corresponding to the involved
Wannier functions go over the entire lattice. If the Wannier-

space matrix element, gW , decays fast enough as a function
of |R0κ − ξla|, however, it is possible to introduce an effective
cutoff radius. Matrix elements beyond this cutoff are assumed
to be zero and the interpolation can be performed efficiently
using small matrices.

At arbitrary k points, the interpolated electronic eigenval-
ues and eigenvectors can be obtained by diagonalization of the
Wannier-interpolated Hamiltonian matrix,

HW
abk ≡

∑
l

e−ik·(ξla−ξ0b) 〈Wal |Ĥ |Wb0〉 , (36)

i.e., by determining unitary matrices Uma,k and eigenvalues
εnk that diagonalize HW

abk:

δmnεnk =
∑

ab

Uma,kHW
abkU †

bn,k . (37)

Equations (36) and (37) together also allow us to interpolate
the electronic band structure to arbitrary Bloch vectors.

Similarly, the phonon frequencies and modes are calculated
by determining the interatomic force constants in the supercell
and assuming that the force constants are zero beyond the
interaction range of the supercell. The phonon frequencies are
then determined by a discrete Fourier transformation of the
interactomic force constants to obtain the dynamical matrix
at any wave vector, followed by a diagonalization of the
dynamical matrix [28–31]. The interatomic force constants
are calculated alongside the perturbed Wannier-space Hamil-
tonian matrix using a finite-difference scheme.

D. Wannier interpolation in the PAW framework

In the PAW method, Eq. (29) is expressed in terms of
pseudo-orbitals,

|W̃al〉 ≡ 1√
	BZ

∫
BZ

d3ke−ik·ξla |�̃nk〉Una,k, (38)

which defines a set of pseudo-Wannier orbitals, |W̃al〉, com-
pletely analogous to the AE case. In other words, the Wannier
transformation does not affect the atom-specific part of the
PAW transformation.

A generalization of Wannier interpolation to the PAW
method is then, in principle, straightforward. For example, to
interpolate the electronic band structure in the PAW method,
one simply replaces the AE orbitals and operators in Eq. (36)
with their pseudocounterparts:

〈Wal |Ĥ |Wb0〉 = 〈W̃al |H̃ |W̃b0〉 . (39)

In the case of the electron-phonon matrix element, the
matrix elements involving ∂νqH̃ and ∂νqS̃ can be interpolated
separately. The required band energies, εnk, can be obtained
from Eqs. (36) and (37).

V. RESULTS AND DISCUSSION

Before the Wannier-interpolation scheme discussed in
Sec. IV C can be used in practice, a few conditions must be
met. In particular, the Wannier-space matrix elements involv-
ing the PAW Hamiltonian, its derivative, and the derivative of
the PAW overlap operator need to spatially decay sufficiently
fast so the sums in Eqs. (34) and (36) converge. Additionally,
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FIG. 1. Numerical structure of various Wannier matrices for diamond. The three figures show parts of the real-valued matrices
〈W̃al |H̃ |W̃bl ′ 〉 (left), 〈W̃al |∂000H̃ |W̃bl ′ 〉 (middle), and 〈W̃al |∂000S̃|W̃bl ′ 〉 (right). The dashed lines separate regions corresponding to different
unit cells (indices l and l ′), while the rows and columns of colored squares correspond to the different Wannier orbitals (indices a and b; in
this case, 1 s-like and 3 p-like orbitals per atom). The area of each square is proportional to the absolute value of the corresponding matrix
element, while the color indicates positive (orange) and negative (blue) values.

the set of Wannier functions used for interpolation must
closely match the electronic character of the target range of
bands included in the transformation. It is important to verify
these criteria independently for each material. Otherwise, the
quality of the interpolation might deteriorate.

In this section, attention is initially placed on diamond, ow-
ing mostly to its extensive coverage in literature. Afterward,
phonon-induced band-gap renormalizations are calculated for
a set of semiconductors. We also take the opportunity to com-
pare our results with the ones obtained by Karsai et al. [37]
using a stochastic one-shot method. The latter has recently
also been implemented in VASP providing a solid ground for
comparison.

A. Diamond

In diamond, the Wannier-projection process is straightfor-
ward. The four highest valence bands and the four lowest
conduction bands can be spanned by one s-like and three
p-like Wannier orbitals on each atom. With two atoms per
primitive cell, the number of bands that can be spanned is
eight: four of which are in the valence band, while the other
four are in the conduction band.

All calculations on diamond are performed using the PBE
[44,45] PAW potential with the default electronic cutoff of
400 eV. The lattice parameter is set to the experimental value
of 3.567 Å [46].

