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A B S T R A C T

Reinforcement learning, crucial for behavior in dynamic environments, is driven by rewards and punishments, 
modulated by dopamine (DA) changes. This study explores the dopaminergic system’s influence on learning, 
particularly in Parkinson’s disease (PD), where medication leads to impaired adaptability. Highlighting the role 
of tonic DA in signaling the valence of actions, this research investigates how DA affects response vigor and 
decision-making in PD. DA not only influences reward and punishment learning but also indicates the cognitive 
effort level and risk propensity in actions, which are essential for understanding and managing PD symptoms.

In this work, we adapt our existing neurocomputational model of basal ganglia (BG) to simulate two reversal 
learning tasks proposed by Cools et al. We first optimized a Hebb rule for both probabilistic and deterministic 
reversal learning, conducted a sensitivity analysis (SA) on parameters related to DA effect, and compared per
formances between three groups: PD-ON, PD-OFF, and control subjects.

In our deterministic task simulation, we explored switch error rates after unexpected task switches and found a 
U-shaped relationship between tonic DA levels and switch error frequency. Through SA, we classify these three 
groups. Then, assuming that the valence of the stimulus affects the tonic levels of DA, we were able to reproduce 
the results by Cools et al.

As for the probabilistic task simulation, our results are in line with clinical data, showing similar trends with 
PD-ON, characterized by higher tonic DA levels that are correlated with increased difficulty in both acquisition 
and reversal tasks.

Our study proposes a new hypothesis: valence, signaled by tonic DA levels, influences learning in PD, con
firming the uncorrelation between phasic and tonic DA changes. This hypothesis challenges existing paradigms 
and opens new avenues for understanding cognitive processes in PD, particularly in reversal learning tasks.

1. Introduction

When a subject interacts with the environment without explicit in
structions, learning is driven by unexpected rewards and punishments 
(reinforcement learning). It is well known that phasic dopamine (DA) 
changes (peaks and dips), which encode the difference between the 
expected and the actual outcome, drive this process (Schultz, 1998). The 
dopaminergic system not only works to find the optimal behavior in a 
given context but also enables flexibility (i.e., reversal learning) in the 

presence of a non-stationary environment when positive and negative 
contingencies can change.

Significant human neurological or psychiatric disorders, such as 
Parkinson’s disease (PD), schizophrenia, Attention Deficit Hyperactivity 
Disorder (ADHD), depression, addiction, and post-traumatic stress dis
orders, implicate dysfunction of the DA system and, consequently, 
abnormal behavior. Besides their typical symptoms, these disorders are 
often characterized by the difficulty of modifying one’s choices despite 
adverse consequences (Grace, 2016; Klein et al., 2019).
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A pivotal role in reinforcement learning is played by the basal 
ganglia (BG), a subcortical structure implicated in action selection. In 
fact, DA changes affect synapse training in the striatum (Hebbian 
potentiation and depotentiation) through D1 and D2 receptors and 
establish a different weight for the Go and NoGo pathways during 
learning (Gerfen and Surmeier, 2011). This is essential to favor or avoid 
specific actions.

Despite the enormous number of experimental, clinical, and theo
retical studies on the subject in recent years, the relationship between 
the dopaminergic system, the BG, and reversal learning is still under 
active investigation, with many points requiring additional analysis. 
Understanding these relationships is vital for treating patients with the 
aforementioned neurological disorders and optimizing the current 
therapies.

In the following, we will focus on reversal learning in PD patients 
since many experimental and theoretical studies are concerned with this 
pathology; moreover, these patients have been studied both on levodopa 
medication and without medication, thus emphasizing the role of DA 
changes. Interestingly, PD patients frequently develop severely disabling 
side effects after levodopa medication in the form of impulse control 
disorder, psychosis, and addiction (Dagher and Robbins, 2009; Driver- 
Dunckley et al., 2003; Lawrence et al., 2003; Voon et al., 2009). In 
particular, ON-medicated patients often exhibit a reduced ability in 
reversal learning compared with OFF-medicated patients and control 
subjects, both during deterministic and probabilistic cognitive tasks 
(Cools et al., 2006, 2001; Frank et al., 2004; Swainson et al., 2000).

To understand the mechanisms behind these cognitive side effects, 
Cools et al. (Cools et al., 2022) developed a hypothesis named “dopa
mine overdose”; this is based on the observation that the substantia 
nigra pars compacta projects primarily to the dorsal rather than to the 
ventral striatum (Kish et al., 1988; Rinne, 1993). Consequently, levo
dopa treatment in PD patients (at least at the beginning of the disease) 
can restore normal DA levels in the dorsal part, mainly implicated in 
motor control. However, this can also lead to a DA excess in the ventral 
part, which is especially crucial for cognitive decision-making (Rinne, 
1993). While the dorsal region, experiencing DA depletion, benefits 
from levodopa supplementation for restoration, the ventral part is less 
affected by neuron loss and thus becomes sensitive to DA overdose. This 
can be explained by the selective denervation process, which is more 
prominent in the dorsal part than in the ventral part (Fearnley and Lees, 
1991).

A consequential hypothesis is that, due to low basic DA levels, OFF- 
medicated PD patients should have difficulties in choosing rewarded 
actions. In contrast, ON-medicated PD patients should be less sensitive 
to punishments due to higher DA levels in the ventral striatum. Since 
reversal learning is primarily based on uncorrected choices (at least 
during the first phase of reversal after an environment shift), it is 
markedly impacted in subjects with high DA levels.

Several results in the literature support this scenario, suggesting that 
ON-medicated PD patients exhibit better reward-based learning 
(Rutledge et al., 2009) but impaired punishment-based (reversal) 
learning compared to OFF-medicated patients (Bódi et al., 2009; Cools 
et al., 2006; Frank, 2006; Frank et al., 2004; Graef et al., 2010; McCoy 
et al., 2019; Moustafa et al., 2008). Other studies, however, failed to find 
similar differences (Coulthard et al., 2012; Grogan et al., 2017). 
Generally, a large individual variability can manifest in the effects, and 
the mechanisms underlying them often remain unclear.

All these aspects have been summarized in several recent neuro
computational models, which offer essential insights into reinforcement 
learning in the BG and provide a unifying account of the main mecha
nisms involved (Cohen and Frank, 2009; Cutsuridis and Perantonis, 
2006; Frank, 2005; Humphries et al., 2018; Kato and Morita, 2016; 
Moustafa et al., 2014; Moustafa and Gluck, 2011; Schroll and Hamker, 
2013; Véronneau-Veilleux et al., 2021). According to a classic schema 
(Gerfen and Surmeier, 2011), individual actions are represented in the 
BG through segregated channels, each characterized by its Go (direct) 

and NoGo (indirect) pathways. DA is excitatory on the Go pathway, 
which facilitates the response, and inhibitory on the NoGo pathway, 
which inhibits the response. This theoretical underpinning has been 
used in most models and can explain the main aspects of medication in 
PD patients (Baston et al., 2016; Frank et al., 2004; Frank, 2005; Ursino 
et al., 2020a) and in different pathologies such as ADHD (Véronneau- 
Veilleux et al., 2022) and Huntington’s disease (Schroll et al., 2015).

Despite this general schema being well accepted and confirmed by 
experimental and theoretical studies, several aspects still deserve clari
fication, especially regarding reversal learning. During reversal 
learning, training after each switch (when the association between a 
stimulus and a rewarded action changes) is primarily driven by unex
pected errors, which, according to the previous schema, should be 
associated with a DA dip and reinforcement of the NoGo pathway. In 
contrast, the subsequent consolidation (when the subject has learned the 
new association and performs correctly) is primarily driven by rewards, 
which should further potentiate the Go pathway. Reversal learning 
tasks, in turn, can be deterministic, involving fast learning, or probabi
listic, where rewards and punishments are more balanced according to a 
given statistic.

Within this scenario, we have identified several issues that can 
benefit from further neurocomputational analysis, as detailed in the 
following:

(i) What is the best form of the Hebb rule for synapse potentiation/ 
depotentiation in the striatum that is able to simulate different tasks 
(deterministic and probabilistic) within a single unifying theoretical 
framework?

(ii) What is the specific role of the Go and NoGo pathway? A recent 
review (Calabresi et al., 2014) suggests that these two pathways should 
not be considered independent but functionally correlated in a 
push–pull manner.

(iii) What is the specific role of tonic DA vs. phasic DA? Do patho
logical aspects and the differences between medicated vs. non- 
medicated patients mainly result from alterations in tonic DA, phasic 
DA, or both?

(iv) Several recent studies suggest that tonic DA not only affects the 
capacity to learn from unexpected rewards or unexpected punishments 
but also signals the valence of a given action and/or implement a 
conditioned behavior (Niv et al., 2007; Rigoli et al., 2016a; Saunders 
et al., 2018). In this context, valence refers to the positive or negative 
nature of the outcome. How do DA levels (or other neuromodulators, 
such as norepinephrine or serotonin (Dayan and Huys, 2008)) reflect 
this aspect of valence on task performance in the BG?

(v) It is well-accepted that phasic DA changes are an indicator of an 
unexpected outcome (unexpected reward or punishment). How does the 
BG or the prefrontal cortex memorize this expectancy based on a pre
vious history of rewards/punishments? Many models use the present 
reward or punishment without explicitly caring about expectations.

