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A B S T R A C T

The combined forced and free convection flow in a horizontal porous channel saturated by a fluid is studied.
The boundary walls are considered as uniformly heated-cooled with symmetric heat fluxes. The horizontal
porous layer is modelled as anisotropic with different permeabilities in the horizontal and vertical directions.
A fully-developed stationary flow in the porous channel exists, endowed with a temperature gradient inclined
to the vertical. This basic stationary flow turns out to become linearly unstable when the Rayleigh number is
sufficiently high, with a neutral stability condition strongly dependent on the Péclet number associated with
the basic flow rate. A minimum Péclet number exists below which no linear instability arises. A streamfunction
formulation is introduced to test the behaviour of the small-amplitude perturbations. The stability eigenvalue
problem is solved numerically for different Péclet numbers and anisotropy ratios in order to evaluate the
neutral stability threshold and the critical values for the onset of the linear instability.
1. Introduction

The onset of thermal instability in fluid saturated porous layers has
been the subject of a wide research effort over several years. Within
such a topic, the pioneering papers by Horton and Rogers [1] and by
Lapwood [2] identified the basic features of the instability. These au-
thors studied and solved the now well-known Horton–Rogers–Lapwood
(HRL), or Darcy–Bénard, problem. In particular, they determined the
critical value of the Rayleigh number for the onset of thermal convec-
tion for a porous layer heated from below (i.e., the porous medium
counterpart of the classical Rayleigh–Bénard problem). For the HRL
problem, the basic stationary solution whose stability is investigated is
a rest state with a purely vertical temperature gradient, just like the
Rayleigh–Bénard problem. In fact, the governing parameter defining
the linear instability threshold is a modified Rayleigh number based
on the permeability of the porous medium and called by many authors
the Darcy–Rayleigh number. Prats [3] reconsidered the HRL problem
by including a basic horizontal throughflow and found that the net
mass flow rate does not have any influence on the critical value of the
Darcy–Rayleigh number for the onset of thermal convection.

For a horizontal porous channel bounded by impermeable parallel
plane walls, when symmetric wall heat fluxes (a uniform wall heat-
ing or cooling) are considered, a rest basic stationary state does not
exist unless a nonzero mass flow rate must is prescribed. Indeed, a
nonzero flow rate may ensure the closure of the energy balance under
stationary conditions. When combined with a prescribed horizontal
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pressure gradient, the symmetric wall heat flux boundary conditions
yield a temperature gradient with both a vertical and a horizontal
component. The stability of this configuration has been investigated
by Barletta [4]. Further stability analyses on similar basic states were
carried out by Sphaier and Barletta [5], by Barletta et al. [6], by Sphaier
et al. [7] and by Barletta and Rees [8]. These conditions of basic
flow, where an inclined temperature gradient drives the instability,
are included in the more general topic of Hadley-like flows [9]. The
pivotal studies in this area had been carried out by Weber [10], Nield
[11,12], Kaloni and Qiao [13] and by Qiao and Kaloni [14].

The analysis proposed by Barletta [4] is relative to an isotropic
porous layer, i.e., a solid phase with the same value of permeability
in every direction. On the other hand, anisotropic porous materials are
quite common in practical cases. For instance, the rapidly developing
area of additive manufacturing techniques allows an undemanding pro-
duction of anisotropic porous layers with specified properties. Inciden-
tally, we mention that the fabrication of either isotropic or anisotropic
porous layers having reproducible properties is a goal for the develop-
ing industry of compact heat exchangers, where the limitations in the
use of metallic foams for the heat transfer enhancement are often linked
to the hardly reproducible morphology of such foams. In fact, the role
of anisotropy in porous media in the onset of thermal instability has
been the subject of several recent studies [15–21].

The present work aims to investigate how the anisotropy in the
porous structure may influence the onset of thermal instability for a
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Fig. 1. A sketch of the saturated porous channel and of the thermal boundary
onditions.

orous channel with symmetric wall heat fluxes, thus extending the
nalysis carried out by Barletta [4]. To achieve this goal, two different
alues of the permeability are considered: one for the vertical direction
nd one for both the horizontal directions. The linear stability of this
ystem is investigated by solving the eigenvalue problem obtained by
sing the normal modes method. In order to rationalise the mathe-
atical procedure, an arbitrarily inclined horizontal through flow with

espect to a given reference frame is devised. This approach allows one
o map the fully three-dimensional problem onto a two-dimensional
roblem involving a parameter, i.e., the inclination angle. Since the
tability problem is two-dimensional, a streamfunction-temperature
ormulation can be employed. Both the neutral stability curves and
he critical values of the Darcy–Rayleigh number are determined as
unctions of the inclination angle, of the Péclet number (measuring the
trength of the horizontal flow rate) and of the dimensionless parameter
escribing the anisotropy.

