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The Hellinger Distance within Posterior Predictive Assessment for Investigating 

Multidimensionality in IRT Models 

 

Abstract 

Under the Bayesian approach, posterior predictive model checking (PPMC) has become a 

popular tool for fit assessment of item response theory (IRT) models. In this study, we propose 

the use of the Hellinger distance within PPMC to quantify the distance between the realized 

and the predictive distribution of the model-based covariance for item pairs. Specifically, the 

case of multidimensional data analyzed with a unidimensional approach is taken into account. 

The results of the simulation study show the effectiveness of the method in detecting model 

misfit and the sensitivity to the trait correlations. An application to real data on tourism 

perceptions shows the feasibility of the method in practice and especially the capability of 

detecting potential misfit attributed to specific items. 

 

Keywords: posterior predictive model checking, Hellinger distance, MIRT models, goodness 

of fit, MCMC. 

 

1. Introduction 

In the field of item response theory (IRT), the Bayesian approach via Markov chain Monte 

Carlo (MCMC) was proved to be very flexible for both estimating complex models and 

investigating goodness of fit through posterior predictive model checking (PPMC). Model 

checking is a crucial issue in statistical analysis. Bayesian model checking deals with the step 

of “assessing the fit of the model to the data and to our substantive knowledge” (Gelman et al., 

2014; Chapter 6). Specifically, checking the fit of a model includes checking the sampling 

distribution, the prior distribution, the hierarchical structure and all the issues that are related 
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to the specification of the model, such as the presence of mixture components or not. As all 

models are essentially wrong, the typical question in model checking is not if the selected 

model is true or not. Instead, the researcher should investigate to what extent the weak aspects 

of the model are able to affect the inferential results. Within Bayesian model checking, PPMC 

is devoted to assessing the discrepancies between a model and data and understanding the 

model limitations in real applications (Gelman et al., 1996). Moreover, PPMC is used for 

assessing the fit of a single model to the data, in the absence of explicit alternative models. 

The PPMC method is based on the comparison between the observed and the replicated data 

of a given discrepancy measure D. The main advantages of PPMC are that it does not rely on 

distributional assumptions and it is relatively easy to implement, given that the entire posterior 

distribution of all parameters of interest is obtained through MCMC algorithms.  

In IRT, PPMC has been used initially to investigate differential item functioning (Hoijtink, 

2001), person fit (Glas and Meijer, 2003), fit of unidimensional models (Sinharay, 2005; Zhu 

and Stone, 2011) and item fit (Sinharay, 2006). Successively, there was an increasing interest 

in checking specifically for the behaviour of unidimensional models fitted to potential 

multidimensional data (see, among others, Sinharay, Johnson, and Stern, 2006; Levy, Mislevy, 

and Sinharay, 2009; Levy, 2011) and in assessing the test dimensionality (Levy and Svetina, 

2011; Levy, Xu, Yel, and Svetina, 2015). In real data applications, item response data often 

show multidimensionality due to the existence of different latent variables (e.g., cognitive 

abilities, perceptions). In these cases, estimating a unidimensional model yields an imprecise 

measure of individual traits as compared to fitting multiple unidimensional models with 

correlated traits (Wang, Chen, and Cheng, 2004).  

The investigation of IRT model dimensionality is based on checking the local independence 

assumption. For this purpose, measures of association among item pairs (e.g. the odds ratio, 

depending on data only) or measures of correlation among item pairs (e.g. the model-based 
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covariance, depending on both data and model parameters) were found to be effective. Given 

the chosen discrepancy measure, PPMC is implemented first with graphical analyses and then 

with the estimation of the posterior predictive p-values (PPP-values). When the plots are 

ambiguous, i.e. they do not suggest neither good fit or possible sources of misfit, or when the 

practitioner is interested in more than one check on the model, it is possible to draw useful 

information from the PPP-value. However, the PPP-value simply counts the number of times 

the replicated D is equal or higher than the realized D without addressing the magnitude of the 

difference between the two distributions. In fact, an important limitation of the PPP-value is 

that it can be equal to 0.5 (far for being extreme) also when the realized and the predictive 

distributions are very different (see Wu, Yuen, and Leung, 2014; Section 4.3). The PPP-value 

approach was also found to be conservative as it could fail to reject an inadequate model.  

To overcome the limitations of graphical plots and PPP-values, Wu et al. (2014) proposed 

the use of relative entropy (RE) within PPMC. The RE was used to measure the difference 

between the predictive and the realized distribution of global fit measures. However, the RE 

suffers from two main drawbacks that may weaken its usefulness as a pairwise distance 

measure in applied settings: it is asymmetric and not upper bounded (Kang and Chang, 2016).  

 The main novelty of our proposal is the use of the Hellinger distance to quantify the 

magnitude of the difference between the predictive and the realized distribution of measures 

for item pairs. In fact, similarly to the RE, the Hellinger distance provides a quantitative 

measure of the degree of misfit by overcoming the approach based on PPMC. Unlike the RE, 

the Hellinger distance satisfies the metric properties, including symmetry, and it is bounded 

between 0 and 1. These properties make the Hellinger distance a suitable measure for 

improving the interpretation of results in applied settings. Moreover, the Hellinger distance can 

be used for model comparison purposes, considering both single discrepancy measures on item 

pairs and overall. The performance of the Hellinger distance is investigated for detecting the 
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misfit of an IRT unidimensional model with both simulated and real multidimensional response 

data. We compare our proposal to the classical PPMC based on graphical analysis and PPP-

values and the approach based on the RE. The simulation results in different scenarios allow 

to explore the features (strong points and weaknesses) of the proposed solution. The Hellinger 

distance seems to be an effective tool in highlighting the presence of possible misfit and 

determining plausible thresholds for classifying the misfit levels. The most important feature 

of the proposal based on the Hellinger distance is to be able to report and quantify misfit when 

data are multidimensional but a unidimensional model is used. Moreover, unlike PPP-values 

and RE, the Hellinger distance is effectively employed for model comparison. 

The paper is organized in the following way. Section 2 briefly reviews the IRT models used 

in the paper. In Section 3, PPMC is discussed both in general terms and in reference to the 

specific issue of fit for unidimensional models when data are multidimensional. Here, the 

proposal of the Hellinger distance within PPMC is introduced. Section 4 describes the 

simulation study while Section 5 discusses an application to real data to show the effectiveness 

of the method in use. Concluding remarks end the paper. 

 

2. MIRT Models 

A fundamental assumption of IRT models is the conditional or local independence defined as 

              𝑃(𝑌 = 𝑦|𝜃) = ∏ 𝑃(𝑌𝑗 = 𝑦𝑗|𝜃)𝑘
𝑗=1 ,    (1) 

where Yj is the response variable vector for item j, with j=1,…,k items, and θ is the set of latent 

traits. Equation (1) holds conditionally to a single latent trait in unidimensional models, and to 

the specified dimensionality structure in multidimensional IRT (MIRT) models (see Zhang and 

Stout, 1999; Levy and Svetina, 2011). For this reason, the fit and the dimensionality 

assessments involve checking for the assumption of local independence. When data are 

multidimensional and a unidimensional IRT model is used, the assumption of local 
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independence is not met. A different situation occurs with locally dependent unidimensional 

models (Ip, 2010). Usually, MIRT models outperform separate unidimensional models for test 

consisting of multiple subtests, because they allow description of the data’s complexity, direct 

estimation of the correlation among the traits, and taking into account potential hierarchy in 

the latent variables. As underlined by Gibbons, Immekus, and Bock (2007) and Ip (2010), if 

there is a predominant overall factor, the presence of multidimensionality has little effect on 

the unidimensional estimates. On the contrary, if there are strong specific factors beyond the 

general one, the unidimensional parameterization is seriously compromised, except when the 

traits are highly correlated. However, many IRT applications are only possible with 

unidimensional models, and when the amount of multidimensionality seems negligible, a 

unidimensional approach may be preferred. MIRT models involve increased complexity, and 

they may require a large sample size in order to estimate all parameters effectively.  

Several MIRT models have been proposed to account for data structures involving multiple 

abilities in both an exploratory and a confirmatory setting (see, e.g., Adams, Wilson, and Wang, 

1997; Reckase, 2009; Sheng and Wikle, 2007, 2008; Huo et al., 2015). In the present study, we 

consider a confirmatory approach with two-parameter normal ogive (2PNO) models for binary 

data, where Yij represents the 0-1 response variable for respondent i to item j, with i=1,…,n and 

j=1,…,k. If a simple structure for a test assessing a set of m specific domains is assumed with 

v=1,..,m, the 2PNO multi-unidimensional model (see, e.g., Sheng and Wikle, 2007), can be 

defined as follows 

      𝑃(𝑌𝑣𝑖𝑗 = 1|𝜃𝑣𝑖, 𝛼𝑣𝑗, 𝛿𝑗  ) = Φ(𝛼𝑣𝑗𝜃𝑣𝑖 − 𝛿𝑗),      (2)                                 

where αvj denotes the v-specific item discrimination parameter for item j, δj is the difficulty 

parameter and θvi is the v-specific ability for respondent i. According to model (2), abilities 

may be correlated. This approach is more efficient at improving the measurement precision 
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than estimating different unidimensional models separately, especially when the tests are short 

(Wang et al., 2004). 

In the case all items are further related to an overall trait θ0, the 2PNO additive model (Sheng 

and Wikle, 2009) can be used  

   𝑃(𝑌𝑣𝑖𝑗 = 1|𝜃0𝑖, 𝜃𝑣𝑖 , 𝛼0𝑗 , 𝛼𝑣𝑗 , 𝛿𝑗  ) = Φ(𝛼0𝑗𝜃0𝑖 + 𝛼𝑣𝑗𝜃𝑣𝑖 − 𝛿𝑗),  (3) 

where the total number of latent abilities is m+1. With respect to the trait correlations, the most 

common approach in the literature is to assume orthogonal dimensions by fitting a bi-factor 

model (Gibbons & Hedeker, 1992) or to allow only the specific traits to correlate. On the other 

hand, in the approach proposed by Sheng and Wikle (2009), all correlations among the traits 

could be estimated. Many other multidimensional approaches are possible as well (see, e.g., de 

la Torre and Song, 2009; Sheng and Wikle, 2008; Reckase, 2009). 

Bayesian estimation of these models resorts to MCMC algorithms as the joint posterior 

distribution of interest has an intractable form. In particular, the use of the Gibbs sampler 

(Geman and Geman, 1984) was proposed by Béguin and Glas (2001) for model (2), and Sheng 

and Wikle (2009) for model (3) with correlated traits by extending the original work of Albert 

(1992) for the unidimensional 2PNO model. See Sheng and Wikle (2007; 2008) and Sheng 

(2008a; 2008b; 2010) for further details on the Gibbs sampler implementation, and Fontanella, 

Fontanella, Valentini, and Trendafilov (2019) for recent developments on Bayesian MIRT 

models. 

 

3. Posterior Predictive Assessment for Investigating Local Independence in IRT Models  

3.1 Posterior Predictive Model Checking 

PPMC techniques (Rubin, 1984; Gelman, Meng, and Stern, 1996) work by comparing observed 

data with replicated data generated or predicted by the model by using diagnostic measures that 

are sensitive to model misfit (Sinharay et al., 2006).  
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Given the data y, let p(y|ω) and p(ω) be the likelihood for a model depending on parameters 

ω and the prior distribution of ω, respectively. In the IRT context, ω includes the item 

parameters, the person parameters, and the trait correlations. The replicated data yrep are drawn 

from the posterior predictive distribution (PPD) given by 

    𝑝(𝑦𝑟𝑒𝑝|𝑦) = ∫ 𝑝(𝑦𝑟𝑒𝑝|𝜔)
⬚

𝜔
𝑝(𝜔|𝑦)𝑑𝜔.     (4) 

Once a suitable discrepancy measure or test quantity D(·) is chosen, the method works by 

comparing the posterior distribution of D(y,ω) to the posterior predictive distribution of 

D(yrep,ω), where substantial differences indicate poor model fit. Discrepancy measures based 

on data only (test statistics) can be used as well. The discrepancy measures should be able to 

capture relevant features of the data and differences among data and the model (Levy et al., 

2009).  

