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Abstract : 

The icy moons of the outer Solar System harbor potentially habitable environments for life, however, 
compared to the terrestrial biosphere, these environments are characterized by extremes in temperature, 
pressure, pH, and other physico-chemical conditions. Therefore, the search for life on these icy worlds is 
anchored on the study of terrestrial extreme environments (termed “analogue sites”), which harbor 
microorganisms at the frontiers of polyextremophily. These so-called extremophiles have been found in 
areas previously considered sterile: hot springs, hydrothermal vents, acidic or alkaline lakes, hypersaline 
environments, deep sea sediments, glaciers, and arid areas, amongst others. Such model systems and 
communities in extreme terrestrial environments may provide important information relevant to the 
astrobiology of icy bodies, including the composition of potential biological communities and the 
identification of biosignatures that they may produce.  

Extremophiles can use either sunlight (phototrophs) or chemical energy (chemotrophs) as energy 
sources, and different chemical compounds as electron donors or acceptors. Aerobic microorganisms 
use oxygen (O2) as a terminal electron acceptor, whereas anaerobic microorganisms may use nitrate 
(NO−3 ), sulfate (SO2−4 ), carbon dioxide (CO2), Fe(III), or other organic or inorganic molecules during 
respiration. The phylogenetic diversity of extremophiles is very high, leading to their broad dispersal 
across the phylogenetic tree of life together with a wide variety in metabolic diversity.  

Some metabolisms are specific to archaea, for example, methanogenesis, an anaerobic respiration during 
which methane (CH4) is produced. Also sulfur-reduction performed by some bacteria and archaea is 
considered as a primitive metabolism which is restricted to anoxic sulfur-rich habitats in nature.  
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1 Introduction

Most definitions of a “living” process or system (Cleland and Chyba 2002) refer to three

distinct properties: the ability to self-organize complex macromolecular structures, the abil-

ity to harness the energy necessary to maintain separate organization from the environment

(“metabolism”), and an ability to replicate the self and to proliferate more or less identi-

cally. Thus, self-organization, metabolism and self-replication are the characteristic “cor-

nerstones” of any living entity. This conceptual definition is the result of a long historical

process, which has forced biologists of subsequent eras to redefine their understanding of

what is, and is not, alive.

Regardless, a general and consensual definition of “living” is a matter of concern to many

fields—physicists, chemists and astrobiologists—all of whom seek to recreate life-like be-

haviors, or to identify its signatures. A challenge is the continual confrontation only with

terrestrial biology composed of a remarkably common base of molecular components (nu-

cleic acids, proteins, lipids), each of which is dedicated to a main specific function: the

conservation and handling of information for nucleic acids, structural organization and bio-

chemical catalysis for proteins, and spatial delineation of compartments for lipids. On Earth,

the co-occurrence of these building blocks indicates an affiliation with the “living” world.

The issue of the origin of life is usually addressed from two different perspectives: the

first examines the conditions under which the basic building blocks and macromolecules

significant for life may have emerged on the early Earth, the second explores the origin of

functional subsystems (metabolism, replication) and basic structural organization (i.e., the

cell) of what is recognized as “alive”.

Experiments from the 1920s onward (Oparin 1924; Haldane 1929; Urey 1951; Miller

1953) led to the hypothesis of multiple “possible” scenarios of the origin of life (on Earth),

often conflicting and irreconcilable, and typically almost mythological “stories” of phys-

ically and/or chemically possible processes, of which only small parts had an empirical

basis. Despite their value in the inception of a debate on the origins of life, these hypotheses

were often based on what we now know to be inaccurate or incomplete data (early Earth

atmospheric composition, the genesis and dynamics of the Solar System, etc.). Early reports

on the diversity of life (Woese 1979) also failed to consider the incredible metabolic so-

phistication that microbial life has shown in acquiring energy from its environment, even

under the most inhospitable and extreme conditions. Clarification of the co-evolution of the
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biosphere and geosphere has led to an increasing recognition of the fact that the two are

intimiately associated and likely constrained the development of the other (Lovelock and

Margulis, ?lm74; Williams and Fraústo Da Silva 2003). <ref:lm74?>

The Earth is generally thought of as a world inhabited by plants, animals and microor-

ganisms able to grow under conditions compatible with life as it is found in most terrestrial

and marine ecosystems (temperature: 10–40 °C, pH ∼ 7, pressure: 1 atm, water availability,

minimal ionizing radiation level, etc.). Extremophiles have succeeded in inhabiting environ-

mental niches with physicochemical parameters outside this comfort zone.

Extreme environments are characterized by environmental parameters at the boundaries

of conditions that sustain and shape life in its various forms; whether terrestrial, oceanic,

cryospheric or deep endolithic, they are widespread on our planet. Far from being marginal

areas, they (especially the deep ocean and polar regions) represent, in terms of biomass

volume, the most important part of the Earth biosphere.

In these extreme environments, dominated by prokaryotic microorganisms (Bacteria and

Archaea), some organisms thrive under conditions that are at the limits of their physiological

and energy potential, whereas others have highly adapted genetic features that result in acru-

cial requirement of such conditions. When classifying microorganisms as extremophiles, the

concept of a “normal” environment is used as a reference. In assuming this anthropocentric

view, it should not be forgotten that “extreme” environments, which today seem so hostile,

appear to have predominated when the first life forms appeared on Earth. Nowadays, these

environments are still colonized by highly diverse microbial communities.

Depending on the prevailing physico-chemical parameters of the environment, ex-

tremophiles can be subdivided into different categories: hyperthermophiles (Topt ≥ 80 °C)

e.g. Methanopyrus kandleri, () the archaeon with the highest temperature life record); psy-

chrophiles (Topt ≤ 15 °C) such as the bacterium Psychrobacter fulvigenes (Romanenko et al.

2009) capable of growing at temperatures as low as −5 °C; acidophiles (pHopt ≤ 3) includ-

ing Picrophilus oshimae (Schleper et al. 1995), an archaeon that has shown optimal growth

at pH = 0.7; alkaliphiles (pHopt ≥ 9) such as Bacillus pseudofirmus (Nielson et al. ?ni95), <ref:ni95?>

capable of growing at pH 11, halophiles such as the archaeon Halobacterium salinarum

(Ventosa and Oren 1996), which can survive in the presence of 5.5 M (32%) NaCl (its sat-

uration limit); and piezophiles, e.g. Thermococcus piezophilus the archaeon that holds the

record for withstanding the highest hydrostatic pressure (130 MPa, i.e. 1300 times atmo-

spheric pressure) (Dalmasso et al. 2016).

Extremophiles expand our understanding of biodiversity on Earth and our knowledge of

the limits of life. Deducing the mechanisms that enable extremophiles to persist under harsh

conditions not only provides a thorough knowledge of the functioning of living cells but can

also lead to interesting applications in biotechnology, particularly the economic utility of

extremophiles. Understanding the uncommon properties of extremophiles has led to ques-

tions about their origin (have these organisms recently adapted to the extreme conditions of

their environment or are they relics of organisms that existed on the Early Earth and that

had to face even harsher environmental conditions?). Understanding the limits of life on

Earth can provide hints of the diversity of potential extraterrestrial life (past or present). It

is therefore not surprising that astrobiology studies the properties of life in Earth’s extreme

environments.

This review is dedicated to describing the state of the art and raising questions about tax-

onomic and metabolic diversity and the evolution of microorganisms (archaea and bacteria),

notably extremophiles, and their biosignatures with an astrobiological perspective.
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2 Extremophiles: Diversity, Adaptation and Biosignatures

Over the past forty years, research has dramatically altered our understanding of the limits

of life in terms of its physical and chemical constraints. Organisms, mainly prokaryotes,

have been found to live optimally at very high or very low temperatures, in hyperacid or

alkaline environments, or in salt-saturated environments, for example. Other organisms are

able to live or survive under conditions of extreme stress, for instance a lack of water, the

presence of high concentrations of heavy metals, or exposure to significant radiation doses or

extreme pressures. In the following, we review and offer perspectives on extremotolerances

to hypersaline and high hydrostatic pressure environments that are of particular relevance to

the icy oceanic bodies of the outer Solar System.

2.1 Hypersaline Biotopes

Habitats with salinities higher than average seawater (i.e. 3.5% total dissolved salts) are

considered hypersaline. Many of these habitats result directly from the evaporation of

sea water, and thus have similar relative proportions of ions; for example, they are dom-

inated by sodium and chloride. Marine hypersaline environments are termed thalasso-

haline, in contrast to athalassohaline environments, which have non-marine ionic com-

positions and are associated with non-coastal water bodies (DasSarma and Arora 2001;

Rodríguez-Valera 1988).

A profusion of hypersaline biotopes, distributed across the Earth, can be found in arid,

coastal and even deep-sea settings (e.g. Antunes et al. 2011; DasSarma and Arora 2001;

Oren 2002a, 2002b). In coastal regions, seawater often penetrates through seepage or narrow

inlets creating small evaporation ponds. Well-known examples of such ponds are Solar Lake

and Gavish Sabkha near the Red Sea coast, Guerrero Negro on the Baja California peninsula

(Mexico), Lake Sivash near the Black Sea (Crimea), and Shark Bay in Western Australia.

Such hypersaline evaporation ponds have also been found in Antarctica (e.g. Deep Lake,

Organic Lake and Lake Suribati). Elevated salinities are usually found in natural inland

hypersaline lakes such as the Dead Sea (Middle East) and the Great Salt Lake (USA), the two

largest and best-studied such environments. A number of alkaline hypersaline soda brines

also exist, including the Wadi Natrum lakes of Egypt, Lake Magadi in Kenya, the Great

Basin lakes of the western United States (Mono Lake, Owens Lake, Searles Lake and Big

Soda Lake), and several series throughout China and India.

The number of hypersaline sites is further increased by the numerous artificial solar

salterns constructed for the production of sea salt, by subterranean brines and evaporite

deposits and by the existence of several brine-filled deep-sea basins. Another type of hy-

persaline biotope is presented by the often-overlooked saline soils. These include desolate

areas in such places as Death Valley (California, USA), Alicante (Spain), Iraq and even the

Dry Valleys in Antarctica, amongst others (Ventosa et al. 1998).

Anoxic hypersaline basins, or deep-sea anoxic brines, are very special and rare envi-

ronments in the oceans. They are formed as a result of tectonic activity and exposure of

ancient salt deposits, existing under layers of sediments and originated from evaporated an-

cient seas (e.g. Antunes et al. 2011; Antunes 2017). The interaction of seawater with the

underlying salt leads to the formation of brines which are 4 to 5 times more concentrated in

salt than the surrounding seawater, creating highly saline “lakes” on the sea floor (Camer-

lenghi 1990). The presence of such basins often coincides with the presence of cold seep

zones or, more rarely, hydrothermal vents, resulting in the release of methane, hydrogen

sulphide and hydrocarbons. One of the characteristics of anoxic hypersaline basins is the
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presence of multiple gradients, particularly at the interface between seawater and the hyper-

saline zone (brine), including salinity, temperature, free O2, density and pH (Antunes et al.

2018). These physico-chemical gradients provide highly variable and specific environments

of interest for the growth of microorganisms. In addition, the density gradient formed at the

seawater/hypersaline zone interface acts as an organic and inorganic particle trap, providing

the significant amount of nutrients necessary for cell growth (Daffonchio et al. 2006). It is

possible to distinguish differences between the known brine lakes of different seas; in the

Mediterranean Sea, concentrations of Mg2+, SO2−
4 and K+ are high, whereas in the Red Sea,

concentrations of Ca2+ and Mn2+ are higher. On the contrary, lower ionic concentrations,

particularly Mg2+ and K+, exist in the Gulf of Mexico (Antunes et al. 2011).

The relevance of deep-sea brines in the context of the exploration of the oceans of the icy

moons the outer solar system is particularly worth highlighting as they have been recently

proposed as potential terrestrial analogues to conditions in such exooceans (Antunes et al.,

accepted).

