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Abstract: Candida spp. are an important opportunistic pathogen that can represent a possible cause of
severe infections, especially in immunocompromised individuals. The clinical impact of Candida spp.
depends, in part, on the ability to form biofilms, communities of nestled cells into the extracellular
matrix. In this study, we compared the biofilm formation ability of 83 strains of Candida spp. isolated
from blood cultures and other materials, such as respiratory samples, urine, and exudate, and their
sensitivity to fluconazole (FLZ). Strains were divided into tertiles to establish cut-offs to classify
isolates as low, moderate, or high biofilm producers (<0.26, 0.266–0.839, >0.839) and biofilms with low,
moderate, or high metabolic activity (<0.053, 0.053–0.183, >0.183). A non-linear relationship between
biofilm production and metabolic activity was found in C. glabrata and C. tropicalis. In addition, the
increase in minimum biofilm eradication concentrations (MBEC50) compared to the Minor Inhibitory
Concentration (PMIC) of the planktonic form in Candida spp. confirms the role of biofilm in the
induction of resistance to FLZ.

Keywords: Candida spp.; fluconazole; biofilm; antifungal susceptibility; blood culture

1. Introduction

Candida spp. are normally commensal yeasts of the human gastrointestinal tract,
mucous membranes, and skin. The breach of gastrointestinal and skin barriers, caused
by factors such as trauma, infections, medical interventions, such as the insertion of an
intravascular catheter, or compromised health conditions, can facilitate the onset of in-
vasive infections, such as candidiasis [1]. The use of catheters is certainly a factor that
influences the formation of biofilms, representing a greater risk in superficial and systemic
fungal infections, especially in immunocompromised patients. The patient populations
most at risk are the elderly, premature newborns, and those with compromised immune
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systems due to HIV, chemotherapy, or transplant-necessitated immunosuppression ther-
apy [1]. Biofilms represent communities of microorganisms embedded in an extracellular
polymeric substances (EPS) matrix adhered to the surface and are often associated with
clinical infections [2].

C. albicans is the most frequent pathogen responsible for systemic candidiasis, followed
by C. tropicalis, reported in Central Nervous System (CNS) infections and associated with
renal microabscesses [3]. C. parapsilosis has emerged as the second or third leading cause of
invasive candidiasis in Asia, Southern Europe, and Latin America; furthermore, it has been
identified as the first or second agent of candidiasis in superficial infections [4], whereas C.
glabrata, typically found in human skin, is mainly associated with catheter-related infections
and as a major contributor to one-third of neonatal Candida spp. infections, with an approx-
imate 10% mortality rate [1,5]. Despite all the advances in medical practices and diagnostic
methods, hematogenous candidiasis has a crude mortality rate of approximately 50% [6].

The ability of Candida spp. to form biofilms is a crucial factor involved in their
virulence; indeed, it prevents the penetration of substances through their dense EPS matrix,
significantly reducing its susceptibility to antifungal drugs [1,7,8]. Biofilm development
also weakens the host immune response by hindering macrophage phagocytosis and
antibody activity [1,7], representing a severe threat to the Public Health System with serious
outcomes. Typically, microbial biofilms exhibit a higher Minimum Biofilm Eradication
Concentration (MBEC) compared to the normal Minimum Inhibitory Concentration of
planktonic cells (PMIC) [2,9]. Increased resistance to antifungals caused by biofilms can be
attributed to several factors: the expression of new regulatory genes, the presence of the
EPS matrix, the presence of efflux pumps, and the existence of persister cells. These factors
prevent drug absorption, induce degradation, or delay their diffusion to the innermost
cell layers [9].

The specific type and dose of antifungal medication used to treat invasive candidiasis
usually depends on the patient’s age, immune status, and location and severity of the
infection. For most adults, the initial recommended antifungal treatment for invasive can-
didiasis is an echinocandin (caspofungin, micafungin, or anidulafungin) given through the
vein (intravenous or IV). Fluconazole (FLZ), amphotericin B (AMB), and other antifungal
medications may also be appropriate in certain situations [10].

However, the increased resistance of Candida spp. towards antifungals is attracting
attention, especially in invasive candidiasis caused by C. parapsilosis, but also from C. auris.
In this study, we considered it important to test the resistance to FLZ because it has recently
been subject to an increase in resistance in Candida spp. [11] and to evaluate the ability of
biofilm production and metabolic activity in different Candida spp. isolated from blood
culture and materials from different body sites.

