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ABSTRACT
Rotary transfer machines are widely used in different industrial sectors. A rich lit-
erature concerning their design and optimisation is available, but mainly dedicated
to integrated machining systems. This machine architecture is also implemented in
the aluminum gravity die casting technology where the specificity of the casting
process needs an appropriate design. In particular, the constraints related to pro-
cessing times and the rigidity of the production sequence impose a specific approach
to schedule the production for achieving an optimal cycle time.

We approach this problem with an optimisation perspective: first we propose
a mixed-integer linear programming formulation for defining the sequencing and
scheduling of the machine in order to obtain a specified production with minimum
makespan, and discuss strategies for enumerating the variables of the formulation.
Second, we describe a heuristic algorithm as an alternative to the solution of the
formulation through a general-purpose solver.

Eventually, we present extensive computational experiments on a set of instances
generated from real data, comparing these alternative approaches.

KEYWORDS
Rotary Transfer Machine; Gravity Die Casting; Scheduling; Flow-shop;
Cutting-Stock; Setups; Mixed-integer Linear Program, Heuristics.

1. Introduction

Transfer machines with rotary table are widely used in different industrial sectors be-
cause a high automation and efficiency can be achieved by partitioning operations into
groups, which are then performed in designed sequences and in fixed working posi-
tions (Battaia et al. 2012). In particular, Rotary Transfer Machines (RTMs) consist in
a table comprising a number of fixed positions where parts are located and machined
by spindle head or turrets. Through discrete rotations of the table around its cen-
tral axis, each part is moved to the different working stations where all the scheduled
manufacturing processes take place (Richter and Ondrášek 2017). RTMs are fully au-
tomated systems that aim at standardising manufacturing processes while minimising
idle times between consecutive operations.

A similar machine architecture is dedicated to foundry processes. Particularly, Semi-
Automatic Carousels (SAC) are used in aluminum Gravity Die Casting (GDC) because
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they facilitate the semi-automatic handling of dies and allow for an efficient use of
the space. This casting process owns specific characteristics and needs a customised
approach to define the number of working positions and the carousel cycle time (Cam-
pana, Mele, and Cimatti 2020).

The manufacturing cycle of a product by GDC comprises four different phases,
namely (i) mould preparation, (ii) metal pouring (filling), (iii) part solidification by
cooling, and (iv) solid part extraction. Once a part has been extracted, the mould is
re-prepared for casting a new part. This cyclic nature makes GDC ideal for carousel.
In fact, once a mould has been positioned on the rotating table, it can be used to
manufacture several parts without further handling. Specifically, we denote as M the
maximum number of manufacturing cycles that a generic j-th mould can perform on
the carousel. This number depends on the wearing of the mould painting occurring
during metal pouring and part extraction. Therefore, after M cycles, the mould must
be took off from the carousel and refurbished before being reused.

An example of carousel for GDC comprising s stations is schematically shown in Fig.
1 a). The carousel carries s dies, which are transferred through the different stations
by discrete rotations with an angular step equal to 2π

s .
Fig. 1 b) illustrates the phases of casting for a mould going through the carousel.

In station 1, dies are opened and empty. An operator prepares and verifies the mould
in the first operation of the casting cycle. In the next station 2, prepared moulds are
filled with the molten metallic alloy. Once moulds are filled, the metal starts cooling
down and solidifies while the die keeps moving between stations 3 and (s−1). Finally,
the solid part is extracted from the mould in the last station s of the production cycle.
The mould preparation in station 1 is performed manually as it includes the handling
of fragile cores. Metal casting and part extraction in station 2 and S, respectively, are
carried out by robots. The movements of the carousel are governed by a Programmable
Logic Controller (PLC). This fact means that it is possible to set up a sequence of
different time spans between consecutive rotations to allow for the completion of each
operation and minimisation of the overall cycle time. If security issues occur, the
automated rotation of the carousel can be stopped by the operator in station 1.

It is worth underlying that the duration of each phase of the manufacturing cycle is
different for each mould assembled on the carousel because it depends on the shapes
and size of manufactured products. Specifically, the preparation time τpj must allow
the operator to properly restore the mould. The filling time of the mould τ cj is a major
concern in GDC. In fact, high pouring speed might determine turbulence in the metal
flow triggering defects in final parts. On the other hand, slow pouring speeds mean
that the liquid metal cools down and possibly solidifies in some regions of the cavity
leading to an incomplete filling. Thus, the proper pouring time must be determined
during the process design phase, usually by means of Finite Element Analysis (FEA)
(Ha et al. 1999; Cleary et al. 2002).

FEA of the process is also used to calculate the solidification time τ sj of casting
products, which depends on the heat exchange coefficient between the metal and the
die, the mould cavity geometry and other factors, such as the use of chillers (Vijayaram
et al. 2006; Kamal et al. 2018). The solidification phase by cooling has a lower and
a upper time constraint. The solidification of the entire geometry must be prolonged
until the achievement of that level of stiffness necessary to avoid part deformation
during extraction (lower time constraint). Particularly, after the filling is completed,
the metal must remain in the mould for a minimum time τ slj . On the contrary, the
solidification cannot be too long: the solid part must be extracted at a sufficiently
high temperature, otherwise the metal adheres to the mould cavity due to shrinkage
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Figure 1. Caption: Scheme of the rotary machine.
Alt text: A carousel carrying s dies, and an illustration of the phases of casting for a mould going through the
carousel.

phenomena during its cooling by impeding its final removal (upper time constraint).
Thus, to prevent this phenomenon, it is necessary to define a maximum time τ suj for
the solidification and cooling phase. Finally, the extraction time τ ej mainly depends
on the geometry of the mould cavity.

Based on the previous considerations, it is possible to define, for the generic j-th
mould, a vector τj comprising the characteristic cycle times, as shown in (1).
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τj = [τpj , τ
c
j , τ

e
j , τ

sl
j , τ

su
j ] (1)

The values in (1) only depend on the product geometry. As well known, in GDC
it is frequent to have more than one mould for each product so as to increase the
productivity. In this case, we denote as Qj the number of moulds, and the vector τj
is identical for all the moulds that are identical.

The rotations of the carousel must consider that the time spent by the part in each
station is compatible with the manufacturing needs expressed by τj . Since a rotation of
the carousel determines the simultaneous transfer of all the moulds to the next station,
the minimum time steps are strictly related to the order of moulds that are assembled
on the carousel. Therefore, the optimisation of the carousel consists in the definition
of the optimal sequence of products and the related time steps for each rotation. It
is worth underlying that, unlike in the case of RTM for machining (Afrin et al. 2016;
Battäıa, Dolgui, and Guschinsky 2017b), the problem presents an upper constraint to
the time cycle. This in turn limits the maximum number of stations in the carousel.