2.2 Biodiversity in Hypersaline Environments

Despite being considered extreme, hypersaline environments host a diverse variety of

organisms, including representatives from all three domains of life. In fact, microbial

densities can be so high in these locations that the thriving communities of pigmented

halophilic microorganisms (which includes a few bacteria but is composed mostly of

halophilic archaea and/or the β-carotene-rich green alga Dunaliella) often give the wa-

ter characteristic pinkish or even reddish hues. The inhabitants of saline environments

range from higher organisms to unicellular eukaryotic microorganisms, and a heterogeneous

group of prokaryotes, which constitute the predominant microflora (Rodríguez-Valera 1988;

Ventosa and Nieto 1995).

2.2.1 Eukarya in Saline Environments

Within the domain Eukarya, halophiles are scarce, and mostly restricted to unicellular forms

(Oren 2002b; Trüper and Galinski ?tg86). A variety of plants (e.g. Atriplex halimus) can <ref:tg86?>

survive in moderately high saline soils, although apparently no vertebrate has ever been

reported at salinities higher than 1 M NaCl (DasSarma and Arora 2001; Ollivier et al. 1994).

The most common multicellular eukaryotes in hypersaline environments are invertebrates,

with reported species including rotifers, tubellarian worms, copepods, ostracods, and insects.

Noteworthy among the insects are the well-known brine flies (Ephydra hians and E. gracilis)

and brine shrimp (Artemia franciscana and A. salina), with the latter playing an important

role in the nutrition of the pink flamingo and other birds (DasSarma and Arora 2001; Ventosa

and Nieto 1995).

Dense populations of unicellular green algae can be observed at moderately high salin-

ities, with most being moderate halophiles and only very few examples observed at higher

salinity level (e.g. Dunaliella salina and Asteromonas gracilis). The several species of the

genus Dunaliella are almost ubiquitous in hypersaline environments, being often the main

or only primary producer and serving as main food source for brine shrimps and larvae of

brine flies, while representatives of diatoms are also frequently found but rarely abundant

(DasSarma and Arora 2001; Oren 2002a).

Other eukaryotic representatives include a large variety of protozoa (e.g. Porodon uta-

hensis) as well as yeasts and other fungi (DasSarma and Arora 2001). These groups of

organisms are very often overlooked when looking at the microbiology of high salinity
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environment but our knowledge about their diversity has been getting increased attention

(excellently reviewed by e.g. Gunde-Cimerman et al. 2009; Hardy and Simpson ?hs17; Zajc <ref:hs17?>

et al. 2017).

2.2.2 Archaea in Saline Environments

Extreme halophiles are traditionally associated with the euryarchaeal class Halobacteria,

which was recently reorganized (Gupta et al. 2015) and split into 3 different orders—

Halobacteriales, Haloferacales, and Natrialbales—and is still undergoing taxonomic re-

structuring based on phylogenomic data (e.g. Gupta et al. 2016). As of September 2019, this

family of aerobic euryarchaeotes currently comprises 259 species with validly published

names, placed in 63 genera (Table 2). An interesting member of the Halobacteriaceae is

the more recently isolated first representative of the square haloarchaea of Walsby, Halo-

quadratum walsbyi (Bolhuis et al. 2004; Burns et al. 2004). This intriguing group of mi-

croorganisms was first reported by Walsby (1980) but remained elusive despite numerous

cultivations attempts and well-known widespread and abundant occurrence.

Extremely halophilic archaea are less common outside the Halobacteria but can also

be found within some euryarchaeal genera namely within the class Methanomicrobia (e.g.

Methanosalsum, Methanohalobium, Methanohalophilus, within the family Methanosarci-

naceae and Methanocalculus, within an unassigned family of the order Methanomicrobiales,

and the recently described genus Methanonatronarchaeum of the class Methanonatronar-

chaeia; Oren 2014; Ventosa et al. 2012; Sorokin et al. 2018). In addition to these, a few

other methanogenic genera are also known to include moderately halophilic species (Ven-

tosa et al. 1998). Aside from these methanogens, and the Halobacteria, no other archaeal

halophiles have been identified outside the Euryarchaea.

2.2.3 Bacteria in Saline Environments

Overall, halophilic bacteria are a very diverse and heterogeneous group. Phylogenetically

they are included in at least seven phyla: Actinobacteria, Bacteroidetes, Cyanobacteria,

Firmicutes, Proteobacteria, Spirochaetes, and Thermotogae (Ventosa et al. 2012).

Compared to the Archaea, fewer examples of extreme halophily are currently known

in Bacteria but their numbers have increased rapidly in the last few years. Some examples

of this wide diversity include the actinomycete Actinopolyspora halophila, several gamma-

proteobacteria of the genus Halorhodospira, and Salinibacter ruber, which is a member

of the Cytophaga-Flavobacterium-Bacteroides group (Antón et al. 2000, 2002; Kamekura

1998). Salinibacter is especially interesting due to its significant contribution to the biota

of NaCl-saturated saltern crystallizer ponds. The surprisingly numerous similarities with

the haloarchaea, specifically in osmotic adaptation strategy, point to a possible process of

convergent evolution (Antón et al. 2002; Oren 2004).

Moderately halophilic bacteria, however, are much more diverse, being present in many

of the major bacterial phylogenetic groups. The vast majority of the validly described mod-

erately halophilic bacteria are members of the Proteobacteria, with the gamma-subgroup,

namely the genera Salinivibrio, Marinobacter, and Arhodomonas, as well as members of

the family Halomonadaceae, being especially preponderant. The Halomonadaceae includes

some of the most versatile prokaryotes regarding their adaptability to a wide range of salin-

ities (Oren 2000; Ventosa et al. 1998). Rhodospirillum salinarum, an anaerobic phototroph,

and Desulfovibrio halophilus and Desulfohalobium retbaense, both anaerobic sulphate re-

ducers, are further examples of organisms with wide ranges of salinity tolerances within
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the alpha- and delta-Proteobacteria, respectively (Galinski and Trüper 1994; Ollivier et al.

1994).

The Halanaerobiales, an order within the low G+C branch of the Gram-positive bacteria

includes the families Halobacteroidaceae and Halanaerobiaceae, other very important and

numerous groups of moderately halophilic bacteria (Rainey et al. ?ra95). Further represen- <ref:ra95?>

tatives are found in the low G+C and high G+C Gram-positive bacteria, the cyanobacterial

branch, the Cytophaga-Flavobacterium-Bacteroides branch, and also within the spirochetes

and the actinomycetes (Ventosa et al. 1998).

2.2.4 Physiological Adaptations to High Salinity

Life at high salinity is not without its burdens. Increased salinity leads to a decrease in water

activity (i.e. the amount of water that is thermodynamically available) which, in accordance

with the natural tendency of systems to attain and maintain equilibrium and the permeabil-

ity of the cytoplasmic membrane to water, afflicts cells with osmotic stress (Brown 1990;

Csonka 1989; Vreeland 1987). Indeed, an unadapted organism placed in a saline environ-

ment (i.e. hyperosmotic conditions) will rapidly lose water, leading to decreased cell vol-

ume and/or turgor pressure and ultimately affecting its metabolism and macromolecules

(da Costa et al. 1998; Poolman and Glaasker 1998). Failure to adjust to these new condi-

tions results in cessation of growth, possibly due to molecular crowding and a consequent

reduction in diffusion rates of proteins and metabolites, which may eventually result in cel-

lular death (Kunte et al. 2002). Evolution has provided life with two different approaches to

deal with osmotic stress:

The salt-in-cytoplasm strategy. Using this strategy, the necessary thermodynamic ad-

justment of the cell is achieved through an increase in cytoplasmic salt concentration

(normally through an increased intake of K+ and Cl−). The resulting increase in in-

tracellular ionic strength requires several changes in cellular function, most markedly

at the level of the enzymatic machinery, resulting in a characteristic excess of acidic

amino acids and small amounts of hydrophobic amino acids (da Costa et al. 1998;

Oren 1999). The predominance of charged amino acids on the surface of enzymes and

ribosomes stabilizes their hydration shells under high ionic conditions. Moreover, most

of these enzymes are only functional at increased ionic levels (da Costa et al. 1998;

Galinski and Trüper 1994). The permanent character of these cellular modifications restricts

organisms that use this strategy to highly saline environments.

This salt-in-cytoplasm strategy was first discovered in aerobic, extremely halophilic ar-

chaea of the order Halobacteriales and is considered the typical archaeal strategy of os-

moadaptation (Kunte et al. 2002). This strategy is also used by anaerobic halophilic bacteria

of the order Halanaerobiales and the aerobic halophilic bacteria Salinibacter ruber (Oren

2000).

The organic-osmolyte strategy. This strategy relies on an increase in external salinity

being counteracted by the accumulation (either by de novo synthesis or uptake from the en-

vironment) of uncharged, highly water-soluble, organic solutes (Kempf and Bremer 1998)

(Fig. 1). These osmolytes do not disrupt metabolic processes and include sugars (e.g. tre-

halose), polyols (e.g. glycerol) and their derivatives, free amino acids (e.g. glutamate) and

their derivatives, betaines, and ectoines (Csonka 1989; da Costa et al. 1998; DasSarma and

Arora 2001; Galinski and Trüper 1994). This strategy allows organisms to keep their cyto-

plasm free of NaCl, to a large extent, while avoiding the need for major changes in cellular

machinery, thus providing a higher physiological flexibility. This explains the characteristi-

cally wide salt tolerance ranges associated with the use of this type of osmotic adaptation.
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The organic-osmolyte strategy is widespread among Bacteria, Eukarya and some Archaea.

Indeed, some methanogenic along with some haloalkaliphilic Archaea are known to use a

combination of both strategies (Desmarais et al. 1997).

2.3 High Hydrostatic Pressures Biotopes

The Twentieth Century was marked by technological and scientific breakthroughs that have

drastically modified the way we understand life on our planet. It was demonstrated that uni-

cellular prokaryotic life forms are able to inhabit virtually any environment on Earth, and

that they constitute life’s largest diversity reservoir. The domain Archaea was created to

accommodate newly isolated prokaryotic organisms with specific features that make them

more similar to eukaryotes. Recent estimates also suggest that life dwells mostly under-

ground (Reith 2011; Colwell and D’Hondt 2013; Colman et al. 2017) and that this deep

biosphere, located in the continental subsurface and in the oceans below 1000 m in depth,

could represent up to 70% of all cells on Earth, and up to 50% of (Oger and Jebbar 2010)

the primary production of biomass. Most of these biotopes are oligotrophic in nature and

characterized by high hydrostatic pressures (HHP). Although the deep biosphere represents

the largest ecosystem on Earth, however, it is still poorly characterized in terms of diversity

and its mechanisms of adaptation to HHP.

Amongst deep-biosphere biotopes, hydrothermal vents may be the most intriguing.

Discovered in 1979, they were shown, despite being hot oligotrophic and HHP environ-

ments, to harbor abundant primary productivity and diversity (Corliss et al. 1979). Pri-

mary production, in these environments, is based exclusively on the anaerobic chemical

harvest of the energy of the geologically sourced fluids seeping through the ocean floor.

Because of this, they are the only ecosystems on Earth not linked to photosynthesis, or

photosynthesis-derived products such as O2. It has been postulated that deep-sea hydrother-

mal vent systems were the birth sites of life on Earth (e.g., Martin and Russell 2003;

Russell et al. 2010) and this item is described below in more details in Part 4 of this re-

view.

HHPs are ubiquitous in deep environments. Hydrostatic pressure increases with depth at

an approximate rate of 10 MPa (∼100 atmospheres or 100 bar) per km in the water column

and 30 MPa per km in the crust. The definition of the deep biosphere is conveniently and

arbitrarily defined as water depths of 1000 m and more (Jannasch and Taylor 1984). Con-

sequently, all environments above 10 MPa qualify as high-pressure biotopes. HHP waters

encompass 88% of the volume of the oceans—which have an average depth of 3800 m—

and thus an average hydrostatic pressure of ca. 38 MPa, but reach 110 MPa in the trenches.