The importance of the configuration examined in this paper, where
ither a net wall heating or cooling is supplied to the fluid, is due to
ts manifold applications. For instance, one may devise the cooling of
lectronic devices. For such systems, where printed circuit boards are
odelled as an array of parallel heat-generating plates, cooling may

e effectively carried out by forced or mixed convection flow in the
hannels separating two neighbouring plates. The heat transfer rate can
e enhanced by utilising metal foams and, hence, by the convective
low in a fluid saturated porous medium. Besides this specific example,
orced or mixed convection channel flows under conditions of net wall
eating define a classical problem of heat transfer. We mention that
he book by Shah and London [22] classifies wall heating boundary
onditions under the variants H1 and H2.

2. Mathematical model

Let us consider a fluid saturated porous layer with height 𝐻 and
an infinite width in both horizontal 𝑥 and 𝑦 directions. Such a layer is
heated/cooled from below and above by symmetric and uniform heat
fluxes prescribed at the impermeable boundaries 𝑧 = 0,𝐻 (see Fig. 1).
The red/blue arrows in Fig. 1 mean that both channel walls can either
be heated (red) or cooled (blue). We also consider a net mass flow
rate imposed along the 𝑥 direction. In order to investigate the onset of
thermal convection, we model the local momentum balance equation
by employing Darcy’s law where the buoyancy force is taken into
account and the Oberbeck–Boussinesq approximation is employed [23].
Thus, we assume local balance equations for mass, momentum and
energy given by

𝛁 ⋅ 𝐮 = 0,
𝜇

𝑢 = −
𝜕𝑝

,
𝜇

𝑣 = −
𝜕𝑝

,
𝜇

𝑤 = −
𝜕𝑝

+ 𝜌0 𝑔 𝛽(𝑇 − 𝑇0),
𝐾ℎ 𝜕𝑥 𝐾ℎ 𝜕𝑦 𝐾𝑧 𝜕𝑧 𝐮

2 
𝜌0 𝑐
(

𝜎 𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑇
)

= 𝜒∇2𝑇 ,

= 0 ∶ 𝑤 = 0, −𝜒 𝜕𝑇
𝜕𝑧

= 𝑞0,

𝑧 = 𝐻 ∶ 𝑤 = 0, 𝜒 𝜕𝑇
𝜕𝑧

= 𝑞0, (1)

where 𝐮 = (𝑢, 𝑣,𝑤) is the seepage velocity, 𝑝 is the local difference be-
tween the pressure and the hydrostatic pressure, 𝑇 is the temperature,
𝑡 is the time, (𝑥, 𝑦, 𝑧) are the Cartesian coordinates, 𝜇 is the dynamic
iscosity of the fluid, 𝐾ℎ and 𝐾𝑧 are, respectively, the permeabilities
n the horizontal and the vertical directions, 𝜌0 is the fluid density
valuated at the reference temperature 𝑇0, 𝑔 is the modulus of the
ravitational acceleration 𝐠, 𝛽 is the thermal expansion coefficient of
he fluid, 𝑐 is the specific heat capacity of the fluid, 𝜎 is the ratio
etween the average volumetric heat capacity of the porous medium
nd the volumetric heat capacity of the fluid, 𝜒 is the effective thermal
onductivity of the porous medium evaluated as the average value
f the conductivities for the solid and fluid phases weighted by the
orosity, and 𝑞0 is the heat flux prescribed at the boundaries (either
ositive or negative).

It must be mentioned that, although the permeability of the porous
aterial has been modelled as anisotropic and, hence, represented by
tensor, the thermal conductivity has been considered isotropic and,

ence, represented by a scalar. The motivation for such a choice relies
n the nature of the thermal conductivity 𝜒 as an effective thermal
onductivity resulting from a local volume average of the solid and
luid conductivities. In fact, the effective thermal conductivity averages
ver the reference elementary volume and over the different directions
ithin such a volume. Thus, the modelling of 𝜒 as a scalar quantity is

ustified conceptually giving also the advantage of a simplified model
o ground our forthcoming results. We mention that a model similar
o that expressed with (1) has been employed in the classical papers
y Tyvand and Storesletten [24] and by Trew and McKibbin [25],
s well as in the recent studies by Storesletten and Rees [15] and
y Barletta and Celli [26].