In a typical industrial scenario, each product is characterised by a demand Uj over a
certain time span, e.g. one month. Different sets of moulds are loaded on the carousel
in subsequent production phases, and the associated sequences are replicated a number
of times in order to satisfy the product demands. Changing sequence on the carousel
requires a setup whose time includes a minimum warm-up time τWj associated with
each product in the sequence, and the time for the first rotation of the platform
(during which no product is obtained). Since setting-up a sequence on the carousel is
a labour-intensive and time-consuming operation, it is quite common in the industry
to have constraints imposing to perform at least a minimum number µ of replications
for each sequence. Overall, a scheduling problem of the subsequent sequences arises in
the industrial use of RTM in Aluminum GDC, besides the sequencing one mentioned
above. In this paper we consider the following optimisation problem:

Problem statement: Scheduling of a Semi-Automatic carousel. We are given
a set of N different products to be realised and, for each product j = 1, . . . , N , the
cycle times τj as in (1), the mould setup time τWj , the availability of moulds Qj , and
the demand Uj . We are also given the maximum number of times M a sequence can
be replicated before the moulds are refurbished, as well as the minimum number of
replications µ for a sequence. We want to define: i) the optimal sequences of products
to be processed on the RTM; ii) the duration of each step in the defined sequences;
iii) the order in which sequences are loaded on the RTM, so that a mould that needs
to be refurbished is not used in a subsequent production phase; and iv) the number of
times each sequence is replicated, in such a way that all the demand is satisfied with
minimum makespan.

Numerical example. We report a numerical example with 10 products, denoted as
A, B, . . . , L, and 6 stations. For each product, Table 1 reports the cycle times and the
demand (τ slj = 15, τ suj = 30 and τWj = 100 for all the products). Table 2 represents
an optimal solution obtained by defining two sequences, reporting for each one: the
index of the sequence p; the products in the sequence and the order in which they
are processed on the RTM; the optimal number of replications λp; the sequence cycle
time tp (defined as tp =

∑
t=1...6 dt, where dt is the duration of step t) and setup time
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Wp, this last figure is obtained by summing to the cycle time tp the largest mould
setup time τWj (equal to 100 for all products), i.e., Wp = tp + maxj∈p τ

W
j . In this

example the order in which the sequences are scheduled on the RTM is irrelevant. In
this solution, products A and B are overproduced, as their demands are equal to 9 and
8, respectively, while the actual production is 10 for both. Finally, Table 3 describes
the configuration of the RTM during the 6 steps of sequence [B,C,H,G,D,L]. For each
step, the table reports the station occupied by each product, the time required for
the operations of preparation, casting and extraction, where we highlighted in bold
the operation(s) determining the duration of the step (corresponding to the value of
row dt). In this case, we always have dt = max{τpj1 , τ

c
j2
, τ ej3}, where we indicate with

j1, j2, j3 the product in the Preparation, Casting and Extraction station, respectively.
In parenthesis, for products that are in a solidification and cooling station, the table
reports the cumulative solidification and cooling time, i.e., the overall time spent by
the product in solidification and cooling at the end of that step. This sequence allows
to extract each product after at least τ slj = 15 seconds and no more than τ suj = 30
seconds of cooling.

Table 1. Cycle times and demand for the numerical example.

τpj τ cj τ ej Uj

A 7 6 7 9
B 3 10 9 8
C 8 3 2 10
D 4 8 1 20
E 5 5 1 20
F 7 6 5 10
G 10 5 4 10
H 4 10 4 10
I 8 5 7 10
L 9 3 1 10

In spite of the widespread use of carousels in the GDC industry, to the best of au-
thors’ knowledge this problem has not been previously investigated in the literature.
The reminder of this section reviews the relevant optimisation literature. In Section
2, we propose a Mixed-Integer Linear Programming (MILP) formulation for the prob-
lem, and discuss strategies for enumerating its variables. In Section 3 we describe a
heuristic algorithm as an alternative to the solution of the MILP formulation through
a general-purpose solver. Extensive computational experiments comparing these alter-
native approaches are presented in Section 4.

Table 2. Optimal solution for the numerical example.

p products λp tp Wp

1 [B,C,H,G,D,L] 10 41 141
2 [A,I,E,E,D,F] 10 38 138
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Table 3. Situation on the RTM during the 6 steps of sequence [B,C,H,G,D,L].

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Preparation 3 B 8 C 4 H 10 G 4 D 9 L
Casting 3 L 10 B 3 C 10 H 5 G 8 D
Cooling (3) D (10) L (4) B (10) C (5) H (9) G
Cooling (12) G (13) D (14) L (14) B (15) C (14) H
Cooling (17) H (22) G (17) D (24) L (19) B (24) C
Extraction 2 C 4 H 4 G 1 D 1 L 9 B

dt 3 10 4 10 5 9

1.1. Literature review

The scope of our review of the literature is twofold: on the one hand, we position
our problem within the optimisation literature; on the other hand, we survey related
optimisation problems on RTMs.

Problem positioning: scheduling and cutting-stock. By leaving behind the fact
that the transfer is performed with a rotary platform carrying the moulds (and hence
the sequence of processed products repeats identically until a setup is performed), this
scheduling problem can be interpreted as a variant of the flow shop-sequencing problem
with synchronous transfers, defined by Soylu, Kirca, and Azizoğlu (2007). However, the
periodic repetition of the sequence of products is the key feature of the problem and
hence of its optimisation. After defining the possible sequences of products, which, in
addition to the processing order, asks to define the timing of each step, we still have to
decide which sequences we want to load on the RTM and how many times to replicate
each sequence. This resulting problem also has a natural interpretation as a variant of
the cutting-stock problem with setups, involving additional complicating constraints.
Indeed, in a cutting-stock interpretation, a sequence is equivalent to a pattern, the
products in the sequence are the items in the pattern, its processing time (intended
as the time for a full rotation of the RTM) is its cost, and we want to decide the
number of times each sequence is replicated (each pattern is cut) in order to satisfy
the demand at minimum cost: this is exactly the cutting-stock problem (see, e.g.,
Martello and Toth (1990)). The cutting-stock interpretation of the problem at study
immediately allows us to describe its core according to the classical formulation due to
Gilmore and Gomory (1963). The problem is further complicated by setups that occur
each time a different sequence (pattern) is processed on the RTM; once a sequence
is selected, industrial considerations impose that it is replicated a minimum number
of times (see also Bo et al. (2021) on minimum production constraints); and after
a maximum number of replications of the same sequence, a new setup takes place.
Finally, the processing order of sequences must be defined, because it is constrained
by the availability of moulds. Indeed, an exploited mould must be refurbished and
cannot be used in two sequences that are processed one after the other.

In our setting, the minimisation of the makespan is obtained by minimising the sum
of the actual processing time and setup time. This second aspect is strictly related
with the problem of minimising the number of different patterns in a cutting-stock
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problem, when each change of pattern requires a setup. The cutting-stock problem
with pattern minimisation was initially addressed by Haessler (1975), who proposed
a heuristic algorithm where the cost of using a pattern is added as an additional cost
term to the objective function. Later, Foerster and Wascher (2000) proposed a method
for minimising the number of different cutting patterns once the amount of stock is
determined.

Belov and Scheithauer (2006) proposed a sequential heuristic for the combined min-
imisation of the stock and of the number of different cutting patterns. Concerning
exact approaches, Vanderbeck (2000) presented an MILP formulation and a branch-
and-cut-and-price algorithm for minimising the number of different patterns, once the
maximum number of stock elements is fixed as a constraint (notice that in the classical
cutting-stock each stock element has the same cost).