Small sections of the Wannier-space matrices of the Hamil-
tonian, its derivative, and the derivative of the PAW overlap
are visualized in Fig. 1 (the unperturbed overlap matrix is
the identity matrix). The matrix elements corresponding to
the atom at which the perturbation occurs are located in the
first four rows (or columns) starting from the top left corner
of the shown section. One can clearly see that, after taking
the derivative with respect to that atom, only matrix elements
involving atoms around that perturbation have significant
contributions. This supports the claim that the real-space sums

appearing in Eq. (34) can be truncated at a fairly small radius
without jeopardizing their convergence.

A meaningful way of quantifying the spatial decay of
these matrix elements is to study their absolute values as a
function of distance between the associated Wannier centers
in the periodic supercell. Figure 2 shows this dependency on
distance for the Hamiltonian, its derivative, and the derivative
of the PAW overlap operator.

Clearly, the data decay roughly exponentially with the
distance.

Finally, we would like to showcase the importance of the
supercell size and the number of q points in the convergence
of an observable. The size of the supercell is relevant because
the number of Wannier orbitals is directly tied to the number
of atoms in our implementation. Therefore, the Wannier-space
cutoff radius is implicitly given by the size of the supercell and
is implemented using a minimum-image convention within
the periodic supercell. In our studies, we use 4 × 4 × 4, 5 ×
5 × 5, and 6 × 6 × 6 supercells comprised of primitive unit
cells, each containing two atoms.

We calculate the ZPR of the direct band gap of diamond
using Eqs. (13) and (17). The Brillouin-zone integrals are
approximated by sums over a dense q-point mesh. Here, we
simply choose the mesh to contain the q points commensurate
with the supercell and subdivide it in all three reciprocal-
lattice directions in order to increase the q-point density.

The ZPR of the direct gap as a function of the Brillouin-
zone sampling density is shown in Fig. 3 for different super-
cell sizes.

Based on these calculations, the most well-converged result
for the ZPR of the direct gap of diamond is −427 meV for the
6 × 6 × 6 supercell.

Judging from the available data, we conclude that cell sizes
beyond a 6 × 6 × 6 supercell would not significantly change
the result for diamond. We also note that q-point convergence
is reached independent of the original cell size at around 105

q points inside the first Brillouin zone.
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FIG. 2. Various Wannier-space matrix elements for diamond
plotted as functions of the distance between the corresponding
Wannier centers. For each possible distance, only the largest absolute
value is shown. A logarithmic scale is used to highlight the exponen-
tial spatial decay. Panel (a) shows the unperturbed PAW Hamiltonian
matrix, H̃W

max(r) ≡ max{al} 〈W̃al |H̃ |W̃00〉, with |ξla − ξ00| = r. Panel
(b) shows the Hamiltonian matrix for a particular monoatomic pertur-
bation, �H̃W

max(r) ≡ max{al} 〈W̃al |∂000H̃ |W̃00〉, with |ξla − R00| = r.
Finally, (c) is the same as (b) but showing the perturbed PAW overlap
matrix.

Finally, we also calculate the temperature-dependent direct
and indirect band gap of diamond using a 5 × 5 × 5 supercell
at fixed volume. The results are shown in Fig. 4.

For the sake of comparison, experimental as well as other
ab initio results are included. The experimental data sets
are fitted with an analytical function advocated in Ref. [49],
claimed to be superior to fits based on the Varshni equation
[50]. The ab initio data from Karsai correspond to one-shot
calculations for a 5 × 5 × 5 supercell using density-functional
theory (extracted from the LDA and PBE data sets in Figs. 3
and 5 in Ref. [37], respectively). Lastly, the data set produced
by Antonius et al. [47], using the same underlying methodol-
ogy as presented here, is shown.

The results are satisfactory as there is good agreement
with the other ab initio data sets. In the case of the direct

FIG. 3. Convergence of the renormalization of the direct band
gap of diamond as a function of cell size and q-point density.
The number of q points is determined as the number of q points
commensurate with the supercell times the number of subdivisions
in one direction cubed.

gap, our results tend to agree quite well with the results
published by Antonius et al. This is to be expected since the
underlying computational methods are essentially the same.
The deviation from the experimental data at high temperatures
is a result of the neglect of the volume expansion as a function
of the temperature (quasiharmonic effects) as discussed in
Ref. [37].

B. Band-gap renormalization in other materials

The present algorithm has also been employed to calculate
the ZPR of band gaps for AlAs, AlP, AlSb, BN, C, GaN,
GaP, Si, and SiC. These materials share the same zinc-blende
(or diamond) structure but with different lattice parameters.
Appropriate Wannier orbitals can again be obtained by a
projection on one s-like and three p-like orbitals. Again, PBE
potentials and default electronic cutoff radii are used and
ZPRs corresponding to degenerate bands are averaged. The
computational parameters are summarized in Table I. The
lattice parameters are chosen in accordance with the ones in
Ref. [37] to maximize the comparability of the data.