A dimensionless formulation of the governing equation is obtained
y defining the following scaling:
(𝑥, 𝑦, 𝑧)

𝐻
→ (𝑥, 𝑦, 𝑧),

𝜒
𝜌0 𝑐 𝐻2𝜎

𝑡 → 𝑡,
𝜌0 𝑐 𝐻

𝜒
𝐮 → 𝐮,

𝜌0 𝑐 𝐾ℎ
𝜒 𝜇

𝑝 → 𝑝,

𝑇 − 𝑇0
𝛥𝑇

→ 𝑇 , for 𝛥𝑇 =
𝜒𝜇

𝜌20 𝑐 𝛽 𝑔 𝐾ℎ 𝐻
. (2)

Thus, Eqs. (1) can be rewritten as

𝛁 ⋅ 𝐮 = 0,

= −
𝜕𝑝
𝜕𝑥

, 𝑣 = −
𝜕𝑝
𝜕𝑦

, 𝑤 = −𝑎
𝜕𝑝
𝜕𝑧

+ 𝑎 𝑇 ,

𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑇 = ∇2𝑇 ,

= 0 ∶ 𝑤 = 0, 𝜕𝑇
𝜕𝑧

= −𝑅𝑎,

= 1 ∶ 𝑤 = 0, 𝜕𝑇
𝜕𝑧

= 𝑅𝑎, (3)

where 𝑅𝑎 is the Darcy–Rayleigh number and 𝑎 is the anisotropy ratio,

𝑅𝑎 =
𝜌20 𝑐 𝛽 𝑔 𝐾ℎ 𝐻2𝑞0

𝜒2𝜇
, 𝑎 =

𝐾𝑧
𝐾ℎ

. (4)

Hereafter, the Darcy–Rayleigh number will be called Rayleigh number
for the sake of brevity. Since 𝑞0 might be either positive (heating) or
negative (cooling), the Rayleigh number can assume either a positive
or a negative value.

2.1. Basic state

A stationary solution of (3), i.e. a basic state, exists given by

=
(

cos𝜑 𝐞 + sin𝜑 𝐞
)

𝐹 (𝑧),
𝑏 𝑥 𝑦
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Fig. 2. Ratio between 𝑅𝑎𝑐 for oblique modes and for longitudinal modes, 𝑅𝑎𝑐,𝐿, versus 𝜑∕𝜋 for different 𝑃𝑒 and anisotropy ratios 𝑎. The grey dashed–dotted lines identify the
isotropic case, 𝑎 = 1. The black thin dashed lines identify the value 1 for the 𝑅𝑎𝑐 ratio.
s
p
t
i

𝛁𝑇𝑏 =
2𝑅𝑎
𝑃𝑒

(

cos𝜑 𝐞𝑥 + sin𝜑 𝐞𝑦
)

+ 𝐺(𝑧) 𝐞𝑧, 𝛁𝑝𝑏 =
(

−𝑢𝑏,−𝑣𝑏, 𝑇𝑏
)

,

for 𝐹 (𝑧) = 𝑃𝑒 −
𝑅𝑎(2𝑧 − 1)

𝑃𝑒
, 𝐺(𝑧) = 𝑅𝑎(2𝑧 − 1) −

2𝑅𝑎2
(

𝑧2 − 𝑧
)

𝑃𝑒2
, (5)

here the subscript ‘‘𝑏’’ stands for ‘‘basic state’’, while 𝐞𝑥, 𝐞𝑦 and 𝐞𝑧
enote the unit vectors along the (𝑥, 𝑦, 𝑧) axes. The Péclet number, 𝑃𝑒,
s defined so that it yields the dimensionless mean velocity along the
low direction,

𝑒 = ∫

1

0
𝐮𝑏 ⋅ 𝐧 d𝑧, for 𝐧 = cos𝜑 𝐞𝑥 + sin𝜑 𝐞𝑦. (6)

q. (5) describes a horizontal unidirectional flow along the 𝐧 direction.
his solution is singular when 𝑃𝑒 → 0. Such a singularity had to
e expected as a stationary solution is impossible with a net heat-
ng/cooling from the boundaries, unless a net flow rate is prescribed
long a horizontal direction. We mention that this basic state is exactly
he same considered by Barletta [4] in the case of a perfectly isotropic
orous medium. In fact, the basic solution (5) is independent of the
nisotropy parameter 𝑎.