Due to difficulties in finding the PPD analytically, Rubin (1984) suggested drawing a 

number R of replications via MCMC and then drawing R replicated datasets to compare the 

predictive and realized discrepancies. As a first step in the application of PPMC to real data, a 

graphical analysis is conducted by plotting D(yrep,r,ωr) versus D(y,ωr), with r=1,…,R, or, in the 

case of test statistic, comparing the histogram of D(yrep,r) to the observed D(y). If the model 

fits, then observed data should look similar to replicated data under the model.  

When the plots are ambiguous or multiple checks are needed, it is possible to resort to the 

posterior predictive p-value (PPP-value or Bayesian p-value) defined as “the probability that 

the replicated data could be more extreme than the observed data, as measured by the test 

quantity” (Gelman et al., 2014) and expressed as follows: 

PPP-value = 𝑝(𝐷(𝑦𝑟𝑒𝑝, 𝜔) ≥ 𝐷(𝑦, 𝜔)|𝑦) = ∫ 𝑝(𝑦𝑟𝑒𝑝|𝜔)𝑝(𝜔|𝑦)𝑑𝑦𝑟𝑒𝑝𝑑𝜔
⬚

𝐷(𝑦𝑟𝑒𝑝,𝜔)≥𝐷(𝑦,𝜔)
.      

(5) 

PPP-values close to 0 or 1, depending on the chosen discrepancy, denote a failure of the model 

to describe the data correctly as the realized values fall far in the tails of the distribution of the 
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discrepancy measure based on PPD. On the other hand, values of approximately 0.5 indicate 

good fit. The PPP-values are estimated by the proportion of MCMC simulations for which the 

replicated discrepancy equals or exceeds the realized one. Despite they provide a quantitative 

measure of lack of fit, the PPP-values are not able to address the magnitude of the difference 

between the two distributions properly. 

As underlined by Levy et al. (2009), PPMC has several advantages over traditional 

techniques. The method is easy to apply and flexible because the reference distribution is built 

empirically and it does not require regularity conditions or asymptotic results. Moreover, 

PPMC relies on Bayesian estimation, which is based on the full posterior distribution: 

compared with maximum likelihood techniques, which are based on a point estimate, the 

method is able to directly incorporate uncertainty into the estimation. However, it should be 

highlighted that PPMC is about assessing the discrepancies between a model and data, and not 

testing the correctness of a model (Gelman et al., 1996).  

 

3.2 Discrepancy Measures Checking for Local Independence in IRT Models 

In PPMC, the role and choice of the discrepancy measure or test quantity is fundamental. As 

underlined in Gelman et al. (2014), “test quantities play the role in Bayesian model checking 

that test statistics play in classical testing”.  Under the Bayesian umbrella, test quantities may 

depend on data only or, thanks to the posterior distribution, they may be generalized to depend 

on the model parameters too. The definition of a proper test quantity depends on the particular 

aspects of the data one wants to check and, for this reason, is strongly influenced by the goal 

of the research. While in the traditional hypothesis testing the choice of test statistics depends 

on power, e.g. the probability of rejecting the null hypothesis when in fact it is not true, model 

checking focuses on how the model fits in relation to the specific aspects that are relevant in 

practice. For this reason, the choice of the discrepancy measure should reflect the researcher’s 
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inferential interests (Gelman et al., 1996). As discussed in Sinharay (2005) and Sinharay et al. 

(2006), although any function of data and model parameters could be used as discrepancy 

measure, not all measures are useful. Defining and defending the choice of a discrepancy 

measure is crucial in PPMC. As suggested by Gelman et al. (2014), ideally the discrepancy 

measure should not only reflect aspects of the model relevant for the research goal, but it should 

also measure features of the data that are not directly addressed by the model. This last feature 

is able to make the difference between a useful or an unsuitable discrepancy measure. Clearly, 

the chosen discrepancy measure should have adequate power. For a discussion on the role of 

PPMC test quantities in IRT, see Sinharay (2005; page 379). 

Previous studies using PPMC for checking the assumption of local independence worked 

with diagnostic measures based on the association or on covariance/correlation among item 

pairs (Sinharay et al., 2006; Levy et al., 2009; Levy, 2011; Levy and Svetina, 2011; Levy et 

al., 2015). In fact, discrepancy measures investigating associations between item pairs can 

hopefully detect the misfit of models that do not take into account the correct dimensionality 

and dependency structure in the data. 

The Mantel-Haenszel (MH) statistic (e.g., Agresti, 2002, p. 234) is based on data only and 

it is defined as the odds ratio conditionally to the rest score s, i.e., the raw test score obtained 

by excluding the two items. For each pair of items j and j’, with j, j’=1,…,k, the MH statistic is 

MH𝑗𝑗′ =
∑ 𝑛11𝑠𝑛00𝑠/𝑛𝑠𝑠

∑ 𝑛10𝑠𝑛01𝑠/𝑛𝑠𝑠
,       (6) 

where the generic term ntt′s is the number of subjects with rest score s who score t on item j and 

t′ on item j′, with t, t′=0,1, and ns is the number of subjects with rest score s. The effectiveness 

of the MH statistic in investigating the local independence assumption relies on conditioning 

to the rest score, which is a proxy of the latent ability. If the local independence assumption 

holds, the MH statistic is close to one. If the local independence does not hold, the MH statistic 

is greater than one for within-cluster items and smaller than one for between-cluster items (see 



10 

 

 
 

Sinharay et al., 2006). Bad fit is reported with PPP-values close to zero (when MH > 1) or close 

to one (when MH < 1). 

The model-based covariance (MBC; Reckase, 1997) depends on both data and model 

parameters as follows: 

MBC𝑗𝑗′ =
∑ (𝑌𝑖𝑗−𝐸(𝑌𝑖𝑗))(𝑌𝑖𝑗′−𝐸(𝑌𝑖𝑗′))𝑛

𝑖=1

𝑛
,     (7) 

where E(Yij) is the expected value of the response variable depending on the specific IRT 

model. The MBC is found to be effective as it measures the covariance among item pairs by 

explicitly conditioning on the latent variable (Levy et al., 2009). If the local independence 

assumption holds, the MBC is close to zero. If the local independence does not hold, the MBC 

is greater than zero for within-cluster items (PPP-values are close to zero) and smaller than 

zero for between-cluster items (PPP-values are close to one). Another useful measure which 

produces comparable results to the MBC in terms of graphical analysis and PPP-values is the 

Yen’s Q3 (Yen, 1993), defined as the correlation among the residuals of item pairs. 

Lastly, Levy and Svetina (2011) proposed an overall measure, namely the generalized 

dimensionality discrepancy measure (GDDM)  

GDDM =
1

𝑘(𝑘−1)/2
∑ |

∑ (𝑌𝑖𝑗−𝐸(𝑌𝑖𝑗))(𝑌𝑖𝑗′−𝐸(𝑌𝑖𝑗′))𝑛
𝑖=1

𝑛
|𝑗>𝑗′ . (8) 

The GDDM is a unidirectional measure of average conditional covariance defined as the 

mean of the absolute values of MBC over unique item pairs. When the GDDM is equal to zero, 

a “weak” local independence for all the item pairs is assumed (Levy and Svetina, 2011). If the 

assumption of local independence is violated, the GDDM is greater than zero and the PPP-

value will be close to zero. Levy et al. (2015) proposed a standardized version of the GDDM 

(SGDDM) defined as a mean absolute conditional correlation to improve the interpretability of 

the results. The results of SGDDM in terms of graphical analysis and PPP-values are 

comparable to the ones obtained by the GDDM. 
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3.3 PPMC Based on the Hellinger Distance 

Previous studies (see, e.g., Sinharay et al., 2006; Levy et al., 2009; Levy, 2011; Levy and 

Svetina, 2011; Levy et al., 2015) investigated the potentialities of PPMC in terms of graphical 

analysis and PPP-value estimates. While PPP-values only count the number of replications for 

which the predictive discrepancy exceeds the realized one, the researcher may be interested in 

measuring the size of the difference itself. To reach this goal, Wu et al. (2014) proposed the 

use of relative entropy (RE; Kullback and Leibler, 1951) with full and limited information 

statistics as discrepancy measures. In fact, the RE (also known as Kullback-Leibler divergence 

or information) quantifies the information a distribution P loses while approximating to another 

distribution Q. In the case of the distributions P and Q of a continuous random variable, the RE 

is defined as follows: 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∫ ln
𝑝(𝑦)

𝑞(𝑦)
𝑝(𝑦)𝑑𝑦,             (9) 

where p(y) and q(y) are the probability density functions of y. The RE measures the relation 

between the two distributions asymmetrically, meaning that, depending on the order of the 

arguments, the values of the RE may differ. Moreover, the RE is always non-negative. The 

smaller the RE value, the smaller the information loss and the more the two distributions are 

similar.  

In the PPMC setting, given a discrepancy measure D(y,) depending on both data and model 

parameters, the RE becomes 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∫ ln
𝑝(𝐷(𝑦,𝜔))

𝑝(𝐷(𝑦𝑟𝑒𝑝,𝜔))
𝑝(𝐷(𝑦, 𝜔)) 𝑑𝑦𝑑𝜔.           (10) 

In this case, the RE displays the information the realized distribution loses while 

approximating the predictive distribution of a given discrepancy measure. The more similar the 

realized and predictive distributions are, the smaller the RE values is, and consequently, the 
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better the model fit is. Despite the RE is a very powerful information measure, it has several 

drawbacks that make its use difficult in applied settings. Firstly, the RE is not symmetric. 

Moreover, RE  0. As a consequence of its unboundedness, it is difficult to interpret the 

outcomes. What can be said about the size of the difference between the two distributions? 

To evaluate the magnitude of the discrepancy between the realized and the predictive 

distributions, we propose the use of the Hellinger (H) distance which is defined in terms of the 

Hellinger integral (Hellinger, 1909) as follows: 

H(𝑃, 𝑄) = √1 − ∫ √𝑝(𝑦)𝑞(𝑦) 𝑑𝑦,                         (11) 

where the term ∫ √𝑝(𝑦)𝑞(𝑦) 𝑑𝑦 is the Bhattacharyya coefficient (Bhattacharyya, 1943). The 

H distance is used to quantify the distance between two probability measures and it is a proper 

distance metric in the mathematical sense, by satisfying the properties of nonnegativity, 

symmetry, and triangle inequality. The H distance is also bounded between 0 and 1, where 0 

means that the two distributions are indiscernible and 1 that they are maximally distant. This 

feature makes the interpretation of the H distance more convenient than the RE in real data 

applications.  

In the context of PPMC, we propose to use (11) as follows:   

               H(𝑃, 𝑄) = √1 − ∫ √𝑝(𝐷(𝑦, 𝜔))𝑝(𝐷(𝑦𝑟𝑒𝑝, 𝜔))𝑑𝑦𝑑𝜔.                         (12)                                                                                  

Analogously to the RE, the H distance is used with discrepancy measures that depend on both 

data and model parameters, as the MBC or the GDDM. The direct calculation of (12) is 

computationally demanding and it is usually done via MCMC. Specifically, given the MCMC 

simulations, it is estimated by using the normal kernel density estimates to represent the 

probability density functions of the realized and the predictive discrepancy measures. 
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In order to check for local independence, we propose the use of the H distance with the MBC 

discrepancy measure (MBC-H) to take into account a fit measure for each item pair and with 

the GDDM (GDDM-H) to evaluate the overall fit based on item pairs. The H distance is then 

able to quantify the misfit as “the amount of the difference between the realized and the 

predictive distribution of the chosen discrepancy". Moreover, the H distance values can be 

compared directly, so this measure is suitable to be used for model comparison. 