To address these points, we modified our previous model (Schirru 
et al., 2022) to simulate two classic reversal learning tasks, the deter
ministic one (Cools et al., 2009, 2006) and the probabilistic one (Cools 
et al., 2001). Simulation of the deterministic task was essential to finding 
an adequate Hebb rule, allowing us to learn in just one step and disen
tangle a possible role for the Go and NoGo pathways. To understand the 
impact of DA-related parameters, a sensitivity analysis (SA) was per
formed, and differences between medicated and non-medicated patients 
were tested and compared with the performance of control subjects in 
both trials, providing additional insights for points iii), iv), and v). 
Finally, the original aspects of this work, possible testable predictions, 
and lines for future improvement are discussed.

2. Methods

2.1. Main model assumptions

The model makes use of several fundamental assumptions. Some of 
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them have already been exploited in previous works, where a detailed 
justification can be found (Baston and Ursino, 2015; Ursino and Baston, 
2018): (i) each action is characterized by a segregated channel, with its 
own Go and NoGo pathways, characterized by different DA responses; 
(ii) the different actions compete in the motor cortex, according to a 
“Winner takes all” arrangement of lateral synapses; (iii) a re-entrant 
thalamic connection, disinhibited by the Striatum, is necessary to 
determine the winner and to start the action; (iv) the hyper-direct 
pathway has the function of solving conflicts within the motor cortex.

The present work introduces a set of crucial new assumptions, which 
not only bring novelty but also significantly reshape the model’s func
tionality and outcomes. These assumptions stand as the key differ
entiators from other neurocomputational models:

i) Before each choice, the value of the tonic DA input is affected by 
the valence of the expected result: an emotionally positive 
expectation may cause a tonic DA increase, whereas an 
emotionally negative expectation may cause a tonic DA decrease. 
Various results in the literature support this assumption, showing 
that tonic DA level signals the valence of an action (Niv et al., 
2007; Rigoli et al., 2016b; Zénon et al., 2016). Additionally, 
Morita and Kato (2022) highlighted the importance of a recent 
study by Mikhael et al. (2022), which showed that DA signals, 
representing reward prediction errors, slightly ramp towards 
reward timings. These errors are used for accurate value learning 
in conditions with uncertainty about upcoming states, resolved 
by sensory feedback. This DA signal characteristic provides 
further validation for our assumption regarding anticipatory DA 
changes. Furthermore, a recent study (Delignat-Lavaud et al., 
2023) demonstrated that even when activity-dependent phasic 
DA release is reduced by 95 % in mice, behaviors that depend on 
DA remain unchanged or are even better, underscoring the crit
ical role of tonic DA as emphasized by our modeling results.

ii) The probability that a given choice is rewarded is coded by the 
activity of the winner Go neuron in the striatum (normalized 
between 0 and 1). We have not yet found a direct experimental 
confirmation of this idea, which, to our knowledge, has been 
partially exploited only by (Humphries et al., 2012); these au
thors assumed that the output of the BG could represent a prob
ability distribution for action selection.

iii) The relationship between phasic DA and reward expectation is 
highly non-linear. Phasic changes in DA (positive or negative) 
become increasingly significant as the result deviates more from 
the expectation. This is a crucial assumption supported by 
numerous studies, which demonstrate that most DA neurons are 
activated by a higher reward than predicted (positive prediction 
error) and depressed by a lower reward than predicted (negative 
prediction error) (Diederen et al., 2017; Schultz, 2016, 1998; 
Schultz et al., 1997). Our choice differs from that of most previ
ous models. Some authors used contrastive Hebbian learning 
(CHL), computing the difference of the Hebbian product (pre and 
postsynaptic activation product) across two states, namely, the 
network’s actual output phase and a subsequent phase in which 
the target output is experienced (Frank, 2006; Frank and Claus, 
2006). Other models make use of the classic Sutton-Barton al
gorithm to compute a temporal difference error signal and use 
this signal as a multiplicative factor in the Hebb rule (Moustafa 
et al., 2014). More complex models involve an actor-critic sys
tem, where the critic is a Pavlovian learning system that controls 
the firing of simulated midbrain DA neurons and trains both itself 
and the actor, i.e., the BG (O’Reilly and Frank, 2006).

iv) Learning is governed by a complete Hebb rule in the striatum, 
including LTP and LTD. The rule applies to all possible combi
nations of pre-synaptic and post-synaptic activities. Possible 
synapse plasticity in other regions of the BG or of the cortex, 
although documented in the literature, is not essential for the 

present results. The possibility of this version of the Hebb rule is 
supported by the presence of inhibitor interneurons in the stria
tum, making a disynaptic connection between input and output 
neurons (Di Filippo et al., 2009; Fino and Venance, 2011).

2.2. Model description

Qualitative model description − The model implemented is a repre
sentation of the human BG based on our previous work (Baston and 
Ursino, 2015; Schirru et al., 2022). A schematic diagram of the model is 
presented in Fig. 1.

The whole network comprises several neural units. Each unit 
(simulating a group of neurons with similar functions) is characterized 
by first-order low-pass dynamics to reproduce the integrative property 
of the membrane and a sigmoidal relation for output activity to repre
sent the presence of lower and upper saturation values for neuronal 
activity.

The model comprises a sensory representation (S) and a motor rep
resentation (C) in the cortex. The sensory representation’s neurons 
correspond to the stimulus presented to the network, while the motor 
neurons in the cortex encode possible actions. In addition to the previous 
neural units downstream the cortex, the model includes the striatum, 
further subdivided into Go and NoGo pathways, the globus pallidus pars 
externa (Gpe), the globus pallidus pars interna (Gpi), the thalamus (T), 
all with a neuron count in a 1-to-1 relationship with cortex, the 
cholinergic interneuron (ChI) and the subthalamic nucleus (STN), 
modeled as single neurons representing the entire population activity.

The model integrates three primary pathways: direct (via Go neu
rons), indirect (via NoGo neurons), and hyperdirect (via STN). The 
combined action of these pathways inhibits the thalamus from Gpi, 
either permitting or blocking a coded response by motor neurons. In the 
absence of sufficient stimulation, the network maintains a basal steady- 
state, with inhibited cortex, striatum, and thalamus, and basal activity in 
Gpi and Gpe, in accordance with physiological data (van Albada and 
Robinson, 2009).

Once a sufficient stimulus is provided to the network, the motor 
cortex can select a response based on competition among neurons, 
implemented by a winner-takes-all (WTA) mechanism and featuring 
lateral inhibition and an excitatory self-loop. After action selection, both 
direct and indirect paths operate in parallel for each neuron (Mink, 
1996). Specifically, each neuron of the cortex is connected to its corre
sponding neuron in the Go and NoGo pathways via excitatory synapses. 
The Go pathway facilitates the response by direct inhibition of the Gpi, 
resulting in thalamus disinhibition. In contrast, the NoGo pathway 
blocks the response by inhibiting Gpe, which sends inhibitory synapses 
to Gpi, thus further inhibiting the thalamus. The hyperdirect pathway 
comes into play whenever intense conflict arises among different neu
rons in the cortex, i.e., two or more neurons fire together despite the 
presence of a winner-takes-all mechanism, necessitating additional time 
for the cortex to select the winning neuron. The STN, receiving the 
conflict level as input, sends excitation to Gpi, resulting in thalamus 
inhibition in this scenario.

Dopamine role − As mentioned in the introduction, DA plays a pivotal 
role in learning mechanisms, with its effect either excitatory or inhibi
tory, depending on the type of receptors it binds to (excitatory when 
binding to D1 receptors and inhibitory when D2 receptors are involved). 
In the model, this distinction translates into different DA effects on the 
Go pathway (predominantly excitatory) and the NoGo pathway (pri
marily inhibitory).

At the basal steady-state level, DA maintains a tonic level. In case of 
reward or punishment, a phasic change in DA occurs. In the case of re
wards, DA induces excitation on the active Go neuron and inhibition on 
inactive Go neurons, with a contrast enhancement mechanism to favor 
only one neuron winning. Simultaneously, it exerts an inhibitory effect 
on all NoGo neurons. In the case of punishments, all NoGo neurons are 
excited and Go neurons are inhibited. Compared with our previous 
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works (Baston and Ursino, 2015; Schirru et al., 2022; Ursino and Baston, 
2018), we here assumed that the excitatory effect of a DA dip on the 
NoGo neurons exhibits a maximal value (see Eq.10 in Supplementary 
Materials 1). This is important to prevent a scenario where all NoGo 
neurons are excessively excited following an unexpected punishment, 
which could result in all actions being punished. To address this, satu
ration has been implemented. This ensures that reinforcement is only 
directed to the NoGo pathway associated with the action unexpectedly 
punished, reducing the repetition of this particular action under similar 
future conditions.

In addition, cholinergic interneurons amplify the phasic DA effect 
through a push–pull mechanism. In detail, cholinergic interneurons are 
capable of sensing DA changes: DA drops increase Chl activity, resulting 
in disinhibition of the Go pathways and inhibition of NoGo pathways. 
The opposite holds in the case of DA peaks.

In order to reach a better understanding of reward and punishment 
mechanisms in ventral BG and emphasize the role of phasic and tonic DA 
changes, we examine two aspects of the model in detail in the following 
section. All other equations and parameter numerical values can be 
found in Supplementary Materials 1.