In addition to setups that occur when changing production sequence, we have ad-
ditional setups occurring when the number of replications of a sequence exceeds the
moulds life, and a new set of moulds must be loaded on the RTM, while exploited
moulds are refurbished. By considering the cost of the setups of a specific sequence as
a function of the number of times the sequence is replicated, a staircase function re-
sults, with steps occurring at each multiple of the moulds life. A similar cost function
is encountered in the wood-cutting industry, where a given number of wood panels
can be stacked and processed in a single cutting cycle when they have the same pat-
tern, thus reducing the number of cycles (equivalent to the number of setups in our
setting). Malaguti, Durán, and Toth (2014) formulated this related cutting-stock prob-
lem and tackled it through a truncated branch-and-price algorithm. Later (Malaguti,
Durán, and Toth 2016), they proposed a metaheuristic algorithm for solving optimisa-
tion problems where the objective function has a staircase component, which partially
inspired the metaheuristic algorithm we describe in this paper.

Design and planning of RTMs. Concerning specifically RTMs (not restricted to
the foundry industry), a rich literature exists on their design for parallel machining of
multiple parts in batches. This is a complex problem due to the large number of pos-
sible and alternative architectures. The design of these machines needs a high number
of technical decisions based on both manufacturing and product design constraints
but it also depends on managerial or economic choices (Battäıa et al. 2013). Despite
this complexity, a certain number of machines are available on the market and, conse-
quently, several methods are available to optimise the setting of each working station,
based on the solution of the line balancing problems. Heuristic techniques are mainly
used for this purpose by sequentially assigning all the operations to machining modules
while minimising the equipment cost (Battäıa, Dolgui, and Guschinsky 2016). Con-
cerning optimisation models, Dolgui, Guschinsky, and Levin (2009) and Battäıa et al.
(2014) presented mixed-integer programming formulations to minimise the cost of a
rotary production line, while achieving the desired cycle time, subject to technological
and precedence constraints. An alternative approach based on the reduction of the
problem to a constrained shortest path was also presented. Battäıa et al. (2012) and
Battäıa, Dolgui, and Guschinsky (2017a) presented similar MIP models for designing
reconfigurable rotary machinines; also in these cases the problem was solved by means
of heuristic procedures.

The same authors (Battäıa, Dolgui, and Guschinsky 2017b) integrated the machine
configuration problem with process planning for the parts to be machined. The prob-
lem was still formulated as a MIP, with the objective of obtaining a desired cycle time
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at minimum cost. Similar MIP models and solution approaches have been proposed
for transfer line balancing and optimisation by Dolgui et al. (2006, 2008) and Battäıa,
Dolgui, and Guschinsky (2020). Afrin et al. (2016) extended the optimal design prob-
lem of rotary machines to multi-objective optimisation by simultaneously minimising
the costs and the greenhouse gas emissions; they presented a meta-heuristic algorithm
based on scatter and Tabu search procedure.

Huang, Süer, and Urs (2012) addressed the problem of scheduling a rotary injection
moulding machine applied to the production of pairs of shoes. Their problem is similar
to the one we consider, as the setup time required by the change of moulds and the
mould availability are both taken into account; however, they do not have a limit on
the maximum number of replications that a mould can sustain. In addition, while in
our case the duration of each step in a sequence can vary and it is determined by
the longest among the operations that are performed at the stations, in their case
the duration of sequence steps is constant and it equals the longest injection time of
the jobs on the machine. The authors proposed a sequential genetic algorithm and a
heuristic procedure based on the differences in injection times.

2. Scheduling of Semi-Automatic carousel: an exponential-size model

We propose a MILP model where variables are associated with fixed sequences of s
products, and they define the number of times each sequence is replicated within a
so-called production phase. Once the RTM has completed the number of replications
for a sequence within a specific phase, the machine is stopped and a new sequence is
set up. If a sequence is replicated a large number of times, it may be necessary to stop
the RTM, refurbish the moulds and start a new production phase. This is modeled as
a further setup. In the model we propose, the setup time includes the real setup of the
RTM, and the processing time of the first s steps after the machine is restarted, when
no part is obtained (the first part is available at the end of the extraction phase, that
is, at step s+ 1).

Let us denote by p a feasible sequence of s products, where products possibly appear
more than once. A sequence is feasible if it is possible to define processing times for
the s steps satisfying the technological constraints. In addition, the number of times
a product appears within a sequence cannot exceed the number of available moulds.
Let P be the set of all feasible sequences. For each p ∈ P, we define an integer variable
λp denoting the number of times sequence p is processed on the RTM; we also define
a cost tp, which is simply the time for processing sequence p once, when the RTM
is setup and full (i.e., a first complete rotation has been performed). In addition, we
also define an integer variable yp representing the number of production phases for
sequence p. This variable also defines the number of setups for p, each one having a
setup cost (time) Wp. Let a

j
p, p ∈ P, j = 1, . . . , N , denote the number of parts of

product j that are obtained by processing sequence p once. A MILP model reads:
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Table 4. Problem parameters and variables.

Parameter

s number of stations in the carousel

N number of different products

τpj preparation time for product j

τ cj casting time for product j

τej extraction time for product j

τslj minimum solidification time of product j

τsuj maximum solidification time of product j

τWj setup time for product j

Uj demand of product j

Qj moulds availability for product j

P set of all feasible sequences

tp processing time of sequence p

Wp setup time of sequence p

ajp
number of parts of product j that are
obtained by processing sequence p once

M
maximum number of replications for a sequence
before the moulds are refurbished

µ minimum number of replications for a sequence

Variable

λp number of times sequence p is processed

yp number of setups for sequence p

ypi
binary variable taking value 1 if sequence p
is processed during the i-th production phase

dt duration of the generic t-th step of the sequence

xjt
binary variables taking value 1 if the j-th
product is launched at the t-th step
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(ILPE) min
∑
p∈P

tpλp +
∑
p∈P

Wpyp (2)

∑
p∈P

ajpλp ≥ Uj j = 1, . . . , N, (3)

λp ≤Myp p ∈ P, (4)

λp ≥ µyp p ∈ P, (5)

λp ∈ Z+ p ∈ P, (6)

yp ∈ Z+ p ∈ P. (7)

The objective function (2) minimises the sum of processing time and setup time.
Constraints (3) impose to satisfy the demand of each product. Each one of constraints
(4) defines the number of setups yp for the associated sequence p, where M in (4) is
the maximum number of replications of a sequence that can be performed before the
RTM is stopped and the moulds are refurbished. Constraints (5) instead impose that,
after each setup, a sequence p is replicated at least µ times. Finally, (6) and (7) define
the number of replications and the number of setups of each sequence as non-negative
integers. If value M is large enough to allow each sequence to be processed during a
single production phase, model ILPE is equivalent to a cutting-stock formulation with
setups and minimum production quantities for processed patterns.

In addition, in our formulation, the sequences implicitly encode a processing order
for the products they include, which determines the sequence cost. For each selection
of s products there can be up-to (s − 1)! sequences (permutations of the processing
order); since products can be repeated in a sequence, the overall number of variables
is upper bounded by the number of permutations with repetition of s out of N
elements, that is, |P| = O(N s). Nevertheless, it is enough to consider one sequence
for each selection of s products, corresponding to the optimal permutation of the
processing order. Hence, we can restrict to O

(
N+s−1

s

)
variables. In addition, remember

that feasible sequences include, for a given product j, no more than the number of
available moulds Qj .