 

4. Simulation Study 

A simulation study is conducted to examine the performance of the proposed MBC-H and 

GDDM-H at detecting the misfit of the unidimensional 2PNO model when data follow the 

multi-unidimensional model (2) or the additive model (3) with m=2. In order to compare the 

results with the existent solutions in the literature under PPMC, we estimated the PPP-values 

for the MH statistic, the MBC, and the GDDM. Additionally, the RE for MBC (MBC-RE) and 

for GDDM (GDDM-RE) were estimated. 

The results of the simulations are presented for a test with k=10 items consisting of two 

subtests (k1=k2=5) and a sample size of n=1,000, by manipulating the correlations among the 

traits. We also manipulated the sample size by using n=2,000 and the test length by using k=20 

with k1=k2=10. The results are included in Appendix A and Appendix B, respectively.  

For each simulation condition, 100 replications are used. For each replication, the simulation 

procedure can be summarized as follows. 

1. A n×k dataset with binary item responses is simulated according to the data-generating 

model and the simulation conditions. 

2. The parameters of the data-analysis model are estimated via the Gibbs sampler, where 

all the MCMC draws defining the posterior distribution are recorded. Specifically, for 

each model parameter, a vector of the MCMC sampled values is created with length 

equal to the effective number R of iterations (total minus burn-in iterations).  
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3. The R iterations are thinned by a constant to be used within PPMC. Even if there is a 

debate in the literature on the usefulness of thinning the MCMC chains, this procedure 

is adopted in this work to reduce the computational time of PPMC. 

4. The final synthesis of the output consists of the following elements: two k×k matrices 

with the PPP-values for the MH statistic and the MBC for each item pair, the PPP-value 

for GDDM, two k×k matrices containing the MBC-RE and the MBC-H for each item 

pair, the GDDM-RE and the GDDM-H. 

For each replication in the case of k=10 and n=1,000, the total number of MCMC iterations 

is equal to 5,000, with 1,000 as burn-in iterations (R=4,000). The convergence of the Gibbs 

sampler was assessed by using the Gelman-Rubin statistic starting from a single chain divided 

into sub-chains (see Sheng, 2010). The effective samples are thinned by 4 so that 1,000 samples 

are used in PPMC. 

For each simulation condition, the results are synthetized by computing the arithmetic mean 

of each measure over the 100 replications. We use the proportion of extreme PPP-values (below 

0.05 or above 0.95) among the item pairs to summarize the results for the MH statistic and the 

MBC. We report some descriptive statistics for the MBC-RE and the MBC-H. All these results 

are further reported for the pairs where both items belong to subtest 1 (“within1”), both items 

belong to subtest 2 (“within2”) and items belonging to different subtests (“between”). 

MATLAB packages provided by Sheng (2008a; 2008b; 2010) are used for data generation and 

for MCMC estimation of models (2) and (3). The Authors wrote MATLAB specific programs 

for estimating the unidimensional model and performing PPMC.  

The case of correspondence between the data-generating model and the analysis model for 

all models is discussed before introducing the case of multidimensional data analyzed with the 

unidimensional model. 

 



15 

 

 
 

Same Data-Generating and Data Analysis Model 

Using the same model to simulate and analyze the data is fundamental to investigate the 

capability of the proposed approach to report good fit correctly. 

For the unidimensional model, the item parameters are drawn from αU(1,2) and δU(-2,2), 

while the trait scores are θN(0;1). Model parameters are estimated via the Gibbs sampler using 

standard normal priors for the latent trait and the difficulty parameters. A standard normal 

distribution truncated at zero to the left is used as prior distribution for the discrimination 

parameters to ensure positivity. With respect to the multi-unidimensional model (2), the cases 

of no correlation (ρ12=0), weak correlation (ρ12=0.3), moderate correlation (ρ12=0.6) and strong 

correlation (ρ12=0.9) between θ1 and θ2 are taken into account. Item parameters are drawn from 

α1U(1,2), α2U(1,2), and δU(-2,2), and latent scores from a multivariate normal θ=(θ1, θ2) 

MN(0;Σ), where Σ is the correlation matrix. We specified conjugate standard normal priors 

for the item parameters, and a conjugate multivariate normal as a prior for the covariance matrix 

of the latent traits (see Sheng, 2008b). For the additive model (3), two specific latent traits θ1 

and θ2, and an overall trait θ0, related to all item responses are considered (m+1=3). Correlations 

among all traits are set equal ρ01=ρ02=ρ12 and are again fixed equal to 0, 0.3, 0.6 and 0.9. The 

item parameters are drawn from α0U(1,2), α1U(1,2), α2U(1,2) and δU(-2,2), while the trait 

scores from θ=(θ0, θ1, θ2)MN(0;Σ). Conjugate standard normal priors are specified for the 

item parameters, and a conjugate prior is used for the covariance matrix of the latent traits (see 

Sheng, 2010).  

For all conditions, no extreme PPP-values are reported for the MBC and MH statistic 

computed on the 45 item pairs indicating good fit. The PPP-value for the GDDM is equal to 

0.512 for the unidimensional model and it is in the range [0.411 - 0.558] for different 

correlations in the additive model, indicating good fit. For the multi-unidimensional model, the 

PPP-value for GDDM is in the range [0.480 - 0.532] for ρ12 = 0.0, 0.3, 0.6 while it is equal to 
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0.277 when ρ12 = 0.9. Even if this last PPP-values is not extreme, the deviation from 0.5 may 

be due to the strong correlation between the traits which make the data nearly unidimensional. 

Table 1 reports the results on the RE. Some descriptive statistics are used to synthetize the 

MBC-RE for the item pairs and the median value is reported for the 10 “within1”, 10 “within2”, 

and 25 “between” item pairs. 

INSERT TABLE 1 HERE. 

In case of good fit, the realized and the predictive distributions of the discrepancy measure 

should be overlapping and the RE will be close to zero. From Table 1, it is observed that the 

MBC-RE slightly increases as the correlation between the two traits increases. The highest 

increase is observed for the multi-unidimensional model from ρ12 = 0.6 to ρ12 = 0.9. There are 

no meaningful differences by item pair type. The same behavior is observed for the GDDM-

RE, where for the multi-unidimensional model with ρ12 = 0.9 the value is equal to 6.437 

denoting a relevant change in the order of magnitude of the RE. According to the RE, what can 

be said about the model fit? Are the RE values close to zero enough to indicate good fit? As 

RE  0, the answer is not straightforward. 

INSERT TABLE 2 HERE. 

Table 2 shows the results for the H distance. The average value for the MBC-H is 0.45 in 

the unidimensional model and slightly lower in the multi-unidimensional and additive models 

(the range is 0.319-0.457). Again, the highest value is reported for the multi-unidimensional 

model with strongly correlated traits and no meaningful differences emerge from the results by 

item pair type. The same behavior is observed for the GDDM-H. The measures are computed 

for all the item pairs and then averaged. For this reason, it is very difficult to obtain values of 

the H distance very close to zero, even when the correct model is fitted to the data. The results 

could be further deepened by looking at the quartiles for the different simulation conditions. In 

fact, the third quartile (Q3) is around 0.5 for the unidimensional model and 0.4 for the 
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multidimensional ones, excluding the cases of strong correlations. We expect that MBC-H 

values below Q3 are associated to item pairs reporting good fit. When the MBC-H values are 

lower than the Q1 values (around 0.4 for the unidimensional model and around 0.3 for the 

multidimensional ones) we expect that the item pairs show very good fit.  As 0 ≤ H ≤ 1, fixing 

a threshold at 0.5 may be helpful in evaluating model fit. The value of 0.5 was chosen 

following, as usual in complex  situations, a rule of thumb obtained by a detailed analysis of 

the simulation results under different conditions. In particular, we considered the mean and the 

quartiles presented in Table 2 under the “null” conditions. On average, all MBC-H and GDDM-

H values are smaller than 0.5, indicating good fit. Moreover, the Q3 are lower than 0.5 for all 

conditions, except for the unidimensional one (but the value is 0.524) so we believe that by 

considering the threshold of 0.5 we could expect not more than ¾ of the item pairs under the 

threshold when the model fits the data. We believe that this threshold is rather flexible to 

minimize the risk of assessing model fit incorrectly. Also, a value of the H lower than 0.5 

means that the distance between the realized and the replicated distribution of the discrepancy 

measure is closer to the case of H=0 (the two distributions overlap) than to the case of H=1 

(maximum distance). 

The proportion of item pairs with MBC-H equal or higher than 0.5 (Prop  0.5) is equal or 

very close to zero for the conditions involving a multidimensional approach, meaning that the 

threshold of 0.5 can be effectively used in practice. However, when data are unidimensional, 

the approach based on the H distance shows a weakness by reporting about 30% of item pairs 

with MBC-H  0.5. 

Additional simulations were conducted by increasing the sample size to n=2,000 (Appendix 

A) and the total test length to k=20 (Appendix B). The results confirm the main findings. In 

fact, when increasing the sample size, no extreme PPP-values are reported both for the MBC 

and the MH statistics. The results on the RE and the H distance (see Tables A1 and A2) are 
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very similar to the ones reported in Tables 1 and 2. Only for the multi-unidimensional model 

with =0.9, an increase in the MBC-RE, the GDDM-RE, and the GDDM-H is observed, 

meaning that the latent structure may be conceived as unidimensional. 

When increasing the test length, again no extreme PPP-values are reported. For the RE 

(Table B1) we can generally observe that the values are slightly higher than the ones of the 

baseline setting. The values of the MBC-H (Table B2) also show on average an increase with 

respect to the case of k=10. This may be due to the presence of a large number of item pairs 

(190) which make much more difficult to obtain overlapping realized and predictive 

distributions of the discrepancy measure. 

 

Multidimensional Data-Generating Models vs. Unidimensional Estimated Model 

The focus of this simulation study is on multidimensional data-generating structures, where the 

data-analysis model is unidimensional. The simulation settings follow the ones used in the 

previous study. When the correlation among the traits is very strong, the model is close to a 

unidimensional approach because the two dimensions nearly overlap. Of course, the latent 

traits, even if strongly correlated, can be different in their empirical interpretation.  

INSERT TABLE 3 HERE. 

The results in Table 3 show that the MH statistic and the MBC perform differently for the 

case of uncorrelated traits with multi-unidimensional data. In fact, while the MH statistic 

correctly reports model misfit based on a rather high proportion of extreme PPP-values (0.8) 

the MBC fails by reporting only 22.2% of extreme PPP-values. The behavior of the MBC is 

unexpected and may be attributed to the peculiarity of the generating model, which resembles 

two separate unidimensional models. To investigate this condition more in detail, we report in 

Appendix C the generating item parameters for the uncorrelated multi-unidimensional data 

(Table C1) and the item parameter estimates (and their standard deviations) according to the 
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unidimensional model (Table C2). The item discrimination estimates for the unidimensional 

model are close to zero for the first subtest (items 1-5) and higher than one for the second 

subtest (items 6-10). This means that the latent trait is defined by the items of the second subtest 

only, which are related to the same ability. This is true for all the replications of this simulation 

condition as the datasets were generated starting from the same simulated item parameters. For 

this reason, the MBC reports misfit only for the item pairs where both items belong to subtest 

1 (“within1”). Unlike the MH statistic, the MBC is a model-based indicator and it is affected 

by the item parameter estimates. We also estimated the item parameters via marginal maximum 

likelihood to understand if the results could be affected by the choice of the prior distributions 

for the item parameters in MCMC, but we obtained similar estimates.  