Various methods have been employed to assess biofilm formation and resistance to an-
tifungals in clinical isolates: the air-dry method, Crystal Violet (CV) staining, and the evalu-
ation of metabolic activity using specific reagents like Alamar Blue, (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT), or 2,3-bis-(2-methoxy-4-nitro-5-
sulphenyl)-(2H)-tetrazolium-5-carboxanilide tetrazolium (XTT) [12,13]. Additionally, the
presence of genes linked to biofilm formation can be investigated through molecular assays.
In this view, the assessment of biofilm formation holds the possibility to improve patient
therapy with the correct dose of antifungal medication, based on the susceptibility status of
the infecting species.

2. Materials and Methods
2.1. Isolates

We analyzed 83 strains of Candida spp.: 38 C. albicans, 26 C. parapsilosis, 11 C. glabrata,
and 8 C. tropicalis, isolated from various sources as blood cultures and other materials
(respiratory samples, urine, and exudate) (Table 1). The specimens were collected between
September 2022 and March 2023 at the O.U. Microbiology—The Greater Romagna Hub
Laboratory, Cesena, Italy.
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Table 1. Classification according to the original material of the total number of Candida spp. samples
included in the study. Other materials: respiratory samples, urine, and exudate.

Candida
albicans

Candida
parapsilosis

Candida
glabrata

Candida
tropicalis Total

Blood 21 23 7 6 57
Other materials 17 3 4 2 26

Total 38 26 11 8 83

Additionally, three quality control strains of C. albicans (ATCC 14053™), C. parapsilosis
(ATCC 22019™), and C. glabrata (ATCC MYA-2950™) were included in the study. All isolates
were identified using Vitek® MS (bioMérieux, Marcy l’Etoile, France).

We included in this study Candida spp. that are observed more frequently in episodes
of invasive candidiasis, excluding C. krusei because it is already intrinsically resistant
to FLZ.

2.2. Evaluation of Biofilm
2.2.1. Assessment of Biofilm Production Using Air-Dry Method

The strains were initially cultured on CAN2 Chromid agar (bioMérieux, Marcy l’Etoile,
France) at 37 ◦C for 24 and 48 h. Subsequently, the colonies of each strain were sub-cultured
in Roswell Park Memorial Institute (RPMI) 1640 medium, containing L-glutamine, exclud-
ing bicarbonate (Gibco, Carlsbad, CA, USA), with a final suspension of 1 × 107 CFU/mL
of the sample, and were dispensed into flat-bottomed 96-well plates (SPL LifeSciences,
Geumgang-ro, Pocheon, Republic of Korea). This is a fast and reliable test which allows
multiple isolates to be evaluated simultaneously.

The biomass was assessed at different times (2, 24, and 48 h) of incubation to examine
the cell adhesion and the EPS matrix production. A volume of 100 µL of the sample sus-
pension was added to each well, using the medium alone as negative control. Each strain
was analyzed in triplicate. After 2 h of incubation at 37 ◦C, unattached cells were removed
by washing three times each well using Dulbecco’s Phosphate-Buffered Saline (D-PBS)
(Gibco, Carlsbad, CA, USA), followed by drying the wells to room temperature for 30 min
(min). The assessment of the biomass was performed using the spectrophotometer plate
reader (Digital and Analog System, Palombara Sabina, Italy) at 405 nm.

2.2.2. Assessment of Biofilm Production Using Crystal Violet Staining

The assessment of biofilm production at the 3 different times was conducted also using
CV staining. Each well, after biofilm growth as descripted in Section 2.2.1, was stained
with 55 µL of a 0.4% aqueous CV and incubated for 30 min. Subsequently, the wells were
washed three times with 200 µL of sterile water and destained using 100 µL of 95% ethanol.
After 30 min incubation, 100 µL of the destaining solution was transferred to a new plate
and measured at 595 nm.

2.2.3. Assessment of Metabolic Activity Using Alamar Blue Reduction Assay

The cells’ metabolic activity was assessed using an AB reagent. A volume of 100 µL of
new RPMI and 10 µL of AB was added to each well after the 3 growth times (2, 24, and 48 h)
and washing with D-PBS. The plates were incubated in the dark at 37 ◦C for 1–3 h and then
read with spectrometer at 570 nm. The absorbance values of the negative control wells
(without cells) were subtracted from the test values to correct any background absorbance.