With the exception of GaN, all of these materials feature
an indirect band gap. To determine the precise location of
the band transition inside the first Brillouin zone, Wannier-
interpolation is used to calculate the electronic band struc-
ture along finely sampled high-symmetry lines. These data
are then scanned for the conduction-band minimum and the
valence-band maximum. The total ZPR is then the difference
between the respective energy shifts.

Calculations are performed for 4 × 4 × 4 and 5 × 5 × 5
supercells. All results are converged with respect to the
number of q points. Table II shows the final results for the
aforementioned materials.

A closer look at the data reveals that the ZPR increases with
cell size, lowering the band gap, except for GaP where the
ZPR stays the same. This is consistent with the convergence
behavior shown in Fig. 3, indicating that the 4 × 4 × 4 su-
percell is insufficiently large to reach convergence. The mean
absolute difference in the ZPRs between the 4 × 4 × 4 and
5 × 5 × 5 cell is about 11 meV, which also agrees favorably
with the results obtained for the direct gap of diamond.
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FIG. 4. Temperature dependence of the direct and indirect band
gap of diamond, with the present results obtained from a 5 × 5 × 5
supercell. The data corresponding to the stochastic one-shot method
(orange crosses) were taken from Ref. [37], while the ones for a
reference supercell calculation (green squares) were extracted from
Ref. [47]. The experimental data for the direct gap correspond to
samples IIa and IIb in Ref. [48] and for the indirect gap, the data
are taken from Ref. [49]. Experimental data sets are fitted with the
analytic function proposed in Ref. [49]. All curves are shifted as to
coincide with the fitted experimental data at zero temperature (in
panel (a), with respect to data set IIa).

Finally, we compare our ZPR results with the ones from
Ref. [37], which is summarized in Table III. Since the data
sets are generated by fundamentally different methods, it is
desirable to tune the computational parameters to maximize

TABLE I. List of computational parameters for the simulated
materials.

Lattice Plane-wave
parameter cutoff

(Å) (eV) Ref.

AlAs 5.661 240 [51]
AlP 5.463 255 [52]
AlSb 6.136 240 [53]
BN 3.616 400 [54]
C 3.567 400 [46]
GaN 4.535 400 [37]
GaP 5.451 255 [55]
Si 5.431 245 [56]
SiC 4.358 400 [57]

TABLE II. Band-gap renormalization due to zero-point lattice
vibrations for a selection of materials obtained via the presented
algorithm. All results are converged with respect to the number of q
points. Supercell sizes are given in parentheses. Theoretical literature
values are presented for BN [58], C [59,60], GaN [61], Si [60,62],
and SiC [63]. In addition, experimental results are presented for AlSb
[64], C [65,66], and Si [64,65]. Energies are in eV.

ZPR ZPR
(4 × 4 × 4) (5 × 5 × 5) Theory Exp.

AlAs −0.048 −0.056 – –
AlP −0.057 −0.065 – –
AlSb −0.032 −0.039 – −0.039
BN −0.294 −0.321 −0.262 –

−0.331
C −0.344 −0.368 −0.330 −0.340

−0.343 −0.370
−0.379

GaN −0.090 −0.095 −0.127 –
GaP −0.049 −0.049 – –
Si −0.044 −0.055 −0.058 −0.050

−0.060 −0.064
−0.064

SiC −0.113 −0.120 −0.109 –

comparability. The lattice parameters are already chosen to be
identical and the PBE potential is used in both cases. In the
one-shot method, only phonon modes at the �-point of the
supercell are included in the calculation. This is equivalent
to sampling only q points in the primitive cell’s Brillouin
zone that are commensurate with the supercell. Therefore, the
integrals appearing in Eqs. (13) and (17) are restricted to sums
over these commensurate q points in the second and fourth
columns of Table III. This restriction also applies to finding
the location of the conduction-band minimum.

TABLE III. Zero-point band-gap renormalizations calculated via
the presented AHC algorithm compared to ones calculated with
the one-shot method. Results for the one-shot method are taken
from Table III in Ref. [37], with the exception of SiC. Only q
points commensurate with the respective supercell are included to
maximize the comparability of the two methods. The converged
results from Table II are shown once more in the last column for
the sake of comparison. Energies are in eV.