To deepen the results, we have checked when the MBC starts working appropriately by 

considering more correlation conditions (ρ12=0.1, 0.2, 0.4). As the correlation ρ12 increases, the 

MBC reports misfit. At ρ12=0.2, the MBC reports about 40% of extreme PPP-values, reaching 

the 100% at ρ12=0.4. Differently, the MH statistic works well by reporting all extreme PPP-

values, already at condition ρ12=0.2.  

The cases of strong correlation is again peculiar. At ρ12=0.9, the proportion of extreme PPP-

values is close to zero for the MH statistic and equal to zero for the MBC.  

With respect to the additive data, both the MH statistic and the MBC report strong evidence 

of misfit of the unidimensional model for uncorrelated traits and for ρ01=ρ02=ρ12=0.3. The 

performances of the discrepancy measures are similar as the proportion of extreme PPP-values 

decreases at ρ01=ρ02=ρ12=0.6 and then is equal to zero at ρ01=ρ02=ρ12=0.9. No meaningful 

differences are found for the results by item pair type. In fact, we found extreme PPP-values 

both for the within item pairs, where positive conditional covariance is expected and PPP-

values will be close to zero, and for between item pairs, where negative conditional covariance 

is expected and PPP-values will be close to one. 
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For all the simulation conditions, the GDDM reports poor fit as the estimated PPP-value is 

always zero, with the only exception of strongly correlated traits where it is still extreme and 

close to zero. 

INSERT TABLE 4 HERE. 

Table 4 shows that, for the conditions involving zero or weak trait correlations, the mean 

MBC-RE among item pairs goes to infinity. The median values are always larger than the 

MBC-RE values in Table 1, where the same data-generating model and analysis-model was 

used. Differences in the median values for item pair type are noticed, for example in the case 

of uncorrelated multi-unidimensional data, where the “within1” items are characterized by a 

high median MBC-RE. Analogously, the GDDM-RE goes to infinity with the only exception 

of the conditions of strongly correlated traits meaning that the discrepancy between the 

predictive and the realized distribution of GDDM is maximum. Overall, the REs are far from 

zero, denoting poor fit and the results on MBC-RE show a large variability among the item 

pairs and for the different simulation conditions, making cumbersome the interpretation of the 

results.  

INSERT TABLE 5 HERE. 

The results in Table 5 show poor fit of the unidimensional model when data are 

multidimensional. In fact, for most conditions, the mean and median values of the MBC-H are 

higher than 0.8, denoting that the distance between the predictive and the realized distribution 

of the MBC is rather high. Coherently with the results on the PPP-values in Table 3, exceptions 

are observed for the multi-unidimensional data with ρ12=0 and the cases of strongly correlated 

traits, where data are conceived as unidimensional. Excluding the case of strong correlation, it 

can be observed that the magnitude of misfit increases as the correlation increases for multi-

unidimensional data but not for additive data. In fact, the specification of the additive model 

includes a general, overall trait. For this reason, as the correlation increases, data simulated by 
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an additive model may be conceived as close to unidimensional and the magnitude of misfit 

reported is lower. The proportion of item pairs with MBC-H equal or higher than 0.5 is equal 

or very close to 1 for all the conditions, except for multi-unidimensional data with ρ12=0, 

meaning that the threshold of 0.5 works well for the H distance in detecting the violation of 

local independence.  By looking at the quartiles, the Q1 and Q3 are higher than 0.7 and 0.9, 

respectively, excluding the case of multi-unidimensional data with ρ12=0 and the cases where 

ρ12=0.9 which are peculiar. This means that MBC-H values higher than 0.7 show large misfit.  

The GDDM-H is equal to one, reporting the maximum possible distance between the 

predictive and the realized GDDM (lower values are reported for strongly correlated traits). On 

average all MBC-H and GDDM-H values are higher than the threshold 0.5, indicating bad fit.  

INSERT FIGURE 1 HERE. 

We checked the distribution of the MBC-H for each item pair under the different simulation 

conditions to understand if the estimated value is stable among the 100 replications. Figure 1 

reports the histograms of the MBC-H values for specific item pairs under several simulation 

conditions.  The upper figures represent the case of the same data-generating and data-analysis 

model (from left to right: unidimensional, multi-unidimensional, and additive) while the lower 

figures represent the case of multidimensional data analyzed with a unidimensional model 

(from left to right: multi-unidimensional and additive data). Clearly, the MBC-H in the upper 

figures shows good fit but it is associated with an higher variability in comparison to the MBC-

H in the lower figures, showing bad fit especially in the case of additive data. 

An important advantage of the H distance with respect to the PPP-values and the RE, is that 

it can be used for model comparison purposes. In fact, we compared the estimated MBC-H for 

all the 45 item pairs under all the simulation conditions in which the data are multidimensional. 

For all the conditions, when the data-analysis model is unidimensional, the estimated MBC-H 

is higher than in the case a multidimensional approach is used, for all the item pairs meaning 
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that the multidimensional approach is always able to fit the data better than the unidimensional 

one. Unlike the H distance, it is not possible to use the PPP-values for making direct 

comparisons as they can only be interpreted as extreme (indicating misfit) or not. A graphical 

analysis under PPMC is also not feasible due to the presence of multiple checks, e.g., a 

discrepancy measure for each item pair. The RE values cannot be directly compared either due 

to the unboundness of the measure. The advantage of the H distance over the PPP-values in 

making model comparison is clear by considering a fit measure for each item pair. Overall, it 

is possible to consider both the proportion of extreme PPP-values and the mean of the H 

distances among the item pairs for choosing among competing models. 

The results of the simulations conducted with n=2,000 and k=20 are consistent with the ones 

obtained in the baseline approach (n=1,000 and k=10). When the sample size is increased, the 

proportion of extreme PPP-values (Table A3) is equal or higher than in the baseline study for 

all multidimensional data. The only exception is the uncorrelated multi-unidimensional data, 

where no extreme PPP-values are observed for the MBC, a result which goes in the same 

direction of what emerged in the case of n=1,000. Looking at Tables A4 and A5, overall the 

RE and H distance mean values are equal or higher than the corresponding results of the main 

study, denoting an improvement in the capability of detecting misfit. However, very similar 

results are obtained in the boundary cases (multi-unidimensional data with =0.0 and 0.9, and 

additive data with =0.9). Increasing the test length to k=20 confirms the main findings. Again, 

the peculiar case of uncorrelated multi-unidimensional data is associated to no extreme PPP-

values (see Table B3), the values of the RE and the H distance (Tables B4 and B5) are usually 

higher than in the baseline case, with few exceptions. 

 

5. Empirical Application 
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The empirical data come from a survey conducted by the University of Bologna (Italy) to 

investigate the perceptions of the residents in tourist cities on the impact of the tourism industry 

(Bernini, Matteucci, and Mignani, 2015). The data consist of the responses given by 794 

residents to 10 items of a questionnaire, where five items address the perceived benefits and 

five items address the costs. Items on benefits concern economic support, quality of life, public 

services, job opportunities, and cultural activities, while items on costs address general cost of 

life, crime rate, environmental damage, traffic, and pollution. Item responses are binary, where 

Yij=1 denotes a positive perception (high benefit or low cost) and Yij=0 indicates a negative 

perception (low benefit or high cost). 

The unidimensional, the multi-unidimensional, and additive models are fitted via the Gibbs 

sampler with a total of 10,000 iterations (5,000 as burn-in iterations). Two specific factors are 

assumed: a first one related to the benefit items 1-5 and a second one related to the cost items 

6-10.  

The deviance information criterion (DIC) suggests that the additive model (DIC=6916.38) 

fits the data better than the unidimensional model (DIC=7742.08) and the multi-unidimensional 

model (DIC=7183.11). To investigate goodness of fit model by model, 1,000 MCMC posterior 

samples drawn for each model parameter (5,000 effective iterations thinned by 5) are used to 

implement PPMC with the techniques discussed in this paper. Table 6 reports the proportion 

of extreme PPP-values for the MH statistic and the MBC and the PPP-value estimate for the 

GDDM under the three models. The MATLAB function ppmcplt, provided by Sheng (2010), 

is used to show a graphical representation of the extreme PPP-values for the 45 item pairs to 

give an immediate picture of model fit.  

INSERT TABLE 6 HERE. 

INSERT FIGURE 2 HERE. 
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For the unidimensional model, Figure 2 shows that the number of extreme PPP-values is 

equal to 37 (82.2%) for the MH statistic and 35 (77.8%) for the MBC, suggesting that the local 

independence assumption does not hold for the unidimensional model. Clearly, we see that 

both the MH statistic and the MBC have PPP-values close to zero for the within-cluster items 

and close to one for between-cluster items, meaning that positive or negative conditional 

covariance is observed, respectively. 

For both discrepancy measures, item 10 (pollution) is associated with all extreme PPP-

values, meaning that this item contributes to the misfit for this model. Another critical item is 

7 (crime rate), which involves all extreme values for MH and eight extreme values for MBC. 

The remaining items show extreme PPP-values for most pairs, with the only exception being 

item 5 (cultural activities).  

For the multi-unidimensional model, a correlation of ρ12=0.53(0.00)1 is estimated between 

the two specific traits. Looking at the item pairs in Figure 2, not more than four extreme PPP-

values are reported for each item and about the 30% of item pairs show bad fit. 

Within the additive model, the estimated correlations among the overall perception and the 

specific perceptions on benefits and costs are equal to ρ01=0.29(0.05) and ρ02=0.21(0.04), 

respectively, while the correlation between the two specific traits is ρ12=0.10(0.03). Only 

15.6% and 8.9% of PPP-values are extreme according to the MH statistic and the MBC, 

respectively. Some extreme PPP-values are observed, especially for pairs involving items 9 

and 10 (traffic and pollution).  

The PPP-value for the GDDM is always extreme (0.000) meaning that, according to this 

generalized discrepancy measure, all the three models show poor fit. It seems that this measure 

is very sensitive to the presence of only few item pairs showing positive or negative conditional 

covariance. 

 
1 Monte Carlo standard error in brackets. 
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Table 7 provides the results for the RE and the H distance. 

INSERT TABLE 7 HERE. 

With respect to the RE, the results show a great variability, also for item pair type, and it is 

not possible to make a direct comparison among the three models. Given that the RE is 

unbounded, it is difficult to interpret the results. The GDDM-RE goes to infinity for the 

unidimensional model, but it is also far from zero for the other two models. 

Unlike the RE, the results on the H distance are more easily interpretable. The MBC-H 

values show a large variability on the item pairs. However, we can say that, on average, the 

distance between the predictive and the realized MBC is 0.83 for the unidimensional model, 

0.54 for the multi-unidimensional model and 0.44 for the additive model. According to the 

threshold of 0.5, only the additive model shows good fit. The proportion of item pairs with 

MBC-H  0.5 is 0.911 for the unidimensional model, 0.511 for the multi-unidimensional 

model, and 0.378 for the additive model. We also compared the values of the MBC-H for all 

the item pairs on the three models. Overall, 40 out of 45 item pairs have MBC-H lower with 

the additive model than with the unidimensional one. Moreover, 30 item pairs out of 45 present 

lower MBC-H for the additive model with respect to the multi-unidimensional model. The 

GDDM-H show the maximum possible distance for the unidimensional and the multi-

unidimensional model, and it is also very high (0.98) for the additive model. Figure 3 highlights 

the MBC-H values higher than 0.5 or 0.8 for the item pairs.  