Even if model (2)–(7) does not contain infeasible columns, it does not consider the
availability of moulds in consecutive production phases, and hence it can happen that
a solution cannot be feasibly scheduled on the RTM. Indeed, exhausted moulds need
to be refurbished before re-use. This operation is time consuming and it is performed
while the RTM is operating a production phase with a different set of moulds. This
means that the overall number of moulds for a given product j that are used in two
subsequent production phases of the RTM cannot exceed the number of moulds Qj
that are available for the product. In order to make sure a solution can be feasibly
scheduled, we can introduce variables encoding the processing order of the sequences.
Let ypi, p ∈ P, i = 1, . . . ,m be a binary variable taking value 1 if sequence p is
processed during the i-th production phase, wherem is an upper bound on the number
of production phases, that we set to

∑
j=1,...,N Uj/(µ s). Model (2)–(7) is promptly
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extended in order to take into account the scheduling of production phases, as follows

m∑
i=1

ypi = yp p ∈ P (8)∑
p∈P

ajpyp(i−1) +
∑
p∈P

ajpypi ≤ Qj j = 1, . . . , N, i = 2, . . . ,m (9)

∑
p∈P

ypi ≤
∑
p∈P

yp(i−1) i = 2, . . . ,m (10)

∑
p∈P

ypi ≤ 1 i = 1, . . . ,m (11)

ypi ∈ {0, 1} i = 1, . . . ,m; p ∈ P. (12)

Equality (8) links the newly introduced ypi variables with the yp variables. Con-
straints (9) impose that no more than the available moulds are used in two consecutive
production phases. Constraints (10) impose that a production phase can be activated
only if the previous phase is activated, while constraints (11) impose that no more than
one sequence is assigned to a production phase. Finally, (12) define the new variables
as binary.

Before discussing the enumeration of the optimal sequences, associated with the
variables to be considered in our formulation, we conclude this section by briefly dis-
cussing an alternative descriptive MILP model for the Scheduling of a Semi-Automatic
carousel. It is clearly possible to define a polynomial number of binary variables assign-
ing explicitly each product to its position in the production sequence (this is indeed
the path we follow in the next section, where we define the structure of a sequence).
However, this approach has three major drawbacks: i) it encodes a solution by means
of a huge number of nonzero variables, because it defines which product is launched
at each rotation of the RTM, and the number of such rotations is very large in a
practical application; ii) it requires a quite involved modeling of set-ups and iii) it has
a very weak linear relaxation, making its solution hard even for small instances, as we
observed in some preliminary computational experiments we performed.

2.1. Enumeration of optimal sequences (model variables generation)

Although in exponential number, variables can be fully enumerated in very short time
for instances of the problem having industrial relevance. For defining a sequence p ∈ P
(and compute the cost tp of the associated variable), we have to define:

i) the products in the sequence, that is, parameter ajp, j = 1, . . . , N ;
ii) the processing order within the sequence;
iii) the duration of each step in the sequence, which defines its cycle time.

In a first strategy, we enumerate all the combinations with repetitions of s prod-
ucts (i.e., we define the values of the parameter ajp, j = 1, . . . , N ) that do not exceed

the availability of moulds, i.e., such that ajp ≤ Qj , j = 1, . . . , N . Then, for each combi-
nation of products, we define the optimal permutation (i.e., processing order) and the
duration of each step in the production cycle, by solving the following optimisation
problem. The problem is strongly NP−hard, as discussed at the end of this section.
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Problem statement: optimal permutation and step duration. Given a
combination of s products (possibly with repeated products), we want to define the
processing order within the sequence and the duration of each step in the sequence,
in order to minimise the cycle time. We denote this problem as permutation problem
in the reminder of this section.

The permutation problem can be modeled as the MILP that follows, where we
optimise a sequence, i.e., a complete rotation of the RTM, when the machine is fully
loaded. Let t = 1, . . . , s be an index denoting the rotation step of the machine. The
index is cyclic with period s, that is, t − s = t = t + s. The use of this index allows
us to express conditions for t < 1, which are well defined by replacing it with t + s,
and for t > s, well defined by replacing it with t − s. The model includes continuous
variables dt, t = 1, . . . , s, defining the duration of the generic t-th step of the sequence;
and binary variables xjt, j = 1, . . . , N ; t = 1, . . . , s taking value 1 if the j-th product
is launched (i.e., prepared at station 1) at the t-th step, and 0 otherwise. The MILP
model for the permutation problem reads

min

s∑
t=1

dt (13)

N∑
j=1

xjt = 1 t = 1, . . . , s (14)

s∑
t=1

xjt = ajp j = 1, . . . , N (15)

τpj xjt ≤ dt j = 1, . . . , N, t = 1, . . . , s (16)

τ cj xj,t−1 ≤ dt j = 1, . . . , N, t = 1, . . . , s (17)

τ ej xj,t+1 ≤ dt j = 1, . . . , N, t = 1, . . . , s (18)

N∑
j=1

xjt(τ
sl
j + τ cj + τ ej ) ≤

s−1∑
k=1

dt+k t = 1, . . . , s (19)

N∑
j=1

xjtτ
su
j ≥

s−2∑
k=2

dt+k t = 1, . . . , s (20)

s∑
t=1

xjt ≤ Qj j = 1, . . . , N (21)

xjt ∈ {0, 1} j = 1, . . . , N, t = 1, . . . , s. (22)

Where the generic rotation step index l of the machine in variables xjl, dl is replaced
as:

l =

{
l + s if l < 1

l − s if l > s

The objective function (13) minimises the processing time of a full sequence of
s steps. Constraints (14) impose that at each step only one product is prepared in
station 1. Constraints (15) impose that the quantity of parts realised for each product
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j by the sequence p is exactly the requested amount ajp. Clearly, the model has a

feasible solution if and only if
∑N

j=1 a
j
p ≤ s. Stations 1, 2 and s are dedicated to

the preparation, the casting and the extraction of the parts, respectively; therefore,
the duration of the time step has to allow the completion of such operations, as
expressed in constraints (16), (17) and (18), respectively. As previously explained, a
part solidifies and cools down in all the stations between 3 and s − 1. Furthermore,
the time spent in station 2 after pouring and in station s before the extraction
contributes to the solidification of the part. The whole time of the part in the mould
must be at least the minimum solidification time τ slj ; this condition is imposed by
constraint (19). As well, the time of the part within the mould must not exceed the
upper limit τ suj . As the casting and extraction can be performed so that no cooling
happens in stations 1 and s, these stations can be omitted in the formulation of the
condition, that can be written as in constraint (20).

A second strategy for defining all the sequences is depicted in Algorithm 1. We
enumerate all the combinations with repetitions of s products that do not exceed the
availability of moulds, as in the first strategy. For each combination, we consider all
permutations of the order in which the products are processed on the RTM. Given
a permutation σ, it remains to compute the optimal values of the dt, t = 1, . . . , s
variables, and the cost of the permutation. This problem can be formulated as a linear
program, which is equivalent to (13)–(22) once the value of the xjt variables is fixed
by the considered permutation, and hence it has polynomial time complexity.

For each combination of products, we define a variable whose cost is the cost of the
best permutation (if one exists satisfying the cycle time constraints).