4 × 4 × 4 5 × 5 × 5 5 × 5 × 5

AHC One shot AHC One shot Converged

AlAs −0.050 −0.051 −0.055 −0.063 −0.056
AlP −0.060 −0.062 −0.067 −0.070 −0.065
AlSb −0.041 −0.050 −0.039 −0.043 −0.039
BN −0.257 −0.269 −0.290 −0.294 −0.321
C −0.396 −0.363 −0.337 −0.320 −0.368
GaN −0.086 −0.102 −0.095 −0.094 −0.095
GaP −0.047 −0.072 −0.044 −0.057 −0.049
Si −0.054 −0.064 −0.054 −0.065 −0.055
SiC −0.104 −0.104 −0.130 −0.120 −0.120
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Even with these modifications, there are still fundamental
differences in the methodology that cannot be easily ac-
counted for. The one-shot method implicitly includes anhar-
monic contributions that are completely absent from second-
order perturbation theory. Moreover, AHC theory relies on
the rigid-ion approximation to evaluate the DW self-energy,
which induces errors. Probably most problematic, however,
is the issue of convergence with respect to the number of
virtual orbitals that arises in methods based on Wannier in-
terpolation. In principle, one needs to include all occupied
and unoccupied orbitals in sums over states, such as the
ones appearing in Eqs. (13) and (17). The set of Wannier
functions only spans a small subspace of the full Hilbert
space. This has potential ramifications for the accuracy of the
method. Unfortunately, it is very difficult to estimate bounds
on the error induced by neglecting higher-lying states in the
perturbational calculations. A numerical comparison with a
different method integrated in the same software package is
obviously valuable.

We need to report that the values for the ZPR of SiC as
listed in Ref. [37] are erroneous, as subsequent calculations
have shown. The values presented here have been recalcu-
lated using the one-shot method, yielding −104 meV and
−120 meV for 4 × 4 × 4 and 5 × 5 × 5 supercells, respec-
tively.

The agreement between both data sets is remarkably
good, especially in light of the aforementioned differences in
methodology. The mean relative error between the data sets is
about 11% for the smaller cell while for the larger cell it is
approximately 9%.

Generally, the one-shot method yields systematically larger
absolute band-gap renormalizations (with the exception of
C and SiC). We relate this to the fact that the one-
shot method implicitly accounts for excitations in all un-
occupied states, whereas in the present perturbational cal-
culations, we limit the calculations to eight bands per
unit cell.

We relate this to the fact that the one shot-method does
not require a summation over states, and in the present per-
turbational calculations, we truncate the calculation to eight
bands per unit cell. We note that perturbation theory is not
variational, implying that the inclusion of more bands does
not necessarily increase the ZPR, although usually this is the
case.

VI. CONCLUSION

In this paper, the zero-point and finite-temperature renor-
malizations of the electronic bands due to electron-phonon in-
teractions are derived and determined in the PAW framework.
As usual in the AHC method, we define the electron-phonon
matrix element as the second derivative of the one-electron
energies in the adiabatic (Born–Oppenheimer) approximation,
i.e., neglecting explicit frequency dependencies of the external
perturbation. Since the PAW method yields a generalized
eigenvalue problem, the second derivatives of the eigenvalues
also involve an eigenvalue-dependent “non-Hermitian” matrix
element. This matrix element lacks some symmetries that are
usually present in AE formulations and we have discussed this
issue at some length.

An important characteristic of the present method is that
the actual implementation does not rely on linear-response
theory. Instead, the first-order change of the Hamiltonian is
determined by small finite displacements. This makes the
method broadly applicable to any functional, including hybrid
functionals as well as more complicated exchange-correlation
functionals, where higher-order derivatives of the functionals
are not readily computable. Finite differences, however, also
imply the use of supercells. To mitigate this problem, the
orbitals are transformed to a Wannier representation using
a projection scheme. This has the added advantage that a
Wannier interpolation of the electron-phonon matrix elements
is readily possible. This interpolation is, as a matter of fact,
again adapted to the PAW method.

Using the developed method, numerical calculations are
performed on diamond and a selection of binary compounds.
To begin, convergence tests are performed on diamond show-
ing that a 5 × 5 × 5 supercell and the � point suffice to
determine reliable electron-phonon matrix elements. These
can then be interpolated to much larger supercells and thus
much denser wave-vector grids. We find that interpolation
to about a million q points suffices for results converged to
few meV for the ZPR. The temperature dependence of the
direct and indirect band gaps of diamond are then studied.
Our findings follow the same trends as other computational
studies, underestimating the temperature dependence of the
band-gap renormalization (this has previously been related
to the neglect of the thermal expansion [37] and this previ-
ous assessment remains unchallenged). In addition, band-gap
renormalizations have been calculated for a set of binary
compounds. The results obtained by Wannier interpolation
to many q points compare very well with the available com-
putational and experimental results found in the literature. A
comparison of the one-shot method with the values obtained
without interpolation to a finer q-point grid shows excellent
agreement for the band-gap renormalization at wave vectors
commensurate with the supercell. Not only does the excellent
numerical agreement between the different methods serve
as a proof-of-concept for the two implementations, it also
shows that, within the set of tested materials, the employed
approximations of all methods seem to be well justified.
Typically, errors introduced by using a finite supercell, by
neglecting interpolation to a fine wave-vector grid, or by the
rigid-ion approximation all amount to about 10% in total.
Hence, if absolute accuracy is not an issue, most methods
will yield reasonably reliable results. Specifically, our present
implementation of the Wannier-interpolation method gives
good estimates of the band-structure renormalization at zero
and finite temperature compared to other codes, while taking
full advantage of the numerical convenience of the PAW
method.