INSERT FIGURE 3 HERE. 

There is a considerable improvement from the unidimensional to the additive model. This 

means again that it is likely that the response data follow an additive structure.  

By using discrepancy measures for item pairs, it is possible to deepen the investigation of 

model fit by considering each item pair separately. For example, in Figure 4 we compare the 

realized (MBC obs) and the predictive distribution (MBC rep) of the MBC in the additive 
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model for the items 7 and 10 (on the left) and the items 1 and 5 (on the right). The PPP-value 

for the MBC7,10 is 0.9650 and MBC-H7,10=0.7125: the item pair shows poor fit. On the other 

hand, items 1 and 5 show good fit with a PPP-value for MBC1,5 equal to 0.5180 and MBC-

H1,5=0.1168.  

INSERT FIGURE 4 HERE. 

The investigation of fit for each item pair makes it clear the advantage of using the H 

distance with respect to the approach based on PPP-values. Let us take the item pair (5, 6) as 

an example, where item 5 belongs to the first subtest while item 6 to the second one. For the 

unidimensional model, the PPP-value for the MBC5,6 is equal to 0.96 denoting misfit. 

Moreover, the PPP-values for the MBC5,6 are equal to 0.66 and 0.50 for the multi-

unidimensional and the additive model, respectively. Both PPP-values are not extreme, but it 

is not possible to choose which model fits the item pair data best. On the other hand, the MBC-

H5,6 is equal to 0.72 for the unidimensional model, 0.40 for the multi-unidimensional model, 

and 0.11 for the additive model. By using the Hellinger distance on the item pair, not only we 

can say that the unidimensional model shows misfit while the two multidimensional models 

show good fit by considering the threshold of 0.5, but also we can compare the H distance 

values directly. Consequently, between the two “fitting” multidimensional models, the additive 

one is the best as it is associated with the lowest H distance value for the item pair. 

 

6. Concluding Remarks 

The use of the Hellinger distance within posterior predictive assessment is proposed to 

investigate the assumption of local independence for 2PNO models by focusing on 

multidimensional data analyzed with the unidimensional model. The results of the simulation 

studies show that the PPP-values and the H distance are coherent in judging model fit, while 

the outcomes based on the RE are much more difficult to interpret. However, the H distance 
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outperforms the existing methods in providing a quantitative, easily interpretable measure of 

the amount of the difference between the predictive and the realized distribution of the 

discrepancy measure (MBC). The H distance is found to be effective in detecting misfit of the 

unidimensional approach for multidimensional data and to investigate if the misfit is due to 

specific items that prevent from fulfilling the local independence assumption. In the empirical 

study, the item response data are explicitly multidimensional and the results based on the H 

distance suggest that the additive model fits the data best in comparison to the unidimensional 

and the multi-unidimensional models. 

The main strengths of the H distance, compared to traditional approaches based on PPP-

values and RE, rely on the possibility a) to directly quantify the amount of misfit; b) to be used 

for model comparison purposes, c) to make more informative analyses on item pairs. First of 

all, the estimate of the MBC-H for each item pair is a measure of the degree of observed misfit 

itself. The H distance is a proper distance metric and it is bounded in the range 0-1, where H=0 

means that the predictive and the realized distributions of the discrepancy measure overlap, 

while H=1 means that they are maximally distant. As the value for the H distance increases, 

the amount of observed misfit increases as well. Therefore, the Hellinger distance is a 

quantitative measure of misfit. Unlike the H distance, the PPP-value is used to report misfit 

when extreme values are observed and cannot be used to quantify the amount of misfit. 

Moreover, the PPP-value was found to be conservative in the sense of failing to reject an 

inadequate model (see Wu et al., 2014). Besides, the RE is not symmetric and does not have 

an upper bound, so it is not easily interpretable and comparable. Secondly, unlike the PPP-

value and the RE, the estimates of the H distance are directly comparable over different 

conditions. It is possible to use the results on MBC-H for model comparison as one can 

compare the MBC-H estimates for the item pairs for different models. This feature may be very 

useful when comparing several models, but also the same multidimensional model with a 
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different number of latent traits. Lastly, more informative analyses on item pairs can be done 

to discover unusual patterns, e.g. high MBC-H values for pairs involving the same item or 

items.  

The advantage of the Hellinger distance metric emerges especially in practical applications 

where we are interested not only in detecting misfit (all models are wrong for real data) but 

especially in quantifying the amount of misfit in order to make model comparison and choose 

the model which fits the data better than competing models. In practical applications, the H-

MBC can be used to: a) leave out the models that show serious misfit by using the threshold of 

0.5; b) compare the amount of misfit of different competing models and choose the model 

which fits the data best; c) identify, also through graphical plots, critical items that may involve 

misfit which are associated to high MBC-H in several pairs. Different degrees of misfit can be 

established by looking at the estimates of the MBC-H. This feature makes the H distance within 

PPMC a useful tool not only to assess global model fit but also to understand whether potential 

misfit can be ascribed to specific items. In this case, the researcher can evaluate the exclusion 

of one or more items from the analysis. The simulation study was needed to understand which 

values of the H distance are expected under different conditions.  

The present study provides additional evidence on PPMC and the performance of the H 

distance but several limitations should be underlined. First of all, the approach based on the H 

distance cannot be used with discrepancy measures the depend on data only, such as the MH 

statistic, which were proved to be effective in PPMC. Secondly, using measures based on item 

pairs, it is very difficult to deepen the results on single items when the number of item pairs is 

large. In this case, aggregate results are considered. A further limitation of the study is due to 

the simulation setting. The subtest length is fixed to be the same, while, in practice, the number 

of items for each test subscale may differ. Analogously, the trait correlations are all set equal. 

Lastly, the simulation study showed that, when unidimensional data are analyzed with the 
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correct model (see Table 2), the approach based on the Hellinger distance shows a weakness 

by reporting about 30% of the item pairs with MBC-H equal or higher than the threshold 0.5. 

Future research could enhance the models and the simulation settings provided in the present 

study. Furthermore, the strength of the relationship among the observed and the latent variables 

could be manipulated through the discrimination parameters. The method should be further 

validated with highly dimensional data (e.g., m=3) and for models requiring ordinal 

polytomous instead of binary responses. Moreover, the case of over-fitting where 

unidimensional data are analyzed through different multidimensional models should be 

considered as well. Finally, with the view to facilitate and improve the application of posterior 

predictive assessment, an interesting development could be to find a single discrepancy 

measure that is able to account for different aspects of fit, such as item and person fit, as well 

as overall model fit. When considering a single fit measure instead of a measure for each item 

pair, the advantage of using the H distance for model comparison will be even more relevant 

with respect to the approach based on PPP-value. In fact, under different competing models, 

the H distance values are directly comparable while the PPP-values are not. Future research on 

this topic could contribute to interesting developments. 

 

References 

Agresti, A. (2002). Categorical data analysis. New York: Wiley. DOI: 10.1002/0471249688 

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs 

sampling. Journal of Educational Statistics, 17, 251-269. DOI: 

10.3102/10769986017003251 

Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations 

defined by their probability distributions. Bulletin of Calcutta Mathematical Society, 35, 99-

109. 

https://doi.org/10.3102%2F10769986017003251


30 

 

 
 

Béguin, A. A., & Glas, C. A. W. (2001). MCMC estimation and some fit analysis of 

multidimensional IRT models. Psychometrika, 66, 471-488. DOI: 10.1007/BF02296195 

Bernini, C., Matteucci, M., & Mignani, S. (2015). Investigating heterogeneity in residents’ 

attitudes toward tourism with an IRT multidimensional approach. Quality & Quantity, 49, 

805-826. DOI: 10.1285/i20705948v11n2p427 

de la Torre, J., Song, H. (2009). Simultaneous estimation of overall and domain abilities: A 

higher-order IRT model approach. Applied Psychological Measurement, 33, 620-639. DOI: 

10.1177/0146621608326423 

Fontanella, L., Fontanella, S., Valentini, P., & Trendafilov, N. (2019). Simple structure 

detection through Bayesian exploratory multidimensional IRT models. Multivariate 

Behavioral Research, 54(1), 100-112. DOI: 10.1080/00273171.2018.1496317 

Gelman, A., Meng, X. L., & Stern, H. S. (1996). Posterior predictive assessment of model 

fitness via realized discrepancies. Statistica Sinica, 6, 733-807.  

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). 

Bayesian data analysis (Third Edition). Boca Raton, FL: CRC Press. 

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian 

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 

721-741. DOI: 10.1109/TPAMI.1984.4767596 

Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bi-factor analysis. 

Psychometrika, 57, 423-436. DOI: 10.1007/BF02295430 

Gibbons, R. D., Immekus, J. C., & Bock, R. D. (2007). The added value of multidimensional 

IRT models. Multidimensional and hierarchical modeling monograph 1. Chicago: Center 

for Health Statistics, University of Illinois. 

https://doi.org/10.1177%2F0146621608326423
https://doi.org/10.1080/00273171.2018.1496317
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Pattern_Analysis_and_Machine_Intelligence
https://doi.org/10.1109/TPAMI.1984.4767596


31 

 

 
 

Glas, C. A. W., & Meijer, R. R. (2003). A Bayesian approach to person fit analysis in item 

response theory models. Applied Psychological Measurement, 27(3), 217–233. DOI: 

10.1177/0146621603027003003 

Hellinger, E. (1909). Neue Begrundung der Theorie quadratischer Formen von unendlichvielen 

Veränderlichen. Journal für die Reine und Angewandte Mathematik, 36, 210–271. 

Hoijtink, H. (2001). Conditional independence and differential item functioning in the two-

parameter logistic model. In A. Boomsma, M. A. J. van Duijn, & T. A. B. Snijders (Eds.), 

Essays in item response theory. New York: Springer-Verlag. DOI: 10.1007/978-1-4613-

0169-1_6 

Huo, Y., de la Torre, J., Mun, E.-Y., Kim, S.-Y., Ray, A.E., Jiao, Y., & White, H.R. (2015). A 

hierarchical multi-unidimensional IRT approach for analyzing sparse, multi-group data for 

integrative data analysis. Psychometrika, 80(3), 834-855. DOI: 10.1007/s11336-014-9420-

2 

Ip, E. H. (2010). Empirically indistinguishable multidimensional IRT and locally dependent 

unidimensional item response models. British Journal of Mathematical and Statistical 

Psychology, 63, 395-416. DOI: 10.1348/000711009X466835 

Kang, H.-A., & Chang, H.-H. (2016). Parameter drift detection in multidimensional 

computerized adaptive testing based on informational distance/divergence measures. 

Applied Psychological Measurement, 40(7), 534-550. DOI: 10.1177/0146621616663676 

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical 

Statistics, 22, 79-86. DOI: 10.1214/aoms/1177729694 

Levy, R. (2011). Posterior predictive model checking for conjunctive multidimensionality in 

item response theory. Journal of Educational and Behavioral Statistics, 36(5), 672-694. 

DOI: 10.3102/1076998611410213 

https://doi.org/10.1177%2F0146621603027003003
https://doi.org/10.1348/000711009X466835
https://doi.org/10.1177%2F0146621616663676


32 

 

 
 

Levy, R., & Svetina, D. (2011). A generalized dimensionality discrepancy measure for 

dimensionality assessment in multidimensional item response theory. British Journal of 

Mathematical and Statistical Psychology, 64, 208-232. DOI: 10.1348/000711010X500483 

Levy, R., Mislevy, R. J., & Sinharay, S. (2009). Posterior predictive model checking for 

multidimensionality in item response theory. Applied Psychological Measurement, 33(7), 

519-537. DOI: 10.1177/0146621608329504 

Levy, R., Xu, Y., Yel, N., & Svetina, D. (2015). A standardized generalized dimensionality 

discrepancy measure and a standardized model-based covariance for dimensionality 

assessment for multidimensional models. Journal of Educational Measurement, 52, 144-

158. DOI: 10.1111/jedm.12070 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: 

Addison-Wesley. 