(i) What is the most appropriate form of learning rule for striatal 
synapses that can be used to simulate both deterministic and probabi
listic learning tasks within a unified theoretical framework?

(ii) How do previous experiences influence DA changes, translated 
into larger changes for unexpected cases (punishments or rewards) and 
smaller changes for expected ones?

Hebbian rule − In a recent study, we compared several forms of 
Hebbian rules to simulate reversal learning during two-choice or four- 
choice probabilistic tasks (Schirru et al., 2022). The best rule was one 
based on the post-synaptic activity of striatal neurons, i.e., striatal syn
apses were modified only if the corresponding post-synaptic Go or NoGo 
neurons were active.

However, we found the same rule inadequate to simulate a deter
ministic task (as in (Cools et al., 2009, 2006) in which a subject must 
modify his response immediately after a switch) or a single-choice 
probabilistic task (as in (Cools et al., 2001; Swainson et al., 2000)). In 
the following, we will examine the behavior of three alternative rules 
simulating Cools et al. deterministic experiments. We remark that, in 
each case, we introduced upper and lower saturation values (named 
wmax and wmin in Table 1 of Supplementary Materials 1) for each trained 
synapse during learning.

The fundamental idea is that the Hebb rule is based on comparing 
neuron activity with a threshold to determine activation or inactivation 

(see Eqs. 1–3 below). Basically, we postulate that after a reward, only 
one winner Go neuron is excited, whereas the other Go neuron and all 
NoGo neurons are inhibited. Conversely, after an unexpected punish
ment, all Go neurons are inhibited (due to a phasic DA fall). In contrast, 
the NoGo neuron in the winner channel is active, and the other NoGo 
neuron activity is below the threshold.

The three Hebb rules examined hereafter are:
The post-synaptic rule 

ΔwAB
ij = σ(yB

j − ϑPRE)(yA
i − ϑPOST)

+ (1) 

where ΔwAB
ij is the variation of the synapse between the pre-synaptic 

neuron j in layer B (B=S or C) and the post-synaptic neuron i, in layer 
A (A=G or N), y represents neuron activity (normalized between 0 and 
1), ϑPRE and ϑPOST are thresholds for the pre-synaptic and post-synaptic 
activity, and the expression ()+ represents the function positive part (i.e., 
(u)+ = u if u > 0, 0 otherwise). According to Eq. (1), the rule is applied 
only if the post-synaptic neuron activity is above the threshold.

The ex-or rule 

ΔwAB
ij =

σ
(

yB
j − ϑPRE

)(
yA

i − ϑPOST)if yB
j > ϑPRE or yA

i > ϑPOST

0 if yB
j ≤ ϑPRE and yA

i ≤ ϑPOST
(2) 

This rule excludes only the case when both post-synaptic and pre- 
synaptic activities are below threshold.

The complete rule 

ΔwAB
ij = σ(yB

j − ϑPRE)(yA
i − ϑPOST) (3) 

This rule considers all possible cases, including a synapse reinforcement 
when both pre-synaptic and post-synaptic neurons are below the 
threshold. The possibility of a reinforcement when both neurons are 
below the threshold may appear unphysiological. Still, it can be justified 
by a disinhibition (see Supplementary Materials 2), i.e., assuming a 
decrease in an excitatory synapse from the input neuron to an inter
mediate inhibitory interneuron (see Discussion). The presence of 
inhibitory interneurons in the Striatum is well documented (Di Filippo 
et al., 2009; Fino and Venance, 2011).

To evaluate the three Hebb rules, let us assume that the network just 
learned to associate an Action1 to a first stimulus (S=[1 0] in Fig. 2 and 
Figs S2 and S3 in Supplementary Materials 2) and an Action 2 to a 
second stimulus (S=[0 1] in the same figures). At a given moment, a 
switch occurs; for instance, the second stimulus is now rewarded after 

Fig. 1. Block diagram describing the primary regions involved in the BG model and their relationships. Continuous green lines represent excitatory synapses, and 
dashed red lines represent inhibitory synapses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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Action1 and punished after Action2. Since the network erroneously re
sponds with Action2 (due to previous learning), an unexpected pun
ishment has now occurred.

Immediately after the switch, the second stimulus is presented again 
(that is, the same stimulus on which an error was done immediately 
before) to test whether the network was instantly able to learn the new 

association (i.e., to respond with Action1 instead of Action2).
Results are summarized in the panels of Fig. 2 (for the case of the 

complete Hebb rule, Eq. (3)) and Figs. S1 and S2 of Supplementary 
Materials 2 (for what concerns the other two rules). These figures show 
that only the complete Hebb rule is able to ensure a correct shift after a 
single unexpected punishment. In contrast, the use of the other two rules 
results in an uncertain decision immediately after an unexpected switch. 
In other words, the subject can become unable to make a choice, pro
ducing a large number of switch errors. The qualitative results illus
trated in these figures have been further supported by simulations 
(results not shown) performed on the overall model using the three 
alternative rules. Simulations confirm that only a complete Hebb rule 
correctly mimics the deterministic switch experiment, producing per
centage errors of the order of those observed.

An interesting aspect emerging from Fig. 2 is that, after rewards, the 
Go portion of the BG dominates the behavior, becoming able to associate 
the correct stimulus with the correct response. At the same time, the 
NoGo withdraws its inhibition from the latter rewarded choice. How
ever, after an unexpected punishment, the NoGo portion takes control. It 
dominates the response, becoming able to inhibit incorrect choices, 
whereas the Go portion withdraws excitation from the last punished 
action. Hence, both portions of the BG are essential to determine the 
correct behavior. The Go pathway comes into play after rewards, and the 
NoGo after punishments.

Phasic dopamine changes − In recent work (Schirru et al., 2022), we 
proposed an original mechanism to compute the effect of phasic DA 
changes on striatal neurons (in the following, this effect will be named 
ΔD) able to produce: (i) a high phasic peak effect after an unexpected 
reward but a negligible peak effect following an expected reward; (ii) a 
robust phasic dip effect following an unexpected punishment, but a 
negligible dip effect after a totally expected punishment.

Eqs. (4)–(6) below summarize the mechanism. It is worth noting that 
the quantity D does not represent DA concentration but rather the effect 
that DA can have on glutamatergic signaling in medium spiny neurons, 
which are projection neurons of the striatum. D values depend on D1 and 
D2 receptor sensitivity, reflecting how DA can influence the excitation of 
striatal (Go and NoGo) neurons. Therefore, this quantity can assume 
positive and negative values.

Equation (4) is based on the idea that the “expected reward” is 
signaled by the activity (normalized between 0 and 1) of the Go neuron 
in the winner channel when a reward or a punishment is given (i.e., just 
before the computation of phasic DA changes). An activity close to 1 
signified a well-expected reward, and an activity close to 0.5 or even 
below was an unexpected reward.

Accordingly, we compute a reward expectancy (i.e., the estimated 
probability of a reward, noted rexpected) as follows: 

rexpected = gow(tresponse) (4) 

where w represents the winner channel (in this work, w = 1 or 2), and 
tresponse is the instant at which a reward/punishment is given.

In the case of a reward, the phasic D peak ΔDreward is a non-linear 
function of the difference between 1 and rexpected. The higher this dif
ference, the higher the D peak and vice versa. We can write: 

ΔDreward =
[
2*

(
1 − rexpected

) ]m
• Dp (5) 

where m represents a parameter greater than 1, chosen empirically, and 
Dp is a multiplicative factor that sets the strength of the response. As it is 
clear from Equation (5), when the expected reward probability (rexpected) 
is 0.5, the phasic D peak is equal to Dp. If rexpected is less than 0.5 (an 
unlikely situation for a winner), we have a much stronger phasic peak. If 
rexpected is close to 1 (in case of a strongly expected reward), the phasic D 
peak decreases dramatically to zero. The higher the m, the stronger the 
difference between an unexpected and an expected reward.

In the case of punishment, the higher the expected reward, the 

Fig. 2. Qualitative simulation of a deterministic task (as in Cools et al., 2006) 
assuming two action channels and using the complete Hebb rule (Eq. (3). Each 
panel represents the synapses connecting the external stimulus S (in the present 
model S=[10] for the first stimulus and S=[01] for the second stimulus) with 
the two neurons in the Go pathways (left panels) and the two neurons in the 
NoGo pathways (right panels). Both the Go and NoGo exhibit two neurons, 
representing the first choice and the second choice, respectively. A white circle 
represents a silent neuron (activity below the threshold), while a dashed circle 
represents an excited neuron (above the threshold). Three possible values are 
assumed for the synapses (low: thin line; intermediate: medium line; high: thick 
line); these values are the result of previous learning. After each choice, syn
apses are potentiated (sign + ) or depotentiated (sign –) according to Eq. (3). 
Moreover, we assume that the learning rate is so strong as to modify the syn
apse value directly from the low to the high value (in case of potentiation) or 
from the high to the low value (in case of depotentiation) in just a single trial. 
This holds for the deterministic task only. In the first two rows (before a 
switch), we assume that the first stimulus is rewarded by Action 1, and the 
second stimulus is rewarded by Action 2. In the first row, we assume that 
starting from a naïve condition (all synapses have an intermediate value), the 
participant receives Stimulus 2, responds casually with Action 2, and is 
rewarded (this is the unique initial random choice; all the subsequent choices 
are deterministic). After a reward, only the Go neuron in the winner pathway is 
excited; all other neurons are inhibited. In the second row, the subject receives 
Stimulus 1, responds with Action 1 (according to the present new value of Go 
synapses), and is rewarded. At the switch moment, the Go determines the 
correct choices, while the NoGo is ambiguous. From the third row downward, 
we simulate a reversal (now Stimulus 1 is rewarded by Action 2, and Stimulus 2 
is rewarded by Action 1). In the third row, the subject receives the second 
Stimulus, responds with Action2 (according to the present Go synapses), and is 
punished. After a punishment, only the NoGo neuron in the winner pathway is 
excited; all other neurons are inhibited. In the fourth row, the subject receives 
the Stimulus 2 again (as in Cools et al., 2006). But now the NoGo dominates 
(while the Go is ambiguous) and inhibits the wrong choice. Hence, the subject 
correctly responds with Action 1 and is rewarded. After this reward, the Go 
dominates again (fifth row, note the reversal of synapses) and signals the cor
rect choice, while the NoGo is ambiguous.
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stronger the phasic D drop ΔDpunishment (i.e., an unexpected punishment 
causes a substantial dip). We can write: 