Algorithm 1 Column Enumeration

1: for each selection of products satisfying the number of available moulds do
2: set tp = +∞
3: for each permutation σ = σ(1), . . . , σ(s) of the products order do
4: set tσ =

∑s
l=1 dl =

∑s
l=1max{τpσ(l), τ

c
σ(l−1), τ

e
σ(l+1)} (with σ(l + s) = σ(l));

5: if tσ ≥ tp then
6: discard σ and continue with next permutation;

7: if σ is such that the solidification time exceeds τ suj for some j then
8: discard σ and continue with next permutation;

9: if σ is such that the solidification time is smaller than τ slj for some j then
10: recompute tσ heuristically or by solving (13)–(22) with xjt fixed by σ;

11: if tσ < tp then
12: tp = tσ;

13: if tp = LB then
14: break;

15: end for
16: if tp < +∞ then
17: store sequence p with associated variable λp of cost tp

18: end for

Algorithm 1 describes the enumeration of the problem variables (columns). We
assume to start with a fully loaded RTM. We perform a complete rotation (s steps)
with the permutation σ at study, and we define, in line 4, the duration dl of each step
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l = 1, . . . , s as the maximum among the preparation, pouring and extraction times.
In the expression, the product in position σ(l) is being prepared, the one in position
σ(l − 1) is being poured, and the one in position σ(l + 1) is being extracted and will
be prepared at the next step; if the index is below 1 or exceeds s, its right value
is obtained by reminding that the permutation repeats identical every s steps. This
way, the step duration dl satisfies constraints (16), (17) and (18). We also obtain the
cost of the permutation as sum of the steps duration; the permutation is immediately
discarded if not improving on the best known permutation (line 6). If the defined step
durations are such that the maximum admissible casting solidification time is exceeded
for any product (constraint (20)), the permutation is discarded (line 8). If the minimum
admissible duration for casting solidification is satisfied for each product (constraint
(19)), the cost of the permutation is confirmed. Otherwise, the optimal duration dt of
each step can be obtained by solving the linear program (13)–(22) after fixing the value
of the xjt variables (line 10). As an alternative to the solution of the linear program,
one can heuristically increase the duration of the steps. If the overall time increase
for the processing time of the sequence equals the largest increase in the cooling time
needed by one product in the sequence, the heuristic increase is optimal. Finally, if a
valid lower bound LB on the cost of the best permutation is known, the procedure
stops as soon as this value has been found (line 13). The theoretical run time of the
algorithm is reported in the following observation.

Observation 2.1. In the worst case, Algorithm 1 asks to solve O(N s) linear programs
equivalent to (13)–(22) with fixed x variables. For fixed s, Algorithm 1 has a polynomial
run time.

Next, we discuss possible lower bounds on the cost of the best permutation for a
given combination of products.

Proposition 2.2. A valid lower bound on the processing time of a combination in-
cluding products j = 1, . . . , s with processing parameters τpj , τ

c
j , τ

e
j , is

LB1 = max{
s∑
j=1

τpj ;

s∑
j=1

τ cj ;

s∑
j=1

τ ej } (23)

Proposition 2.3. Let consider a combination of s products with processing parameters
as in Proposition 2.2. Let σ(.) be a permutation of the product indices defining a non-
increasing ordering of parameter τpj . Similarly, define permutations ρ(.) and ψ(.) for
parameters τ cj and τ ej , respectively. A valid lower bound on the processing time of the
combination is

LB2 =

s∑
j=1

max{τpσ(j); τ
c
ρ(j); τ

e
ψ(j)} (24)

Proof. Processing a sequence requires s steps. The duration of a step t is determined
by the largest among τpj , τ

c
i and τ el where j is the product at preparation, i at pouring

and l at extraction. LB2 is the cost of the ideal situation in which the longest prepa-
ration is executed together with the longest pouring and the longest extraction, the
second longest preparation is executed together with the second longest pouring and
the second longest extraction, etc.
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Proposition 2.4.

LB1 ≤ LB2 (25)

Proof. Since permuting the order of the addends of a summation does
not change the result, we have LB1 = max{

∑s
j=1 τ

p
j ;
∑s

j=1 τ
c
j ;
∑s

j=1 τ
e
j } =

max{
∑s

j=1 τ
p
σ(j);

∑s
j=1 τ

c
ρ(j);

∑s
j=1 τ

e
ψ(j)} ≤

∑s
j=1max{τpσ(j); τ

c
ρ(j); τ

e
ψ(j)} = LB2, where

the inequality holds by definition of maximum.

After enumeration, columns that due to limited mould availability are not compat-
ible with any other column can be removed from P.

2.2. Complexity

The complexity of the permutation problem and of the overall scheduling of the semi-
automatic carousel are discussed in the next propositions.

Proposition 2.5. Given s products to be included in a sequence (where s is part
of the input), the permutation problem, that is, the problem of defining the optimal
permutation and duration of each step, is strongly NP−hard.

Proof. The result follows from reduction from the strongly NP−hard three-machine
synchronous flow shop with makespan minimization (F3|synmv|Cmax) (see Waldherr
and Knust (2015)). In this problem we are given three machines and a set of jobs J ,
each job j consisting of three operations to be performed in sequence on the machines,
with times (p1j , p2j , p3j). The transfer of jobs between the machines is synchronous
and takes place when all machines have completed the current operation. The decision
version of the problem asks if there is a sequencing σ of the jobs with a makespan at
most M . We show that F3|synmv|Cmax reduces to an instance of the permutation
problem with |J | + 3 products and stations, where τ slj = 0 and τ suj = +∞ for each
product j = 1, . . . , |J |+3. In the reduction, jobs correspond to products and machines
to positions on the rotary machine. In addition to the |J | products (jobs), each one
having its original processing time on the first three positions (machines), we define
three dummy products with processing times (0, 0, Q), (0, Q, 0) and (Q, 0, 0) for the
first three positions, where Q > M . The processing times of all products are null for
positions 4, . . . , |J |+ 3.

We show that the F3|synmv|Cmax has makespan at most M if and only if there
exists a permutation on the rotary machine with cycle time at most Q+M . Let σ be
a sequence for which F3|synmv|Cmax has makespan at most M . Append the three
dummy products at the end of the sequence in the order they are given above, thus
obtaining a sequence σ′. Sequence σ′ can be processed on the rotary machine with a
cycle time at most Q +M , because the dummy products only need an additional Q
processing time when processed in the proper order. Viceversa, assume a sequence σ′

for the rotary machine has processing time at most Q+M . The three dummy products
must be processed in their order (this minimizes idle time) and define a step of length
Q when they are in the first three positions of the rotary machine, which leaves a time
at most M to process the original products on the first three positions (while all other
positions require null time).
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Table 5. RTM configuration during the 6 steps of sequence σ′ = [A,B,C,D1, D2, D3].

position Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

1 A B C D1 D2 D3

2 D3 A B C D1 D2

3 D2 D3 A B C D1

4 D1 D2 D3 A B C
5 C D1 D2 D3 A B
6 B C D1 D2 D3 A

dt p1A max{p2A, p1B} max{p3A, p2B, p1C} max{p3B, p2C} p3C Q

In Table 5 we report a numerical example to illustrate the proof of Proposition
2.5. The F3|synmv|Cmax has three jobs, whose permutation σ = [A,B,C] can be
processed with makespan M on the machines (positions) 1, 2, 3. By appending the
dummy jobs D1, D2, D3 we obtain sequence σ′ = [A,B,C,D1, D2, D3] which has cycle
time on the RTM not larger than M + Q. For each step, we indicate in bold the
product(s) (jobs) determining the duration of the corresponding step.

Proposition 2.6. The overall scheduling of a Semi-Automatic carousel is strongly
NP−hard.

Proof. The permutation problem is a special case of the overall optimization of the
Semi-Automatic carousel production which occurs when i) a single sequence is suf-
ficient to obtain the whole production and ii) setup costs are large, hence no set-up
takes place.