As an outlook, it is important to remember that one of
the strengths of the Wannier-interpolation method lies in the
efficient calculation of the imaginary part of the electron self-
energy. Future endeavors will focus on a PAW formulation of
the fully frequency-dependent self-energy in second quantiza-
tion. In addition, the inclusion of phonon-induced long-range
dielectric effects (Fröhlich-like terms) that prominently occur
in polar materials will be necessary [67,68] to obtain accurate
results for polar materials.
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APPENDIX A: DERIVATION OF THE FIRST AND SECOND
DERIVATIVES OF THE KOHN–SHAM EIGENVALUES

This section provides a detailed derivation of the FM and
DW contributions in an atomic-coordinate basis, which appear
in Eqs. (11) and (12), respectively. First though, it is important
to note that the pseudo-orbitals, |�̃nk〉, are S̃ orthonormal,

〈�̃mk |̃S|�̃nk′ 〉 = δmnδkk′ , (A1)

and fulfill the following completeness relations:

1 =
∑
nk

T̂ |�̃nk〉〈�̃nk|T̂ †, (A2)

1 =
∑
nk

S̃|�̃nk〉〈�̃nk|, (A3)

1 =
∑
nk

|�̃nk〉〈�̃nk |̃S . (A4)

To begin, the expressions for the first and second deriva-
tives of the KS eigenvalues are derived starting from Eq. (4).
Applying the derivative once yields

∂τ

(
H̃ |�̃nk〉 − εnkS̃ |�̃nk〉

) = 0, (A5)

which is evaluated using the chain rule:

∂τ εnkS̃ |�̃nk〉 = (∂τ H̃ − εnk∂τ S̃) |�̃nk〉
+ (H̃ − εnkS̃) |∂τ �̃nk〉 . (A6)

Multiplication from the left with the state vector 〈�̃nk| results
in

∂τ εnk

=1︷ ︸︸ ︷
〈�̃nk |̃S|�̃nk〉 = 〈�̃nk|∂τ H̃ − εnk∂τ S̃|�̃nk〉

+ 〈�̃nk| H̃ − εnkS̃︸ ︷︷ ︸
=0

|∂τ �̃nk〉 ,
(A7)

where the Hermitian conjugate of the generalized KS equa-
tion has been used to cancel the last term. Finally, the first
derivative of the KS eigenvalue reads

∂τ εnk = 〈�̃nk|∂τ H̃ − εnk∂τ S̃|�̃nk〉 . (A8)

Following suit, the second derivative is evaluated by differen-
tiating Eq. (A8):

∂τ ∂τ ′εnk = ∂τ (〈�̃nk|∂τ ′H̃ − εnk∂τ ′ S̃|�̃nk〉) . (A9)

Once again, the chain rule is applied:

∂τ ∂τ ′εnk = 〈�̃nk|∂τ ∂τ ′H̃ − εnk∂τ ∂τ ′ S̃|�̃nk〉
+ 〈∂τ �̃nk|∂τ ′H̃ − εnk∂τ ′ S̃|�̃nk〉
+ 〈�̃nk|∂τ ′H̃ − εnk∂τ ′ S̃|∂τ �̃nk〉
− ∂τ εnk 〈�̃nk|∂τ ′ S̃|�̃nk〉 . (A10)

The term ∂τ εnk is already known and can be substituted back
in from Eq. (A8). To avoid the derivative acting directly on
the state vectors, the PAW completeness relation can be used.

Subsequently, a suitable expression for |∂τ �̃nk〉 is derived
from which the final result will follow.

One may begin with Eq. (A6). Under the constraint
(mk′) 	= (nk), multiplication with 〈�̃mk′ | from the left yields

∂τ εnk

=0︷ ︸︸ ︷
〈�̃mk′ |̃S|�̃nk〉 = 〈�̃mk′|∂τ H̃ − εnk∂τ S̃|�̃nk〉

+ 〈�̃mk′ | H̃ − εnkS̃︸ ︷︷ ︸
=(εmk′−εnk )〈�̃mk′ |̃S

|∂τ �̃nk〉 . (A11)

At this point, it is assumed that all electronic bands are
nondegenerate (εnk − εmk′ 	= 0), resulting in

〈�̃mk′ |̃S|∂τ �̃nk〉 = 〈�̃mk′ |∂τ H̃ − εnk∂τ S̃|�̃nk〉
εnk − εmk′

. (A12)

The final step in isolating |∂τ �̃nk〉 now involves using the
completeness relation in Eq. (A4) and summing over all
states |�mk′ 〉. In the AE case, this conveniently gives the final
result since the term with (mk′) = (nk) would not contribute
to the sum, owing to the fact that 〈�nk|∂τ�nk〉 = 0. In the
PAW method, the term 〈�̃nk |̃S|∂τ �̃nk〉 is, however, in general
nonzero. Therefore, completing the sum must explicitly ac-
count for that contribution.