In contrast, the average geothermal gradient in the continental system is ca. 25 °C km−1

(Oger and Jebbar 2010). The current temperature limit for life, 122 °C (Takai et al. 2008),

would thus place the “deep” limit for the putative continental biosphere at ca. 5 km below

ground on average, under maximal pressures of 150 MPa. Most of the Earth’s prokaryotes

live in these subsurface oceanic and terrestrial environments. From current knowledge of

the deep-biosphere their cell number is estimated at 3.5 × 1030 and ca. 2–6 × 1029 respec-

tively i.e. about 10 times that estimated for surface environments (Whitman et al. 1998;

Magnabosco et al. 2018). Thus, even though the maximal productivity of the high-pressure

continental or marine biosphere is orders of magnitude lower than that of the surface

biotopes, due to their extremely large volume, these high-pressure biotopes contribute sig-

nificantly to the production and recycling of organic carbon (Fig. 2) (Magnabosco et al.

2018).
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Fig. 2 Schematic transversal section of the Earth highlighting the numerous settings of the deep biosphere.

1: deep-sea; 2: deep-sea hydrothermal vents; 3: deep oceanic crust; 4: sedimentary sub-seafloor; 5: deep-sea

cold seep; 6: continental deep biosphere. The red and blue lines represent the currently known temperature

and pressure limits for life, respectively. Solid lines highlight the parameter which limits the depth of the

deep biosphere. The upper dashed red line symbolizes the arbitrary 10 MPa upper limit of the deep biosphere

(Oger and Jebbar 2010)

2.3.1 Physical Characteristics of High-Pressure Biotopes

The deep ocean is characterized by HHP, darkness, a stable average temperature of ca.

2 °C, low organic carbon and a relative constant oxygen concentration. It is estimated that,

at present, ca. 1% of the carbon fixed by photosynthesis on the ocean surface eventually

reaches the ocean floor, thus the major nutritional potential of the deep-sea is defined by a

relatively low input of organic carbon (Oger and Jebbar 2010). As a corollary, adaptations

to oligotrophy (life with limited access to nutrients) and psychrophily (optimal life at low

temperature) are common in these environments. In contrast to the deep-sea biosphere, the

deep-continental biosphere is considerably more diverse.

2.3.2 Diversity of HHP-Adapted Microorganisms

The field of piezomicrobiology has suffered largely from a requirement for expensive high-

pressure retention sample containment and culturing laboratory equipments. The first HHP-

adapted prokaryotes were bacteria isolated from deep-sea sediments by Zobell and Johnson

(1949). The first obligate piezophiles, e.g. organisms that cannot develop at ambient pressure

and temperature, were isolated in 1981 (Yayanos et al. 1981). The diversity of piezophiles

in the deep-sea is largely dominated by five genera of psychrophilic, heterotrophic bacteria

(Colwellia, Moritella, Shewanella, Psychromonas, and Photobacterium) from the gamma-

Proteobacteria (Fig. 3). In contrast, the diversity of prokaryotes isolated from hydrothermal

environments is dominated by archaeal and bacterial hyperthermophilic chemolithotrophs,

i.e., those capable of gaining energy from the chemical transformation of dissolved minerals
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and able to fix dissolved carbonates into organic molecules (Jebbar et al. 2015). Discover-

ies of abundant life in diverse high-pressure environments, including the deep oceans, hy-

drothermal vents, and crustal rocks, supports the existence of an adaptation of life to HHP,

and is consistent with the significance of HHP in the prebiotic synthesis of key biomolecules

and the origin of life on Earth (Hazen et al. 2002).

2.3.3 Effect of HHP on Biomolecules

Pressure affects both chemical equilibrium and reaction rates, depending upon the reaction

(1V ) and activation (1V 6=) volumes involved. The behaviour of systems under high pres-

sures is governed by Le Châtelier’s principle, which states that the application of pressure

shifts equilibrium toward the state that occupies the smallest volume. It accelerates a process

in which the transition state has a smaller volume than that of the ground state, for example,

if the volume of a protein is smaller in its unfolded form, this protein will be denatured by

the application of HHP.

At HHP of greater than 400 MPa, most proteins tend to unfold (Aertsen et al. 2009).

Exposure to mild HHP (∼200 MPa) often affects only the quaternary structure, leading to

the dissociation of oligomeric proteins. As a consequence, HHP modulates the activity of

enzymes. The enzymatic activities of proteins isolated from HHP-adapted organisms tend

to be less affected by HHP than those of surface organisms (Aertsen et al. 2009), however,

the true structure-function relationships underlying the pressure stability of proteins are still

unknown.

2.3.4 Effect of HHP on Biological Systems

Biological membranes play a fundamental role in the adaptation of microbes to their envi-

ronment. The membrane acts as a physical barrier to regulate influx and efflux activities,

it plays a central role in energy storage and processing via ion gradients, and it provides

a template for environmental sensing, multicomponent uptake and signaling pathways and

motility. Thus, maintaining optimal membrane biological function is crucial for any organ-

ism. Temperature-, pH-, salinity- or hydrostatic pressure-induced shortcomings in mem-

brane organization are a serious threat to the cell. Archaeal and bacterial membranes have

significant structural differences in spite of the fact that they perform identical functions.

The mechanisms used by these membranes to cope with harsh conditions and shifting en-

vironments are quite similar. Bacterial polar lipids, with only a few rare exceptions, are

based on straight chain hydrocarbons linked by ester bonds on the sn-1 and sn-2 positions

of glycerol. Archaeal polar lipids are composed of isoprenoid hydrocarbon chains bound

by ether bonds to the sn-2 and sn-3 positions of glycerol (Fig. 4). Polar headgroups consist

of phosphodiester-linked polar groups or sugar moieties on the sn-1 (archaea) or sn-3 (bac-

teria) positions of the glycerol backbone (sn-glycerol-1-phosphate, or G-1-P, structure and

sn-glycerol-3-phosphate, or G-3-P, structure).

Following the observation that the lipids in the membrane of E. coli cells grown un-

der temperatures of 43 °C and 15 °C were different (Marr and Ingraham 1962; Sinensky

1971), yet the corresponding membranes had similar physical characteristics at their respec-

tive growth temperatures, Sinensky simulated the homeoviscous adaptation basis (Sinensky

1974; Oger and Cario 2013). According to this approach, organisms adjust the lipid compo-

sition of their membrane to facilitate the preservation of the appropriate membrane fluidity

in order to work optimally. This concept—in a broader sense—is understood to encompass

adaptation to proton/water permeability and the dynamic character of plasmic membranes
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Fig. 4 Homeoviscous adaptation in Archaea. (A) In its functional state, the membrane is in a liquid crys-

talline state. Upon increasing temperature or decreasing hydrostatic pressure, lipid motion increases and the

membrane enters the fluid phase. Conversely, when temperature drops or hydrostatic pressure increases, the

lipid molecules pack more tightly and enter a gel phase. Membranes in both gel and fluid phases have im-

paired membrane function. (B) Known mechanisms of membrane lipid composition adaptation in Archaea

(Oger and Cario 2013; Cario et al. ?ca15; Jebbar et al. 2015) <ref:ca15?>

(Oger and Cario 2013). Homeoviscous adjustment should also be regarded as a manner of

adapting the composition, and therefore the functionality, of the membrane to abrupt shifts

in the environment, or to stresses, including those of temperature, salinity, osmotic stress,

pressure and pH. Under optimal physiological conditions, membranes are rather fluid and

formed of disordered liquid crystalline phases. As temperature decreases or hydrostatic pres-

sure increases, lipids in the membrane may undergo a transition from fluid to gel phase. If the
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temperature is higher or if the pressure is lower than the optimal physiological conditions,

the movement rate of lipids in the membrane is greater, and this can affect the membrane’s

stability and its inherent permeability (Fig. 4). As one might expect, the disruption of the

lipid phase state has a significant impact on the structure and function of the membrane (Lee

2003, 2004). The shift to the gel phase can lead to the aggregation of membrane proteins,

which are excluded de facto from the gel phase areas, thereby limiting the diffusion and

activity of proteins in the membrane and slowing down the flow of transported solutes, but

enhancing the permeability of cations and water.

The adjustment of the characteristics of the bacterial membrane is made according to

four main processes: (1) the change in acyl chain length, i.e., an increase in the length

of the two-carbon chain causes an increase in the lipid phase transition temperature from

10 °C to 20 °C, and decreases membrane permeability to protons and water (Winter 2002);

(2) the build-up of unsaturated fatty acids, since the introduction of a single unsatura-

tion can shift the fluid/gel transition from 10 °C to 20 °C (Russell and Nichols 1999;

Winter 2002); (3) the accumulation of specific polar groups such as phosphatidylcholine

(PC) or phosphatidylglycerol (PG) instead of phosphatidylethanolamine (PE), indeed, the

presence of PC as a polar head group results in a significant change in the fluid/gel transition

temperature (Yano et al. 1998; Winter 2002; Mangelsdorf et al. 2005; Winter and Jeworrek

2009), partially due to the diminished hydration and stearic volume of ethanolamine com-

pared to choline, and partially to the capacity of PE and the failure of the PC groups to form

hydrogen bonds; and (4) the buildup of branched-chain fatty acids.

Archaeal lipid membranes usually have a considerably lower phase transition tem-

perature than bacterial acyl fatty ester lipids (Yamauchi et al. 1993). The adaptation of

the archaeal membrane to extreme environments may be attributed in part to the spe-

cific structure of its lipids. Although membranes consisting of fatty acyl ester lipids are

in the gel phase or liquid crystal phase according to their fatty acid composition, it is

presumed that Archaeal polar lipid membranes of archaeol and caldarchaeol are in the

liquid crystal phase over a wide temperature range of 0–100 °C (Stewart et al. 1990;

Dannenmuller et al. 2000).

The adaptability of the archaeal membrane is very similar in its physics to that of

the bacterial membrane, albeit using slightly different mechanisms to attain the same ef-

fects. There exist several different routes, as follows. (1) The incorporation of cyclopen-

tane rings along the isoprenoid chain as a function of fluctuating temperature (De Rosa et

al. 1980a, 1980b; Ernst et al. 1998; Uda et al. 2001, 2004) or pH (Shimada et al. 2008)

increases the packing efficiency of the membrane lipids (Gliozzi et al. 1983), which in-

creases membrane stability as a function of increasing temperature or salinity and decreas-

ing pressure or pH, and consequently lowers membrane permeability (Chong et al. 2012).

(2) The regulation of the tetraether-to-diether lipid ratio (Sprott et al. 1991; Lai et al. 2008;

Matsuno et al. 2009; Baumann et al. 2018; Taubner et al. under review; Taubner et al.

(under review)), since increasing tetraether lipids will stabilize membranes by forming

monolayer-type membranes or domains in the membrane, and consequently helping to

regulate the flux of solutes and protons across the membrane. (3) The crosslinking of

the two acyl-chains of the lipids yields macrocyclic archaeol or caldarchaeol derivatives

by a covalent bond between the isoprenoid chains, which also reduces molecular mo-

tion to create a more closely packed structure and increases membrane stability, creating

an efficient barrier against water, proton and solute leakage (Dannenmuller et al. 2000;

Mathai et al. 2001). (4) The increase in unsaturation along the isoprenoid chains of

the lipids as a function of temperature (Nichols et al. 2004) or salinity (Dawson et al.

?da12); although this has, to date only been described in the psychrophilic methanogen <ref:da12?>
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Methanococcoides burtonii (Franzmann et al. 1992; Nichols et al. 2004), unsaturated lipids

have been characterized in several species of hyperthermophiles (Hafenbradl et al. 1993;

Gonthier et al. 2001), which might indicate the occurrence of a similar adaptive strategy in

deep-sea hydrothermal vent organisms.

The adaptation of bacterial and archaeal membranes to harsh environments is clearly visi-

ble in the most common lipids, however, responding to variations in environmental stressors

might involve only a fraction of the adaptive traits mentioned above. Indeed, in order to

be effective, the membrane composition adaptation response needs to be very rapid. The

routes described require different timeframes, thus certain adaptive mechanisms will prevail

over others. For example, the increasing unsaturation of membrane lipids will decrease the

gel/fluid transition temperature to the same extent as the shortening of an acyl chain or the

substitution of a phosphatidylcholine by a phosphatidylethanolamine polar head, but will

be quicker because it is performed inside the cytoplasmic membrane on existing lipids by a

membrane protein (Kasai et al. 1976; Cybulski et al. 2002; Aguilar and de Mendoza 2006;

Beranova et al. 2008), whereas the other actions would require de novo lipid synthesis.

