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ABSTRACT
Lithium-ion battery technologies play a key role in transforming the
economy reducing its dependency on fossil fuels. Transportation,
manufacturing, and services are being electrified. The European
Commission predicts that in Europe everything that can be electri-
fied will be electrified within a decade. The ability to accurate state
of charge (SOC) estimation is crucial to ensure the safety of the
operation of battery-powered electric devices and to guide users
taking behaviors that can extend battery life and re-usability. In
this paper, we investigate howmachine learning models can predict
the SOC of cylindrical Li-Ion batteries considering a variety of cells
under different charge-discharge cycles.
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1 INTRODUCTION
The transition from fossil fuel to green energy is well known as the
desired change in our society. To reduce the emission of Carbon
dioxide (CO2) from conventional transportation, the development
of Electric Vehicles (EV) is growing quickly. Battery technology
will be one of the most important key enablers for the green energy
transition.

Lithium-ion batteries have been widely used in electric vehicles.
It is projected that the global EV stock will expand to 140 million by
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2030 [1]. Lithium-ion (Li-ion) battery is the most popular adopted
power supply of EV due to its high energy density, long lifespan,
lightweight, and low self-discharge rate [19]. Several factors could
affect the performance and safety of Li-ion battery such as ambient
temperature, over-charge, or over-discharge [20, 21]. A misuse
of the battery can lead to a shorter battery life. To overcome these
issues, Battery Management Systems (BMS) are applied to ensure
the reliability and stability of the usage of Li-ion batteries.

One important parameter for the BMS battery health manage-
ment is the battery State Of Charge (SOC) estimation which helps
to prevent the battery from over-charge and over-discharge [10, 28].
SOC indicates the amount of available charge in the battery which
can be represented by a value in percentage. This value is intended
to remain between 0% and 100%, although it is possible to violate
these limits in an over-discharge or over-charge situation [24]. The
battery itself does not directly provide information on its SOC value.
The measurement of SOC value is complex and error-prone due to
the indirect estimation and the non-linear nature of electrochemical
reactions in the battery. Relevant information such as the measured
discharge current, voltage, and ambient temperature can be used
to measure the SOC indirectly [5].

Incorrect measurement of SOC could lead to unstable EV per-
formance and even shorten the battery life, therefore, reducing
the environmental benefits of electrification. In general, the SOC
estimation techniques studied in the literature can be divided into
three categories: direct methods, model-based methods, and data-
driven methods [25]. The direct methods look for the relation-
ship between SOC and the physical battery characteristic param-
eters. The SOC value can be estimated according to the observed
parameters[24],[25], [22]. The model-based SOC estimation meth-
ods mainly focus on modeling the chemical and electrical properties
of the battery. Commonly, the model-based methods are used in
collaboration with adaptive filters such as Kalman filter, H-infinity
filter, and Particle filter, etc [25], [23]. Model-based methods require
a comprehensive understanding of the electrochemical properties
in the battery domain and cannot be used for SOC forecast[12][3].

This work proposes a data-driven approach for SOC estimation
based on Deep Learning techniques. Deep learning, which can ap-
proximate non-linear functions, is a widely adopted data-driven
method to tackle the battery SOC estimation problem [27]. Given a
sufficient amount of training data and an appropriate configuration,
the SOC value can be predicted accurately without the need for
a sophisticated electrochemical model. Different types of neural
networks (NNs) such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have been studied in the lit-
erature to solve various problems of different nature [8, 14]. Among
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them, RNNs are designed to handle sequential data, and they have
been well studied in the domain of speech recognition and natural
language processing with successful outcomes [9, 30]. However,
RNNs struggle to handle long-term dependencies as long time se-
ries could cause exploding/vanishing gradient during the training
phase. To tackle this problem, Hochreiter and Schmidhuber [11]
proposed the use of RNNs with Long Short-Term Memory (LSTM)
cells which can correlate a long-range of precedent information.