ΔDpunishment = − 0.5 •
[
2*rexpected

]m
• Dp (6) 

If the expected reward is 0.5, the phasic D drop change is equal to −
Dp/2. If rexpected increases, the phasic dopaminergic drop is dramatically 
amplified, thus automatically implementing the significant sensitivity to 
unexpected punishments.

Examples of phasic D changes, with different values of expected 
reward and different values of parameter m, are shown in Fig. 3.

It is worth noting that, in previous work (Schirru et al., 2022), we 
used the same value for parameter Dp as the tonic DA level (i.e., Dp = Dt). 
The implicit assumption was that the higher the tonic DA level, the 
higher the phasic response, and vice versa. Conversely, in the present 
work, we use different values for Dt and Dp since various authors suggest 
that phasic and tonic DA changes are probably uncorrelated or inversely 
correlated (see (Grace, 2016, 2001, 1991)), i.e., no precise data is 
showing that large level of tonic DA should correspond to proportionally 
large levels of DA dips or peaks. The two parameters (Dt and Dp) will be 
the subject of a separate SA.

2.3. Task descriptions

2.3.1. Deterministic task
In the original experiment presented by Cools et al. (2006), partici

pants (PD-OFF, PD-ON, Control) predicted outcomes in a simulated card 
game (Fig. 4). Participants were instructed to imagine themselves as a 
casino boss observing a player during a card game (see Cools et al. 
(2006) for more details).

Participants were presented with two images per trial; one of them is 
highlighted. By pressing a corresponding button, they had to predict the 
outcome of the player game: a win (green button) or loss (red button) 
associated with the highlighted image. This setup allows participants to 
learn these associations over time. During the task, reversal phases were 
introduced, where the previously learned associations were switched. 
Once the reversal is introduced, the image previously associated with a 
win represents a loss and vice versa. This tests the subject’s adaptability 
and learning under changed conditions.

Crucially, the participant predicts “a posteriori” whether the player 
has won or lost, meaning they could not influence the results but only 
predict what happened.

The task consists of separate blocks, each comprising 120 trials, 
during which a reversal occurs several times: more precisely, a reversal 
takes place once an appropriate amount of knowledge is achieved. The 
criterion of knowledge is a predefined number of consecutive correct 
responses (ranging from 5 to 9, selected randomly) to prevent the pre
dictability of the reversal.

Two different block types have been designed, which differ as to 
valence conditions. Subjects were not made aware of this difference. In 
the first block type, the participant must always learn the switch 

following an unexpected win (“unexpected win block”); in the second 
block type, the participant always learns after an unexpected loss 
(“unexpected loss block”). Here, valence refers to the positive or nega
tive nature of these outcomes (unexpected wins or unexpected losses).

In most previous studies, unexpected wins for the player are 
confounded with positive feedbacks for the participant (hence DA 
peaks), and unexpected losses for the player are confounded with 
negative feedbacks for the participant (DA dips). Implicitly, this assumes 
that wins are associated with the Go pathway and losses to the NoGo 
pathway of a single action choice (represented in Fig. 5a in terms of phasic 
DA changes).

In our opinion, however, making a parallel between the player’s wins 
or losses and the DA peaks or dips in the participant is confusing, as the 
objective of the participant is not to win from the game but to make 
correct predictions. Hence, we speculate that DA dips probably occur 
after any wrong predictions made by the task participant, which can 
occur either after an unexpected loss or an unexpected win by the player. 
In other terms, predicting a win or predicting a loss are two separate 
actions associated with two channels in the BG, each with its own Go and 
NoGo pathways. Our following assumptions on DA changes are sum
marized in Fig. 5 b and c.

This distinction between reward/punishment prediction and the 
control of action is clearly outlined by Robinson et al. (Robinson et al., 
2010), who used a similar task. The authors explicitly speculate about 
two possible strategies to distinguish between appetitive or aversive 
predictions: i) a strategy in which participants work primarily toward 
the win-associated action (Go) and treat the other as an alternative 
(NoGo); ii) a strategy in which the participants exhibit a different bias in 
response to two possible actions, one for win predictions and the other 
for loss predictions.

Most previous papers implicitly assume the strategy i), treating wins 
as rewards and losses as punishments (Fig. 5a). Conversely, in the pre
sent paper, we assume the strategy ii), making use of two distinct action 
channels and treating unexpected outcomes always as a DA dip (Fig. 5b 
and c).

To emphasize this point, in the first step, we simulated a hypothetical 
task with two choices but no different valence (i.e., no win or loss). The 
participant must only predict whether the choice is correct or not. With 
this approach, the focus is solely on the stimulus–response association. 
Reversal can be achieved by presenting unexpected feedback on either 
action. This task with positive/negative feedback but no win/loss is 
called “neutral” and is represented by the blue line in Fig. 5b and c.

In a second step, we added a valence to each choice (win/loss) from 
the observer’s point of view. For the observer, an unexpected win/loss is 
always an error, represented by a phasic decrease in DA. First, we 
assumed that the valence (win or loss) affects the phasic DA dip, greater 
for an unexpected win and smaller for an unexpected loss, compared 
with the neutral condition (no win/loss). As we will see in the results 
section, this assumption does not produce satisfactory results. Hence, we 
introduced an alternative assumption (Fig. 5c): the “win prediction” is 
signaled by an anticipatory increase in DA level, or more generally, a 
change in the baseline level of DA in the striatum, as suggested in the 
literature (Dayan and Huys, 2008; Niv et al., 2007; Rigoli et al., 2016a). 
Conversely, the “loss prediction” is signaled by an anticipatory decrease 
in DA levels. The effect of valence is represented by the green and red 
lines in Fig. 5c.

In our model, we assume that the network initiates from a completely 
naïve state, wherein all synapses begin with equivalent values, and 
neither of the two actions is initially preferred. The presence or the 
absence of the stimulus holds identical significance. To further clarify, 
the synapses from the sensory cortex neurons to the Go and NoGo 
neurons, as well as those from the motor cortex neurons to the Go and 
NoGo neurons, are set to the value of 0.5. In addition, to ensure an 
appropriate level of exploration by the network, Gaussian white noise 
with zero mean value and standard deviation (SD) of 0.08 is applied as 
input to the neurons of the motor cortex. We have chosen a low value of 

Fig. 3. Phasic changes in quantity D (Eqs. (5) and (6) evaluated with different 
values of the expected reward, rexpected, and different values of parameter m. 
The curves have been obtained using Dp = 1. A change in Dp causes a pro
portional increase in the same curves.
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white noise because the task is deterministic; hence, low exploration 
should be performed by the network. In each trial, two stimuli, S1 = [01] 
and S2 = [10] are presented to the network. The exposure is long enough 
to allow the network to select a winner and subsequently reach a new 
steady state condition. The Hebb rule is applied at the end using steady- 
state values. These stimuli are randomly permuted and have a one-to- 
one relationship with the number of channels of the Go and NoGo 
pathways. After the response, the correctness of the prediction is eval
uated, and phasic DA changes to the Go and NoGo neurons are computed 
in accordance with Eqs. 4-6. When a reward is given, it increases the 
activation of the winner Go neuron and decreases other Go and NoGo 

neurons. At the same time, a punishment reduces the activation of all Go 
neurons and increases the activation of the winner NoGo neuron above 
the threshold. After a reversal trial, the stimulus with an unexpected 
outcome was always repeated in the immediately following trial. As in 
Cools et al. (2006), the number of trials is set to 120, and the maximum 
number of reversals is set to 14. The criterion used to assess the results 
from the network is the percentage of the errors performed by the 
different subjects in the trial immediately after the reversal.