2.3.5 Adaptations to HHP in Piezophiles

DeLong and Yayanos (1985) showed that deep-sea organisms harbor an unusually high pro-

portion of mono- and poly-unsaturated fatty acids. This leads to highly disordered phospho-

lipid bilayers that are less permeable to water molecules and are proposed to maintain the

plasma membrane in a functional fluid state despite the rigidification effect of pressure. The

genes responsible for the synthesis of these unsaturated lipids have been shown to be up-

regulated by HHP in the moderate piezophile Photobacterium profundum strain SS9, and

are induced by HHP as part of the HHP-induced stress response in yeast (Allen et al. 1999;

Abe 2015). These results have led workers to propose that adaptation to HHP involves the

expression of HP-specific genes. This view is supported by genome-wide comparisons of

gene expression in piezophile and piezosensitive strains of the Photobacterium complex

(Campanaro et al. 2005).

In P. profundum SS9, transporters are mainly up-regulated at sub-optimal growth pres-

sure, e.g. 0.1 MPa in comparison to the pressure optimum of 28 MPa. Bartlett and colleagues

(Lauro et al. 2008) speculated that SS9 transporters evolved a novel protein structure to adapt

to elevated pressures, and that their up-regulation at 0.1 MPa could compensate for a reduc-

tion of functionality at lower pressures. Kasahara et al. (2009) first demonstrated a weak

HHP adaptation in the 3-isopropylmalate dehydrogenase of piezophilic Shewanella strains.

Thus, adaptation to HHP may result from an evolution of proteins towards an optimal ac-

tivity under HHP. The observation of the growth of T. piezophilus at 130 MPa, and that of

the dissociation of ribosomes in E. coli at ca. 30 MPa, clearly supports the necessity for

HHP-adapted ribosomes in the piezophilic strain.

Piezophilic Shewanella express a specific cytochrome protein complex under HHP

(Tamegai et al. 1997). The importance of specific piezo-adaptation in the respiratory chain is

further suggested by the presence of three complete sets of cbb3 cytochrome oxidase genes

in the P. profundum SS9 genome (Vezzi et al. 2005). A large-scale transposon mutagenesis

of P. profundum revealed several HHP-specific loci, most of which are involved in chromo-

somal partitioning and ribosomal function (Lauro et al. 2008). Therefore, adaptation to HHP

may require specific genes.

In the deepest parts of the oceans and, if present, on ocean worlds, hydrothermal vent

ecosystems are characterized by large fluctuations in salinity and temperature, from 0.1 to

twice the salinity of seawater and from fluid temperatures as high as 350 °C at the heart of the
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vent, to 2 °C, the average temperature of the surrounding deep ocean waters. Hydrothermal

vent environments in the deep sea are also subject to extremely high hydrostatic pressures up

to 50 MPa, i.e., 500 times the atmospheric pressure, based on values measured at the deepest

known hydrothermal vent field in the Cayman Trough of the Caribbean Sea (Dalmasso et al.

2016).

Deep sea hydrothermal vents are among the ecosystems on Earth where polyex-

tremophilic conditions or multi-stress situations are encountered by living organisms, such

as high or low temperature, high salinity, high hydrostatic pressure and nutrient starvation

within the same environment. Organisms, whether eukaryotes or prokaryotes, thriving in

these areas have evolved mechanisms to adapt to these harsh conditions. It is known that

an increase in hydrostatic pressure affects many cell functions involving macromolecules,

including growth, cell division and protein synthesis (Bartlett 2002). High salinity and high

and low temperatures have in common that they may trigger a cell dehydration effect and

the loss of internal water, thus compromising the ability of the cell to survive. An increase

in hydrostatic pressure does not result in changes in the pressure differential across the cell

membrane, whereas increased salinity may trigger an increase in osmotic pressure outside

the cell that provokes a change in turgor pressure. To maintain the appropriate cell turgor

and restore the cell volume, organisms accumulate low-molecular-weight osmolytes that are

mainly organic solutes. These organic solutes are also accumulated by many organisms in

cold and heat stresses, and possibly under high hydrostatic pressure (Martin et al. 2002;

Yancey 2005). The solutes are amino acids and derivatives, polyols, sugars and deriva-

tives, methylamines, and methylsulfonium compounds (Fig. 1). Organic osmolytes fall

into several chemical categories: amino acids (glycine, alanine, proline, α-glutamate,

β-glutamate, and N-acetyl-β-lysine), and derivative N-methyl-substituted amino acids (e.g.,

glycine betaine, homobetaine, carnitine, proline betaine, trimethylamine oxide), ectoine

and hydroxyectoine, methylsulfonium solutes (dimethylsulfoniopropionate and dimethyl-

sulfonioacetate), and small carbohydrates including monosaccharides (glucose), disaccha-

rides (trehalose, sucrose, mannosucrose), sugar derivatives (glucosyglycerol, mannosyl-

glycerate, glucosylglycerate), polyols (glycerol, inositol, sorbitol), and cyclitols (di-myo-

inositol-phosphate) (Empadinhas and da Costa 2006; Neves et al. 2005; Wood et al. 2001;

Jebbar et al. 1992; Essendoubi et al. 2007; Yancey 2005; Kempf and Bremer 1998). Some

solutes are widespread, for example glycine betaine, which is found in all domains of the

tree of life, and carbohydrate osmolytes that occur in bacteria, archaea, fungi, algae, plants,

mammalian kidneys and possibly deep-sea invertebrates. Other solutes are restricted to a

small number of organisms, for example those thriving in hot environments (Empadinhas

and da Costa 2006). Most organic osmolytes are neutral (either zwitterionic or lacking

charges) at optimal physiological pH, although some (i.e. mannosylglycerate and di-myo-

inositol-phosphate in hyperthermophilic prokaryotes) are negatively charged and must be

paired with potassium to achieve neutrality.

These solutes are often called “compatible solutes”, a term that refers to compounds that

can accumulate at very high levels without perturbing cell metabolism or enzyme activity

(Brown 1976). Many such solutes have protective properties, such as cell metabolic pro-

tection, and serve as antioxidants that scavenge free radicals and reactive oxygen species

generated under stress treatments (Cushman 2001; Sunda et al. 2002; Yancey 2005). They

can also stabilize macromolecular structures (proteins, membranes) only when stresses such

as high salinity, high temperature, freezing and high hydrostatic pressure are present and

directly destabilize cell components (Singer and Lindquist ?sl98; Story and Story ?ss96; <ref:sl98?><ref:ss96?>

Rudolph and Crowe ?rc85; Santos and da Costa ?sc02; Kelly and Yancey 1999). <ref:rc85 ><ref:sc02?>

In many bacteria and archaea, it has been demonstrated that a number of compatible so-

lutes are accumulated by the cell in response not only to salt stress but also as a means
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to counteract the destabilizing effects of heat and chill stresses on cell macromolecules

(Kuhlmann et al. 2008; Empadinhas and da Costa 2006; Holtmann and Bremer 2004). De-

spite this, the compatible solute counteraction of the destabilizing effect of high hydro-

static pressure on macromolecules is not obvious and poorly demonstrated, particularly in

prokaryotic cells. Yancey and coworkers have shown that the organic osmolyte trimethy-

lamine oxide (TMAO) occurs at high levels in many deep-sea animals in comparison to re-

lated shallow-water species (Gillett et al. 1997, Kelly and Yancey 1999). Since hydrostatic

pressure is the only physico-chemical parameter that is linear with depth, these authors sug-

gested that TMAO might counteract the effects of high hydrostatic pressure. In the deep-sea

bacterium P. profundum strain SS9, cells accumulate mainly glutamate and glycine betaine

at atmospheric pressure (0.1 MPa), whereas at optimal growth pressure (28 MPa), cells pref-

erentially increase intracellular concentrations of β-hydroxybutyrate and β-hydroxybutyrate

oligomers termed “piezolytes” for solutes that are accumulated at high hydrostatic pressures

(Martin et al. 2002). In addition, another study on marine bacteria has shown that adaptation

to high salinity synergistically enhances cell survival at high hydrostatic pressures, which

suggests the involvement of osmolytes in counteracting both stresses in these prokaryotes

(Kaye and Baross ?kb04). <ref:kb04?>

In hyperthermophilic piezophiles, it is evidenced that adaptation to HHP involves a global

change in the expression of genes in some metabolic pathways (amino acid biosynthesis, hy-

drogen metabolism), rather than the expression of a stress response per se (Vannier et al.

2015). In Thermococcus barophilus, for example, adaptation to HHP involves osmolyte

accumulation to maintain proper protein folding and activity (Cario et al. 2016). Manno-

sylglycerate (MG) is primarily accumulated as a compatible solute in response to salinity

stress, but in contrast to other Thermococcales, MG also accumulates in response to thermal

stresses, and its accumulation peaked in the case of combined stresses. The accumulation

of MG has been found to drastically increase under sub-optimal hydrostatic pressure condi-

tions, demonstrating that low pressures are perceived as a form of stress in this piezophile,

and that the proteome of T. barophilus is sensitive to low-pressures. MG accumulation is

strongly reduced under supra-optimal pressure conditions, clearly demonstrating the struc-

tural adaptation of this proteome to high hydrostatic pressure. There is direct and indirect

evidence for the structural adaptation of the proteome to HHP, although the specific signa-

ture of this adaptation at the genome level remains elusive.

This section provided an in-depth overview of the biodiversity of micro-organisms in ex-

treme hypersaline environments and also where high hydrostatic pressure prevails. Molec-

ular signatures and cellular and physiological responses to extreme salinity and high hy-

drostatic pressures were also examined. Among the microorganisms associated with these

extreme environments described above are the methanogenic archaea that have successfully

colonized all of the earth’s ecosystems. Methanogenesis and methanogens are described in

more detail in the following paragraph.

3 Methanogens as Model Organisms for Icy Moon Related Cultivation:

Adaptation to Extreme Conditions

McKay et al. (2008, 2012) determined that only three microbial ecosystems on Earth could

serve as analogues for a potential ecosystem on an icy moon. These ecosystems do not rely

on photosynthesis, on any by-product of photosynthetic metabolism, nor are they dependent

on O2. One of these ecosystems is based on sulfur-reducing bacteria, and the other two are

based on methanogenic archaea (methanogens). In the following section, we will focus on
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methanogens and their adaption to extreme conditions. A more detailed review about that

topic can be found in Taubner et al. (2015).

Besides Earth, methane (CH4) has been detected on every planet of the Solar System, on

the dwarf planets Pluto, Makemake, and Eris (Formisano et al. 2004, Mumma et al. 2009,

Webster et al. 2015), and on the icy moons Titan (Niemann et al. 2005) and Enceladus (Waite

et al. 2009, 2014, 2017). Most of the CH4 found on Earth is of biogenic origin (Liu et al.

2008). Methanogens are the overwhelmingly dominant producers of CH4 as metabolic end

products of their carbon- and energy-yielding reactions (Thauer et al. 2008; Liu et al. 2008;

Taubner et al. 2015; Rittmann et al. 2015), however, some (aerobic) marine microorgan-

isms were also shown to produce CH4 from methylphosphonic acid (Karl et al. 2008;

Metcalf et al. 2012; Carini et al. 2014). Methanogens are a phylogenetically and metabol-

ically diverse group of prokaryotic organisms from the domain Archaea. Within the do-

main Archaea, methanogens belong exclusively to the phylum Euryarchaeota. All char-

acterized methanogens are known to be obligate anaerobic chemolithoheterotrophs or

chemolithoautotrophs. Moreover, methanogens might resemble amongst the oldest life

forms that emerged on Earth (Grassineau et al. ?gr06; Ueno et al. 2006; Martin et al. 2008), <ref:gr06?>

but this is still under discussion (Brochier-Armanet et al. 2011; Blank 2009). Methanogens

are used as astrobiological study objects because of both their metabolic versatility and abil-

ity to withstand extreme environmental conditions (Cavicchioli 2006; Huber et al. 1989;

Taubner et al. 2018); they are further characterized by a variety of unusual morphological

and ecophysiological features. In this subsection, we review and discuss methanogens with

respect to temperature, pressure, pH and osmolarity, and highlight recent studies performed

with methanogens in an astrobiological context.