In the literature, various applications of LSTM for SOC estima-
tion have been proposed. Chemali, Kollmeyer, Preindl, Ahmed, and
Emadi [4] showcased the ability of LSTM for SOC estimation. They
used a dataset composed of discharge cycles obtained from a Li-ion
battery cell with 2.9Ah nominal capacity [17] and collected through
laboratory testing under different driving profiles. The proposed
model was validated against various ambient temperatures with
accurate estimation results achieved. Similarly, Yang, Song, Xu, and
Tsui [29] proposed the use of a deep LSTM network with data col-
lected from an experiment on a 1.1Ah nominal capacity battery
cell. In [26], a neural network combining CNN and LSTM layers
was proposed for battery SOC estimation. The research result has
shown that the CNN part helps to extract the spatial features from
the input data (voltage, current, and temperature) while the LSTM
layers explore the correlation of current SOC and historical input
data. Last but not least, the use of an LSTM encoder-decoder al-
gorithm was proposed by Cui, Yong, Kim, Hong, and Joe [7] with
accurate estimation result against both room temperature and vari-
ous temperature conditions. The proposed model was trained and
tested on 2.0Ah nominal capacity Li-ion battery cell data featuring
various drive cycles.

Although the neural network data-driven approaches for SOC
estimation are widely studied most of the literature mainly focuses
on datasets containing only one particular battery model or
setup. This study uses two different Li-ion cell datasets. The first
one is original and it has been collected by the University of Bologna
(UNIBO), namely the ‘UNIBO Powertools Dataset’. The second one
is public, the LG 18650HG2 Li-ion battery data [18]. The use of deep
LSTM networks is proposed to perform SOC estimation. Due to the
heterogeneity of the data collection process and the sampling rate
of the two datasets, two deep LSTM models with different setups
are employed in this research. The deep networks are tested on
Li-ion battery cells with different nominal capacities, specifications,
and brands; the discharge cycles are produced by both constant
current discharge and several dynamic driving profiles (such as the
Urban dynamometer driving schedule (UDDS) [2]).

The rest of this paper is organized as follows. The employed
battery datasets are introduced in section 2. Then, section 3 explains
the proposed deep LSTM models. In section 4, the results of the
experiments are presented. Finally, section 5 concludes this paper.

2 LI-ION BATTERY DATASETS
In this paper, two Li-ion battery datasets – one original and one
public – with different features are used. The UNIBO Powertools
Dataset is presented here for the first time, and it is available here1.
Only the discharge cycles are used in the experiments. The two
datasets are briefly introduced in the following sections.

1https://doi.org/10.17632/n6xg5fzsbv.1

Table 1: UNIBO Powertools Dataset summary
Test type Nominal capacity Cell amount
Standard 4.0Ah 2

3.0Ah 4
2.85Ah 4
2.0Ah 6

High current 3.0Ah 3
2.85Ah 2

Preconditioned 3.0Ah 5

2.1 UNIBO Powertools Dataset
The UNIBO Powertools Dataset has been collected in a laboratory
test by an Italian Equipment producer. The cycling experiments
are designed to analyze different cells intended for use in various
cleaning equipment such as vacuum and automated floor cleaners.
The vast dataset is composed of 27 batteries, and it is summarized
in Table 1. The main features of the dataset are: (1) the use of bat-
teries from different manufacturers, (2) cells with several nominal
capacities, (3) cycling is performed until the cell’s end of life and
thus data regarding the cell at different life stages are produced,
which is useful to assess how SOC is affected by the cell’s age
and State of Health (SOH) as well as to validate the capability of the
proposed model on estimating SOC under different health status.
Three types of tests have been conducted. (I) The standard test,
where the battery was discharged at 5A current in main cycles.
(II), the high current test, where the battery was discharged at
8A current in main cycles. (III), the preconditioned test, where
the battery cells are stored at 45°C environment for 90 days before
conducting the test.