Considering a general mixed convection stationary solution with the
low direction inclined an angle 𝜑 to the 𝑥 axis serves, in the linear
nstability analysis, to explore the action of an oblique wavelike per-
urbation directed along the 𝑥 axis. Such oblique perturbation modes
re general on varying 𝜑 in the interval [0, 𝜋∕2]. In particular, 𝜑 = 0

efines transverse modes, while 𝜑 = 𝜋∕2 yields longitudinal modes. We a

3 
also mention that, strictly speaking, the temperature 𝑇𝑏 in the basic
state is defined only up to an arbitrary additive constant. This is a
consequence of the governing model (3) being formulated only in terms
of the temperature derivatives, except for the 𝑧 component of the local
momentum balance equation. On the other hand, this equation may just
yield an extra linear term in the basic pressure field 𝑝𝑏 which, however,
does not have any influence on the forthcoming instability analysis.
This aspect will become evident later on.

3. Linear instability analysis

The linear instability analysis involves the superposition of pertur-
bations in the form of normal modes to the basic state. As mentioned
above, we impose normal modes independent of 𝑦. As a consequence, a
convenient definition of the perturbed fields involves a streamfunction
𝛹 , namely

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑏(𝑧) + 𝜀
𝜕𝛹 (𝑥, 𝑧, 𝑡)

𝜕𝑧
, 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣𝑏(𝑧) + 𝜀 𝑉 (𝑥, 𝑧, 𝑡),

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = −𝜀
𝜕𝛹 (𝑥, 𝑧, 𝑡)

𝜕𝑥
, 𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑇𝑏(𝑥, 𝑦, 𝑧) + 𝜀𝛩(𝑥, 𝑧, 𝑡), (7)

o that the local mass balance is identically satisfied. In Eq. (7), 𝜀 is a
erturbation parameter such that |𝜀| ≪ 1. On using the 𝑦 component of
he local momentum balance (3), one can easily check that 𝑉 (𝑥, 𝑧, 𝑡)
s identically zero. The pressure perturbation can be ignored by re-
rranging the 𝑥 and 𝑧 components of the momentum balance. Thus,
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by neglecting terms 𝑂(𝜀2), the linearised governing equations for the
perturbations are obtained from (3), (5) and (7) and given by

𝜕2𝛹
𝜕𝑥2

+ 𝑎 𝜕2𝛹
𝜕𝑧2

+ 𝑎 𝜕𝛩
𝜕𝑥

= 0,

𝜕𝛩
𝜕𝑡

+
𝜕𝑇𝑏
𝜕𝑥

𝜕𝛹
𝜕𝑧

−
𝜕𝑇𝑏
𝜕𝑧

𝜕𝛹
𝜕𝑥

+ 𝑢𝑏
𝜕𝛩
𝜕𝑥

= 𝜕2𝛩
𝜕𝑥2

+ 𝜕2𝛩
𝜕𝑧2

,

= 0, 1 ∶ 𝛹 = 0, 𝜕𝛩
𝜕𝑧

= 0. (8)

As anticipated, no role is played by 𝑝𝑏 in the linear analysis of instability
based on Eq. (8).

3.1. Normal modes

Let us now employ Fourier modes to express the perturbations as

𝛹 (𝑥, 𝑧, 𝑡) = 𝑖 𝑓 (𝑧) 𝑒𝑖 (𝑘𝑥−𝜔𝑡) 𝑒𝜂 𝑡, 𝛩(𝑥, 𝑧, 𝑡) = ℎ(𝑧) 𝑒𝑖 (𝑘𝑥−𝜔𝑡) 𝑒𝜂 𝑡, (9)

where 𝑘 is the wavenumber, 𝜂 is the temporal growth rate and 𝜔 is the
angular frequency. On substituting (9) into (8), we obtain

𝑎 𝑓 ′′ − 𝑘2 𝑓 + 𝑎 𝑘 ℎ = 0,

ℎ′′ −
(

𝑘2 + 𝑖 𝑘 𝐹 (𝑧) cos𝜑 + 𝜂 − 𝑖 𝜔
)

ℎ − 𝑖
2𝑅𝑎 cos𝜑

𝑃𝑒
𝑓 ′ − 𝑘𝐺(𝑧) 𝑓 = 0,

𝑧 = 0, 1 ∶ 𝑓 = 0, ℎ′ = 0. (10)

By relying on the analysis carried out by Barletta [4] for the special
case of an isotropic medium, we might conjecture that the anisotropy
does not alter the result that longitudinal modes (𝜑 = 𝜋∕2) are the

ost effective in triggering the onset of instability. Thus, we could set
= 𝜋∕2 so that 𝑢𝑏 = 0 and 𝜕𝑇𝑏∕𝜕𝑥 = 0 as one can infer from (5).