3.1 Adaptions to Temperature

Individual methanogenic strains are viable within a temperature window for growth of ap-

proximately 45 °C, however, the biochemical pathways of methanogenesis per se are not

restricted to a certain temperature, but are generally functional at temperatures from be-

low 0 °C (Cavicchioli 2006) up to 122 °C. This allows individual strains of methanogens to

grow from psychrophilic to hyperthermophilic growth conditions (Nakamura et al. ?na13; <ref:na13?>

Ma et al. 2006; Lü and Lu 2012; L’Haridon et al. 2003; Jones et al. 1983a; Jiang et al. 2005;

Jeanthon et al. 1998; Jeanthon et al. 1999; Cheng et al. 2007; Parshina et al. 2014;

von Klein et al. 2002; Franzmann et al. 1997; Wagner et al. 2013; Schirmack et al. 2014;

Takai et al. 2008). Metabolic reactions occurring at the highest temperatures were observed

for M. kandleri strain 116 when grown at 122 °C (Takai et al. 2008).

Bodies of the outer Solar System, which could possibly support methanogenic life, fall

within the temperature range of psychrophilic methanogens. Recent results advocate the

possibility that hydrothermal vents might exist on icy moons, such as Enceladus (Hsu et al.

2015) or Europa (e.g., Zolotov and Kargel 2009), which would widen the growth temper-

ature range for methanogens in the subsurface water reservoirs of these bodies. However,

as these potential warm to hot spots at the bottom of the subsurface oceans are most likely

locally restricted, we will focus on psychrophilic methanogens in the following.

To distinguish different levels of psychrophily, psychrophilic methanogenic strains

were classified according to their temperature niche adaptation, which can be narrow

or wide (Cavicchioli 2006; Dong and Chen 2012), respectively denoted as “stenopsy-

chrophile” and “eurypsychrophile” organisms (Cavicchioli 2006; Siddiqui et al. 2006;

Feller and Gerday 2003). Stenopsychrophiles are considered true psychrophiles and are

only able to grow within a narrow temperature range. Compared to stenopsychrophiles, eu-

rypsychrophiles can tolerate a larger temperature interval, tolerate a higher mean optimum
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Table 1 Summary of presently known psychrophilic strains and their main temperature and pH features

Strain T [°C] pH Ref.

min opt max min opt max

Methanospirillum psychrodurum 4 25 32 6.5 7 8 Zhou et al. (2014)

Methanosarcina baltica 3 21 28 6.3 7.2 7.5 von Klein et al. (2002)

Methanosarcina lacustris 1 25 35 4.5 7 8.5 Simankova et al. (2001)

Methanolobus psychrophilus 0 18 25 6 7–7.2 8 Zhang et al. (2008)

Methanogenium marinum 5 25 25 5.5 6–6.6 7.7 Chong et al. (2002)

Methanogenium frigidum 0 15 17 6.3 7.5–7.9 8 Franzmann et al. (1997)

Methanohalobium evestigatum 50 n.a. n.a. n.a. 7.4 n.a. Zhilina and Zavarzin (1987)

Methanogenium cariaci 15 20–25 35 6 6.8–7.2 7.5 Romesser et al. (1979)

Methanogenium boonei 5 19.4 25.6 6.4 n.a. 7.8 Brauer et al. (?br11) <ref:br11?>

Methanoculleus marisnigri 15 20–25 48 6 6.2–6.6 7.6 Maestrojuán et al. (1990)

Methanoculleus chikugoensis 15 25 40 6.7 6.7–7.2 8 Dianou et al. (2001)

Methanococcoides alaskense 2.3 23.6 28.4 6.3 n.a. 7.5 Singh et al. (2005)

Methanococcoides burtonii 1.7 23.4 29.5 6.8 n.a. 8.2 Franzmann et al. (1992)

Methanospirillum stamsii 5 20–30 37 6 7.0–7.5 10 Parshina et al. (2014)

Methanosarcina soligelidi 0 28 54 4.8 7.8 9.9 Wagner et al. (2013)

growth temperature, and can (sometimes) be cultivated when exposed to elevated temper-

atures. Psychrophilic methanogens have been used in many research ventures, as they are

important organisms in cold habitats on Earth (Cavicchioli 2006; Dong and Chen 2012).

A list of psychrophilic methanogenic strains and their respective temperature niche can be

found in Table 1.

The temperature adaptation mechanisms of methanogens were identified at different lev-

els. At the protein level, cold adaptation mechanisms were examined in Methanococcoides

burtonii. Here, the archaeal elongation factor 2 (EF2) proteins were found to be active at

low growth temperatures but unstable at high growth temperatures (Siddiqui et al. 2002;

Thomas and Cavicchioli 2000; Thomas et al. 2001). Moreover, proteins interacting with

EF2 of M. burtonii, but also compatible solutes, are involved in activating as well as stabiliz-

ing protein machinery under low growth temperatures (Thomas et al. 2001). Another study

showed that in M. burtonii, a putative DEAD box RNA helicase gene (deaD) was abun-

dantly expressed at 4 °C (Lim et al. 2000). Additional characteristics for cold adaptation

in methanogens include the increased presence of dihydrouridine in tRNAs of M. burtonii

compared to the presence of dihydrouridine in other archaeal strains (Noon et al. ?no03). <ref:no03?>

Unlike adaptations to cold in thermophiles, M. burtonii did not show decreased modifica-

tion of its tRNAs, but exhibited few modifications (comparable to bacteria), in particular

dihydrouridine incorporation into tRNA.

A genome comparison of the psychrophilic methanogens, M. burtonii and Methanoge-

nium frigidum was performed to identify characteristics which distinguish cold adaption

mechanisms in these organisms from other archaea. Predicted and modelled proteins from

M. burtonii and M. frigidum comprise a higher quantity of non-charged polar amino acids

present in the solvent-accessible area of proteins. Specifically, glutamine and threonine were

detected in higher abundance. Moreover, a lower content of hydrophobic amino acids, in par-

ticular leucine, were noted. Finally, two hypothetical proteins with CSD-folds and a unique

winged helix DNA-binding domain protein were identified in M. burtonii, together with a
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cold shock domain (CSD) protein (homologue of CspA) in M. frigidum (Saunders et al.

2003). In another study, a proteomics approach was taken to analyze the functional charac-

teristics of Methanosarcina barkeri during a low-temperature down shock response (from

37 °C to 15 °C) and for its low-temperature adaptation strategies at 15 °C. In a combined

approach using growth studies and proteomics insights into the low-temperature adapta-

tion capacity of M. barkeri could be obtained (Gunnigle et al. 2013). Astrobiologically

oriented experiments have been performed to examine the temperature-dependent starva-

tion features of selected Methanosarcina species including M. solegelidi SMA-21, finding

that this methanogen tolerated freezing with a survival of 98.5% in comparison to, e.g.,

Methanobacterium sp. MC-20, which exhibited only 1% survival under the same conditions

(Morozova and Wagner 2007). M. soligelidi SMA-21 showed a high survival potential at

4 °C and at 28 °C compared to other methanogens tested (Morozova and Wagner 2007).

Methanogens possess other physiological adaption mechanisms to changes of growth

temperature, for instance the ability to modify cytoplasmic membrane lipids to maintain

membrane fluidity. A prerequisite is that the lipid membrane of organisms must be kept in

the liquid crystalline phase in order to stay functional, which was found in methanogens

over the temperature range between 0 and 100 °C (Koga 2012).

Membrane fluidity maintenance in psychrophilic methanogens is achieved through

growth temperature-mediated lipid saturation instead of the unsaturation mechanisms that

occur in bacteria (Nichols et al. 2004). In methanogens, lipid unsaturation is performed by

geranylgeranyl reductase. Notwithstanding, the cytoplasmic lipid composition in general,

and its unsaturation properties of methanogens in particular, are unclear indicators as to

whether a methanogen is adapted to a psychrophilic or a thermophilic lifestyle (Koga 2012).

The core lipids of M. thermoautotrophicus growing at its optimal growth temperature

of 65 °C are composed of archaeol and caldarchaeol, whereas the core membrane lipids of

M. kandleri, growing at 90 °C, are archaeol (Koga 2012). The core lipids of Methanocaldo-

coccus villosus and Methanothermococcus okinawensis are archaeol and macrocycle (with

minute abundances of tetraether lipids) (Baumann et al. 2018) but, upon increasing the

growth temperature of Methanocaldococcus jannaschii from 45 °C to 65 °C, the lipid mem-

brane composition changes from mainly archaeol to macrocycle as well as caldarchaeol

(Koga 2012; Sprott et al. 1991). Moreover, the presence of double bonds in isoprenoid chains

is not indicative of adaptation to lower growth temperatures (Koga 2012).

The above-mentioned results indicate that mechanisms at the genome level (e.g. the

expression of deaD at suboptimal growth temperature), at the proteome level (e.g. ac-

tivity of EF2), and in the lipid membrane composition distinguishes the adaptations

of stenopsychrophilic, eurypsychrophilic and thermophilic methanogens. Other described

physiological characteristics of methanogens to cope with adaptations to psychrophilic

cultivation conditions include the uptake of compatible solutes (Dong and Chen 2012;

Cavicchioli 2006, Grochowski et al. ?gr08). A discussion on the role of compatible solutes <ref:gr08?>

as osmoprotective compounds is given below.

3.2 Adaptions to Pressure

Methanogens are known to grow under low- and high-pressure conditions. The cultivation

of methanogens under high-pressure conditions offers an opportunity for astrobiological

studies, for example, the investigation of physiological responses and metabolic adaptations,

and for investigating the ecology of hydrothermal vent systems proposed for ocean worlds.

Methanogens are known to grow at more than 20 MPa of pressure (Jeanthon et al. 1998,

1999, 2012). The cultivation of methanogens under high-pressure conditions of up to 300
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kPa can be easily performed in closed batch cultivation in either serum bottles (Taubner

et al.?ta16) or in sophisticated cultivation devices such as bioreactors (Nishimura et al. 1992; <ref:ta16?>

Seifert et al. 2014). The cultivation of methanogens under low-pressure conditions and at

pressures beyond 300 kPa requires special equipment (Kral et al. 2011; Kral and Altheide

2013; Park and Clark 2002; Miller et al. 1988; Boonyaratanakornkit et al. 2006; Taubner

et al. 2018). Low-pressure experiments are relevant for astrobiology, to represent the lower

above ground pressure present on Mars and other Solar System bodies.

With respect to growth, substrate uptake, and CH4 production kinetics, two methanogens

(KN-15 and M. marburgensis) examined under moderate high-pressure conditions in fed-

batch or continuous culture mode in bioreactors (Nishimura et al. 1992; Seifert et al. 2013;

Seifert et al. 2014) have shown that the point at which growth kinetics changed from expo-

nential growth to linear growth (and the specific growth rate (µ)) of strain KN-15 increased

with increasing pressure (Nishimura et al. 1992). The results obtained for M. marburgen-

sis showed that CH4 production is gas-limited and, although applying high-pressure condi-

tions, the maximum physiological capacity of the organism to produce CH4 was not reached

(Seifert et al. 2014).

M. jannaschii was cultivated under gas-limited conditions and it was found that the tested

strain exhibited a stress response under both high-pressure and low-pressure cultivation con-

ditions at the transcriptional level (Boonyaratanakornkit et al. 2006). High-pressure and

decompression experiments were also performed using M. jannaschii, employing a high-

pressure bioreactor. When rapid decompression from approximately 26 MPa to atmospheric

pressure was performed, the cell envelopes of M. jannaschii ruptured, however, when the

decompression time was increased from 1 s to 5 min, the rupture of M. jannaschii cell en-

velopes decreased significantly (Park and Clark 2002). In another study, M. jannaschii was

used to investigate growth and CH4 production kinetics at high-pressure conditions and at

different temperatures, in the presence of He or Ar in addition to H2/CO2. It was found

that the high-temperature limit for CH4 production kinetics of M. jannaschii increased with

increasing pressure (Miller et al. 1988).