To write the final result in a more compact manner, the
following shorthand notations are introduced:

h̃mk′nk,τ ≡ 〈�̃mk′ |∂τ H̃ − εnk∂τ S̃|�̃nk〉 , (A13)

h̃S
mk′nk,τ ≡ 〈�̃mk′ |∂τ S̃|�̃nk〉 . (A14)

Multiplying Eq. (A12) with the state vector |�̃mk′ 〉 and
summing over all states yields

=1︷ ︸︸ ︷∑
mk′

|�̃mk′ 〉〈�̃mk′ |̃S |∂τ �̃nk〉 =
′∑

mk′

|�̃mk′ 〉 h̃mk′nk,τ

εnk − εmk′

+ |�̃nk〉〈�̃nk |̃S |∂τ �̃nk〉 , (A15)

where the primed sum excludes the case (nk) = (mk′). The
last term can be recast in a form that does not involve any
derivatives of state vectors. To show this, one starts from
the PAW orthogonality relation, Eq. (A1), and takes the first
derivative:

∂τ (〈�̃nk |̃S|�̃nk〉) = 0. (A16)

Then, one applies the chain rule,

〈∂τ �̃nk |̃S|�̃nk〉 + 〈�̃nk |̃S|∂τ �̃nk〉
= − 〈�̃nk|∂τ S̃|�̃nk〉 , (A17)

and uses the phase freedom of Bloch orbitals to obtain

〈�̃nk |̃S|∂τ �̃nk〉 = −1

2
h̃S

nknk,τ . (A18)

Thus, the derivative of a pseudo-orbital can be expressed as

|∂τ �̃nk〉 =
′∑

mk′

|�̃mk′ 〉 h̃mk′nk,τ

εnk − εmk′
− 1

2
|�̃nk〉 h̃S

nknk,τ . (A19)

Finally, using Eq. (A8), (A10), and (A19), one finds the
second derivative of the KS eigenvalues expressed in an
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atomic-coordinate basis. The result is split into the FM and
DW contributions, as in Eq. (9) in the main text:

δεFM
nk,ττ ′ ≡ −h̃nk,nk,τ h̃S

nk,nk,τ ′ − h̃nk,nk,τ ′ h̃S
nk,nk,τ

+
′∑

mk′

h̃∗
mk′nk,τ h̃mk′nk,τ ′

εnk − εmk′
+

′∑
mk′

h̃∗
mk′nk,τ ′ h̃mk′nk,τ

εnk − εmk′
,

(A20)

with

h̃mk′nk,τ ≡ 〈�̃mk′ |∂τ H̃ − εnk∂τ S̃|�̃nk〉 , (A21)

h̃S
mk′nk,τ ≡ 〈�̃mk′ |∂τ S̃|�̃nk〉 , (A22)

and

δεDW
nk,ττ ′ ≡ 〈�̃nk|∂τ ∂τ ′H̃ − εnk∂τ ∂τ ′ S̃|�̃nk〉 . (A23)

APPENDIX B: DERIVATION OF SELF-ENERGY EXPRESSIONS

For brevity’s sake, the following derivation is only performed on the simplest term of the FM contribution, Eq. (A20). The
remaining terms can be derived in a completely analogous way but would require even more space. The term in question is
h̃nknk,τ h̃S

nknk,τ ′ and its contribution to the phonon-induced energy shift is

�ε
FM,a
nk (T ) ≡ 1

2

∑
ττ ′

h̃nknk,τ h̃S
nknk,τ ′ 〈uτ uτ ′ 〉T . (B1)

From there, the partial derivatives with respect to individual atomic displacements, appearing in h̃nknk,τ and h̃S
nknk,τ ′ , are rewritten

in terms of collective displacements.
To this end, one introduces the differential operator

∂νq ≡
√

h̄

2ωνq

∑
lκα

1√
mκ

eκα,νqeiq·Rlκ ∂lκα, (B2)

which corresponds to a collective ionic displacement along the phonon mode with wave vector q and branch index ν. Equation
(B2) is easily inverted to yield an expression for the ionic displacement operator, ∂lκα , in terms of ∂νq:

∂lκα = √
mκ

∫
BZ

d3q

	BZ

∑
ν

√
2ωνq

h̄
e∗
κα,νqe−iq·Rlκ ∂νq . (B3)