During discharge, the sampling period is 10 seconds. The experi-
ments were conducted using the following procedure:

(1) Charge cycle: Constant Current-Constant Voltage (CC-CV)
at 1.8A and 4.2V (100mA cut-off)

(2) Discharge cycle: Constant Current until cut-off voltage (2.5V)
(3) Repeat steps 1 and 2 (main cycle) 100 times
(4) Capacity measurement: charge CC-CV 1A 4.2V (100mA cut-

off) and discharge CC 0.1A 2.5V
(5) Repeat the above steps until the end of life of the battery cell

2.2 LG 18650HG2 Li-ion Battery Data
The public LG 18650HG2 Li-ion Battery Dataset, published by
Kollmeyer, Vidal, Naguib, and Skells [18], was obtained fromMende-
ley data. In the dataset, a series of tests were performed under six
different temperatures. The battery was charged at 1C rate to 4.2V
with 50mA cut off before each discharge test. The values measured
in the discharge cycles are captured at 0.1 seconds sampling period.
Different drive cycles such as UDDS, LA92, and US06, as well as
mixes of them, are applied in the discharge tests. In this paper, the
discharge cycles with temperature of 0°C, 10°C and 25°C were used
for training and testing the proposed model.

3 METHODOLOGY
In this section, the basic theories of RNN and LSTM are introduced
and the two proposed deep LSTM models are briefly introduced.
Then, the normalization method used to scale the input data is
reviewed. Lastly, the model’s configuration is discussed.
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3.1 Recurrent Neural Networks Primer
Recurrent neural networks are a class of neural networks that
allows the information to persist over time. Different from the feed-
forward neural networks that are acyclic directed graphs, RNNs
have connections within layers forming cyclic directed graphs. This
empowers neural networks to have a state, and thus memory. The
information from the previous state is utilized as input along with
the current time step. It is useful for sequential data prediction as
relationships between current and past information are considered.
An example of the architecture of an RNN for SOC estimation
unfolded in time, is depicted in Fig. 1. The input vector at the time
step t contains battery parameters such as voltage, current, and
temperature, and it is denoted as 𝐼𝑛𝑝𝑢𝑡𝑡 . ℎ𝑡 represents the hidden
state at time step t, while the output SOC value at time step t is
denoted as 𝑆𝑂𝐶𝑡 . Fig. 1 demonstrates a common approach for time-
series called many-to-many, where multiple input steps are fed to
the network with one prediction made at each step. Whereas, there
are other approaches such as the many-to-one and one-to-many,
where in the first case multiple time-steps are fed with one output
produced, and in the second case one input is used to produce
multiple time-steps. As the two battery datasets have very different
sampling frequencies, we used the many-to-many approach for
the first model (low-frequency sampling) while in the second one
(high-frequency sampling) we used the many-to-one approach.

Figure 1: RNN architecture for SOC estimation unfolded in time

3.2 Long Short-Term Memory Primer
The long short-term memory is a type of RNN which is widely
used to learn long-term dependencies without experiencing the
exploding and vanishing gradient problems. The forward pass of an
LSTM cell can be defined by the following steps. In the equations,
𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 are the forget-gate, input-gate, output-gate; 𝑐𝑡 and ℎ𝑡 are
the cell state and hidden state at time step t respectively; 𝜎 is the
sigmoid function; ⊙ is the Hadamard product;𝑊 denotes the weight
matrix; 𝑥𝑡 is the input vector at time step t and 𝑏 is the bias.

The first step in the LSTM cell is to determine what information
will be forgotten from the cell state 𝑐𝑡−1. The forget-gate uses a
sigmoid function, in which outputs are always between 0 and 1.
The result represents therefore howmuch should be forgotten, with
0 and 1 representing respectively discarding everything or keeping
everything from the previous cell’s state. As shown in the equations,
the decisions of gates are based on the current input and hidden
state as well as on the network’s weights and biases.