Additional high-pressure and high-temperature investigations using Methanococcus ther-

molithotrophicus were accomplished in 10 mL nickel tubes in series of connected auto-

claves. This experimental setup was used to expose the organism of choice to temperature

and high-pressure changes of 400 °C and 400 MPa over 10 min to investigate optimum pres-

sure levels (Bernhardt et al. 1987). A pressure of 50 MPa was found to be optimal for the

growth of M. thermolithotrophicus, whereas applying overpressure of >75 MPa resulted in

increased cell lysis and in changes of morphology and in changes of growth kinetics (Bern-

hardt et al. 1987).

In a recent study mimicking the concentrations of gaseous and liquid inhibitors as well as

high-pressure conditions on Enceladus (Taubner et al. 2018), different pressure conditions

with and without gaseous inhibitors were applied to evaluate the viability of methanogens

in these environments. It was shown that the methanogenic strain M. okinawensis produced

CH4 at pressures up to 9 MPa, but only in the presence of molecular nitrogen in the gas

phase. Using a H2/CO2 gas phase at this high pressure results in a high CO2 partial pressure

which significantly lowers the pH of the medium. Under putative Enceladus-like condi-

tions including potential gaseous and liquid inhibitors like crabon monoxide (CO), ethene

(C2H4), formaldehyde (CH2O), or methanol (CH3OH), CH4 production was observed up to

5 MPa.. The CH4 production kinetics did not change due to the presence of gaseous and

liquid inhibitors during experiments between 300 kPa to 5 MPa (Taubner et al. 2018). A si-

multaneous bioreactor system (SBRS) was developed, consisting of four identical tabletop

bioreactors that are suitable for performing gas conversion and gas production kinetics at

« SPAC 11214 layout: Small Condensed v.2.1 file: spac620.tex (ikurtinaitiene) class: spr-small-v1.4 v.2019/10/07 Prn:2019/12/05; 11:32 p. 21/42»
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pressures up to 50 bar and temperatures up to 145 °C. M. marburgensis, M. palustre, and

M. thermaggregans were successfully cultivated at 1 MPa and/or 5 MPa and differences in

the CH4 production kinetics of these organisms were detected (Pappenreiter et al. 2019).

The SBRS system facilitates throughput high-pressure astrobiological research, which is of

timely relevance in assessing the possibility of high-pressure habitats on outer Solar systems

bodies.

3.3 Adapations to pH

Most of the >150 characterized methanogens grow at neutral pH values (Taubner et al.

2015). Methanogens such as M. okinawensis (Takai et al. 2002; Taubner et al. 2018) and

M. marburgensis (Bernacchi et al. 2014) tolerate a broader pH range down to values of

3.5 and 4.5, respectively. Furthermore, there are also other methanogens known to be

able to grow under acidic pH conditions (Bräuer et al. 2011; Cadillo-Quiroz et al. 2009;

Ver Eecke et al. 2013). However, from an astrobiological viewpoint, at least Enceladus’ sub-

surface ocean is rather alkaline (Glein et al. 2015). Currently six alkaliphilic methanogens

have been characterized and are available in pure culture (Table 2). The most alkaliphilic

methanogens are Methanocalculus natronophilus (Zhilina et al. 2013), Methanocalculus

alkaliphilus, and Methanosalsum natronophilum (Sorokin et al. 2015). M. natronophilus

was isolated from the sediments of a collector in the vicinity of a soda lake. The strain

utilizes CO2 and H2 or formate as an energy source and acetate as a carbon source. M. al-

kaliphilus and M. natronophilum were enriched from hypersaline soda lake sediments at

pH 10. All three alkaliphilic methangogens grow at pH between 8.2 and 10.0 and optimally

around pH 9.0–9.5. M. alkaliphilus utilizes formate or H2 as an electron donor and acetate

as a carbon source, whereas M. natronophilum metabolizes methanol, methylamines, and

dimethyl sulfide. Another alkaliphilic and slightly thermophilic methanogen, Methanona-

tronarchaeum thermophilum was recently characterized. This methanogen comprises a new

euryarchaeal class, the Methanonatronarchaea. This organism grows between pH values of

8.2–10.2 and optimally between pH 9.5–9.7. M. thermophilum utilizes methanol, methy-

lamines and dimethylsulfide as electron acceptors and formate or H2 as electron donors

(Sorokin et al. 2018). A list of methanogens cultivable in either acidic or alkaline conditions

is shown in Table 2.

3.4 Adaption to Osmolarity

All known methanogens depend on low intracellular salt concentrations to maintain cellu-

lar integrity and the functioning of homeostatic processes. For the maintenance of cellular

functions at higher extracellular concentrations of salt, some methanogens are known to

accumulate compatible solutes to reduce the difference of osmotic potentials between the

cytoplasm and the environment. Compatible solutes are osmoprotective molecules (Fig. 1)

and do not alter the metabolic and cellular processes, even when accumulated in high con-

centrations (Jones et al. 1983a, 1983b).

Trimethylglycine (glycine betaine) and β-glutamate were shown to act as compatible so-

lutes in methanogens, whereby the former can be assimilated by some methanogens from

the growth medium (Grochowski et al. ?gr08; Robertson et al. 1990; Lai et al. 1991). Addi- <ref:gr08?>

tionally, an adenosine derivate was proposed to act as a compatible solute in Methanolobus

psychrophilus R15. Furthermore, it was suggested that some of the compatible solutes de-

scribed for methanogens could possibly possess cryoprotective functions (Dong and Chen

2012). The main compatible solute utilized by methanogens is trimethylglycine (Robertson
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Table 2 Summary of currently known methanogens cultivable in either very acidic or alkaline conditions

Strain T [°C] pH Ref.

min opt max min opt max

Methanospirillum stamsii 5 20–30 37 6 7–7.5 10 Parshina et al. (2014)

Methanocalculus

natronophilus

14 30–37 45 8 9–9.5 10.2 Zhilina et al. (2013)

Methanospirillum hungatei 20 37–45 50 6.5 7–9 10 Iino et al. (2013)

Methanobrevibacter

millerae

33 36–42 43 5.5 7–8 10 Rea et al. (2007)

Methanobrevibacter

olleyae

28 28–42 42 6 7.5 10 Rea et al. (2007)

Methanotorris igneus 45 88 91 5 5.7 7.5 Burggraf et al. (1990)

Methanosphaerula

palustris

14 30 35 4.8 5.5 6.4 Cadillo-Quiroz et al.

(2009)

Methanoregula boonei 10 35–37 40 4.5 5.1 5.5 Bräuer et al. (2011)

Methanothermococcus

okinawensis

40 60–65 75 3.5 6–7 8.5 Takai et al. (2002),

Taubner et al. (2018)

Methanonatronarchaeum

thermophilum

30 50 60 8.2 9.5–9.7 10.2 Sorokin et al. (2018)

et al. 1990), which is used by e.g. Methanosarcina thermophila TM-1 (Proctor et al. 1997)

and can be accumulated through an uptake system composed of a single, high-affinity H+-

and/or Na+-driven transporters (Proctor et al. 1997). M. thermophila TM-1 can adapt to

different osmolarities by synthesizing α-glutamate and N-ε-acetyl-β-lysine, or by accumu-

lating trimethylglycine or K+. In Methanohalophilus portucalensis FDF1, the compatible

solutes α-glutamate, β-glutamine, and N-ε-acetyl-β-lysine were described as osmoprotec-

tives (Lai et al. 1991, 2000), whereas trimethylglycine was preferentially taken up from

the medium as an osmoprotective compound instead of being produced de novo (Lai et al.

2000).

Many experiments examining the effect of osmolarity have used Methanosarcinales.

NaCl concentrations from 0.05 to 1.0 mol L−1 were used to examine the effect of osmolarity

on growth kinetics and changes of morphology in Methanosarcina spp. (Sowers et al. 1993)

and NaCl concentrations between 0.4 to 1.0 mol L−1 disintegrated the methanochondroitin

and sheath, which resulted in growth of Methanosarcina spp. as single cells. Furthermore,

all tested Methanosarcina spp., which were encapsulated by a methanochondroitin layer,

exhibited enhanced stability to <0.2 mol L−1 NaCl osmolarity and grew at higher tempera-

tures compared to the control group (Sowers et al. 1993).

An adaptation to high salt concentrations was shown with Methanosarcina mazei Gö1.

The strain was able to tolerate up to 1 mol L−1 salt through the uptake and accumulation of

trimethylglycine from the growth medium. The osmoprotectant transporter A (OpuA) was

involved in trimethylglycine uptake from the medium and its expression was demonstrated

to be salt-induced (Roeßler et al. 2002).

Methanohalophilus spp. strains grown at different NaCl concentrations between 0.7

to 3.4 mol L−1 demonstrated that the strains accumulated K+, however, the osmoprotec-

tive β-glutamate was detected when the strains were grown at NaCl concentrations of

<1.5 mol L−1 (Lai et al. 1991).

The alkaliphilic methanogens M. natronophilus (Zhilina et al. 2013), M. alkaliphilus

and M. natronophilum (Sorokin et al. 2015), and M. thermophilum (Sorokin et al. 2018)
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are slightly halophilic, extreme halotolerant, and extreme halophilic, respectively, i.e., they

exhibit polyextremophily. Optimal growth of M. natronophilus requires carbonate concen-

trations of 0.7–0.9 mol L−1 and Na+ at concentrations of 1.4–1.9 mol L−1. M. alkaliphilus

is characterized as a moderately salt-tolerant strain within the range from 0.2 to 1.5 mol L−1

total Na+ in carbonate buffer at a pH of 9.5. M. natronophilum is highly salt-tolerant in a

range from 0.5 to 3.5 mol L−1 total Na+ growing also in carbonate buffer at a pH of 9.5. The

recently described M. thermophilum is an extremely halophilic organism growing at total

Na+ concentrations between 3 and 4.8 mol L−1 with an optimum at 4 mol L−1, and its cells

lyse at a Na+ concentration below 2 mol L−1. M. thermophilum accumulates K+ as its main

compatible solute.

The above described characteristics and adaptations towards low- and high-pressure con-

ditions, psychrophily and (hyper)thermophily, acidiphily and alkaliphily and osmolarity re-

veal that methanogens thrive under a variety of extreme growth conditions, but also during

multi-factorial stress conditions (e.g. simulataneous multivariate concentrations of gaseous

and liquid inhibitors, low pH, and pressure influences) and they respond to environmental

disturbances in numerous ways (Kral et al. 2011; Taubner et al. 2015, 2018). Further, as al-

ready mentioned in Sect. 2.1.1 of this review, no other archaeal halophiles than methanogens

have been identified outside the Euryarchaea. Only one recently characterized halophilic

methanogen, M. thermophilum, is uses the salt-in-cytoplasm strategy for osmoprotection

and other methanogens employ the organic-osmolyte strategy to deal with osmotic stress.

Hence, with respect to their potential to adapt to changing and extreme environmental con-

ditions, methanogens are considered to be among the ideal candidates for further astrobio-

logical studies.

4 Origins of Life and Biosignatures on Icy Worlds

4.1 Ocean World Settings for the Origins of Life

In any origins of life scenario, prebiological chemical complexification would have necessi-

tated the confined or compartmentalized reaction of ions and molecules within an aqueous

geological setting characterized by gradients and disequilibria (Russell et al. 2010). Over

time, prebiotic complexification would have driven the system closer to obtaining life-like

characteristics (e.g., metabolism, replication). The step(s) linking the immediate life-like

precursor to the first living entity (i.e., a pioneer organism) are the most contentious (e.g.