Through this simplification, the linear instability eigenvalue problem
(10) becomes

𝑎 𝑓 ′′ − 𝑘2 𝑓 + 𝑎 𝑘 ℎ = 0,

ℎ′′ −
(

𝑘2 + 𝜂 − 𝑖 𝜔
)

ℎ − 𝑘𝐺(𝑧) 𝑓 = 0,

𝑧 = 0, 1 ∶ 𝑓 = 0, ℎ′ = 0. (11)

An important property of the eigenvalue problems (10) and (11) is their
invariance under the transformation

𝑅𝑎 → −𝑅𝑎, 𝑧 → 1 − 𝑧. (12)

This result implies that we can limit our instability analysis to the case
of wall heating, 𝑅𝑎 > 0, whereas wall cooling, 𝑅𝑎 < 0, does merely
entail a 𝑧 midplane reflection for the eigenfunctions (𝑓, ℎ).

For the sake of completeness, we will test the effect of the incli-
nation angle 𝜑 on the onset of the linear instability to validate our
conjecture that the longitudinal modes effectively lead to instability
at the smallest values of 𝑅𝑎. Such a test will be carried out for some
sample values of 𝑎 and 𝑃𝑒 in the forthcoming Section 3.2.

3.2. Numerical solution

The differential eigenvalue problem (11) can be solved numerically
by utilising the shooting method [27,28]. The aim is the detection of
the lowest neutral stability threshold in the (𝑘,𝑅𝑎) parametric plane, for
prescribed input values of the wavenumber 𝑘, of the Péclet number 𝑃𝑒,
of the inclination angle 𝜑 and of the anisotropy ratio 𝑎. The shooting
method solution of a differential eigenvalue problem is implemented
in the Mathematica 14.0 software environment [29] via the function
ParametricNDSolveValue. The determination of the neutral sta-
bility curve requires setting 𝜂 = 0 in (11) and by introducing an
extra scale-fixing condition which removes the scale invariance of the
solution (𝑓, ℎ) of (11). Such an extra condition is chosen as ℎ(0) = 1.
The end point condition ℎ′(1) = 0 can finally be used to determine both
𝑅𝑎 and 𝜔 via a root finding tool provided by the function FindRoot.

First step to be taken is the analysis of the role played by the
inclination angle 𝜑 in the determination of the neutral stability con-
dition. The neutral stability curves, displayed in the (𝑘,𝑅𝑎) plane,
4 
Fig. 3. Neutral stability curves for different anisotropy ratios 𝑎 in the asymptotic case
𝑃𝑒 ≫ 1.

have a point of minimum 𝑅𝑎 attained for a critical value of 𝑘 =
𝑘𝑐 . Such a minimum defines the critical values (𝑘𝑐 , 𝑅𝑎𝑐 , 𝜔𝑐 ) where,
in particular, 𝑅𝑎 = 𝑅𝑎𝑐 yields the lowest condition for the onset of
the linear instability. Detecting, for prescribed 𝑃𝑒 and 𝑎, the type of
modes that trigger the onset of the instability means evaluating which
inclination angle 𝜑 yields the smallest 𝑅𝑎𝑐 . In every case examined,
this analysis leads invariably to the result that the most unstable modes
are longitudinal, i.e. corresponding to 𝜑 = 𝜋∕2. Fig. 2 illustrates such
a result by exploring the sample cases 𝑃𝑒 = 1000, 100, 50 and 25 with
different anisotropy ratios 𝑎. The most important feature displayed in
Fig. 2 is the monotonically decreasing trend of the ratio between 𝑅𝑎𝑐
and 𝑅𝑎𝑐,𝐿 versus 𝜑, where 𝑅𝑎𝑐,𝐿 is the critical Rayleigh number relative
to the longitudinal modes (𝜑 = 𝜋∕2). Thus, the longitudinal modes
are the most unstable, as anticipated. In fact, the dependence on 𝜑
is extremely weak for 𝑃𝑒 = 1000, whereas it gradually becomes more
and more pronounced as 𝑃𝑒 decreases. One may note that, in the case
𝑃𝑒 = 25, the dependence on 𝜑 is remarkable and that no data are
reported below 𝑎 = 1∕4. The reason is that there exists a minimal 𝑃𝑒, for
every 𝑎, below which no linear instability is detected. Such a minimal
𝑃𝑒 is larger than 25 for both 𝑎 = 1∕5 and 𝑎 = 1∕10. More details on
this feature are reported in the forthcoming Section 4. A significant
aspect in the evaluation of the role played by the inclination angle 𝜑 is
that oblique modes 0 ≤ 𝜑 < 𝜋∕2 are endowed with a nonzero angular
frequency at onset of the linear instability, while longitudinal modes
are characterised by 𝜔 = 0. Finally, we mention that the isotropic
special case 𝑎 = 1 has been included in Fig. 2 (dashed–dotted lines). As
expected, the analysis of oblique modes for the isotropic case coincides
with that provided in Barletta [4].