2.3. MBEC50 and PMIC Evaluation

Dilution methods, particularly the broth microdilution used in this study, allow the
establishment of minimum inhibitory concentrations (MICs) of antimicrobial agents and
represent the gold standard for antimicrobial susceptibility testing. In our study, we followed
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the broth microdilution protocol for fungi, according to the EUCAST model, as described
by the EUCAST protocol E.Def 7.4 [14], which we will describe in the next paragraphs.

2.3.1. Fluconazole Stock Solution

Scaled dilutions of FLZ (16–0.03 mg/L) (Fresenius Kabi, Bad Homburg vor der Höhe,
Germany) were prepared in sterile water. These solutions were subsequently further
diluted in RPMI (1X or 2X) following the EUCAST protocol E.Def 7.4 [14], utilizing the
plate layout detailed in Table 2. Different types of media were implied for the biofilm
and planktonic forms evaluation: RPMI-1640 1X and RPMI-1640 2X, respectively, both
containing 2% glucose and 3-(N-morpholino) propane sulfonic acid (MOPS). The RPMI
2X was prepared at double strength to enable a subsequent 50% (1:1) dilution upon the
addition of planktonic inoculum following EUCAST guidelines.

Table 2. Plate layout used in the protocol. On the x axis, the fluconazole concentrations
(from 16 to 0.03 µg/mL) were reported; on the y axis, the number of sample (from 1 to 8)
was reported.

16 8 4 2 1 0.5 0.25 0.13 0.06 0.03 CP CN

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8
CN: negative control; CP: positive control.

2.3.2. Planktonic MICs (PMICs)

The susceptibility of planktonic cells to FLZ was determined using a microdilution
assay following the EUCAST method [14] to establish the Planktonic Minimum Inhibitory
Concentration (PMIC). A volume of 100 µL of 2X RPMI medium at a scalar concentration of
FLZ with 100 µL of final planktonic suspension between 0.5 × 105 and 2.5 × 105 CFU/mL
was inoculated into the wells. Then, they were assessed after 24 h and compared to drug-
free growth controls. FLZ PMIC values were determined as the lowest drug concentration
inhibiting ≥ 50% of growth compared to the drug-free control.

The PMIC values obtained were compared with those from the microdilution as-
say performed using the SensititreTM YeastOne (ThermoScientific, Waltham, MA, USA)
reference assay in our laboratory routine.

2.3.3. Minimum Biofilm Eradication Concentrations (MBECs)

After 24 h of biofilm growth, according to the previous described protocol but without
biomass assessment, the wells were washed three times with D-PBS and 100 µL of two-fold
scalar diluted FLZ in 1X RPMI medium was added to the microtiter plate wells and then
incubated for 24 h at 37 ◦C. The second-to-last and last column of the microtiter plates
served as positive controls (biofilm without drug) and negative controls (medium only).
After exposure to the drug, the biofilms were analyzed using a spectrophotometer and
metabolic activity was determined using the AB reduction assay. MBEC50 for FLZ was
defined as the lowest drug concentration inhibiting metabolic activity by 50%, in relation
to the drug-free growth control well.
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2.4. Statistical Analysis

The various conditions of biofilm growth were evaluated based on the mean of three
replicates and the standard deviation (SD) was determined. The results obtained were
evaluated through ANOVA analysis, considering a significance level for p-values of 0.05.
Normalization was conducted for each dataset. For each procedure, the strains were
categorized into terciles according to their biofilm production and metabolic activity. This
categorization established cut-off values to classify strains as having low (LBF < 0.26),
moderate (MBF = 0.266–0.839), or high (HBF > 0.839) biofilm-forming capabilities and
low (LMA < 0.053), moderate (MMA = 0.053–0.183), or high (HMA > 0.183) metabolic
activities. All statistical analyses and graphs were performed using Stata/SE17 (StataCorp,
Lakeway, TX, USA). The value of the negative control was subtracted from each absorbance
of the samples.

However, in the statistical evaluation of the resistance increase from the planktonic
form to the biofilm, all Candida strains were divided based on their susceptibility and
resistance to FLZ, according to the EUCAST breakpoints [15]. By subtracting the number
of strains resistant according to the PMIC from the number of strains resistant according
to the MBEC50 and dividing by the total number of strains (resistant and susceptible), the
accurate value of the resistance percentage was obtained.

3. Results

The results obtained were described based on the evaluation of biomass (air-dry and
CV), the metabolic activity (AB), and the susceptibility to FLZ from MBEC50 and PMIC.
The interpretation of the data was conducted taking three parameters into consideration:
the species, the materials, and growth time.