Wächtershäuser ?wa88; Martin and Russell 2003; Russell et al. 2010), and will not be cov- <ref:wa88?>

ered in this review. A number of geological settings for the origins of life have been pro-

posed. These settings are generally hydrothermal (submarine or subaerial hot springs) or

hydrothermally influenced (the hydrothermal-sedimentary reactor hypothesis), though oth-

ers are passive and rely on providing naturally reactive mineral-rich environments as “re-

actor flasks” for organic molecules sourced from elsewhere, for example, the pumice raft

hypothesis (Brasier et al. ?br11). Further possibilities, as yet incompletely explored, are <ref:br11?>

the geodynamic nuclear reactor hypothesis (Ebisuzaki and Maruyama ?em17) or the hy- <ref:em17?>

drodynamically driven volcanic-hosted splash pool hypothesis (Fox and Strasdeit ?fs13). <ref:fs13?>

A review of all of these hypotheses, culminating in a suggestion that the cycling of organic-

rich fluids through the volcanogenic sediments in the vicinity of hydrothermal fields (the

hydrothermal-sedimentary scenario for the origin of life), is given in Westall et al. (2018).

Despite the wide range of propositions behind the mechanics of the origins of life, most

hypotheses for the geological setting of this process focus on either submarine or subaerial
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hydrothermal environments. Such settings are supported by both the top-down and bottom-

up approaches to the origins of life. From the viewpoints of organic chemistry and geochem-

istry, hydrothermal settings produce, and have the potential to concentrate within geologi-

cal (mineral) edifices, the range of simple organic monomers and polymers whose gradual

complexification theoretically leads to ‘protocells’ and cellular life (Russell et al. 2010;

Lane and Martin 2012; Westall et al. 2018). From the biological viewpoint, estimations of

the nature and metabolism of the earliest life invariably find a root in thermophilic, metal-

rich settings (Nisbet and Fowler ?nf96; Williams and Fraústo Da Silva 2003; Gaucher et al. <ref:nf96?>

?ga10; Lane and Martin 2012). Whether life originated in the submarine or subaerial arena <ref:ga10?>

is a topic of contention, focused on the specific characteristics and parameters of the organic

chemistry and geochemistry possible in these settings that may lead to prebiotic chemical

complexification.

Certainly, it is necessary that the geological environment of the origin of life was able to

naturally produce or directly receive a wide range of organic molecules. Chemical complex-

ification requires that this production is harnessed by a combination of gradient-driven com-

partmentalized or confined milieu composed of mineral surfaces, preferably chiral (Martin

and Russell 2003; Hazen and Sverjensky 2010; Dass et al. 2018). Gradients in temperature,

salinity, redox state, and pH are natural disequilibrium drivers that are implicated in chemi-

cal evolution, and mineral surfaces are considered equally necessary for abiogenesis, given

their ability to chelate and determine the conformation of molecules concentrated at their

surfaces (Hazen and Sverjensky 2010). Whether mineral phases act purely as the catalytic

forces of conformation, or have morphologies at the microscale that drive the concentration

of organic molecules and favor forward reaction dynamics (e.g. Parsons et al. ?pa98), the <ref:pa98?>

role of minerals in systems chemistry models for the origins of life is irrefutable. These three

factors—organic molecule production, reaction concentration and substrate availability—

are necessary prerequisites for an environment to be considered as a potential theatre for the

origins of life (Westall et al. 2018).

Further constraints, such as whether the fluid dynamics of the environment are appro-

priate for long-term turbid mixing of molecule-mineral mixtures, and whether temperatures

favor forward complexification or backward molecular simplification reactions are yet to

be fully assessed (Westall et al. 2018). The timescales involved in the environmental and

organic chemistry processes and the lifetime of the environment itself are further parame-

ters to be considered. In this regard, subaerial hot spring systems are less compelling than

their submarine equivalents; however, hydrothermal fields of all types may endure for over

several million years (Martin and Russell 2007; Westall et al. 2018; Cavalazzi et al. 2019).

On the early Earth, geological longevity of subaerial environments would have been limited

by periodic destruction by impactors, which were incident upon the Earth at a frequency

up to hundreds or thousands of times higher than at present (Koeberl 2006; Sleep 2018;

Pearce et al. 2018). Notwithstanding, the recent re-evaluation of the severity of the Late

Heavy Bombardment means that planet-sterilizing impact events may have been very un-

common (Zellner ?za17). Recent schemes for long-term chemical evolution in subaerial <ref:za17?>

hot springs (Van Kranendonk et al. 2017) would, however, be significantly limited by such

temporal constraints, since environments that were not protected by an oceanic covering

would have been susceptible to irrevocable alteration and destruction on potentially short-

term periodic cycles. For this reason, ocean worlds deserve recognition as hosting habitable

environments that may have allowed the origin and proliferation of life (Lammer et al. ?la09; <ref:la09?>

Barge and White ?bw17). Enceladus is the ideal test case, given that the proposed conditions <ref:bw17?>

at its ocean floor or in its plumes may be simulated in the laboratory as part of experiments

with astrobiological application (Barge and White ?bw17; Taubner et al. 2018). <ref:bw17?>
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Both Enceladus and Europa are thought to have an internal structure that includes a con-

tact zone between the ocean layer and the underlying silicate crust (Kargel et al. ?ka00; <ref:ka00?>

Chyba and Phillips ?cp01; McKay et al. ?mc18). Devolatilization of the rocky crust or man- <ref:cp01?><ref:mc18?>

tle of these moons would conceivably lead to hydrothermal effluent generation, which could

have produced local oceanic conditions conducive to habitability and prebiotic chemistry

through providing an aqueous environment with an adequate energy source, the production

of bio-essential elements and organic monomers and oligomers, and disequilibrium condi-

tions in the form of temperature and pressure gradients (Kargel et al. ?ka00; Lammer et al. <ref:ka00?>

?la09). Ocean worlds are therefore potential localities for a second, possibly independent, <ref:la09?>

origin of life in the Solar System. Assuming that life could have arisen on the icy moons

of the outer Solar System, the question for palaeobiologists becomes one of the nature of

traces of life that might be preserved and detectable. This poses a range of challenges very

different to the extant life discussed thus far.

4.2 Ancient Traces of Life and Their Lessons for Biosignature Detection

on Ocean Worlds

Robust evidence for life on Earth dates back to at least 3.481 Ga, based on critical stud-

ies of the stromatolites of the Dresser Formation (Walter et al. 1980; Van Kranendonk

et al. 2006; Hickman-Lewis et al. ?hl19). The Dresser Formation stromatolites do not <ref:hl19?>

preserve unambiguous evidence of the microfossil architects themselves, for which fur-

ther detailed studies beyond current carbon isotope work (Ueno et al. ?ue01, 2006) are <ref:ue01?>

required, but rather lamination characteristics in the organo-sedimentary structure that are

demonstrated to have biological morphogenesis (Hickman-Lewis et al. ?hl19). Nonethe- <ref:hl19?>

less, it is highly probable that these stromatolites are photosynthetic in origin, and are

thus not of direct relevance to the habitable realms of ocean worlds, which demand

chemosynthetic metabolic networks. Aside from the Dresser Formation, the oldest gener-

ally accepted fossiliferous horizons—those that have undergone and resisted some level

of scientific criticism—are the 3.44 Ga Kitty’s Gap Chert (Westall et al. 2006, 2011),

the ∼3.43 Ga Strelley Pool Formation (Hofmann et al. 1999; Allwood et al. 2007) and

the 3.42 Ga Buck Reef Chert (Tice and Lowe 2004; Tice 2009; Greco et al. 2018), al-

though the first two examples are not without their critics (Lowe 1994; Lindsay et al. 2005;

Wacey 2009). Comparably ancient Palaeoarchaean fossiliferous material has more recently

been described from the 3.47 Ga Middle Marker horizon (Hickman-Lewis et al. 2018), the

3.46 Ga stratiform Apex chert (Hickman-Lewis et al. 2016) and the 3.27 Ga Mendon For-

mation (Trower and Lowe 2016). With continued study at ever higher resolutions and ever

more careful scrutiny, these and other examples may or may not emerge as widely accepted

biosignatures. At the limit of the geological record, proposed Eoarchaean biosignatures

have been described from the >3.7 Ga Isua supracrustal belt of Greenland (Rosing 1999;

Nutman et al. 2016; Hassenkam et al. 2017), and the >3.7 Ga Nuvuagittuq greenstone belt

(Dodd et al. 2017) and >3.8 Ga Saglek Block (Tashiro et al. 2017) of Canada, but these

are considerably more controversial. The iron-rich filament-like structures in hydrothermal

deposits described by Dodd et al. (2017) have been reconsidered as volcanic glass (Wacey

et al. ?wa18), whereas the putative stromatolites described by Nutman et al. (2016) have <ref:wa18?>

been found to more closely resemble metamorphosed carbonate sedimentary textures re-

sulting from compression (van Zuilen ?zu18; Allwood et al. ?al18). The carbon isotopes <ref:zu18?><ref:al18?>

described by Rosing (1999) in Greenlandic sediments are, however, distinctly more robust,

since the average value, δ13C = −19‰, is consistent with the simple Chloroflexus-like mi-

crobial consortia coupled with archaeal methanogens, i.e., an ecosystem dominated by the
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acetyl-CoA or propionyl-CoA pathway, that is suspected to dominated the primary produc-

tivity on Earth prior to the advent of oxygenic photosynthesis (Nisbet and Fowler 1999).

In all cases, putative fossil biosignatures must meet three benchmark criteria: (i) they

should possess features or signatures (morphological, structural and geochemical) consis-

tent with biology; (ii) they should be syngenetic with their host rock; and (iii) the host

rock should evidence a geological setting consistent with habitability. The order in which

this assessment is made is of little consequence to proposing a biosignature, since failure

to meet even one of the three criteria is sufficient to preclude a feature being adjudged

of palaeobiological significance. Having been submitted to several billion years of pro-

cesses capable of changing them beyond recognition, the identification and analysis of

the most ancient biosignatures can be fraught with difficulties. On Earth, the fundamen-

tal dichotomy between Eoarchaean and Palaeoarchaean-Mesoarchaean fossil-like remains

is the difference in metamorphic grade between the host rocks, which can be approxi-

mately summarized as “up to amphibolite facies” and “up to greenschist facies”, respec-

tively. Consequently, the stratigraphic, geochronological and eventual biogeochemical con-

straints able to be placed upon Eoarchaean traces of life are far less robust than those for

the Palaeoarchaean (Whitehouse et al. 2019). This has resulted in a range of putative Eoar-

chaean biosignatures postulated based on geochemistry and geochronology, and for which

biogeochemistry is criticized subjectively, contrasted with a range of Palaeoarchaean biosig-

natures evaluated by microbial palaeontology and biogeochemistry, and whose fossilifer-

ous nature can be assessed objectively. In all biosignatures assessment, the first task is to

determine whether the purported signature is truly of biogenic origin and not an abiotic

look-alike (biomorph) or artefact. Microbial structures and constructs, both macroscopic

and microscopic, often have very simple shapes that can be imitated by abiotic processes

(Garcia-Ruiz et al. ?gr03; Westall et al. 2006; Rouillard et al. ?ro18): spheroidal micro- <ref:gr03?><ref:ro18?>

fossils may be easily confused with spheroidal mineral precipitates, such as silica, while

a sheet-like concentration of abiotic organic material could, without microscopic assess-

ment, superficially resemble a biofilm. Disseminated organic matter in ancient sediments,

especially when significantly degraded, needs to be distinguished from abiotic organic mat-

ter of hydrothermal or other origin. A noteworthy case study of controversial biogenicity

is presented by the microfossil-like objects of the 3.46 Ga “Apex Chert,” Western Aus-

tralia. Although initially interpreted as organisms with a cyanobacterial affinity (Schopf

and Packer ?sp87; Schopf ?sc92), later studies of the same material gradually unravelled <ref:sp87?<ref:sc92?>

the case for their biogenicity (Brasier et al. ?br02, ?br05, ?br06; Wacey et al. ?wa16). <ref:br02?><ref:br05?><ref:br06?><ref:wa16?>