2.3.2. Probabilistic task
In the experiment by Cools et al. (Cools et al., 2001), two different 

Fig. 4. Schematic representation of the task performed by Cools et al. (2006). The task consists of two separate blocks. Based on the highlighted image on the screen 
(hypothetical player selection), the participant should select either the green button to predict a win (W) or the red button to predict a loss (L) associated with the 
highlighted image. The timeline on the right shows the progression of highlighted stimuli and corresponding predictions, with “W” and “L” indicating predictions of a 
win and a loss, respectively, while emoticons represent the received outcomes. The first highlighted block indicates the reversal phase, where previously learned win/ 
loss associations are switched. The second highlighted block indicates the evaluation phase, where the participant’s ability to adapt to the reversal is assessed. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Qualitative examples of the strategies adopted during the deterministic task. a assumes a single action channel, with the Go signaling the win and the NoGo 
signaling the loss. After an expected win (the participant pushes the green button), the unexpected loss causes a dip. After an expected loss (the participant pushes the 
red button), the unexpected win causes a peak. b and c assume two distinct action channels, one for wins and the other for losses. b illustrates our initial hypothesis 
that distinct types of prediction errors influence the phasic dips in DA. In c, the “win prediction” valence (expected win indicated by the green line) causes an increase 
in DA levels in the striatum. Conversely, the “loss prediction” valence (expected loss indicated by the red line) causes a decrease in DA levels, symbolizing a 
downward shift. In both cases (as well as in the neutral case, blue line), the unexpected achievement causes a negative peak. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
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colors are directly associated with rewards or punishment in a proba
bilistic way. In detail, selecting a color resulted in a reward 80 % of the 
time and a punishment 20 % of the time. In contrast, choosing the other 
color is rewarded with a 20 % probability and punished with an 80 % 
probability.

At the model level, to simulate this task, we adopted a two-choice 
experimental framework, i.e., the subject must choose between two 
possible actions: “choose the left color” or “choose the right color.” The 
“left color” leads to an 80 % probability of rewards, while the “right 
color” is associated with a 20 % probability of rewards. In this experi
ment, the acquisition and the reversal stages are kept distinct. In 
particular, after completion of the acquisition stage, which consists of 40 
epochs, the reversal phase follows, in which probabilities are oppositely 
associated.

Translation into the model is performed by implementing one stim
ulus S1 in the sensory representation set at a fixed value of 1. At the same 
time, in the cortex, two neurons are present, coding for the two possible 
actions. Similar to the deterministic task, the network starts from a 
totally naïve condition, wherein all synapses begin with equivalent 
values.

Interestingly, we used the same network parameters as in the 
deterministic task. The only modified parameters are the learning factor 
for the Hebb rule (σ in Eq. (3)) and the noise amplitude (SD) for cortical 
neurons (σ was reduced while SD was increased, as shown in Table I in 
Supplementary Materials 1). This choice is reasonable since a deter
ministic task requires that the new associations are learned in one shot, 
thus necessitating a high learning factor. In contrast, a probabilistic task 
requires that associations are extracted from statistics, hence using a 
smaller learning factor. To ensure an appropriate level of exploration by 
the network (hence, higher noise), Gaussian white noise with zero mean 
value and standard deviation (SD) of 0.15 is applied as input to the 
neurons of the motor cortex. The initial training phase consists of 40 
trials, during which the stimulus S1 is presented at each trial. When the 
network performs an action, represented by the neuron of the motor 
cortex overcoming a predetermined threshold of 0.9, either a reward or 
punishment occurs. In case of no response or multiple responses, no 
feedback is provided to the network. Moreover, during the training, 
action one is rewarded with an 80 % probability and punished with a 20 
% probability; the opposite holds for action 2. After the learning stage 
was completed, the reversal stage followed, again consisting of 40 trials 
in which probabilities were oppositely associated. Results are evaluated 
by estimating the number of patients who successfully passed the stage; 
as in (Cools et al., 2001), a stage is considered successfully passed when 
the subject gives at least eight consecutive correct responses.

For statistical evaluation, we simulated fifty different subjects for 
each of the previous tasks, and each subject was characterized by a 
different realization of the random noise. Moreover, the tonic and/or 
phasic DA parameters and the parameter m were changed to realize an 
SA.

3. Results

3.1. Primary results on the deterministic task

First, we simulated the deterministic experiment described in Cools 
et al. (Cools et al., 2006). In particular, as specified in the Method sec
tion, we assessed the switch error rate, i.e., the percentage of errors in 
the trials immediately following an unexpected switch. It should be 
pointed out that we have not assigned different valences (win/loss) to 
the two actions during these preliminary simulations.

During the first set of simulations, some parameters of the network 
representing the maximum and minimum values for the synapses in the 
striatum wmax and wmin, respectively, the learning factor for the Hebb 
rule σ, the noise amplitude for cortical neurons SD were assigned to 
obtain percentage errors of the same order (about 10–15 %) as those 
reported in Cools et al. (2006). A SA on the role of these parameters, 

which justifies the chosen values and their impact, can be found in Fig S4
in Supplementary Materials 2. All the other network parameters have 
the same value as in previous works. A value for these parameters can be 
found in Table I of Supplementary Materials 1.

To find appropriate values for the learning factor of the Hebb rule σ, 
the noise amplitude (SD) and upper and lower saturation synapses in the 
striatum (wmax and wmin, respectively), these parameters have been the 
subject of a SA (see Supplementary Materials 2). We have chosen a low 
value of white noise because the task is deterministic; hence, low 
exploration should be performed by the network. To further assess the 
model’s robustness to parameter changes, we performed a SA on three 
other parameters that affect the final choice, i.e., the strength of the 
winner-takes-all competition in the motor cortex, the strength of the 
feedback connection from the thalamus to the motor cortex, and the 
strength of the hyper-direct pathway. Results show that the model is 
quite robust: changing each of these parameters affects the percentage of 
errors moderately in a gradual way.

Furthermore, we performed an SA on the main factors affecting the 
dopaminergic response. These factors include the tonic level, Dt, the 
phasic coefficient in eq. 5–6, Dp, and the coefficient m in eq. 5–6, which 
is associated with the impact of the unexpected punishment: the higher 
the m, the higher the role for the unexpected punishments. Again, we 
remember that D does not represent DA concentration but the effect on 
the Go and NoGo striatal neurons.

To determine whether the literature data could be more accurately 
accounted for by changes in tonic D levels, by changes in the phasic D 
response or a combination of both, we first studied the combined effect 
of tonic Dt and phasic Dp parameters. Using m = 2.5, Fig. 6a shows the 
presence of a U-shaped relationship between Dt and the percentage of 
switch errors, consistent with previous experimental works that show a 
similar relationship between DA and cognition (Arnsten, 1998). How
ever, this relationship becomes less pronounced as the phasic parameter 
increases (for instance, with a value of Dp equal to 1.0 in Fig. 6a). With 
values as high as 1.5 or 2.0, the curve becomes flat up to high values of Dt 
(results not shown for briefness). This suggests that increasing phasic DA 
changes can attenuate the effects of increasing tonic DA levels on switch 
errors. With a more substantial phasic DA change, the tonic DA range 
associated with a low fraction of wrong responses expands.

Fig. 6b shows how the percentage switch error varies with tonic DA 
levels, computed by maintaining the phasic coefficient Dp = 0.8 and 
using different values of m. Results indicate that the coefficient m needs 
to be at least equal to 2 to obtain acceptable switch errors, supporting 
the mechanism in eq. 4–6.

Following our SA, to simulate ON– and OFF-medicated PD patients 
and control subjects, we assumed that:

i) Tonic DA level has smaller values in OFF-PD patients, interme
diate values in control subjects, and elevated values in ON-PD 
patients (see (Cools et al., 2006) for an accurate justification);

ii) The phasic factor Dp is substantially the same in the three groups. 
To maintain the U-shaped relationship, we used a value Dp, = 0.8 
since, according to Fig. 6a, it aligns with the results by Cools et al.

iii) The parameter m is not affected by the patient’s status. We used a 
value m = 2.5 throughout the subsequent simulations, which 
warrants a U-shaped relationship.

The previous assumptions are summarized in the curve “switch- 
error” vs. tonic DA reported in Fig. 7a and used for the following tests.

3.2. The deterministic task with a different action valence

The previous results were obtained assuming no different valence 
(win/loss) for the two actions, i.e., only the feedback of an unexpected 
outcome guides the participant response. However, in the experiments 
by Cools et al. (2006, 2009), participants should predict whether a given 
card leads to winning or losing money. As discussed above, combining a 
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win/loss and positive/negative feedback can be interpreted as able to 
reinforce either the Go or the NoGo of a single action separately (i.e., the 
Go would signal the win, and the NoGo would signal the loss, see 
Fig. 5a). Alternatively, we assume that prediction of reward/punishment 
and instrumental control of action are signaled by two distinct Go and 
two distinct NoGo channels.

In a series of papers, Cools et al. observed that PD-ON subjects made 
fewer errors after an unpredicted win (i.e., when a previously losing card 
now wins) as compared to more errors when switching after an unpre
dictable loss (i.e., when a previously winning card now becomes a loser). 
The opposite error pattern, although less evident, is observable in PD- 
OFF patients, who showed fewer errors after an unexpected loss than 
after an unexpected win. The results by Cools et al. (2006) are sum
marized in Fig. 7b.

In order to explain these results, we first assumed that phasic DA dips 
differ according to valence, with a deeper dip after an unexpected win 
and a shallower one after an unexpected loss, compared to the neutral 
condition (Fig. 5b). As it can be seen by looking at Fig. 6a, this difference 
in phasic response according to valence can explain the better adapta
tion of ON-medicated patients (higher values of Dt) to unexpected wins 
than unexpected loss; however, it cannot explain the opposite behavior 
observed in OFF-medicated subjects (smaller values of Dt, where the 
curves for different values of Dp are overlapped). Furthermore, minimal 
differences in parameter Dt are sufficient to cause enormous differences 
between control and ON-medicated patients, which seems quite unre
alistic. To show an example, we assumed a change of parameter Dp from 
0.85 to 0.8 for the two valences and values of Dt = [0.9 1.35 1.45] for 
OFF-medicated patients, Control subjects, and ON-medicated patients, 
respectively. The results can be found in Fig. S5 of Supplementary Ma
terials 2.