𝑓𝑡 = 𝜎 (𝑊 𝑓
𝑥 𝑥𝑡 +𝑊 𝑓

ℎ
ℎ𝑡−1 + 𝑏 𝑓 ) (1)

The second step determines whether the information will be
stored in the cell state. There are two parts in the second step. Firstly,

the input-gate with sigmoid output determines to what extent the
value will be remembered. Secondly, the tanh layer generates the
new value 𝑐𝑡 that is multiplied by the sigmoid output and then
added to the cell state.

𝑖𝑡 = 𝜎 (𝑊 𝑖
𝑥𝑥𝑡 +𝑊 𝑖

ℎ
ℎ𝑡−1 + 𝑏𝑖 )

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊 𝑐
𝑥 𝑥𝑡 +𝑊 𝑐

ℎ
ℎ𝑡−1 + 𝑏𝑐 )

(2)

The cell state 𝑐𝑡 is then update combining the previous cell state
𝑐𝑡−1 with new value 𝑐𝑡 as mentioned above. The forget-gate 𝑓𝑡 and
input-gate 𝑖𝑡 determine whether the values should be discarded or
remembered.

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡 (3)

In the last step, the output-gate with the sigmoid function decides
which part of the cell state is propagated to the hidden state ℎ𝑡 . In
the hidden state, the cell state 𝑐𝑡 is passed via 𝑡𝑎𝑛ℎ and multiplied
by the output-gate to keep only the desired output.

𝑜𝑡 = 𝜎 (𝑊 𝑜
𝑥 𝑥𝑡 +𝑊 𝑜

ℎ
ℎ𝑡−1 + 𝑏𝑜 )

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡 )
(4)

3.3 Proposed LSTM Approach
There are two deep LSTM models proposed in this paper, one for
each dataset, as they have very different cycle lengths. Scaled ex-
ponential linear units (SELU) [16] activation function is used in all
the LSTM cells and hidden dense layers. In the output layer, the
linear activation function is applied to produce the final SOC value.

The first model is used for the UNIBO dataset. It is a deep neural
network with three LSTM layers followed by two dense layers to
map the learned states to desired SOC output. The number of cells
of each LSTM layer is 256, 256, and 128 respectively. Fig. 2 illustrates
the architecture of the first proposed model. The first layer is the
input layer with battery parameters including voltage 𝑉 , current 𝐼 ,
and temperature 𝑇 at each step 𝑡 . Since it is a deep LSTM network,
each LSTM layer returns a sequence which means that each step
is propagated to the next layer. Here, we adopted the many-to-
many approach, the SOC value is therefore estimated at every step.
The input time series fed to the deep LSTM network is defined as
[𝐼𝑛𝑝𝑢𝑡𝑡0, 𝐼𝑛𝑝𝑢𝑡𝑡1, ...𝐼𝑛𝑝𝑢𝑡𝑡𝑛], where 𝑛 is the number of steps in the
entire discharge cycle, and 𝐼𝑛𝑝𝑢𝑡 = [𝑉𝑡 , 𝐼𝑡 ,𝑇𝑡 ] represents voltage,
current and temperature at each time step respectively. Although
the entire discharge cycle is fed to the network, only the part that
precedes the step under examination is available as input for SOC
estimation, i.e., the hidden state from previous steps 𝑡 − 1 and the
current input at step 𝑡 are used to estimate the output at step 𝑡 .

Figure 2: Architecture of the first model
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The second model is used for the LG 18650HG2 Li-ion battery
dataset. The model is composed of two LSTM layers followed by
three dense layers. The number of cells of both LSTM layers is 256.
Fig. 3 shows the architecture of the second proposed model. Since
the second dataset contains more steps in one discharge cycle due
to its higher sampling rate (0.1 seconds sampling time), the many-
to-one approach is more appropriate. In this case, for each 𝑛 step as
input, one output is returned. In the implementation, we used 300,
500, and 700 as the number of steps. For example, given input steps
[𝐼𝑛𝑝𝑢𝑡𝑡0, 𝐼𝑛𝑝𝑢𝑡𝑡1, ...𝐼𝑛𝑝𝑢𝑡𝑡500], the model should estimate the SOC
value at step 500.