This allows for a simple substitution of the partial derivatives, resulting in

�ε
FM,a
nk (T ) = 1

h̄

∑
lκα

∑
l ′κ ′β

∑
ν1ν2

∫
BZ

d3q1

	BZ

∫
BZ

d3q2

	BZ

√
mκmκ ′ων1q1ων2q2 e−iq1·Rlκ e−iq2·Rl′κ′ e∗

κα,ν1q1
e∗
κ ′β,ν2q2

× 〈�̃nk|∂ν1q1 H̃ − εnk∂ν1q1 S̃|�̃nk〉 〈�̃nk|∂ν2q2 S̃|�̃nk〉 〈ulκαul ′κ ′β〉T . (B4)

Next, the thermal expectation value of the atomic displacements is expressed in phonon modes by using Eq. (3), canceling out
the ionic masses. In addition, it is now possible to evaluate the sums over all cells with indices l and l ′:

�ε
FM,a
nk (T ) =

∑
κα

∑
κ ′β

∑
νν1ν2

∫
BZ

d3q

	BZ

∫
BZ

d3q1

	BZ

∫
BZ

d3q2

	BZ

√
ων1q1ων2q2

ωνq

(
nνq(T ) − 1

2

)
e∗
κα,ν1q1

e∗
κ ′β,ν2q2

eκα,νqe∗
κ ′β,νq

× 〈�̃nk|∂ν1q1 H̃ − εnk∂ν1q1 S̃|�̃nk〉 〈�̃nk|∂ν2q2 S̃|�̃nk〉
∑

l

eiRlκ ·(q−q1 )

︸ ︷︷ ︸
=	BZδ(3) (q−q1 )

∑
l ′

e−iRl′κ′ ·(q+q2 )

︸ ︷︷ ︸
=	BZδ(3) (q+q2 )

. (B5)

After integrating out the Dirac delta functions, the sums over atom and Cartesian indices are performed. Since the phonon
eigenvectors can always be chosen to be orthonormal, the result is

�ε
FM,a
nk (T ) =

∑
νν1ν2

∫
BZ

d3q

	BZ

(
nνq(T ) − 1

2

)
〈�̃nk|∂ν1qH̃ − εnk∂ν1qS̃|�̃nk〉 〈�̃nk|∂ν2−qS̃|�̃nk〉

×
∑
κα

eκα,νqe∗
κα,ν1q︸ ︷︷ ︸

=δνν1

∑
κ ′β

eκ ′β,ν2qe∗
κ ′β,νq︸ ︷︷ ︸

=δνν2

. (B6)

In the final step, a constraint is put on the phonon wave vector, q. The Bloch theorem implies that for a matrix element involving
some lattice-periodic operator, Ô, the following relation must hold:

〈�mk′ |∂νqÔ|�nk〉 ⇒ k′ = k + q . (B7)
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Therefore, since k is found on both sides of each matrix element, the phonon wave vector must be confined to the Brillouin-zone
center:

�ε
FM,a
nk (T ) =

∑
ν

g̃nnk,ν0g̃S
nnk,ν0

(
nν0(T ) + 1

2

)
. (B8)

In Eq. (A20), the term h̃nknk,τ ′ h̃S
nknk,τ results in exactly the same energy shift, �ε

FM,a
nk (T ). As mentioned earlier, the two

remaining terms involving sums over all states can be derived analogously. The only noticeable addition is the fact that ∂ν−q =
∂∗
νq, which can be used to rewrite one matrix element as a complex conjugate. Finally, putting everything together results in

Eq. (13).
The DW self-energy is derived by employing the rigid-ion approximation and using the following acoustic sum rule:∑

l ′κ ′

∂εnk

∂ulκα

ul ′κ ′β = 0 . (B9)

The latter can be used to relate FM and DW contributions with the help of Eq. (9),∑
l ′κ ′

δεDW
nk,lκαl ′κ ′β = −

∑
l ′κ ′

δεFM
nk,lκαl ′κ ′β, (B10)

while the former implies that all off-site terms in the DW contribution can be approximated as zero:

δεDW
nk,lκαl ′κ ′β ≈ 0 for (lκ ) 	= (l ′κ ′) . (B11)

This leads to a simplified expression for the DW self-energy that only contains first-order derivatives and is suitable for numerical
calculations:

�εDW
nk (T ) = 1

2

∑
lκα

∑
β

δεDW
nk,lκαlκβ〈ulκαulκβ〉T = −1

2

∑
lκα

∑
l ′κ ′β

δεFM
nk,lκαl ′κ ′β〈ulκαulκβ〉T . (B12)