3.1. Biofilm Quantification Assays

The results of the air-dry method performed at 2, 24, and 48 h demonstrate that the
parameter with a statistically significant difference in all analyzed strains is the growth
of the biomass in time (p = 0.0000) (Figure 1), with the only exception of C. glabrata with
a p = 0.1215. All the optical densities (OD) obtained, averaging the data obtained with
spectrophotometer for the three times (2, 24, and 48 h) and for each Candida strain, are
described in Table 3. The second method, CV staining, presents the advantage of providing
a more marked quantification compared to air-drying (Table 3). By this protocol, the
growth time appears to be significant (p = 0.000) in respect to the species (p = 0.3897)
and the material (p = 0.4412), while the growth analysis appears to be a significant for all
species: C. albicans p = 0.0000, C. parapsilosis p = 0.0022, C. tropicalis p = 0.000, and C. glabrata
p = 0.0197 (Table 3, Figure 2), unlike the air-dry method.

Table 3. Mean absorbance values and standard deviation of the Candida spp. at the three times
(2, 24, and 48 h) and with the three methods (air-dry, Crystal Violet and Alamar Blue).

Candida
albicans

OD ± SD

Candida
parapsilosis

OD ± SD

Candida
glabrata

OD ± SD

Candida
tropicalis
OD ± SD

AIR-DRY 2H 0.015 ± 0.025 0.010 ± 0.018 0.007 ± 0.008 0.006 ± 0.015
AIR-DRY 24H 0.069 ± 0.084 0.030 ± 0.064 0.010 ± 0.008 0.074 ± 0.025
AIR-DRY 48H 0.137 ± 0.121 0.051 ± 0.080 0.025 ± 0.038 0.134 ± 0.065

CV 2H 0.240 ± 0.202 0.219 ± 0.253 0.163 ± 0.119 0.345 ± 0.373
CV 24H 0.846 ± 0.785 0.446 ± 0.715 0.290 ± 0.247 1.694 ± 0.910
CV 48H 1.755 ± 1.210 0.636 ± 0.861 0.456 ± 0.462 2.196 ± 0.942
AB 2H 0.142 ± 0.213 0.154 ± 0.205 0.034 ± 0.040 0.103 ± 0.143

AB 24H 0.133 ± 0.127 0.052 ± 0.084 0.182 ± 0.257 0.114 ± 0.053
AB 48H 0.195 ± 0.158 0.129 ± 0.216 0.184 ± 0.260 0.150 ± 0.044

OD ± SD: Optical density ± Standard Deviation; CV: Crystal Violet; AB: Alamar Blue; H = hours.
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(e–h), the absorbance was reported on the y axis. Graph by Stata/SE17. In all strains is observed
a constant increase over time in biomass on both materials (p < 0.05). The out-of-scale points in the
box plot represent some isolated data obtained from strains with high capacity to form biofilm.
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The distribution of isolates based on CV results was divided into terciles to establish
cut-offs [16]. The Candida spp. with HBF both in blood cultures and other materials were C.
tropicalis and C. albicans, while C. glabrata presents LBF in blood cultures, followed by C.
parapsilosis; in the other material, the LBF strains were C. parapsilosis, followed by C. glabrata
(Figure 3). Additional details of each strain are also shown in Table S1 of the Supplementary
Materials.
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Figure 3. Percentage values of tertile groupings of high, medium, and low biofilm-producing
strains of Candida spp. based on material. C. tropicalis and albicans appear to be the species with
the highest number of strains in the HBF category, in contrast to C. parapsilosis and glabrata, which
show high percentages of strains in the LBF category, confirming the following scale of produc-
ers: C. tropicalis > C. albicans > C. parapsilosis > C. glabrata. LBF: low biofilm forming; MBF: moderate
biofilm forming; HBF: high biofilm forming.

The rank scale for biofilm producers as determined through CV staining was
C. tropicalis > C. albicans > C. parapsilosis > C. glabrata for both blood cultures and other materials.

3.2. Biofilm Metabolic Activity by Alamar Blue Reduction Assay

The AB reduction assay was used to quantify cells of biofilm with metabolic activity,
as a measure of Candida spp. proliferation. The distribution of values strains does not show
a linear increase for any species (p = 0.1704) in relation to the material (p = 0.0604) and time
(p = 0.0780) (Figure 4), demonstrating poor correlation of the metabolic activity with the
growth time.