Different authors in recent years (Dayan and Huys, 2008; Niv et al., 
2007; Rigoli et al., 2016a) suggested that the tonic DA level, or more 
generally the basal condition of the BG, can be actively regulated to 
signal the valence of the response; particularly, higher DA levels would 
promote cognitive effort (Westbrook et al., 2021).

Based on these ideas, building upon our SA and the U-shaped rela
tionship (Fig. 7a), we introduced a different assumption, i.e., the valence 
of the stimulus can moderately affect the parameter Dt in anticipation of 
the response, setting the basal value at a slightly higher or lower level 
just before the stimulus (see Fig. 5c). As shown in Fig. 7a, we assume 
that, if a stimulus signals an expected reward, the value of this parameter 
moves to a slightly higher value (we can use Dt + v, where v signals a 
positive valence of the stimulus). During a reversal, this condition is 
followed by an unexpected punishment. Conversely, if a stimulus signals 
an expected punishment, the value of parameter Dt moves to a slightly 
smaller value (we can say Dt − v, i.e., a negative valence of the stimulus). 

During reversal, this condition is followed by an unexpected reward. This 
allows for the simulation of three groups (PD-OFF, PD-ON, and Control). 
By using an interval of values for Dt along the curve, with different upper 
and lower values for each group, we tested if we were able to reproduce 
the results observed by Cools et al. (2006) using our model.

To implement this idea, we assumed values for the parameter Dt, 
equal to 0.65, 1.0, and 1.4 for OFF-medicated PD patients, control 
subjects, and ON-medicated PD subjects, respectively. To mimic the two 
valence conditions of unexpected punishment and reward, these values 
were incremented and decremented by 0.05, respectively (i.e., using v 
= 0.05). The results, reported in Fig. 7c (and further put in evidence in 
the U-shaped curve of Fig. 7a), agree with the results by Cools et al. quite 
well not only for what concerns differences of the response in ON-PD and 
OFF-PD subjects but also in control individuals.

Finally, Fig. 7d displays data from (Cools et al., 2009) showing the 
difference in healthy subjects between the proportion of correct re
sponses in switch trials after an unexpected reward and those after an 
unexpected punishment as a function of their relative DA synthesis. 
Subjects with higher DA synthesis exhibit better reversal learning after 
unexpected rewards, whereas subjects with low DA synthesis show the 
opposite pattern. As reported in Fig. 7e, a similar quasi-linear relation
ship can be obtained from our model as a function of the Dt, simply 
making use of the previous assumption, i.e., we used Dt + 0.05 in case of 
unexpected losses and Dt − 0.05 in case of unexpected wins (where Dt is 
the value plotted in the abscissa of Fig. 7e). A change in parameter Dp 
(phasic DA) cannot explain these results, producing significant changes 
for high Dt, but insignificant changes for low Dt.

3.3. Simulation of the probabilistic reversal learning

In a second set of simulations, we replicated the probabilistic reversal 
learning task described in (Cools et al., 2001). Here, we maintained the 
same network parameters as in the deterministic task, modifying only 
the learning factor for the Hebb rule and the noise amplitude for cortical 
neurons, as required by the nature of the task.

Fig. 8a and 8b report a SA on the tonic Dt level and the phasic factor 
(Dp, = 0.7 and Dp, = 0.8, respectively). The values Dp = 0.9 and Dp = 1.0 
were also tested, producing almost flat curves for the reversal case, i.e., 
with more than 90 % of people passing. Results are expressed as the 
number of subjects who passed the acquisition task and the reversal task 
(Cools et al., 2001). These results show that a progressive increase in 
tonic Dt is associated with a significant inability to perform the reversal 
task. Finally, an SA on the parameter m is shown in Fig. 8c (with Dp = 0.7 
and Dt = 1.2), confirming that values of m as high as 2.5 are necessary to 
realize an accurate reversal.

Fig. 8d shows the results by (Cools et al., 2001) involving OFF- 

Fig. 6. Sensitivity analysis (SA) on the role of the tonic dopamine and parameters describing the phasic dopamine changes (i.e., the parameter Dp in Eqs. 5––6, a and 
the parameter m in Eqs. 5–6, b). The figure represents the fraction of wrong responses immediately after a switch (mean values on 50 simulated subjects) plotted as a 
function of tonic dopamine per different values of parameters Dp and m. A U-shape relationship is evident for values of Dp less than one and values of m greater than 
2. In the case of m as low as 1–––1.5 and high tonic dopamine levels, many wrong responses occur (hence, the curves are not plotted in this range).
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Fig. 7. Simulation of the experimental results by Cools et al. (2006 and 2009). a describes the model relationship between tonic dopamine and the fraction of wrong 
responses after a switch (mean values and SD, computed on 50 simulated subjects) using Dp = 0.8 and m = 2.5. In the figure, the tonic dopamine values used to 
simulate OFF-medicated PD patients, control subjects, and ON-medicated PD patients are also marked (the upper values hold for unpredicted punishments, the lower 
values for unpredicted rewards). b and c compare the results obtained by Cools et al. (6b) on PD-OFF medicated patients, control subjects, and PD-ON medicated 
patients and by the model (6c) using the values marked in a for the three cases (the higher tonic dopamine is used for unpredicted punishments and the lower tonic 
dopamine for unpredicted rewards). d and e compare the results obtained by Cools et al. (2009) (6d) as a function of dopamine production rate with the model 
predictions (6e). The relative reversal learning scores represent the proportion of correct responses on switch trials after unexpected reward minus the proportion of 
correct responses on switch trials after unexpected punishment. The model assumption was that parameter Dt was 0.1 higher in the case of unexpected punishments 
than in unexpected rewards.
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medicated PD patients, ON-medicated PD patients, and Control subjects, 
expressed again as the number of subjects who passed the acquisition 
task and the reversal task. Based on the SA, to mirror these patterns, we 
assumed a phasic factor Dp, = 0.7, and values for Dt for the three classes 
(PD-OFF, PD-ON, and Controls) equal to 0.85, 1.2, and 1.52, respec
tively. The results of our simulations, summarized in Fig. 8e, correspond 
well with the data from (Cools et al., 2001), showing a similar trend in 
the acquisition and reversal phases across the three groups, specifically 
the impairment in probabilistic reversal learning in PD-ON.

4. Discussion

Neurocomputational models of the BG have a long tradition, 
providing significant insight into the role of the BG in action selection, 

whether in physiological or pathological conditions (Baston and Ursino, 
2015; Cutsuridis and Perantonis, 2006; Frank, 2006, 2005; Gurney et al., 
2001a, 2001b; Humphries et al., 2018; Kato and Morita, 2016; Liu et al., 
2018; Morita and Kato, 2018; Moustafa et al., 2014; Moustafa and 
Gluck, 2011; O’Reilly and Frank, 2006; Schroll and Hamker, 2013; 
Suryanarayana et al., 2019). Most of these models share some essential 
points, including the use of segregated channels for individual actions 
subdivided between a Go and NoGo pathway, Hebbian potentiation and 
depotentiation mechanisms for the synapses in the striatum, and a role 
of tonic and phasic DA changes during learning. The latter aspect of DA 
inclusion gave important indications into differences between control 
and Parkinsonian subjects (Baston and Ursino, 2015; Guthrie et al., 
2009; Moustafa and Gluck, 2011; Véronneau-Veilleux et al., 2021), 
medicated and non-medicated PD (Frank et al., 2004; Moustafa et al., 

Fig. 8. Simulation of the experimental results by Cools et al. (2001). Fig. 8a and 8b represent the percentage of subjects passing the task (computed with the model 
on 50 simulated subjects) during the acquisition and reversal phases, plotted vs. the basic dopamine level with two different values of parameter Dp. The value of m 
was set at 2.5. c represents the number of subjects passing the task during the acquisition and reversal phases per different values of the parameter m. The tonic 
dopamine was set at Dt = 1.2, and the phasic parameter Dp = 0.7. d and e compare the results obtained by Cools et al. (2001) on PD-OFF medicated patients, control 
subjects, and PD-ON medicated patients (7d) with the values obtained with the model (Dp = 0.7; m = 2.5; Dt = [0.85 1.2 1.52] for the three cases).
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2014), as well as stable and unstable levodopa responders (Baston et al., 
2016; Ursino et al., 2020a). Several models also provided some stimu
lating hypotheses on aberrant learning in PD (Beeler et al., 2013; Ursino 
and Baston, 2018), possible factors affecting dyskinesia (Ursino et al., 
2020b), beta or gamma oscillations in PD (Humphries et al., 2006; Liu 
et al., 2018) and the role of tonic DA in exploration–exploitation control 
(Humphries et al., 2012).

The present study follows the previous neurocomputational BG 
tradition but focuses on a few challenges, which, in our opinion, still 
deserve clarification and accurate analysis. These mainly concern the 
way subjects can rapidly reverse their choice after a punishment (or after 
the absence of an expected reward), the role of phasic and tonic DA 
changes in learning, how expectation can be coded in the BG, and the 
valence of performed choices.