Reckase, M. (1997). A linear logistic multidimensional model for dichotomous item response 

data. In W.J. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item response 

theory (pp. 271-286). New York: Springer-Verlag. DOI: 10.1007/978-1-4757-2691-6 

Reckase, M. (2009). Multidimensional item response theory. New York: Springer-Verlag. 

DOI: 10.1007/978-0-387-89976-3 

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applies 

statistician. Annals of Statistics, 12, 1151-1172.  

Sheng, Y. (2008a). Markov chain Monte Carlo estimation of normal ogive IRT models in 

MATLAB. Journal of Statistical Software, 25(8), 1-15. DOI: 10.18637/jss.v025.i08 

Sheng, Y. (2008b). A MATLAB package for Markov chain Monte Carlo with a multi-

unidimensional IRT model. Journal of Statistical Software, 28(10), 1-20. DOI: 

10.18637/jss.v028.i10 

https://doi.org/10.1177%2F0146621608329504
http://dx.doi.org/10.18637/jss.v025.i08
http://dx.doi.org/10.18637/jss.v028.i10


33 

 

 
 

Sheng, Y. (2010). Bayesian estimation of MIRT models with general and specific latent traits 

in MATLAB. Journal of Statistical Software, 34(10), 1-27. DOI: 10.18637/jss.v034.i03 

Sheng, Y., & Wikle, C. (2007). Comparing multiunidimensional and unidimensional item 

response theory models. Educational and Psychological Measurement, 67(6), 899-919. 

DOI: 10.1177/0013164406296977 

Sheng, Y., & Wikle, C. (2008). Bayesian multidimensional IRT models with an hierarchical 

structure. Educational and Psychological Measurement, 68(3), 413-430. DOI: 

10.1177/0013164407308512 

Sheng. Y., & Wikle. C. (2009). Bayesian IRT models incorporating general and specific 

abilities. Behaviormetrika, 36(1), 27-48. DOI: 10.2333/bhmk.36.27 

Sinharay, S. (2005). Assessing fit of unidimensional item response theory models using a 

Bayesian approach. Journal of Educational Measurement, 42, 375-394. DOI: 

10.1111/j.1745-3984.2005.00021.x 

Sinharay, S. (2006). Bayesian item fit analysis for unidimensional item response theory 

models. British Journal of Mathematical and Statistical Psychology, 59, 429-449. DOI: 

10.1348/000711005X66888 

Sinharay, S., Johnson, M. S., & Stern, H. S. (2006). Posterior predictive assessment of item 

response theory models. Applied Psychological Measurement, 30, 298-321. DOI: 

10.1177/0146621605285517 

van der Linden, W.J., & Hambleton, R.K. (1997). Handbook of modern item response theory. 

New York: Springer-Verlag. DOI: 10.1007/978-1-4757-2691-6 

Wang, W-C., Chen, P-H., & Cheng Y-Y. (2004). Improving measurement precision of test 

batteries using multidimensional item response models. Psychological Methods, 9, 116-136. 

DOI: 10.1037/1082-989X.9.1.116 

http://dx.doi.org/10.18637/jss.v034.i03
https://doi.org/10.1177%2F0013164406296977
https://doi.org/10.1177%2F0013164407308512
https://doi.org/10.1111/j.1745-3984.2005.00021.x
https://doi.org/10.1348/000711005X66888
https://doi.org/10.1177%2F0146621605285517
https://doi.org/10.1037/1082-989X.9.1.116


34 

 

 
 

Wu, H., Yuen, K.V., & Leung, S.O. (2014). A novel relative entropy-posterior predictive 

model checking approach with limited information statistics for latent trait models in sparse 

2k contingency tables. Computational Statistics and Data Analysis, 79, 261-276. DOI: 

10.1016/j.csda.2014.06.004 

Yen, W. (1993). Scaling performance assessments: Strategies for managing local item 

dependence. Journal of Educational Measurement, 30, 187-213. DOI: 10.1111/j.1745-

3984.1993.tb00423.x 

Zhang, J., & Stout, W. (1999). Conditional covariance structure of generalized compensatory 

multidimensional items. Psychometrika, 64, 129-152. DOI: doi.org/10.1007/BF02294532 

Zhu, X., & Stone, C.A. (2011). Assessing fit of unidimensional graded response models using 

Bayesian methods. Journal of Educational Measurement, 48, 81-97. DOI: 10.1111/j.1745-

3984.2011.00132.x 

  

https://doi.org/10.1111/j.1745-3984.1993.tb00423.x
https://doi.org/10.1111/j.1745-3984.1993.tb00423.x
https://psycnet.apa.org/doi/10.1111/j.1745-3984.2011.00132.x
https://psycnet.apa.org/doi/10.1111/j.1745-3984.2011.00132.x


35 

 

 
 

 

Figure 1. 

Histograms of the MBC-H values on the 100 replications under different simulation conditions. Upper 

figures represent the cases in which the data-generating model is also the data-analysis model. In 

particular, from left to right, unidimensional data (item pair 2,10), multi-unidimensional data with =0.3 

(item pair 1,2), additive data with =0.6 (item pair 1,4). Lower figures represent the cases in which 

multidimensional data are analyzed with a unidimensional model. In particular, from left to right, multi-

unidimensional data with =0.6 (item pair 4,6) and additive data with =0.3 (item pair 1,2). 
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Figure 2. 

Graphical representation of extreme PPP-values for MH (on the left) and MBC (on the right) for item 

pairs for different models (data on tourism perceptions). Right triangles indicate PPP-values greater 

than 0.95; left triangles indicate PPP-values lower than 0.05. 
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Figure 3. 

Graphical representation of item pairs with a value of the MBC-H higher than 0.5 (on the left) and 

higher than 0.8 (on the right) for different models (data on tourism perceptions).  
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Figure 4. 

Scatterplots and kernel densities of the realized (MBC obs) and predictive (MBC rep) discrepancies of 

MBC for the item pair 7,10 (on the left) and the item pair 1,5 (on the right). 
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Table 1. 

Descriptive statistics for the MBC-RE and values of the GDDM-RE under different simulation 

conditions when the generating model and the estimated model are the same. 

Note. Sd is the standard deviation, Q1, Q2, and Q3 are the first, second, and third quartiles, 

respectively.  

 

 

 

  

    

   

MBC-RE Median MBC-RE 

GDDM-

RE 

   

Mea

n Sd Q1 Q2 Q3 Min Max  

Withi

n 

Within

2 

Betwee

n   

Unidimension

al   

0.69

7 

0.21

6 

0.54

6 

0.64

7 

0.85

7 

0.34

9 

1.21

1  - - - 0.512 

Multi- 

unidimensiona

l 

0.

0 

0.38

8 

0.13

3 

0.31

6 

0.39

8 

0.46

2 

0.11

0 

0.77

8  0.344 0.408 0.409 0.172 

  

0.

3 

0.39

2 

0.14

1 

0.28

9 

0.39

1 

0.47

4 

0.15

8 

0.79

4  0.271 0.274 0.406 0.182 

  

0.

6 

0.46
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0.11
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0.35

7 

0.48

4 

0.54

9 

0.25

3 

0.74

6  0.403 0.350 0.531 0.331 

  

0.
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0.79

9 

0.14
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0.68

9 

0.80

0 

0.87

4 

0.46

5 

1.17

9  0.820 0.881 0.710 6.437 

Additive 

0.
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0.42

0 

0.11

7 

0.35

1 

0.39

3 

0.46

6 

0.19

1 

0.83

0  0.359 0.362 0.448 0.355 
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9 

0.17
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0.34
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5  0.430 0.358 0.448 0.256 

  

0.

9 

0.51
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0.10
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0.44

6 

0.49

9 

0.55

5 

0.29

2 

0.75

7  0.489 0.447 0.511 0.319 
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Table 2. 

Descriptive statistics for the MBC-H and values of the GDDM-H under different simulation 

conditions when the generating model and the estimated model are the same. 

    

  

MBC-H 

 

Median MBC-H 

GDDM-

H 

   

Mea

n Sd Q1 Q2 Q3 Min Max 

Prop 

0.5 

Within

1 

Within

2 

Betwee

n   

Unidimensio

nal   

0.45

0 

0.08

2 

0.39

7 

0.43

5 

0.52

4 

0.29

5 

0.61

9 

0.31

1 - - - 0.376 

Multi- 

unidimension

al 

0.

0 

0.32

1 

0.07

2 

0.28

7 

0.33

0 

0.36

6 

0.15

8 

0.48

7 

0.00

0 0.311 0.338 0.332 0.203 

  

0.

3 

0.32

2 

0.07

3 

0.27

0 

0.32

6 

0.35

9 

0.18

6 

0.50

8 

0.02

2 0.263 0.257 0.326 0.215 

  

0.

6 

0.35

3 

0.05

2 

0.30

6 

0.35

6 

0.39

6 

0.25

3 

0.44

0 

0.00

0 0.319 0.302 0.390 0.283 

  

0.

9 

0.45

7 

0.04

4 

0.42

9 

0.45

4 

0.48

8 

0.34

6 

0.54

7 

0.13

3 0.465 0.482 0.450 0.519 

Additive 

0.

0 

0.32

7 

0.04

5 

0.30

3 

0.32

6 

0.35

2 

0.21

5 

0.44

1 

0.00

0 0.294 0.302 0.339 0.292 

  

0.

3 

0.31

9 

0.04

2 

0.28

9 

0.32

0 

0.35

2 

0.20

7 

0.38

8 

0.00

0 0.344 0.300 0.320 0.248 

  

0.

6 

0.34

1 

0.05

3 

0.29

9 

0.34

3 

0.36

9 

0.24

7 

0.50

8 

0.02

2 0.340 0.305 0.345 0.252 

  

0.

9 

0.37

8 

0.04

9 

0.34

6 

0.36

8 

0.40

3 

0.27

6 

0.50

2 

0.02

2 0.359 0.352 0.373 0.267 

Note. Prop 0.5 is the proportion of item pairs with MBC-H equal or higher than 0.5. 
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Table 3. 

Proportion of extreme PPP-values for MH and MBC and PPP-value of GDDM under different 

simulation conditions when the generating model is multidimensional (multi-unidimensional or 

additive) and the estimated model is unidimensional. 

Generating 

model  Proportion of extreme PPP-values 

GDDM 

PPP-value 

  MH MBC 

MH 

within1  

MH 

within2  

MH 

between 

MBC 

within1 

MBC 

within2 

MBC 

between    

Multi-

unidimensional 0.0 0.800 0.222 1.000 0.100 1.000 1.000 0.000 0.000 0.000 

  0.3 1.000 0.689 1.000 1.000 1.000 0.200 0.400 1.000 0.000 

  0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

  0.9 0.022 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.009 

Additive 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

  0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

 0.6 0.689 0.644 0.800 0.600 0.680 0.800 0.600 0.600 0.000 

 0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 
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Table 4. 

Descriptive statistics for the MBC-RE and values of the GDDM-RE under different simulation 

conditions when the generating model is multidimensional (multi-unidimensional or additive) and the 

estimated model is unidimensional. 

Generating 

model   

  

MBC-RE Median MBC-RE 

GDDM-

RE 

   Mean Sd Q1 Q2 Q3 Min Max 

Within

1 

Within

2 

Betwe

en   

Multi- 

unidimensional 

0.