Figure 3: Architecture of the second model

3.4 Data Normalization
Since the input features have different ranges, such as the tem-
perature has much higher values than voltage and current, the
trained model could give more importance to this feature over the
others due to its larger value. To avoid this problem, the minimum-
maximum normalization method is used to scale all input features
into the same common scale.

3.5 Model Training
The proposed models are implemented by using the Keras library
[6]. The Adam algorithm [15] is chosen as the optimizer to update
the network weights and biases with the learning rate configured
as 0.00001. All proposed models are trained for 1000 epochs, but
the training process would stop earlier if there is no further im-
provement of validation loss within 50 epochs. The Huber loss [13]
is used as the loss function. Its peculiarity is that it can be quadratic
or linear depending on the error value.

4 RESULTS AND DISCUSSION
The proposed deep LSTM models are trained and tested using the
two aforementioned datasets. The model performance against each
dataset is discussed in this section. The source code of the model
implementation and results are available here2.

Root Mean Square Error (RMSE) and Mean absolute error (MAE)
are used to evaluate the proposed models. The Mean Square Error
(MSE) is the sum of squared distances between the target and pre-
dicted variables divided by the number of samples. The RMSE is
the square root of the MSE which scales the output value to the
same scale as MAE. It is more sensitive to outliers as it penalizes the
model by squaring the error. The MAE on the other hand is more
robust to outliers as the error is not squared. MAE is an L1 loss
2https://github.com/KeiLongW/battery-state-estimation

Table 2: UNIBO dataset tests performance
Test type Nominal capacity MAE RMSE
Standard 4.0Ah 2.68% 3.42%

3.0Ah 0.52% 0.73%
2.85Ah 0.31% 0.39%
2.0Ah 0.59% 0.80%

High current 3.0Ah 0.46% 0.61%
2.85Ah 2.13% 3.24%

Preconditioned 3.0Ah 0.47% 0.66%

function that calculates the sum of the absolute difference between
the target and predicted variables. The MAE is more suitable for
problems where the training data present outliers.

4.1 UNIBO Powertools Dataset
In the UNIBO dataset tests, the performance of the proposed model
is evaluated over constant current discharge. The proposed model
for this dataset was trained with a total of 7738 discharging cycles
as the training set. One cell for each group of test types (standard,
high current, pre-conditioned) and nominal capacity was extracted
as testing data for evaluation purposes. The testing data is isolated
from training data so that it is unseen during the training process.
The overall MAE and RMSE on all testing data are 0.69% and 1.34%
respectively.

To further investigate the performance of the proposed model,
Table 2 shows the performance of each test type. The evaluation of
standard test type with 4.0Ah nominal capacity and high current
test type with 2.85Ah nominal capacity has the worst performance.
This is expected as the dataset contains only two cell tests of the
kind, resulting in one cell used for training and one for testing.
Whereas, in the other test types with sufficient data the model can
achieve accurate results with RMSE lower than 1%.

The examples of SOC estimation results of the proposed model
on the standard, high current, and preconditioned test types are
shown in Fig. 4, Fig. 5, and Fig. 6 respectively. The first and the
last discharge cycles within the entire test of each battery cell are
presented to demonstrate the SOC estimation performance under
different health statuses. All results show the discharge process
of SOC being discharged from 100% to 0%. The x-axis represents
the discharge steps over the whole discharging cycle and the y-
axis represents the SOC value at each step. The black line is the
actual observed SOC value during the discharge process and the
red dashed line is the SOC value estimated by the proposed model.