These aspects, along with the Hebbian mechanisms in the striatum, 
Go, and the NoGo pathways’ role, learning rate, and noise in a deter
ministic and probabilistic scenario are discussed below.

Role of learning rate and noise – Interestingly, we simulated the 
deterministic and probabilistic reversal tasks with the same model pa
rameters but with a moderate change in the tonic and phasic DA terms 
and a significant change in noise and learning rate. The first aspect can 
be justified by individual variability. More interestingly, different values 
for the noise and learning rate set an exploration/exploitation trade-off 
and are essential to distinguish a deterministic task from a probabilistic 
one. As well known, noise in cortical neurons can be used to represent 
the exploration capacity of a subject. Low noise indicates that a subject 
makes strong use of current synapse values (exploitation) but imple
ments a reduced exploration of alternative choices. Still, high noise in
dicates that the subject considerably explores alternative possibilities 
beyond past knowledge. A deterministic task requires low noise since 
just one punishment should ultimately drive future behavior. Probabi
listic tasks require higher noise since a continuous exploration of 
different alternatives is a prerequisite to learning correct statistics. For 
the same reasons, a high learning rate in the deterministic task sets an 
extreme exploitation, and a lower learning rate in the probabilistic task 
sets a minor exploitation vs. exploration.

Future work will determine how subjects set these values. We claim 
that the prefrontal cortex plays a pivotal role in this setting process. 
However, additional research is needed to analyze this aspect. 
Furthermore, we should consider the influence of neurotransmitters on 
these learning parameters. Specifically, the regulation of noise might be 
linked to the norepinephrine system.

Computation of the expectancy – A fundamental problem in rein
forcement learning is how a network computes the expectancy (ex
pected reward or expected punishment) based on previous experience. 
While some studies compute the expected value using an algorithm 
external to the model (a critic module, separated from the BG), in the 
present and past studies, we propose a different original approach. 
Reward expectancy can be evaluated as the activity (normalized be
tween 0 and 1) of the winner Go neuron when a response is established 
(i.e., the moment when the winner neuron in the cortex overcomes a 
threshold, signaling that a choice has been made). Subsequently, this 
value is exploited in Eqs. (5) and (6) to drive a phasic peak or phasic dip 
for the DA effect on the striatum. While the expected reward in our 
model is wholly computed within the BG and exploits past knowledge 
stored in the synapses, the phasic changes simulate the response of 
dopaminergic neurons in the substantia nigra.

An essential parameter in our computation of phasic DA changes is 
the exponential m in Eqs. (5) and (6). The higher this value, the stronger 
the effect of an unexpected reward (or an unexpected punishment). Our 
SA suggests that, to simulate reversal learning correctly, this parameter 
must be set to values higher than 2, confirming that a strongly non-linear 
relationship between expectancy and phasic DA change is required.

Simulation of ON-medicated and OFF-medicated PD patients: role of 
tonic and phasic dopamine– An area not yet clearly defined in the current 
research is the role of tonic and phasic DA in PD. It is commonly known 

that PD OFF-medicated patients typically exhibit lower levels of tonic 
DA. Conversely, based on the DA overdose hypothesis (Cools et al., 
2022), PD patients ON-medicated may exhibit elevated tonic DA levels 
in the ventral striatum. However, the impact of PD on phasic DA changes 
is still unclear. Do changes in tonic DA levels in PD correspond to similar 
changes in phasic DA levels? This direct correlation was the assumption 
of our previous works (Baston and Ursino, 2015; Schirru et al., 2022). 
However, our latest SA suggests that to explain the U-shaped relation
ship between reversal errors and tonic DA observed experimentally 
(Arnsten, 1998; Cools et al., 2006), it seems necessary to consider that 
phasic DA changes are not positively correlated with tonic levels. 
Further, there is evidence suggesting an inverse relationship between 
tonic and phasic DA levels (Grace, 2016, 2001, 1991). This is particu
larly clear in cases of high tonic DA, such as in ON-medicated PD pa
tients. Our SA shows that high phasic DA levels lead to a flat curve in 
Fig. 6a. This indicates that an increased phasic dip could potentially 
offset the effects of tonic DA overdose, theoretically enabling ON- 
medicated PD patients to respond to punishments similar to control 
subjects. However, this contradicts the results of several experimental 
studies (Bódi et al., 2009; Cools et al., 2009, 2001; Frank et al., 2004). 
Consequently, we can conclude that high tonic DA levels do not lead to a 
more pronounced negative phasic response, suggesting a relative inde
pendence of the phasic response from the tonic level.

The valence of the response – The relationship between the valence of 
the action choice and the quantity Dt is a new aspect of this study that 
still requires further validation.

In an attempt to explain the differences between losses and wins in 
Cools et al. (Cools et al., 2009, 2006; Robinson et al., 2010), this study 
proposes a preliminary but stimulating new hypothesis. As discussed 
earlier in the method section, there are two possible interpretations for 
the results of these tasks, in which it is essential to consider that the task 
participant is distinct from a player experiencing wins and losses:

i) the participant uses just one action channel to predict the player’s 
wins and losses: correct predictions of the wins reinforce the Go 
pathway, and correct predictions of the losses reinforce the NoGO 
pathway. The opposite synaptic changes occur in case of incorrect 
predictions. According to this schema, OFF-medicated patients have 
difficulty updating the Go pathway; ON-medicated patients have 
difficulty updating the NoGo one. This assumption is implicit in most 
previous papers (see Robinson et al., 2010).

ii) Starting from a hypothetical neutral task, in which only colors are 
associated with a prediction without a positive or negative valence, 
we suggest a different interpretation. The task participant uses two 
segregated channels (one for the red choice and one for the green 
choice) with a winner-takes-all competition in the cortex. In case 
there is no valence for the two choices, the two channels should be 
symmetrical, behaving similarly. Differences between the two 
choices (green = wins; red = losses) should depend on a valence- 
dependent response bias, which makes the two channels 
asymmetrical.

By comparing the model and experimental results (Cools et al., 2009, 
2006), we thought about two possible ways to introduce this response 
bias, acting on the quantity D in the model. One possibility may be to 
assume that the phasic parameter Dp is different, being higher after an 
unexpected reward and smaller after an unexpected loss. However, this 
choice cannot explain the difference observed in OFF-medicated pa
tients (see Fig. 6a and Fig. S5 in Supplementary Materials 2). Looking at 
Fig. 7a, we propose that the valence bias in the response can be 
explained by adding a valence contribution to the parameter Dt in the 
model (that is, using Dt ± v in the simulations). In particular, as shown in 
Fig. 5c, an expected win (which, during a switch, is followed by an 
unexpected loss) is associated with a positive valence (v = 0.05). In 
contrast, an expected loss (followed during the switch by an unexpected 
win) is associated with a negative valence (v = -0.05).
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A question is: what may be the origin of this “valence” quantity v? We 
remember that the quantity D in our model represents an effect acting on 
the Go and NoGo striatal neurons. One possibility is that v actually 
represents a change in DA concentration. In past years, various studies 
suggested that tonic DA level signals the valence of an action. In 
particular, Niv et al. (2007) used psychological and computational 
methods to establish a link between higher levels of DA with a more 
vigorous response. Zénon et al. (2016) proposed that DA is related to the 
effort necessary to reach a given goal. Rigoli et al. (2016b) reported that 
boosting DA levels increases the propensity for gambling and the 
attractiveness of risky actions. Rigoli et al. (2016a) observed that the 
prospect of punishment is typically characterized by below baseline 
levels of dopaminergic function and found that neural responses in the 
ventral striatum and ventral tegmental area/substantial nigra covaried 
with the expected value. Saunders et al. (2018) observed that, after 
training, conditioned stimuli can evoke DA neuron activity on their own, 
thus instantiating a motivational signal. Niv et al. (2007) highlights the 
role of a tonic signal in determining the optimal rate of responding, 
implying a tight coupling between motivational states and tonic DA. 
However, it is also possible that this valence signal is related to serotonin 
(Dayan and Huys, 2008) or norepinephrine. The innervation of the BG 
by the serotonin system is discussed in Parent et al. (2011).

More generally, any signal that affects the basal condition of the Go 
and NoGo pathways can be represented by our variable v in the model. 
In fact, it is important to stress that we are assuming the existence of two 
different signals: one, related to phasic changes, ΔD, which should 
implement predictions (hence, a negative dip after any wrong predic
tion), and another one (v affecting Dt) related with the valence (hence 
wins or losses). Interestingly, Robinson et al. (2010), examining both 
responses in a similar paradigm, observed two distinct signals: “In 
addition to the prediction mechanism, subjects might have additionally 
recruited an instrumental mechanism, which is likely driven primarily 
by a positive, reward-signed signal associated with the state in which 
punishment is not expected.”.