Having found a numerical support for the conjecture that longitu-
dinal modes are the most unstable in every case, hereafter, the linear
instability analysis will be entirely focussed on the longitudinal modes
and, hence, on the solution of the stability eigenvalue problem (11).

4. Discussion of the results

Within the analysis of the longitudinal modes, there is an interesting
asymptotic case which addresses flows with a large Péclet number, i.e.,
𝑃𝑒 ≫ 1. This case is easily identified in Eqs. (11) by letting 𝑅𝑎2∕𝑃𝑒2 →

0 which means keeping a finite 𝑅𝑎 with 𝑃𝑒 → ∞.
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Fig. 4. Neutral stability curves for 𝑎 = 1∕2, 1, 2 and different Péclet numbers.
t

.1. Neutral stability curves

The neutral stability curves for the asymptotic solution with 𝑃𝑒 ≫ 1
re displayed in Fig. 3 for different anisotropy ratios 𝑎. Relative to the
sotropic case (𝑎 = 1), we easily detect a destabilisation when 𝑎 > 1
nd a stabilisation when 𝑎 < 1. In fact, the unstable region in the
𝑘,𝑅𝑎) parametric plane is, in each case, above the neutral stability
urve, with the minimum of the curve identifying the critical values
𝑘𝑐 , 𝑅𝑎𝑐 ). Thus, linear instability is possible only when 𝑅𝑎 > 𝑅𝑎𝑐
nd, from Fig. 3, one can easily conclude that 𝑅𝑎𝑐 decreases with 𝑎,
eaning an increasing instability. Such a phenomenon can be explained
hysically if one thinks that the larger is 𝑎 the larger is the vertical
ermeability relative to the horizontal permeability. Undoubtedly, an
mproved permeability in the vertical direction tends to favour the
evelopment of buoyancy-induced convection cells and, hence, the
nset of the instability.

Fig. 4 shows the destabilising effect of an increasing Péclet number
ith reference to the three sample cases 𝑎 = 1∕2, 1 and 2. It is also

evident how the asymptotic case 𝑃𝑒 ≫ 1, viz. the mathematical limit
𝑒 → ∞, provides a fairly good approximation of the case 𝑃𝑒 = 1000
r even of 𝑃𝑒 = 100.

Up to this point, we have focussed our attention on the neutral
tability curves as drawn in the (𝑘,𝑅𝑎) plane. Another important feature

of the neutral stability condition, already mentioned in Section 3.2, is
that 𝜔 = 0, meaning that the transition to linear instability is driven by
5 
Table 1
Critical values of 𝑘 and 𝑅𝑎.
𝑃𝑒 𝑎 = 1∕2 𝑎 = 1 𝑎 = 2

𝑘𝑐 𝑅𝑎𝑐 𝑘𝑐 𝑅𝑎𝑐 𝑘𝑐 𝑅𝑎𝑐
25 2.95157 232.193 3.31888 163.326 3.85083 127.081
50 2.40635 159.844 2.90868 126.769 3.51080 104.888
100 2.30341 150.041 2.82692 120.866 3.44169 100.958
1000 2.27058 147.139 2.80097 119.081 3.41980 99.7531
∞ 2.27025 147.110 2.80071 119.064 3.41958 99.7411

non-oscillatory longitudinal modes or, equivalently, that the principle
of exchange of stabilities holds true.

4.2. Critical values

Numerical data for the critical values 𝑘𝑐 and 𝑅𝑎𝑐 are provided in
Table 1. This table shows the general influence of 𝑎 and 𝑃𝑒 on the onset
of the linear instability, namely, that 𝑅𝑎𝑐 is a decreasing function of
both 𝑎 and 𝑃𝑒. Fig. 5 also shows the trend of 𝑅𝑎𝑐 versus 𝑎 for different
values of 𝑃𝑒 including the asymptotic case 𝑃𝑒 → ∞. We mention that
he case 𝑃𝑒 = 1000 is not reported as it would look indistinguishable

from the limit 𝑃𝑒 → ∞. We already mentioned the existence of a
minimal value of 𝑃𝑒 below which no linear instability is detected.