3. Heuristic algorithm

In this section we discuss a heuristic approach for solving formulation ILPE . We
assume the set (or a subset) of variables P is given. The idea is to incrementally
construct a feasible solution by selecting, at each iteration:

i) the best sequence p ∈ P and
ii) the best increase ∆λp

to the current value of variable λp, according to a specified
score σ(p,∆λp

);
iii) a feasible position in the production phases schedule (w.r.t. moulds availability)

for the new phase, if a new setup is required to perform the increase ∆λp
.

A feasible solution is denoted as a cover, because each row j in constraints (3) of
ILPE must be covered at least Uj times by the products in the selected columns. Each

column p, when selected, covers row j for ajp times. Initially, we have λp = 0, p ∈ P,
while during the iterations of the algorithm we have a partial cover with λp, yp > 0
for some p ∈ P. Each produced sequence p with λp > 0 has also one production phase
position (or more than one if λp > M) within the production schedule. When a new
setup is needed to perform an increase ∆λp

for some p ∈ P, then a feasible position
where to insert the new production phase, if any, is determined by Algorithm 2. In
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the algorithm, we denote two production phases as incompatible if they exceed the
availability of moulds for some item when considered together. The algorithm returns
a feasible position where to insert the production phase (by scaling the other phases)
if one exists, and a negative value otherwise.

Algorithm 2 Find position for a production phase

1: Let l be the number of phases in a partial cover;
2: set position := l + 1;
3: repeat
4: if the phase is incompatible with the one in position− 1 then
5: position := position− 2;
6: else if the phase is incompatible with the one in position+ 1 then
7: position := position− 1;
8: else
9: return position;

10: until position ≤ 0
11: return position.

Observation 3.1. Algorithm 2 verifies that no feasible position exists for some se-
quence p ∈ P in at least ⌊l/2 + 1⌋ and at most l iterations.

Given a current solution (λ, y), a possible score for evaluating an increase ∆λp
of

variables λp, is

ϕ(p,∆λp
) =

∑
j=1,...,N min[Ũj ,∆λp

ajp]

∆λp
tp +∆ypWα

(26)

where Ũj = max{0, Uj −
∑

j=1,...,N λpa
j
p} is the residual demand of product j with

respect to the current solution, ∆yp is the increase in number of setups and α > 0 is
an input parameter that calibrates the weight given to the two involved terms at the
denominator (i.e., processing time and setup time). Clearly, for a given p ∈ P, we do

not consider all integer values ∆λp
= 1, . . . , ⌈maxj=1,...,N Ũj/a

j
p⌉ − λp, but we restrict

to those values of ∆λp
in the interval that either:

• would saturate the demand of a product in p;
• or would deplete the moulds in sequence p and then a setup would be needed

for any additional production with the same sequence;

while satisfying the constraint on the minimum number of sequence replication for
each production phase if a new production phase needs to be activated.

3.1. Intensification

Each time a feasible solution is found, an intensification step is run in order to possibly
reduce its cost. For each column p ∈ P and for each production phase of the current
feasible solution, associated with a sequence p′, we evaluate an alternative solution:
we remove the production phase (and set λp′ = λp′ −min{λp′ − µ (yp − 1),M}) and
replace it with a production phase built with column p. This operation is possible only
if column p contains a sequence of moulds that can satisfy the residual demand for
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each product, and if the position of the production phase in the schedule is feasible
for column p (w.r.t. moulds availability). Variable λp is set at the minimum value for
covering the residual demand. At each iteration, we perform the best switch among all
the feasible ones (best-first search) and we stop when no improving switch is possible.

By means of this intensification step, we also guarantee that the cover we found
is minimal, i.e., there is no variable λp, p ∈ P whose value can be reduced without
violating a demand constraint.

3.2. Metaheuristic diversification

As a single run of the described heuristic is very fast, we use it within a classical iterated
local search scheme in order to diversify the search. More precisely, as described in
Algorithm 3, each local search iteration is based on the ruin and recreate paradigm.
The recreate step corresponds to the heuristic algorithm described in section 3, which
is run in aGRASP fashion (Feo and Resende 1995): all pairs (p,∆λp

), p ∈ P are ranked
according to the non-increasing value of their score function (26). Given a parameter
β ∈ [0, 1], a random pair (p∗,∆λp∗ ) among the fraction of the first β pairs in the ranking
is then selected, and the value of variable λp∗ is increased by ∆λp∗ . This operation is
repeated until a feasible solution is built (i.e., until all the demands are satisfied).
After the intensification step, the incumbent is possibly updated. Then, the ruin step
destroys part of the solution: all the production phases are ordered according to the
total number of parts that exceed some product demand, and, starting from the most
overproducing phase, the procedure destroys the first one that can be removed, without
violating the constraints on the number of available moulds in consecutive phases. The
ruin operation is iterated until the resulting partial cover does not cover any product
more than needed or at least half of the production phases have been destroyed. A
single local search loop terminates when the solution value does not improve after
a ruin-and-recreate iteration. The iterated local search algorithm terminates when
a stopping criterion is met (time limit and/or a maximum number of local search
iterations).

Observation 3.2. The number of iterations of Algorithm 3 depends on the imposed
stopping criteria. The time complexity of one iteration of its most time-consuming
operation, namely, the recreate phase, is given by O(s2|P|+ |P| log |P|), since at most
s quantity increases are evaluated for each p ∈ P, each one having cost O(s), and a
sorting operation of the |P| variables is performed.

4. Computational experiments

In this section, we report on computational experiments performed on a set of realistic
instances that represents a typical industrial scenario. We generated our instances
starting from real technological parameters and production demands provided by an
aluminum foundry using a RTM for production within a Aluminum GDC process.
We implemented a column generation procedure based on Algorithm 1, this way we
make available all the feasible variables of the problem. Through our experiments we
evaluate the performances of the described solution methods; in addition, we analyse
the obtained solution structure, which allows us to validate the problem formulation
presented in Section 2.
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Algorithm 3 Metaheuristic algorithm(α, β, stopping criteria)

1: repeat ▷ iterated greedy loop

2: set λp = 0 for each p ∈ P;

3: repeat ▷ local search loop

4: Q = ∅;
5: repeat ▷ recreate

6: find the best score σ∗(q,∆λq
) for each q ∈ P for which a feasible

7: phase position to perform ∆λq
exists; Q = Q ∪ q;

8: sort elements of Q according to decreasing values of σ∗(q,∆λq
, α);

9: randomly select q∗ from the first β |Q| elements of Q; ▷ GRASP

10: set λq∗ := λq∗ +∆λq∗ ;

11: until
∑
p∈P

ajpλp ≥ Uj ∀ j ∈ N

12: repeat ▷ intensification

13: perform the best phase switch;

14: until no improving switch is possible

15: repeat ▷ destroy

16: randomly remove a phase.

17: until (
∑
p∈P

ajpλp ≤ Uj ∀ j ∈ N or half of the phases have been destroyed)

18: until solution value does not improve

19: until stopping criteria
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All the reported experiments were performed on a computer equipped with a AMD
3960X processor clocked at 3.8 GHz and 128 GB RAM under Linux operating system.
We used the Gurobi 9.1 MIP framework to solve the problem formulations for which we
report the results. Gurobi was run in single-threaded mode and all Gurobi parameters
were set to their default values.