The model estimates the SOC of the 3.0Ah nominal capacity
cells correctly and without large fluctuation in each of the three
test types. Furthermore, the estimations of standard test types with
2.0Ah and 2.85Ah nominal capacity are accurate too. SOC in both
the first and last cycle are estimated accurately which suggests that
the proposed model is capable to estimate SOC under different bat-
tery health statuses. In addition, good performance is achieved from
the preconditioned test type which demonstrates that the storage
temperature before testing does not affect the battery discharging
behavior significantly in terms of SOC estimation. On the other
hand, there are some errors during the ending steps of standard
4.0Ah nominal capacity and high current 2.85Ah nominal capacity
battery cell cycles. It is acceptable as there is only one training
example of that kind of setup.
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Figure 4: UNIBO dataset SOC estimation results (standard)
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Figure 5: UNIBO dataset SOC estimation results (high current)
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Figure 6: UNIBO dataset SOC estimation results (preconditioned)

Table 3: LG 18650HG2 data tests performance

Temp. (°C) 300 Steps 500 Steps 700 Steps
MAE RMSE MAE RMSE MAE RMSE

0 1.69% 2.27% 1.47% 2.23% 1.65% 2.60%
10 1.61% 2.12% 1.57% 2.12% 2.22% 2.89%
25 1.17% 1.57% 1.59% 2.02% 1.92% 2.64%

4.2 LG 18650HG2 Li-ion Battery Data
In the LG 18650HG2 Li-ion battery dataset, the performance of the
proposed model under dynamic discharge current is evaluated. Six
mixed driving cycles for each of three different temperatures 0°C,
10°C, and 25°C were used as training set. We have also tested three
different time series lengths, with a number of steps of 300, 500, and
700, which are approximately equal to 30 seconds, 50 seconds, and
70 seconds depth in time respectively. The test set was composed of
a UDDS, an LA92, and a US06 driving cycle plus one mixed driving
cycle for each of the three different temperatures available in the
dataset.
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Figure 7: LG 18650HG data SOC estimation results (mixed cycles)
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The MAE and RMSE achieved by the 300 steps model are 1.47%
and 1.99%. The 500 steps one reached an MAE and RMSE of 1.54%
and 2.12%. The 700 steps model achieved 1.94% MAE and 2.72%
RMSE. All the aforementioned results were tested with testing data
under all temperatures. The model performance under each tem-
perature with different input lengths is listed in Table 3. Among
all the configurations, the best performance is achieved from test-
ing data under 25°C temperature with 300 steps in input, which
demonstrates that the battery operates most stably under room
temperature. The model is able to learn the battery behavior under
room temperature through the provided driving cycles without
the need for a long history. While, under 10°C and 0°C tempera-
tures, better performance is gained from the 500 input model. This
indicates that increasing input steps could help to improve the
estimation result under temperatures that are lower than room
temperature. However, the worst results are from the 700 input
steps which suggest that the increment of input steps must be se-
lected carefully for the many-to-one approach as an inappropriate
increment of input steps could result in performance degradation.
The SOC estimation results on the mixed driving cycles under 0°C,
10°C and 25°C temperatures are displayed in Fig. 7. The estimation
results under the three temperatures are competitive and without
significant errors. Still, errors can be seen from the ending steps
in mixed cycles under 0°C temperature due to their more dynamic
discharge pattern.

5 FINAL REMARKS
In this paper, a deep LSTM NN is proposed to estimate SOC over
two different Li-ion battery datasets. Discharge cycles with both
constant and dynamic current under various ambient temperatures
are used to train and test the proposed models. The evaluation
results show that the proposed models can learn the battery dy-
namic behavior during discharge. Battery SOC can be estimated
accurately by using the measured voltage, current, and temperature
values, with 1.34% and 1.99% RMSE in constant current and dynamic
current discharge cycle respectively. We have also shown how the
proposed estimation is robust w.r.t. different State of Health statuses.
The SOH is another important parameter for battery management.
As future work, we suggest using deep LSTM networks for SOH
estimation as we believe it can be effective as well.
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