The Candida spp. with HMA from blood cultures were C. albicans, followed by
C. glabrata and C. tropicalis, while C. parapsilosis presents LMA. In other materials, C. albicans
presents HMA, followed by C. tropicalis, while C. parapsilosis and C. glabrata showed both
100% of LMA (Figure 5, Table 3). Additional details of each strain are also shown in
Table S1 of the Supplementary Materials.

A poor correlation was observed between metabolic activity and the ability to form
biomass. Indeed, C. glabrata shows an MMA and HMA relative to its LBF category and
C. tropicalis shows an MMA relative to its HBF category. C. albicans and parapsilosis, on the
other hand, show correlation.
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3.3. Planktonic and Biofilm Susceptibility Testing

The results obtained on the sensitivity of Candida spp. to FLZ allow us to evaluate the
MBEC50 and PMIC. According to the EUCAST breakpoints for yeasts [15], it was found that
there was an increase in MIC > 80% for all strains of Candida spp. in the biofilm compared
to the plaktonic form. In detail, 86.8% (33/38) in C. albicans, 73% (19/26) in C. parapsilosis,
81.8% (9/11) in C. glabrata, and 87.5% (7/8) in C. tropicalis. This increase in MIC > 80% was
evaluated in all Candida strains that had, from the initial PMIC, an increase in MIC value of
at least one serial two-fold dilution (Table S1).
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However, looking specifically at each Candida strain with an increase in MIC and
resistance, and considering the data obtained for LBF, MBF, and HBF, we observed that
the increase in biomass was often correlated with an increase in FLZ resistance, as we can
see from the percentages in Figure 6. Indeed, we divided the Candida spp. based on their
origin (blood cultures and other materials) and based on the strain, categorizing them
according to their ability to form biofilms (LBF, MBF, and HBF) and their susceptibility to
FLZ, according to the EUCAST breakpoints for yeasts [15]. Based on the data obtained
from the statistical analysis explained in Section 2.4, we found an increase in FLZ resistance
in Candida spp. with a greater ability to form biofilms, such as C. tropicalis (100%, MBF
category) and C. albicans (75%, HBF and MBF categories), especially in blood cultures, while
LBF strains (C. parapsilosis and C. glabrata) showed a slight increase in resistance (<50%). In
other materials, the strains with a greater ability to form biofilms were C. albicans (80% and
86% in MBF and HBF categories, respectively) and C. tropicalis (100% MBF category). In
the cases of C. parapsilosis (MBF category) and C. tropicalis (LBF category), the data did not
show any increase in resistance to FLZ both in biofilm and planktonic forms (0%) (Figure 6).
The rest of the data were not included because there were no strains present in that category.
All the detailed results are reported in Table S2 of the Supplementary Material.
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4. Discussion and Conclusions

Candida spp. is recognized as a major fungal agent of nosocomial and systemic infec-
tions, where medical devices and biofilm production play a relevant role in bloodstream
infections [2]. The ability of Candide spp. to form biofilms represents an important viru-
lence factor that confers worse prognoses in patients [16]; therefore, its formation and the
susceptibility that its presence confers to antifungals deserves a detailed study. In fact,
in this study, we compared two different procedures to quantify biofilm production fre-
quently described in the literature: the air-dry method, CV staining, and the AB reduction
assay to quantify the metabolic activity of active cells. Since CV stains the metabolically
active and inactive cells in mature biofilms, it is probably the most appropriate and reliable
test for determining bulk biofilm formation and discriminating high, medium, and low
biofilm-producing strains; in fact, in this study, we observed that the CV produces marker
data, providing a clearer analysis (Table 3) [2].

However, by analyzing the spectrometry data (Table 3) obtained with the air-dry and
CV methods, we obtained a similar trend in biomass formation in the different strains,
leading to a statistically significant result on biofilm growth over time in each species. The



Microorganisms 2024, 12, 153 10 of 12

following pattern was deduced: C. tropicalis > C. albicans > C. parapsilosis > C. glabrata, as
also described by Zambrano et al. [16].

The different categories of biofilm producers were evaluated through tertile analysis,
confirming the strong ability to form biofilms (MBF and HBF) by Candida spp., such
as C. tropicalis and C. albicans, followed by a more moderate biofilm (LBF), instead, in
C. parapsilosis and C. glabrata.

One of the most interesting observations when comparing the most productive biofilm
strains with metabolic activity is that they seem to have no proportional correlation.

It is not yet known which of the two characteristics (biofilm production or metabolic
activity) confer on Candide spp. greater colonization and, consequently, complications in
eradication.