Such a minimal value depends on 𝑎 and it coincides with 𝑃𝑒 = 25
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Fig. 5. Critical value of 𝑅𝑎 versus 𝑎 for different Péclet numbers. Point A is at
= 0.227257 and 𝑅𝑎𝑐 = 625.244 and denotes the condition of minimum 𝑎 below which
o linear instability is detected at 𝑃𝑒 = 25.

hen 𝑎 = 0.227257. This situation is denoted by point A in Fig. 5. In
act, the line with 𝑃𝑒 = 25 is abruptly interrupted at point A having
𝑎𝑐 = 625.244, as no linear instability is found with 𝑎 < 0.227257.

.3. Minimal Péclet number

A description of the minimal Peclét number feature of the linear
nstability transition is given by Fig. 6. In this figure, the minimum
alue of 𝑃𝑒 needed for linear instability is plotted versus 𝑎 so that the
ellow region is that allowing the transition to linear instability, while
he white region is that where no linear instability is detected. The
ight hand frame yields the critical Rayleigh number versus the minimal
alue of 𝑃𝑒. There is an interesting and simple approximate law that
olds for the relation between such values of 𝑅𝑎𝑐 and the minimal 𝑃𝑒,
amely

𝑎𝑐 ≈ 𝑃𝑒2. (13)

uch a feature have been pointed out by Barletta [4] for the isotropic
ase 𝑎 = 1, but Fig. 6 shows that (13) holds for every 𝑎. Indeed, the right
and frame of Fig. 6 shows that the dashed black curve 𝑅𝑎𝑐 = 𝑃𝑒2 is
lmost perfectly superposed to the blue curve relative to the numerical
alues of 𝑅𝑎𝑐 versus 𝑃𝑒. The point A in Fig. 6 is relative to the data for
he isotropic case 𝑎 = 1 which, in fact, are in perfect agreement with
hose reported in Barletta [4],

𝑒 = 19.1971, 𝑘𝑐 = 4.86457, 𝑅𝑎𝑐 = 368.456. (14)

or the isotropic case, the shape of the neutral stability curves with 𝑃𝑒
lightly larger than the minimal Péclet number value, 𝑃𝑒 = 19.1971,
ad been already pointed out [4]. Indeed, the neutral stability curves
ecome closed loops meaning islands of instability surrounded by a
ea of linear stability in the parametric (𝑘,𝑅𝑎) plane. Eventually, when
𝑒 reaches its minimal value for linear instability such loop-shaped
urves shrink to a point and then disappear [4]. The same behaviour is
llustrated in Figs. 7 and 8 for the anisotropic cases 𝑎 = 2 and 𝑎 = 1∕2,
espectively. These figures also show the point A where the closed loops
f neutral stability ultimately collapse when 𝑃𝑒 gradually decreases to
ts minimal value which is 𝑃𝑒 = 17.5264 for 𝑎 = 2 and 𝑃𝑒 = 21.4582 for
= 1∕2. The right hand frames of Figs. 7 and 8 show the trends of the
rowth rate 𝜂 versus 𝑅𝑎 along the constant 𝑘 straight lines depicted in
he left hand frames. Such plots are quite useful to suggest the meaning
f the closed loops as islands of instability surrounded by a region
6 
Table 2
Data for the condition of minimal Péclet number.
𝑎 𝑃 𝑒 𝑘 𝑅𝑎

1∕10 30.2013 2.74631 912.585
1∕5 25.6948 3.25600 660.526
1∕2 21.4582 4.08782 460.435
1 19.1971 4.86457 368.456
2 17.5264 5.79811 307.124
5 15.9770 7.33676 255.251
10 15.1627 8.80572 229.907

of linear stability in the (𝑘,𝑅𝑎) parametric plane. In fact, these plots
clearly show that crossing the loop region in the (𝑘,𝑅𝑎) plane with a
fixed 𝑘 and an increasing 𝑅𝑎 yields a sign change of 𝜂 from negative,
meaning stability, to positive, meaning instability, and then negative
again.