Performing the algebraic derivation from this point onward is analogous to the steps taken in deriving the FM self-energy. A
noticeable difference lies in the fact that the ionic displacements are now restricted to the same atom, (lκ ). Just as in the FM
case, the derivation limits itself to the simple term h̃nknk,τ h̃S

nknk,τ ′ for the sake of brevity. The corresponding energy shift, �ε
FM,a
nk ,

then reads

�ε
DW,a
nk (T ) = −

∑
κα

∑
κ ′β

∑
νν1ν2

∫
BZ

d3q

	BZ

∫
BZ

d3q1

	BZ

∫
BZ

d3q2

	BZ

√
ων1q1ων2q2

ωνq

√
mκmκ ′

mκ

(
nνq(T ) − 1

2

)
eκα,νqe∗

κβ,νq

× e∗
κα,ν1q1

e∗
κ ′β,ν2q2

〈�̃nk|∂ν1q1 H̃ − εnk∂ν1q1 S̃|�̃nk〉 〈�̃nk|∂ν2q2 S̃|�̃nk〉
∑

l

e−iq1·Rlκ

︸ ︷︷ ︸
=	BZδ(3) (q1 )

∑
l ′

e−iq2·Rl′κ′

︸ ︷︷ ︸
=	BZδ(3) (q2 )

. (B13)

Integrating over the Dirac delta functions and rearranging some of the terms yields

�ε
DW,a
nk (T ) = −1

2

∑
κα

∑
κ ′β

∑
ν

∫
BZ

d3q

	BZ

h̄

mκωνq

(
nνq(T ) − 1

2

)
eκα,νqe∗

κβ,νq

×
∑
ν1

√
2mκων10

h̄
eκα,ν10 〈�̃nk|∂ν10H̃ − εnk∂ν10S̃|�̃nk〉︸ ︷︷ ︸

≡g̃0
nnk,κα

∑
ν2

√
2mκ ′ων20

h̄
eκ ′β,ν20 〈�̃nk|∂ν20S̃|�̃nk〉︸ ︷︷ ︸
≡g̃S0

nnk,κ′β

, (B14)

where the definitions Eqs. (21) and (22) from the main text have been used. Finally, one is able to bring the partial energy shift
into a form that makes it easier to understand how the DW self-energy is obtained:

�ε
DW,a
nk (T ) = −

∫
BZ

d3q

	BZ

∑
ν

(2nνq(T ) + 1)
h̄

4ωνq

∑
κα

∑
κ ′β

eκα,νqe∗
κβ,νq

mκ

g̃0
nnk,κα g̃S0

nnk,κ ′β . (B15)

The inclusion of the term h̃nknk,τ ′ h̃S
nknk,τ simply adds Eq. (B15) with swapped indices which can be written using �

νq
κα,κ ′β from

Eq. (20). The remaining terms involve a sum over electronic states but are otherwise treated analogously. In the end, everything
accumulates exactly in Eq. (17).
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APPENDIX C: DIFFERENCE BETWEEN PAW AND AE ELECTRON-PHONON MATRIX ELEMENTS

Here, a simple algebraic proof of Eq. (26) is provided. Starting from the definition of the AE electron-phonon matrix element,
the AE orbitals are first expanded using the PAW transformation operators:

gmnk,νq = 〈�mk+q|∂νqĤ |�nk〉 = 〈�̃mk+q|T̂ †∂νqĤ T̂ |�̃nk〉 . (C1)

The product rule of differentiation allows rewriting the operator inside the braket as

T̂ †∂νqĤ T̂ = ∂νq (T̂ †Ĥ T̂ )︸ ︷︷ ︸
H̃

−∂νqT̂ †Ĥ T̂ − T̂ †Ĥ∂νqT̂ . (C2)

Reinsertion of this expression into Eq. (C1) yields

gmnk,νq = 〈�̃mk+q|∂νqH̃ |�̃nk〉 − 〈�̃mk+q| ∂νqT̂ † Ĥ T̂ |�̃nk〉︸ ︷︷ ︸
εnkT̂ |�̃nk〉

− 〈�̃mk+q| T̂ †Ĥ︸ ︷︷ ︸
εmk+q〈�̃mk+q|T̂ †

∂νqT̂ |�̃nk〉 , (C3)

where the KS equations have been used to substitute Ĥ by the eigenvalues. Finally, the relation

∂νqS̃ = ∂νq(T̂ †T̂ ) = ∂νqT̂ †T̂ + T̂ †∂νqT̂ (C4)

is used to rewrite the term containing ∂νqT̂ †T̂ in terms of the PAW overlap operator and the remaining contribution,

gmnk,νq =
g̃mnk,νq︷ ︸︸ ︷

〈�̃mk+q|∂νqH̃ − εnk∂νqS̃|�̃nk〉 +(
εnk − εmk+q

) 〈�̃mk+q|T̂ †∂νqT̂ |�̃nk〉 , (C5)

which concludes the proof.
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