0 Inf NaN 0.598 0.723 0.844 0.099 Inf 

212.51

8 0.405 0.715 Inf 

  

0.

3 Inf NaN 9.263 12.948 Inf 4.279 Inf Inf Inf 9.346 Inf 

  

0.

6 

17.10

8 

15.25

4 7.625 11.622 17.257 3.932 

67.99

9 41.989 9.692 10.811 Inf 

  

0.

9 1.252 0.426 1.014 1.180 1.400 0.717 3.445 1.073 1.426 1.118 27.548 

Additive 

0.

0 Inf NaN 

41.75

6 87.047 Inf 

13.17

6 Inf Inf Inf 54.548 Inf 

  

0.

3 Inf NaN 

29.12

4 37.307 61.076 

14.62

8 Inf 67.601 65.666 32.364 Inf 

  

0.

6 5.928 5.303 2.610 4.573 6.659 0.827 

24.93

1 4.599 6.051 4.153 Inf 

  

0.

9 1.118 0.317 0.954 1.050 1.158 0.505 2.098 1.424 1.072 0.995 11.488 
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Table 5. 

Descriptive statistics for the MBC-H and values of the GDDM-H under different simulation 

conditions when the generating model is multidimensional (multi-unidimensional or additive) and the 

estimated model is unidimensional. 

Generating 

model   

  

MBC-H 

 

Median MBC-H 

GDDM-

H 

   

Mea

n Sd Q1 Q2 Q3 Min Max 

Prop 

0.5 

Within

1 

Within

2 

Betwee

n   

Multi- 

unidimensional 

0.

0 

0.54

0 

0.26

1 

0.41

5 

0.45

4 

0.48

5 

0.15

0 

1.00

0 

0.22

2 1.000 0.339 0.451 1.000 

  

0.

3 

0.85

5 

0.05

7 

0.79

5 

0.86

6 

0.90

7 

0.73

9 

0.93

3 

1.00

0 0.794 0.792 0.905 1.000 

  

0.

6 

0.92

7 

0.05

5 

0.89

4 

0.94

4 

0.96

2 

0.79

7 

0.99

8 

1.00

0 0.988 0.869 0.943 1.000 

  

0.

9 

0.55

7 

0.05

0 

0.53

3 

0.55

3 

0.58

6 

0.42

8 

0.72

0 

0.93

3 0.553 0.602 0.541 0.953 

Additive 

0.

0 

0.98

3 

0.02

8 

0.98

5 

0.99

5 

0.99

9 

0.88

8 

1.00

0 

1.00

0 0.999 0.937 0.997 1.000 

  

0.

3 

0.98

9 

0.01

1 

0.98

6 

0.99

2 

0.99

6 

0.94

1 

1.00

0 

1.00

0 0.993 0.990 0.992 1.000 

  

0.

6 

0.80

6 

0.12

0 

0.72

8 

0.84

2 

0.90

0 

0.47

3 

0.97

8 

0.97

8 0.837 0.844 0.842 1.000 

  

0.

9 

0.53

5 

0.05

0 

0.50

5 

0.53

6 

0.55

2 

0.36

5 

0.64

9 

0.82

2 0.593 0.536 0.524 0.884 
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Table 6. 

Proportion of extreme PPP-values for MH and MBC and PPP-value of GDDM for the 

unidimensional, multi-unidimensional and additive models (data on tourism perceptions). 

  Proportion of extreme PPP-values 

GDDM 

PPP-value 

  MH MBC 

MH 

within1 

MH 

within2 

MH 

between 

MBC 

within1 

MBC 

within2 

MBC 

between   

Unidimensional 0.822 0.778 0.700 0.900 0.840 0.500 1.000 0.800 0.000 

Multi-unidimensional 0.311 0.289 0.200 0.400 0.320 0.300 0.200 0.320 0.000 

Additive 0.156 0.089 0.000 0.200 0.200 0.000 0.200 0.080 0.000 
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Appendix A 

Simulation results for n=2000, k=10, k1=k2=5. 

 

Table A1. 

Descriptive statistics for the MBC-RE and values of the GDDM-RE under different simulation 

conditions when the generating model and the estimated model are the same. 

 

Note. Sd is the standard deviation, Q1, Q2, and Q3 are the first, second, and third quartiles, 

respectively.  

  

    

   

MBC-RE Median MBC-RE 

GDDM-

RE 

   

Mea

n Sd Q1 Q2 Q3 Min Max  

Withi

n 

Within

2 

Betwee

n   

Unidimension

al   

0.69

1 

0.23

1 

0.54

4 

0.63

9 

0.83

5 

0.30

3 

1.37

6  - - - 0.411 

Multi- 

unidimensiona

l 

0.

0 

0.38

6 

0.15

2 

0.26

5 

0.38

5 

0.47

9 

0.15

0 

0.80

1  0.282 0.255 0.396 0.187 

  

0.

3 

0.41

5 

0.13

5 

0.32

4 

0.40

0 

0.51

1 

0.16

5 

0.79

6  0.343 0.358 0.454 0.273 

  

0.

6 

0.46

8 

0.15

5 

0.35

8 

0.46

6 

0.57

1 

0.15

4 

0.83

0  0.374 0.469 0.497 0.242 

  

0.

9 

1.15

1 

0.80

3 

0.86

3 

1.02

3 

1.13

2 

0.66

5 

6.14

2  0.956 1.196 0.988 58.819 

Additive 

0.

0 

0.36

7 

0.12

1 

0.28

8 

0.34

3 

0.42

7 

0.12

7 

0.78

8  0.335 0.308 0.382 0.218 

  

0.

3 

0.40

0 

0.09

6 

0.34

6 

0.41

4 

0.46

0 

0.17

3 

0.62

7  0.264 0.360 0.439 0.374 

  

0.

6 

0.41

6 

0.12

8 

0.33

5 

0.40

6 

0.50

3 

0.19

7 

0.88

0  0.300 0.340 0.444 0.283 

  

0.

9 

0.48

7 

0.08

8 

0.42

2 

0.47

8 

0.53

5 

0.30

6 

0.72

3  0.422 0.428 0.504 0.325 
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Table A2. 

Descriptive statistics for the MBC-H and values of the GDDM-H under different simulation 

conditions when the generating model and the estimated model are the same. 

    

  

MBC-H 

 

Median MBC-H 

GDDM-

H 

   

Mea

n Sd Q1 Q2 Q3 Min Max 

Prop 

0.5 

Within

1 

Within

2 

Betwee

n   

Unidimensio

nal   

0.44

7 

0.08

3 

0.38

4 

0.43

0 

0.50

8 

0.28

3 

0.64

3 

0.28

9 - - - 0.339 

Multi- 

unidimension

al 

0.

0 

0.31

5 

0.07

7 

0.25

6 

0.31

3 

0.36

6 

0.18

0 

0.49

9 

0.00

0 0.267 0.253 0.336 0.218 

  

0.

3 

0.32

9 

0.06

3 

0.29

4 

0.32

3 

0.37

4 

0.19

7 

0.48

8 

0.00

0 0.295 0.306 0.351 0.256 

  

0.

6 

0.35

3 

0.07

1 

0.31

4 

0.36

1 

0.40

2 

0.18

7 

0.48

5 

0.00

0 0.315 0.356 0.372 0.255 

  

0.

9 

0.48

8 

0.05

2 

0.45

2 

0.47

9 

0.53

4 

0.40

0 

0.57

4 

0.42

2 0.471 0.533 0.477 0.571 

Additive 

0.

0 

0.30

8 

0.06

1 

0.27

2 

0.30

0 

0.33

8 

0.16

8 

0.50

1 

0.02

2 0.293 0.289 0.310 0.227 

  

0.

3 

0.32

2 

0.04

6 

0.29

3 

0.33

3 

0.35

6 

0.20

7 

0.39

8 

0.00

0 0.253 0.295 0.342 0.298 

  

0.

6 

0.33

3 

0.05

8 

0.30

0 

0.33

6 

0.36

4 

0.21

5 

0.52

3 

0.02

2 0.279 0.308 0.351 0.257 

  

0.

9 

0.36

5 

0.03

6 

0.34

0 

0.36

6 

0.38

8 

0.29

1 

0.45

7 

0.00

0 0.339 0.327 0.370 0.285 

Note. Prop 0.5 is the proportion of item pairs with MBC-H equal or higher than 0.5. 
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Table A3. 

Proportion of extreme PPP-values for MH and MBC and PPP-value of GDDM under different 

simulation conditions when the generating model is multidimensional (multi-unidimensional or 

additive) and the estimated model is unidimensional. 

Generating 

model  Proportion of extreme PPP-values 

GDDM 

PPP-value 

  MH MBC 

MH 

within1  

MH 

within2  

MH 

between 

MBC 

within1 

MBC 

within2 

MBC 

between    

Multi-

unidimensional 0.0 0.844 0.000 0.300 1.000 1.000 0.000 0.000 0.000 0.000 

  0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

  0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

  0.9 0.067 0.044 0.100 0.200 0.000 0.000 0.200 0.000 0.000 

Additive 0.0 1.000 0.911 1.000 1.000 1.000 0.600 1.000 1.000 0.000 

  0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

 0.6 0.956 0.778 0.900 1.000 0.960 0.900 0.800 0.720 0.000 

 0.9 0.022 0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.002 
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Table A4. 

Descriptive statistics for the MBC-RE and values of the GDDM-RE under different simulation 

conditions when the generating model is multidimensional (multi-unidimensional or additive) and the 

estimated model is unidimensional. 

Generating 

model   

  

MBC-RE Median MBC-RE 

GDDM-

RE 

   Mean Sd Q1 Q2 Q3 Min Max 

Within

1 

Within

2 

Betwee

n   

Multi- 

unidimensiona

l 

0.

0 Inf NaN 0.820 0.956 Inf 0.643 Inf Inf Inf 0.833 Inf 

  

0.

3 Inf NaN 

41.78

1 66.299 Inf 

27.98

6 Inf Inf Inf 42.173 Inf 

  

0.

6 Inf NaN 

14.95

0 39.857 63.384 3.828 Inf 46.939 36.273 19.279 Inf 

  

0.

9 2.034 2.251 1.360 1.621 1.939 1.078 16.220 1.527 2.053 1.463 Inf 

Additive 

0.

0 Inf NaN 

13.10

9 32.261 

104.89

3 2.495 Inf 6.362 Inf 32.261 Inf 

  

0.

3 Inf NaN 

78.90

8 

109.27

8 

151.20

9 3.742 Inf Inf 87.900 99.684 Inf 

  

0.

6 

13.21

9 

18.47

1 4.885 7.397 10.789 2.264 

104.22

4 22.126 6.084 7.037 Inf 

  

0.

9 1.394 0.417 1.106 1.352 1.631 0.711 2.928 1.467 1.505 1.162 41.337 
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Table A5. 

Descriptive statistics for the MBC-H and values of the GDDM-H under different simulation 

conditions when the generating model is multidimensional (multi-unidimensional or additive) and the 

estimated model is unidimensional. 

Generating 

model   

  

MBC-H 

 

Median MBC-H 

GDDM-

H 

   

Mea

n Sd Q1 Q2 Q3 Min Max 

Prop 

0.5 

Within

1 

Within

2 

Betwee

n   

Multi- 

unidimensional 

0.

0 

0.55

0 

0.17

8 

0.43

0 

0.49

0 

0.55

1 

0.35

9 

0.90

9 

0.37

8 0.411 0.860 0.460 1.000 

  

0.

3 

0.95

1 

0.05

3 

0.91

3 

0.97

9 

0.99

0 

0.81

0 

0.99

6 

1.00

0 0.876 0.928 0.990 1.000 

  

0.