4.1. Benchmark instances.

Starting from real data from an aluminum foundry, we evaluate the minimum and
maximum value for each component of the τ vector of the characteristic cycle times (see
(1)); from the same data, we evaluate the minimum and maximum value of the mould
setup time τW , of moulds availability Q, and of the product demand U associated
with a production period. These values are reported in Table 6, all the values but
those of Q and U are expressed in seconds. From these data we then obtain realistic
instances, where for each product j the actual values of each entry of vector τj , τ

W
j , Qj

and Uj are integer numbers randomly generated within the range [min,max]. Product
demands are multiples of 100. We recall that setup times Wp are sequence dependent:
for each sequence we set Wp = maxj∈p τ

W
j + tp, where we add to the “real” setup time

the additional term tp, since no part is extracted during the first s steps of rotation.

Table 6. Ranges from which product-dependent parameters are randomly generated.

τp τ c τ e τ sl τ su τW Q U

min 45 20 40 160 220 3600 1 300

max 90 40 60 180 240 4800 4 1500

We consider instances with a number of products N ∈ {10, 11, 12, 13, 14, 15}; for
the number of station in the RTM, we consider s ∈ {5, 6}, in two variants: either all
stations must be loaded in a sequence, or one of the stations can be left empty. By
generating 10 instances for each configuration, we obtain 240 instances in total.

4.2. Results and Discussion

In this section we initially consider results obtained by solving model (2) – (12) with
the Gurobi MILP solver. This approach will be referred as GRB in the following.

Table 7 collects the results obtained by GRB on the benchmark instances when solving
the problem by considering either a fully loaded RTM (top part of the table) or by
allowing up to one empty station on the RTM (bottom part of the table). Indeed, the
characteristic cycle times (1) are such that a RTM with 5 or 6 stations achieves a good
balance, but alternating between 5 and 6 stations requires a long reconfiguration time
and it is impractical. Then in the industrial practice, when a 6 station configuration
is chosen, it happens that sometimes one (or more) stations are left empty, in order
to reduce overproduction. The empty station configuration is obtained by adding a
dummy product having no demand (i.e., Uj = 0), an infinite mould availability (i.e.,
Qj = ∞) and processing times with no effect on the production process (i.e., τpj = 0,

τ cj = 0, τ ej = 0, τ slj = 0, τ suj = ∞ and τWj = 0). We considered a time limit of 1 hour,
each line is relative to 10 instances with the same features. Columns “N” and “s” of

20



the table report the number of products and stations, respectively; column “#part”
reports the average demand calculated over the 10 instances; column “#var” reports
the average number of generated columns; column “#cons” reports the average number
of constraints. Then, the rest of the columns provide information on the solution
process and on the solution structure: columns “gen[s]”, “gap”, “opt” are performance
related information and they report the time (in seconds) required to generate the
columns, the optimality gap of Gurobi at time limit (computed as (UB − LB)/LB ×
100, where UB is the cost of the best feasible solution found and LB is the lower
bound on the optimal solution cost at time limit), and the number of instances solved
to optimality, respectively. Columns “Cmax[h]”, “%setup”, “#setup” and “%over”
are information related to the solution structure and they report the best known
solution cost (makespan in hours); the percentage of the time spent to set up the RTM
(calculated as (setup time)/(total time)×100), the number of performed setups and the
percentage of overproduction (calculated as (total production - total demand)/total
production ×100), respectively. All the reported values (but those of column “opt”)
are average values over 10 considered instances. For both the cases (i.e., fully loaded
and empty station) there is an additional row providing the total average values.

The results of Table 7 show how the complexity of the problem quickly increases
with the size of the considered instance, even if the time required to generate all
the variables remains almost negligible (the highest value being equal to 0.32 seconds,
while the time needed to write the MILP model is of the order of milliseconds). Indeed,
as already pointed out in Section 2, the number of generated variables exponentially
grows with respect to N and s; this can be observed from column “#var” whose values
start from few thousands in the smaller instances, and reach tens of thousands in larger
ones. Therefore, even a small increase of N or s translates into much more challenging
instances: 15 out of the 16 instances solved to optimality (column “#opt”) belong
to groups of instances with at most 11 products (the average time for solving these
instances is equal to 1302.1 seconds in the “fully loaded” case and 1154.01 seconds in
the “empty station” case). Similarly, the percentage optimality gap is always larger
than 2 when N ∈ {12, 13, 14, 15} and s = 6.

Our experiments give some useful insight of the use of empty stations on the RTM.
Clearly this is a further optimisation opportunity, and hence the cost of the optimal
solution for the problem when empty stations are allowed is smaller than or equal
to the cost of the optimal solution when stations are full. However, column “best[h]”
reveals that allowing an empty station on the RTM and, consequently, addressing a
more difficult instance does not help in saving processing time: both the configurations
lead to feasible solutions with an average objective value slightly larger than 224 hours;
for both the cases, little more than 7% is made up of setup times. Since these figures
correspond to solutions with very small optimality gap, we do not expect the use
of empty stations to be advantageous even if one was able to solve the problem to
optimality. Allowing an empty station seems to be useful only if one aims to reduce
the undemanded production. Indeed, with this configuration the value of “%over” is
reduced by more than half (from 0.96 to 0.42).

Since the structure of the solutions obtained by the two different configurations is
similar, we simply consider fully loaded stations when comparing GRB with the meta-
heuristic algorithm described in Section 3.2. In order to push to the limit the two
solution approaches, we also enlarge our test-bed by considering additional instances
with N ∈ {16, 17, 18, 19, 20}. This way, we have a total of 220 instances in this com-
parison. We will refer to the the metaheuristic algorithm as HEUR in the following.
As HEUR only provides feasible solutions (with no lower bound), the comparison is
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Table 7. Performances and solution structure results obtained by GRB over 240 considered instances.