Although of superficially microfossil-like morphology (filamentous, apparently septate),

high-resolution FIB-SEM work demonstrated that this morphology results from aluminous

clay minerals onto which carbon had become fortuitously adhered (Brasier et al. ?br15; <ref:br15?>

Wacey et al. ?wa16). Recent isotopic studies suggesting morphotype-specific carbon iso- <ref:wa16?>

tope fractionation indicative of a mixed methanogen-methanotroph community (Schopf

et al. ?sh17) mean that this particular controversy is ongoing. Such cases of controver- <ref:sh17?>

sial or mistaken biogenicity plague biosignatures of all sizes, up to and including stro-

matolites. A famous (albeit extreme) example thereof is the “Taylor stromatolite,” a com-

plex laminar-domical structure closely resembling modern stromatolites but having been

created by coincidence during paint spraying in the mid-Twentieth Century. Similar sup-

posed abiological examples are known from the geological record, and especially ancient

stromatolitic occurrences, such as the 3.481 Ga Dresser Formation and 3.43 Ga Strelley

Pool Formation stromatolites, have been routinely subject to strong criticism (Lowe 1994;

Lindsay et al. 2005) in spite of bearing many biological characteristics (Walter et al. 1980;

Van Kranendonk ?kr07; Hickman-Lewis et al. 2016, ?hl19). At the time of writing, scientific <ref:kr07 ><ref:hl19?>

consensus on these stromatolites suggests that their origin is biological.
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Having established the biogenicity of the feature, the second task is to establish its syn-

genicity with the host rock. Microbes may infiltrate cracks and fissures in rocks of various

ages (as chasmoliths or endoliths) and can become fossilised in their endo-/chasmolithic

habitats. Westall and Folk (?wf03), for example, demonstrated that organisms previously <ref:wf03?>

considered syngenetic within ∼3.8 Ga rocks from the Isua supracrustal belt are in fact

Holocene endolithic cyanobacteria. The case for syngenicity in carbonaceous microfossils

on Earth is often strengthened by Raman spectroscopy demonstrating that the carbonaceous

material and its host rock have equivalent thermal histories (e.g. van Zuilen et al. ?zu07; <ref:zu07?>

Marshall et al. ?ma07) <ref:ma07?>

The third, governing consideration in biogenicity is the environment of formation, i.e.,

does the purported biosignature occur in a geological context consistent microbial habit-

ability? Most such proof in ancient successions relies on a combination of sedimentology

and trace and rare earth element geochemistry (e.g., Lowe and Byerly ?lb99; Hofmann and <ref:lb99?>

Bolhar ?hb07) and shows that early Earth environments were strongly influenced by vol- <ref:hb07?>

canogenic inputs and hydrothermal fluids that are manifested as silicification zones in basalts

beneath chert horizons.

4.3 Fossil Microbial Biosignatures Relevant to Ocean Worlds

As highlighted in the earlier sections of this review, the diversity of microbial biosigna-

tures of relevance to ocean worlds is vastly reduced when compared to that of Earth due to

the fact that all habitable environments on ocean worlds, particularly those at the seafloor,

many tens of kilometres beneath the outer icy covering, would have been polyextremophilic.

Accordingly, ‘highly evolved’ Palaeoarchaean microbial mat communities may reflect a

degree of biological complexity beyond that possible on Enceladus or Europa. Proposed

primitive, uncomplicated biofilm communities that may be evidenced in the Eoarchaean

fossil record may be of more relevance, reflecting hyperthermophile, non-photosynthetic

autotrophic communities (Nisbet and Fowler ?nf96, 1999; Rosing 1999). Methanogens are <ref:nf96?>

among the proposed earliest independent lineages in the tree of life, diverging from Eu-

ryarchaeota before 3.51 Ga and perhaps as early as 3.8–4.1 Ga (Battistuzzi et al. ?ba04; <ref:ba04?>

Wolfe and Fournier ?wf18). Having numerous extremotolerances that make them suitable <ref:wf18?>

candidate organisms for ocean world biomes (Taubner et al. 2015, 2018), understanding

biosignatures of methanogenic life in the fossil record may be informative for their detec-

tion on ocean worlds. The obvious caveat to this section of the review is that it would be

extremely challenging to access and analyse an extinct biosphere within the crust of either

Europa or Enceladus.

Most evidence for methanogenesis in the fossil record relies upon carbon isotope ratios

measured by in situ secondary ion mass spectrometry, since methanogenesis is characterized

by a range of δ13C values mostly falling between −5 and −41‰, i.e., with values slightly to

significantly more negative than other major metabolic pathways—rubisco-mediated photo-

synthesis, sulphate reduction, photoferrotrophy—evidenced in the fossil record at the same

time (Schidlowski ?sc88; Vieth and Wilkes ?vw09). Their more negative carbon isotope <ref:sc88?><ref:vw09?>

fractionations can thus be used to indicate the presence of both Bacteria and Archaea in fos-

silized biomass (Hayes ?ha94; Nisbet and Fowler 1999). The carbon isotope record there- <ref:ha94?>

fore provides independent support for the molecular clock estimations of methanogenesis as

early as 3.8 Ga by virtue of highly 13C depleted carbonaceous material in Greenlandic rocks

(Grassineau et al. ?gr05). Extreme depletions of up to −60‰ in carbonaceous material from <ref:gr05?>

Palaeoarchaean horizons have been used as implicit evidence for coupled methanogenesis

and methanotrophy in widespread microbial ecosystems (Hayes ?ha94; Schopf et al. ?sc17; <ref:ha94?><ref:sc17?>

Lepot et al. ?le19). <ref:le19?>
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For ocean worlds, traces of planktonic life might also be among the key biosignatures

for a fossil biosphere. Prior to the advent of oxygenic photosynthesis, planktonic life seems

essentially limited to the hypothesised modes of life of large spheroidal and lenticular mi-

crofossils described from numerous horizons in the East Pilbara terrane and the Barber-

ton greenstone belt, although this is likely a function of preservational potential. Indeed,

planktonic life away from hydrothermal vents is considered to have had the opportunity

to proliferate once organisms had adapted to oligotrophy (e.g., Nisbet and Fowler 1999;

Brasier et al. ?br06). In Archaean metasediments, spheroidal and lenticular microfossils <ref:br06?>

up to several hundred microns in size and with interpreted robust cellular morphologies

(thickened, spore-like cell walls) span more than 400 Ma of geological history, from the

3.4 Ga Strelley Pool Formation (Sugitani et al. 2015) and Kromberg Formation (Walsh 1992;

Oehler et al. 2017) to the 3.0 Ga Farrell Quartzite (Sugitani et al. 2007). These microfossils

are characterised by strongly negative carbon isotope fractionation (δ13C = −30 to −45‰),

consistent with biological origin and sufficiently restricted in range as to preclude origin in

abiogenic chemical reactions such as the Fischer–Tropsch type processes (House et al. 2013;

Oehler et al. 2017). The highly negative depletions may also be consistent with methane cy-

cling, but this has yet to be unambiguously demonstrated (Oehler et al. 2017). Particularly

enigmatic amongst these microfossil-like objects are the lenticular microfossils. The near-

equant morphologies of lenticular microfossils, together with the flange-like appendages

that characterise their equatorial regions, have been used as specific evidence for their hav-

ing a planktonic stage in their life cycle (Sugitani et al. 2007, 2015; Oehler et al. 2017).

Fluid dynamic modelling of virtual flanged cells has demonstrated both that the presence

of the flange reduces sedimentation velocity and enlarges cell volume, two factors increas-

ing their propensity for suspension and dispersion as part of a planktonic lifestyle (Kozawa

et al. 2018). Dispersion may further be inferred from the widespread distribution of these

fossils in space, i.e. across two Archaean landmasses (the Pilbara and Kaapvaal regions). Al-

though many of these microfossils are solitary occurrences, some pairs, clusters and chains

of lenticular objects have been described, particularly in the examples from Western Aus-

tralia, strongly increasing the case for their biogenicity (see Sugitani 2018).

In contrast to coccoidal and filamentous microfossils from the same formations (Walsh

1992; Walsh and Lowe 1999; Westall et al. 2001), lenticular and large spheroidal microfos-

sils typically show no strict association with stromatolitic or mat-like laminations, which

imply that they are not involved in the mat-building process. Although this can be seen as

implicit support for a planktonic lifestyle, instances of lenticular carbonaceous objects from

the Middle Marker horizon do indeed occur within microbial mats (Hickman-Lewis et al.

2018). While this does not argue against their biogenic origin, their evident simultaneous

formation with microbial mats in this unique case warrants further investigation.

The thick cell walls that characterize these organisms have been argued to be beneficial

to open ocean modes of life. Oehler et al. (2017) interpreted that such thick walls may

have enabled the cells to withstand high levels of UV radiation, metal toxicity, or sudden

evapotranspiration events and associated salt stress that may have characterised early Earth

habitats (see Lowe et al. 2014; Lowe and Byerly 2015). The potential for dispersion and

longevity may also have permitted robust, lenticular cell-like objects to withstand local-

scale environmental stresses inherent to ocean worlds in ways that more fragile organisms

with thinner cell walls could not. The application of the microfossil record to ocean worlds

remains very much an open topic; indeed, limited, if any, discourse on the subject had been

attempted before this review.

The true challenge of a correlative microscopy approach in palaeobiology applied to the

putative biomes of an oceanic celestial body such as Europa and Enceladus lies in the dif-
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ficulty inherent in accessing samples. At present, no mission objectives involve the assess-

ment of the crust of an ocean world due to the near-insurmountable challenge of reaching 
the required localities. This section of the review may therefore be little more than intel-

lectual discourse. Nonetheless, one can state that deducing the geology and geochemistry 
of putative hydrothermal vent deposits on Europa or Enceladus would open up the pos-

sibility to appraise the habitable niches of ocean worlds and consider the likelihood of a 
fossilised biosphere of purely chemotrophic life. Such a biosphere may be an excellent—

and indeed a truly pristine—analogue for the most primitive (hyper)thermophile biospheres 
on the Hadean-Eoarchaean Earth.

5 Conclusions

Life, especially in the form of microorganisms, has achieved colonization of almost all ar-

eas on Earth, even the most hostile and extreme parts of the planet. Organisms have adapted 
by tailoring their cellular constituents to operate also at the boundaries and limits of life. 
Microorganisms have been successful in diversifying their metabolisms and taking benefit 
of the resources available in environments which might be low in the levels of nutrients 
or extreme in its physical conditions. In these harsh environments they manage to generate 
enough energy to ensure a minimum of maintenance of cellular constituents and even to 
proceed reproduction. This metabolic adaptation and diversity of microorganisms has been 
illustrated by the ability of microorganisms to produce energy from different types of sub-

strates, to produce different types of molecules, such as those that make membranes more 
robust or those that are characteristic in the response to different stresses whose harmful 
effects normally cause the denaturation of most cellular components and finally leads to 
cellular death.

The extent of microbial diversity on Earth is far from being fully elucidated, particularly 
in remote and extreme environments such as deep sea and subsurface sediments. Organ-

isms living in extreme environments and in particular microorganisms have, over the evo-

lutionary process, developed a large variety of adaptive strategies. As a result, they present 
a repertoire of original metabolic pathways and biomolecules that allow them not only to 
survive in extreme conditions, but often to grow in an optimal way in extreme ecological 
niches. Metabolic markers such as membrane lipids (saturated and polyunsaturated fatty 
acids, archeaol and caldarcheaol, etc.), compatible solutes (amino acids and derivatives, 
sugars and derivatives, polyols) or gas production (e. g. methane), witnesses of biological 
activity, have been detected in increasingly improbable environments previously considered 
sterile: thermal springs, hydrothermal vents, acidic lakes, alkaline lakes, hypersalines, deep 
marine sediments, oil reservoirs, glaciers, etc. The physico-chemical and energetic charac-

teristics of some extreme terrestrial environments are analogous to those of other planets and 
icy moons in the Solar System, which raises the question of the past or present existence of 
life on these planets and icy moons, or the fulfilment of all the conditions for another origin 
of life. Biomolecules or biosignatures such as those listed in this chapter can be traced to 
detect early clues to potential extraterrestrial biological activity.
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