Table 2 finally collects some numerical data for the minimal Péclet
number and the corresponding values of 𝑘 and 𝑅𝑎 for neutral stability
at different anisotropy ratios 𝑎 as compared to the isotropic case 𝑎 = 1,
whose numerical data have been already reported in (14).

5. Conclusions

The linear instability analysis of the mixed convection stationary
flow in a uniformly heated or cooled porous channel has been car-
ried out. The modelling of the momentum transfer has been based
on Darcy’s law and on the Oberbeck–Boussinesq approximation, by
assuming anisotropy of the porous medium with a permeability in the
vertical direction different from that in the horizontal directions. Thus,
an anisotropy ratio 𝑎 has been defined between the vertical and the
horizontal permeabilities of the medium. Finally, the Rayleigh number
𝑅𝑎 is proportional to the heat flux prescribed at the channel walls.

A basic stationary buoyant flow with parallel velocity field has been
considered, with a flow rate parametrised by the Péclet number 𝑃𝑒.

The determination of the neutral stability condition for the onset
of the linear instability has been accomplished by introducing normal
mode perturbations. The resulting stability eigenvalue problem has
been solved numerically by employing the shooting method. The main
results obtained are the following:

• In every case considered, the most unstable modes turned out to
be longitudinal, meaning that their wave vector is inclined an
angle 𝜋∕2 with respect to the basic flow direction.

• The analysis has been focussed on the longitudinal modes reveal-
ing that both parameters 𝑎 and 𝑃𝑒 have a destabilising effect. In
other words, a vertical permeability larger than the horizontal
permeability results in an instability at smaller Rayleigh numbers
as expected by reasoning on purely physical grounds.

• The asymptotic numerical solution for 𝑃𝑒 ≫ 1 turned out to be a
quite useful and reliable approximation for cases where 𝑃𝑒 > 100.
Such an approximation becomes gradually less accurate when 𝑎
becomes significantly smaller than 1.

• There exists a minimal nonzero value of 𝑃𝑒 for linear instability,
for every prescribed anisotropy ratio 𝑎. No linear instability has
been detected below such a Péclet number.

• Close to the minimal Péclet number, the neutral stability curves
display a closed-loop shape and, eventually, they shrink to a point
when the minimal 𝑃𝑒 is approached from above.

Mixed convection flow in channels with uniform wall heating/coo-
ling is of great importance for the description of heat transfer and its
enhancement in heat exchangers. Nowadays, the use of metal foams in
compact heat exchangers is a challenging frontier of industrial design.
The system analysed in this paper is a simplified model of such type
of situations, where an highly conducting porous medium saturated by
a fluid provides the exchange area increase required for the intensi-

fication of heat transfer. The analysis conducted here is just the first
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Fig. 6. Minimal value of 𝑃𝑒 versus 𝑎 for possible linear instability (left hand frame); critical value of 𝑅𝑎 versus 𝑃𝑒 at minimal Péclet number for instability (right hand frame).
he black dashed line represents the 𝑅𝑎𝑐 = 𝑃𝑒2 law. Point A denotes the data for the isotropic case 𝑎 = 1, Eq. (14).
Fig. 7. Closed-loop neutral stability curve for 𝑎 = 2 and 𝑃𝑒 = 17.6 in the (𝑘,𝑅𝑎) plane (left hand side). Plots of the growth rate 𝜂 versus 𝑅𝑎 for 𝑎 = 2, 𝑃𝑒 = 17.6 and different
avenumbers 𝑘 (right hand frame). The neutral stability locus at the minimal value of 𝑃𝑒 = 17.5264 for 𝑎 = 2, where the neutral stability curve shrinks to a point, is denoted
ith A.
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tep of further investigations that are specifically meant to explore the
ully nonlinear behaviour of the cellular patterns predicted after the
ransition to instability. In particular, an opportunity for future research
s the numerical evaluation of the Nusselt number and, hence, of the
eat transfer coefficient resulting from the cellular flow superposed to
he basic parallel velocity profile under supercritical conditions.
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Fig. 8. Closed-loop neutral stability curve for 𝑎 = 1∕2 and 𝑃𝑒 = 21.6 in the (𝑘,𝑅𝑎) plane (left hand side). Plots of the growth rate 𝜂 versus 𝑅𝑎 for 𝑎 = 1∕2, 𝑃𝑒 = 21.6 and different
wavenumbers 𝑘 (right hand frame). The neutral stability locus at the minimal value of 𝑃𝑒 = 21.4582 for 𝑎 = 1∕2, where the neutral stability curve shrinks to a point, is denoted

ith A.
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