N #part s #var #cons gen[s] gap opt Cmax[h] %setup #setup %over

fully
loaded

10 9310
5 1301.1 2829.6 0.02 0.75 3 185.89 4.20 5.7 0.72

6 2134.0 4459.4 0.03 0.76 3 186.23 3.96 5.4 3.02

11 10290
5 2193.1 4658.8 0.03 1.10 1 206.51 4.21 6.5 0.30

6 3911.4 8047.3 0.04 1.22 1 206.09 3.85 5.9 1.55

12 9950
5 3363.7 7010.0 0.04 1.44 0 199.01 4.49 6.8 0.31

6 6678.6 13595.0 0.07 2.02 1 199.78 4.21 6.3 2.02

13 11250
5 4858.3 10058.6 0.06 1.77 0 221.67 4.42 7.3 0.71

6 10732.3 21751.1 0.10 2.31 0 218.54 4.33 7.0 1.18

14 12760
5 6546.7 13509.6 0.07 1.86 0 250.76 4.47 8.3 0.44

6 15654.1 31654.0 0.15 2.37 0 249.73 4.49 8.3 0.46

15 14190
5 9228.9 18946.1 0.11 1.92 0 283.20 4.50 9.7 0.30

6 22664.2 45735.1 0.23 2.53 0 281.34 4.36 9.3 0.53

0.08 1.67 9 224.06 4.29 7.2 0.96

empty
station

10 9310
5 1850.5 3928.4 0.03 0.65 3 185.71 4.14 5.6 0.60

6 3358.9 6909.2 0.03 1.05 2 186.15 4.06 5.6 1.00

11 10290
5 3021.1 6314.8 0.04 0.96 1 206.33 4.08 6.3 0.31

6 5953.0 12130.5 0.06 1.66 1 206.33 4.02 6.2 0.39

12 9950
5 4538.7 9360.0 0.05 1.52 0 199.04 4.52 6.9 0.27

6 9840.5 19918.8 0.09 2.47 0 200.04 4.51 6.8 0.35

13 11250
5 6438.4 13218.8 0.08 1.86 0 221.88 4.73 7.8 0.42

6 15365.5 31017.5 0.15 2.43 0 218.29 4.46 7.2 0.32

14 12760
5 8571.2 17558.6 0.10 1.76 0 250.50 4.51 8.4 0.30

6 21916.4 44178.6 0.22 2.66 0 250.23 4.60 8.5 0.48

15 14190
5 11895.2 24278.7 0.14 1.80 0 282.87 4.37 9.4 0.25

6 31430.9 63268.5 0.32 2.76 0 281.68 4.55 9.7 0.35

0.11 1.80 7 224.09 4.38 7.4 0.42

performed on the quality of those solutions only, whose optimality gaps are computed
with respect to the best lower bound LB obtained by Gurobi in our experiments. Pre-
liminary experiments proved that the best setting of HEUR is obtained with α = 20 and
β = 0.005. Table 8 compares the average percentage gaps reached by GRB and HEUR

over the 220 considered instances. As for Table 7, columns “N” and “s” report the
number of products and stations, respectively; column “#part” reports the average
demand computed over the 10 instances; column “#var” reports the average number
of variables (sequences); column “#cons” reports the average number of constraints.
Then, columns “1 min”, “5 min” and “1 hour” report for both the methods the op-
timality gap of the best feasible solution returned by each method after 1 minute, 5
minutes and 1 hour of computing time, respectively. We highlighted in bold the values
that are the best in the comparison. As a further improvement, we also implemented
a hybrid approach (column “HYB”) where we feed the solution obtained by HEUR after
five minutes as a MIP start to Gurobi, and then we run Gurobi for 55 minutes; this
way, a fair comparison with columns “1 hour” can be drawn. The last row of the table
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collects the total average values.

Table 8. Comparison of the average percentage gaps between GRB and HEUR over 120 considered instances.

GRB HEUR HYB

N #part s #var #cons 1 min 5 min 1 hour 1 min 5 min 1 hour 5+55 min

10 9310
5 1301.1 2829.6 1.62 0.96 0.75 2.06 1.54 1.32 0.65

6 2134.0 4459.4 1.86 1.33 0.76 2.97 1.95 1.71 0.85

11 10290
5 2193.1 4658.8 2.02 1.56 1.10 1.81 1.57 1.24 0.85

6 3911.4 8047.3 2.31 1.94 1.22 3.18 2.37 1.75 1.17

12 9950
5 3363.7 7010.0 2.81 2.19 1.44 2.27 1.94 1.59 1.38

6 6678.6 13595.0 3.52 2.44 2.02 2.67 2.23 1.53 1.85

13 11250
5 4858.3 10058.6 3.13 2.45 1.77 2.71 2.33 1.97 1.54

6 10732.3 21751.1 6.13 3.08 2.31 4.35 3.32 2.21 2.17

14 12760
5 6546.7 13509.6 3.21 2.44 1.86 3.20 2.80 2.25 1.75

6 15654.1 31654.0 39.96 3.24 2.37 4.31 3.17 2.27 2.18

15 14190
5 9228.9 18946.1 3.39 2.47 1.92 2.88 2.50 1.94 1.80

6 22664.2 45735.1 78.71 3.43 2.53 3.79 2.94 2.13 2.62

16 13990
5 11985.7 24483.2 5.25 3.31 2.32 3.42 2.97 2.40 2.00

6 28089.3 56604.0 91.74 44.79 3.27 5.13 4.18 2.87 2.88

17 15720
5 16755.2 34115.4 46.37 3.19 2.42 3.76 3.19 2.60 2.46

6 44822.0 90148.3 83.75 83.75 2.95 4.32 3.60 2.59 2.87

18 15170
5 21544.1 43703.2 70.05 3.91 2.94 4.33 3.85 3.20 2.72

6 63089.4 126691.8 78.44 78.44 3.75 5.06 4.71 3.69 3.14

19 17340
5 28420.8 57579.9 78.45 19.89 2.65 4.88 4.26 3.40 3.10

6 90561.5 181739.5 82.82 68.95 51.06 4.99 4.41 3.45 3.88

20 18480
5 35020.9 70863.8 84.85 76.44 2.88 4.22 3.61 3.01 3.01

6 109991.0 220669.8 90.39 90.39 57.85 5.79 4.82 3.94 4.13

39.13 22.75 6.91 3.73 3.10 2.41 2.23

By comparing columns “1 min” and “5 min” for the first two approaches, we imme-
diately observe that these computing times are too short for GRB, that seems able to
provide good solutions only when the number of products is small (lower than 16); after
this threshold, the solver struggles and produces solutions with an average percentage
gap as large as 91.74 in the worst case. On the contrary, HEUR always finds solutions of
acceptable quality, and it wins the comparison in 19 of out 22 cases with 1 minute of
time limit, and in 15 out of 22 cases when the time limit is equal to 5 minutes. When
a larger computing time is allowed (1 hour), the performances are more balanced. GRB
wins the comparison in 13 out of 22 cases, but when we compare the total average
percentage gaps, HEUR still appears as the best choice between these two methods. The
results obtained by HYB highlight the benefits that can be obtained by combining the
two approaches; indeed, it prevents Gurobi from having large optimality gaps and, in
several cases (12 out of 22), it further reduces the average gap of the best between GRB

and HEUR.
In summary, the experiments have shown that HEUR is capable of producing good

quality solutions in short computing time, and to keep a good performance for large
instances as well; instead, GRB struggles when the number of variables grows, and may
need a long time to find feasible solutions of good quality, if it is not fed with a MIP
start. In addition, an industrial user may appreciate a solution approach that does
not require the use of external commercial software. These considerations make HEUR
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a useful tool for the optimization of RTM machines in an industrial Aluminium GDC
setting.

5. Conclusions

Despite the relevance of rotary transfer machines in the aluminum gravity die casting
industry, to the best of authors’ knowledge the problem of optimally defining the cycle
time and the production scheduling has not been previously investigated in the litera-
ture. In this paper we have started to fill this gap, by proposing a mixed-integer linear
program for defining the optimal sequencing and scheduling a rotary transfer machines
in the aluminum gravity die casting industry. In addition to a procedure for generating
the variables of the formulation, we have also described a heuristic approach to find
good quality solutions to the problem, without recurring to a general-purpose commer-
cial solver. Extensive computational experiments on a set of instances generated from
real data have assessed the computational effort needed to solve the aforementioned
model, for which near optimal solutions of instances of industrial relevance can be
computed within computing times that are totally compatible with a weekly schedul-
ing. The experiments have also given insight on the optimal choice in the set-up of the
stations on the rotary machine.

Future works may evaluate the possibility of extending the described approaches to
similar problems. Indeed, addressing the enumeration of the product sequences and
their scheduling on the machine as two independent problems, makes our solution
strategy a flexible tool that may be naturally adapted to other industrial scenarios
involving fixed production sequences. A further line of research could consider on-the-
fly generation of the product sequences, to tackles those cases in which full enumeration
is not a viable option.
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