Some species associated with HBF are not associated with HMA; for example, C. glabrata
from blood cultures showed HMA but LBF. Therefore, C. glabrata strains appear to be
metabolically more active than cells of other species, which appear to have a high biomass;
an opposite trend occurred instead in C. glabrata coming from other materials. This offers
important view on biofilm producer strains and how the source of colony infection can
influence the pathogenic potential of Candida strains.

On the contrary, C. tropicalis is classified as HBF but MMA. In this case, the HBF
could compromise the diffusion of nutrients and oxygen in the matrix due to the compact
structure of the biofilm, preventing strong metabolic activity between cells, as described
from scanning electron microscopy (SEM) images by Zambrano et al. [16], in which it was
observed that LBF strains had less thick and compact structures, while the morphology of
MBF and HBF strains was dense and covered the entire disc surface.

The C. albicans and C. parapsilosis strains instead showed good correlation between
metabolic activity and biofilm production; in fact, the C. albicans strains are HBF but also
HMA, while C. parapsilosis is mainly LBF with LMA.

The primary therapeutic approach for invasive infections also involves FLZ or, alter-
natively, polyenes and echinocandins. Nevertheless, there has been a consistent global
increase in resistance in recent years, particularly in the context of nosocomial outbreaks [11].
In this study, we were able to see, as already highlighted in the literature, that C. parapsilosis
has developed marked resistance towards FLZ over time [17]. Indeed, epidemiological
data from 2018 to 2022, obtained from the analysis of bloodstream infections in Romagna,
Italy, demonstrate a rise in blood infections linked to C. parapsilosis and an increase in azole
resistance, with fluconazole resistance rising from 19% in 2018 to 52% in 2022. Regarding
the susceptibility, in our study, the attention was focused mainly on the PMIC and MBEC50
against FLZ, evaluating a drug concentration in a range of 0.03–16 mg/L. The results show
an increase in at least one serial two-fold dilution in MBEC50 compared to PMIC < 80% in all
strains; in particular, C. albicans with 86.8% (33/38) and C. glabrata with 87.5% (Table S1) [16].
In detail, the results of our C. parapsilosis isolates indicate that no significant increase in
the minimum biofilm eradication concentration at 50% (MBEC50) was observed compared
to the planktonic minimum inhibitory concentration (PMIC), considering the high initial
MIC value (Table S1), while for the other strains, an increase in biofilm resistance compared
to the planktonic form was confirmed, as in the literature, and a marked correlation was
found between resistance to FLZ and MBF and HBF, caused by the presence of the EPS
matrix which prevents its penetration, and also due to the presence of efflux pumps and
the presence of persister cells (Figure 6) [18]. This correlation is further confirmed the data
observed in the literature, where an increase in resistance by the biofilm not only to FLZ
but also to other antifungals, such as AMB, has been demonstrated [9,16,19].

This constitutes significant data considering that the mortality rate of patients affected
by biofilm candidiasis is equal to 70% [20]. However, this correlation has been debated by
several authors, such as Monfredini et al. and Atiencia-Carrera et al., reporting different
mortality rates (25–70%) [6,20].
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The results were evaluated according to the EUCAST guidelines [14]. The susceptibility
values confirm an acquisition of resistance to FLZ by the biofilms in respect to the planktonic
form, as can be seen from the MIC values in Table S1.

This study represents an excellent starting point for the study of biofilms, which could
be further investigated with additional antifungals and specimens from different sources.
To our knowledge, there are no works in the literature comparing the growth capacity of
biofilms of different Candida spp. coming from blood cultures and other materials, as in
our case.

In conclusion, the standardization of in vitro assays has allowed us to evaluate the
extent of biofilm production at different time points of Candida spp. from different sources
and to correlate the biofilm production with the metabolic activity. It highlights the impor-
tance of assessing biofilm production with therapeutic strategies, avoiding unproductive
treatments among hospitalized patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12010153/s1. Table S1: The following table contains
all the information acquired during the work to perform the statistical analysis of the data. It includes
the PMIC and MBEC50 values for each individual Candida strain, from which susceptibility could
be assessed according to the EUCAST reference breakpoints [15]. For each strain, the respective
category of low, medium and high biofilm producer and low, medium and high metabolic activity,
evaluated according to tertile analysis, is also given. Table S2: The increase in resistance by moving
from PMIC to MBEC50 can be seen in the table. For statistical analysis, each Candida species analyzed
was divided according to LBF, MBF, and HBF categories and according to the degree of susceptibility
(S, I, R), based on the respective reference breakpoints listed by EUCAST [15].
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