Previous studies on dopaminergic modulation and reversal learning −
Several recent studies have analyzed DA modulation during reversal 
learning. The main conclusions qualitatively agree with a few assump
tions of the present work and can be summarized through the following 
main points: i) DA release simultaneously encodes cost, benefit, and 
motivation (Eshel et al., 2024) and interacts with a network of cortical 
regions, representing not only reward but also a more complex strategy 
(Calabro et al., 2023); ii) DA exhibits both transient kinetics and slowly 
developing signals (Salinas et al., 2023), with motivation for rewards 
reflecting a state that changes over slower timescales (Eshel et al., 2024) 
with a role for tonic DA (Delaney et al., 2024; Wang et al., 2021). This 
point partially supports the basic idea shown in Fig. 5c; iii) D1 and D2 
receptors have complementary functions in learning (Kwak and Jung, 
2019; Sala-Bayo et al., 2020; Verharen et al., 2019). In particular, D2 
receptor damage impairs reversal learning by blocking the impact of 
negative feedback (Alsiö et al., 2019; Kruzich et al., 2006). The latter 
results confirm what was suggested in Fig. 2, where a clear role for the 
NoGo during inhibition is evident.

Comparison with previous modeling papers – Although several BG 
neurocomputational models have appeared in recent years, only a few of 
them were explicitly related to reversal learning. The probabilistic 
reversal learning by Cools et al. (2001) has been simulated by Moustafa 
et al. (2014), reporting almost similar results to our Fig. 8. However, in 
that model the subjects’ disease status and dopaminergic medications 
were modulated by means of four parameters: two learning rates (one 
for the BG and the other for the PFC) and two gain parameters (BG and 
PFC modules) without an explicit description of tonic and phasic DA 
terms. Frank (2005) later explicitly simulated DA within their model. 
Their simulation included the overdose case, showing impaired proba
bilistic reversal. However, to our knowledge, there are no models that 
simulate both probabilistic and deterministic reversal tasks using the 
same model framework and a single set of parameters.

Furthermore, our model shares similarities with the one developed 
by Humphries et al. (2012). These authors proposed that the outputs of 
the BG could be interpreted as a probability distribution function for 
action selection. Here, we adopted a similar concept by using the Winner 
Go activity as an indicator of reward expectation. Moreover, Humphries 
et al. (2012) suggested that tonic striatal DA influences the explor
ation–exploitation trade-off, with increased tonic striatal DA reducing 
the level of exploration. In our model, a task-dependent difference in 
exploration–exploitation is established using different values of noise 
and learning rate, while quantity Dt sets a “valence dependent” differ
ence. However, the two approaches are pretty similar.

In the model by Guthrie et al., (2013), two distinct but interacting 
loops for cognitive and motor functions are created. They incorporate 
mechanisms like synaptic noise and DA-modulated learning to model 
how decisions in one part of the brain (cognitive) can influence decisions 
in another part (motor). This approach helps to understand how com
plex decision-making processes are coordinated in the brain. This model 
shares similarities with our model in the way the phasic DA signals are 
used to adjust the synaptic weights. However, there are differences in 
the specific task each model simulates. Van Swieten and Bogacz (2020)
explore the effect of motivation on choice and learning, integrating 
reinforcement learning with incentive salience theory to explain how 
physiological states like hunger influence action selection. This may 
align with our consideration of dopaminergic modulation and state- 
dependent learning.

Moreover, Mikhael et al. (2022) use a BG model to investigate state 
uncertainty’s influence on DA dynamics, showing that sensory feedback 
causes DA reward prediction errors to ramp up. The results are also 
supported by their theoretical predictions with empirical work in mice. 
While not directly focused on reversal tasks, this aligns with our 
emphasis on the role of DA signal during reward expectations and our 
model’s anticipatory signal mechanism governed by tonic DA. Maith 
et al., (2023) investigated the role of STN/GPe synaptic plasticity in 
exploration behavior after reversals, suggesting the involvement of 
multiple regions within the BG and reduced independence of the three 
main pathways. A new synaptic plasticity rule showed that exploration 
becomes biased towards previously rewarded positions. Their task, 
involving a more complex 5-choice reversal learning paradigm, em
phasizes the complexity of exploratory behavior. They derived a 
learning rule for STN/GPe connections to accumulate prior experience 
via synaptic plasticity, whereas our model trains the synapses in the 
striatum.

Unique model characteristics – Despite the presence of many previous 
models, we think the current work introduces some unique contribu
tions, summarized below:

(i) to our knowledge, this is the only model that simulates learning 
during both deterministic and probabilistic tasks with a single parameter 
set;

(ii) the model introduces the strong assumption that tonic DA rep
resents an anticipatory signal for the valence of choice (positive or 
negative), which is different from the participant reward expectation;

(iii) we suggest that a complete Hebb rule, similar to that used in 
classic auto-associative networks, can explain reversal learning on the 
striatum during different tasks.

Testable predictions and experimental validation – Starting from the 
previous considerations, we suggest new tasks (or variants of already 
proposed tasks) to disentangle the hypothesis that wins and losses are 
related to GO and NoGO in the same action channel (hence DA peaks 
and dips, as in the interpretation of Cools et al.) from the present hy
pothesis involving a role for action valence in two separate channels. 
The idea is to perform a two-choice task, associated with two sensory 
images, in which the participant must predict if a given episode will 
occur (response YES or green button) or will not occur (response NO or 
red button), depending on the presented image. For instance, the images 
can be the faces of two individuals, and the participant must predict 
which individual will experience the episode. During eachtask, reversals 
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can be performed multiple times to evaluate switch errors. The same 
task can be performed in control subjects and PD-ON and PD-OFF pa
tients. Differences in the percentage of errors and latency in the response 
can be compared with model predictions. The same task can be repeated 
three times with three different valences of the occurring episode to 
validate the present hypothesis.

Task i) Neutral valence: the participant predicts if the individual in 
the image will perform a neutral action (e.g., wearing a hat or not). Task 
ii) Negative valence: the participant should guess whether the individual 
presented in the image will experience a negative event (e.g., having a 
severe accident). In this condition, the model assumes a decrease in tonic 
DA during the yes prediction, leading to improved reversal responses in 
PD-ON patients compared with the previous case, and worsened re
sponses in PD-OFF patients. Task iii) Positive valence: the participant 
predicts whether the individual in the image will experience a positive 
event (e.g., being happy). In this condition, the model assumes an in
crease in DA during the yes prediction, leading to more switch errors in 
PD-ON patients. The previous tasks can be either deterministic, with 
many switches after a random number of correct responses (as in Cools 
et al., 2006)), or probabilistic, with a single switch after a sufficient 
number of trials. Furthermore, if neuroimage data on striatal DA syn
thesis capacity were available, the accuracy in the same tasks could be 
assessed against the DA synthesis level.

Model limitations and future research – The model exhibits some lim
itations, which can be the target of future studies. First, it does not 
distinguish between the dorsal and ventral parts of the striatum. In PD 
patients, the DA level is probably more severely reduced in the dorsal 
part than in the ventral. Hence, during levodopa treatment, DA overload 
probably holds for the ventral portion only, implicated in cognitive 
decisions, whereas the dorsal portion, more implicated in motor re
sponses, is less affected. Future models could address this by developing 
two distinct BG models to simulate varying levels of denervation in the 
dorsal and ventral striatum. This can help to investigate the hypothesis 
that different parts of the BG are implicated in motor response control 
and motivational control, corresponding to loops involving the senso
rimotor cortex and the dorsal striatum and those involving the frontal/ 
limbic cortex and the ventral striatum, respectively. Such models would 
help examine the differential impacts of dopaminergic dysfunction in 
these two striatal regions, offering more profound insights into PD pa
thology and its influence on cognitive and motor functions.

Furthermore, the present model uses a simplified description of the 
DA effect on the Go and NoGo parts. Future versions may incorporate a 
detailed description of the DA release in the Substantia Nigra and D1 and 
D2 receptor characteristics in the striatum. This may allow a deeper 
understanding of the changes in tonic and phasic DA and their relative 
relationships and a more accurate analysis of drug effects. The present 
model also does not include a direct control by the orbitofrontal cortex, 
which seems to incorporate the relative motivational significance of 
different rewards (Hollerman et al., 2000). Finally, a more sophisticated 
synaptic dynamics could be used, to explain the presence of beta oscil
lations in the BG, which are implicated in normal movement suppression 
and motor impairment in PD.

Recent studies such as those by Isoda and Hikosaka (Isoda & Hiko
saka, 2008) showed that STN neurons are involved in both stopping and 
facilitating responses, suggesting a more complex bidirectional circuit 
with the GPe. In addition, a study (Wang et al., 2019) demonstrated that 
optogenetic stimulation of striatal neurons in the indirect pathway 
during reversal learning increases thalamic activity, challenging the 
classical view of the indirect pathway’s role. These findings can be 
studied further within the model to explore the implications of these 
complex pathways.

Future research directions also include using the model to simulate 
additional pathological conditions involving the BG and the dopami
nergic system, such as ADHD, Huntington’s disease, or schizophrenia. 
Finally, it is well known that the BG form connections and circuits with 
other brain regions (such as the prefrontal cortex and the cerebellum), 

and these interactions are crucial in several motor, cognitive, and af
fective functions. Specifically, a new functional perspective is that the 
BG, the cerebellum, and the cerebral cortex form an integrated network 
(Bostan and Strick, 2018). Future extensions of the model may involve 
interconnections between the BG and the prefrontal cortex and between 
the BG and the cerebellum, or even creating of an integrated network 
among all these regions working together.
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Moquin, L., Lévesque, C., Burke, S., Denis, R., Bourque, M.-J., Tchung, A., Rosa- 
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