6 

0.97

2 

0.03

6 

0.95

9 

0.98

6 

0.99

8 

0.84

4 

1.00

0 

1.00

0 0.983 0.987 0.982 1.000 

  

0.

9 

0.62

6 

0.07

7 

0.57

9 

0.62

0 

0.65

4 

0.51

6 

0.94

5 

1.00

0 0.589 0.663 0.616 1.000 

Additive 

0.

0 

0.94

9 

0.08

7 

0.94

7 

0.98

9 

1.00

0 

0.67

9 

1.00

0 

1.00

0 0.833 1.000 0.989 1.000 

  

0.

3 

0.97

3 

0.06

0 

0.99

8 

1.00

0 

1.00

0 

0.79

4 

1.00

0 

1.00

0 1.000 0.997 1.000 1.000 

  

0.

6 

0.88

5 

0.08

0 

0.83

4 

0.90

4 

0.94

1 

0.71

6 

1.00

0 

1.00

0 0.973 0.851 0.900 1.000 

  

0.

9 

0.57

8 

0.05

8 

0.53

7 

0.57

5 

0.62

4 

0.44

5 

0.73

8 

0.91

1 0.571 0.614 0.558 0.984 

 

  



50 

 

 
 

Appendix B 

Simulation results for n=1000, k=20, k1=k2=10. 

 

Table B1. 

Descriptive statistics for the MBC-RE and values of the GDDM-RE under different simulation 

conditions when the generating model and the estimated model are the same. 

 

Note. Sd is the standard deviation, Q1, Q2, and Q3 are the first, second, and third quartiles, 

respectively.  

  

    

   

MBC-RE Median MBC-RE 

GDDM-

RE 

   

Mea

n Sd Q1 Q2 Q3 Min Max  

Withi

n 

Within

2 

Betwee

n   

Unidimension

al   

0.99

8 

0.18

8 

0.85

6 

1.01

1 

1.15

2 

0.52

8 

1.41

2  - - - 0.768 

Multi- 

unidimensiona

l 

0.

0 

0.69

7 

0.14

4 

0.60

5 

0.67

4 

0.76

4 

0.42

5 

1.26

9  0.643 0.725 0.680 0.547 

  

0.

3 

0.71

9 

0.13

3 

0.63

2 

0.70

5 

0.80

2 

0.42

1 

1.12

4  0.684 0.694 0.716 0.513 

  

0.

6 

0.72

5 

0.16

6 

0.60

3 

0.72

1 

0.83

7 

0.32

6 

1.24

1  0.663 0.743 0.723 0.426 

  

0.

9 

0.88

5 

0.23

6 

0.70

9 

0.85

9 

1.02

7 

0.39

5 

1.84

8  0.821 0.909 0.856 7.996 

Additive 

0.

0 

0.58

5 

0.13

0 

0.51

1 

0.56

7 

0.63

6 

0.31

1 

1.06

4  0.583 0.550 0.565 0.356 

  

0.

3 

0.66

3 

0.12

4 

0.58

2 

0.65

6 

0.72

9 

0.37

7 

1.14

2  0.663 0.653 0.655 0.494 

  

0.

6 

0.73

7 

0.12

1 

0.64

1 

0.73

6 

0.80

9 

0.49

1 

1.07

7  0.692 0.741 0.740 0.553 

  

0.

9 

0.78

9 

0.13

1 

0.69

7 

0.77

7 

0.88

0 

0.47

1 

1.14

5  0.727 0.768 0.787 0.614 
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Table B2. 

Descriptive statistics for the MBC-H and values of the GDDM-H under different simulation 

conditions when the generating model and the estimated model are the same. 

    

  

MBC-H 

 

Median MBC-H 

GDDM-

H 

   

Mea

n Sd Q1 Q2 Q3 Min Max 

Prop 

0.5 

Within

1 

Within

2 

Betwee

n   

Unidimensio

nal   

0.55

2 

0.05

7 

0.51

5 

0.56

2 

0.59

8 

0.40

0 

0.65

3 

0.84

7 - - - 0.479 

Multi- 

unidimension

al 

0.

0 

0.45

3 

0.05

1 

0.42

1 

0.44

6 

0.47

7 

0.34

3 

0.62

6 

0.14

7 0.436 0.461 0.447 0.394 

  

0.

3 

0.46

1 

0.04

8 

0.43

2 

0.45

9 

0.49

2 

0.34

9 

0.59

5 

0.21

1 0.440 0.455 0.463 0.379 

  

0.

6 

0.46

3 

0.06

0 

0.42

4 

0.46

3 

0.50

5 

0.28

2 

0.62

0 

0.27

9 0.450 0.468 0.464 0.354 

  

0.

9 

0.51

2 

0.06

3 

0.47

1 

0.51

1 

0.56

3 

0.34

7 

0.65

2 

0.56

8 0.485 0.530 0.512 0.359 

Additive 

0.

0 

0.40

7 

0.05

2 

0.37

7 

0.40

4 

0.43

1 

0.28

3 

0.58

4 

0.04

7 0.413 0.399 0.405 0.306 

  

0.

3 

0.43

7 

0.04

5 

0.41

2 

0.43

5 

0.46

2 

0.31

3 

0.58

4 

0.07

9 0.437 0.422 0.435 0.368 

  

0.

6 

0.46

5 

0.04

1 

0.43

2 

0.46

5 

0.49

2 

0.37

8 

0.57

5 

0.18

4 0.451 0.460 0.469 0.397 

  

0.

9 

0.48

5 

0.04

3 

0.45

5 

0.48

3 

0.51

7 

0.37

1 

0.59

7 

0.34

2 0.474 0.482 0.486 0.409 

Note. Prop 0.5 is the proportion of item pairs with MBC-H equal or higher than 0.5. 
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Table B3. 

Proportion of extreme PPP-values for MH and MBC and PPP-value of GDDM under different 

simulation conditions when the generating model is multidimensional (multi-unidimensional or 

additive) and the estimated model is unidimensional. 

Generating 

model  Proportion of extreme PPP-values 

GDDM 

PPP-value 

  MH MBC 

MH 

within1  

MH 

within2  

MH 

between 

MBC 

within1 

MBC 

within2 

MBC 

between    

Multi-

unidimensional 0.0 0.968 0.000 0.867 1.000 1.000 0.000 0.000 0.000 0.000 

  0.3 1.000 0.758 1.000 1.000 1.000 1.000 0.022 0.980 0.000 

  0.6 0.853 0.816 0.844 0.911 0.830 0.844 0.756 0.830 0.000 

  0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Additive 0.0 1.000 0.974 1.000 1.000 1.000 0.911 1.000 0.990 0.000 

  0.3 0.979 0.963 1.000 1.000 0.960 0.911 1.000 0.970 0.000 

 0.6 0.689 0.663 0.622 0.689 0.720 0.778 0.444 0.710 0.000 

 0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
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Table B4. 

Descriptive statistics for the MBC-RE and values of the GDDM-RE under different simulation 

conditions when the generating model is multidimensional (multi-unidimensional or additive) and the 

estimated model is unidimensional. 

Generating 

model   

  

MBC-RE Median MBC-RE 

GDDM-

RE 

   Mean Sd Q1 Q2 Q3 Min Max 

Withi

n1 

Within

2 

Betwe

en   

Multi- 

unidimensional 

0.

0 Inf NaN 1.158 1.374 Inf 0.958 Inf Inf Inf 1.167 Inf 

  

0.

3 Inf NaN 5.167 12.241 27.790 1.234 Inf 

228.1

58 2.816 11.972 Inf 

  

0.

6 

11.73

9 

15.13

7 4.978 7.273 12.079 1.778 

124.59

9 

12.33

3 7.188 6.663 Inf 

  

0.

9 1.485 0.371 1.285 1.421 1.567 1.071 3.690 1.296 1.595 1.418 Inf 

Additive 

0.

0 Inf NaN 

18.33

1 39.912 80.801 2.758 Inf 

23.44

3 

109.34

2 38.048 Inf 

  

0.

3 Inf NaN 

14.58

8 33.294 56.490 2.155 Inf 

18.20

7 60.132 33.294 Inf 

  

0.

6 7.927 8.630 3.530 5.603 9.379 1.496 74.654 7.119 3.422 5.603 Inf 

  

0.

9 1.388 0.268 1.230 1.349 1.508 0.800 2.907 1.445 1.266 1.359 78.615 
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Table B5. 

Descriptive statistics for the MBC-H and values of the GDDM-H under different simulation 

conditions when the generating model is multidimensional (multi-unidimensional or additive) and the 

estimated model is unidimensional. 

Generating 

model   

  

MBC-H 

 

Median MBC-H 

GDDM-

H 

   

Mea

n Sd Q1 Q2 Q3 Min Max 

Prop 

0.5 

Within

1 

Within

2 

Betwee

n   

Multi- 

unidimensional 

0.

0 

0.64

2 

0.14

3 

0.55

2 

0.57

3 

0.66

2 

0.47

8 

0.92

0 

0.97

4 0.549 0.890 0.564 1.000 

  

0.

3 

0.89

3 

0.12

4 

0.86

2 

0.94

4 

0.98

4 

0.59

7 

1.00

0 

1.00

0 1.000 0.679 0.944 1.000 

  

0.

6 

0.90

0 

0.06

6 

0.86

0 

0.90

8 

0.95

3 

0.72

4 

1.00

0 

1.00

0 0.956 0.874 0.909 1.000 

  

0.

9 

0.62

8 

0.03

8 

0.60

1 

0.62

5 

0.64

6 

0.55

5 

0.78

4 

1.00

0 0.605 0.657 0.626 1.000 

Additive 

0.

0 

0.97

4 

0.04

4 

0.96

5 

0.99

5 

0.99

9 

0.78

2 

1.00

0 

1.00

0 0.956 0.999 0.995 1.000 

  

0.

3 

0.96

9 

0.05

2 

0.96

7 

0.99

4 

0.99

8 

0.70

9 

1.00

0 

1.00

0 0.967 0.998 0.994 1.000 

  

0.

6 

0.86

6 

0.08

7 

0.80

6 

0.88

5 

0.93

4 

0.62

8 

0.99

9 

1.00

0 0.899 0.798 0.890 1.000 

  

0.

9 

0.61

8 

0.03

9 

0.59

6 

0.61

7 

0.64

1 

0.48

6 

0.75

5 

0.98

9 0.633 0.605 0.618 0.993 
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Appendix C 

Generating and estimated model parameters for multi-unidimensional data (=0) analyzed 

with the unidimensional model in the simulation study with n=1000, k=10. 

 

Table C1. 

Generating item discrimination () and difficulty () parameters for the multi-unidimensional 

data with =0. 

Item  Subtest v  

1 v=1 1.044 -1.116 

2  1.249 -1.320 

3  1.531 1.613 

4  1.988 1.526 

5   1.133 -1.475 

6 v=2 1.989 1.056 

7  1.758 -1.989 

8  1.730 1.881 

9  1.636 1.115 

10   1.561 -1.427 
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Table C2. 

Estimated item discrimination () and difficulty () parameters with the unidimensional 

model when data are generated from a multi-unidimensional model with =0. 

 

Item   Sd()  Sd() 

1 0.049 0.034 -0.819 0.045 

2 0.022 0.020 -0.908 0.046 

3 0.054 0.038 0.869 0.046 

4 0.048 0.034 0.659 0.042 

5 0.105 0.050 -1.020 0.048 

6 1.902 0.196 0.937 0.107 

7 2.332 0.328 -2.588 0.295 

8 1.733 0.204 1.960 0.194 

9 1.871 0.208 1.105 0.128 

10 1.142 0.111 -1.243 0.089 

 

 


