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Surrogate models provide new 
insights on metrics based on blood 
flow for the assessment of left 
ventricular function
Dario Collia1, Giulia Libero1, Gianni Pedrizzetti2 & Valentina Ciriello1*

Recent developments on the grading of cardiac pathologies suggest flow-related metrics for a deeper 
evaluation of cardiac function. Blood flow evaluation employs space-time resolved cardiovascular 
imaging tools, possibly integrated with direct numerical simulation (DNS) of intraventricular fluid 
dynamics in individual patients. If a patient-specific analysis is a promising method to reproduce flow 
details or to assist virtual therapeutic solutions, it becomes impracticable in nearly-real-time during 
a routine clinical activity. At the same time, the need to determine the existence of relationships 
between advanced flow-related quantities of interest (QoIs) and the diagnostic metrics used in the 
standard clinical practice requires the adoption of techniques able to generalize evidences emerging 
from a finite number of single cases. In this study, we focus on the left ventricular function and use a 
class of reduced-order models, relying on the Polynomial Chaos Expansion (PCE) technique to learn 
the dynamics of selected QoIs based on a set of synthetic cases analyzed with a high-fidelity model 
(DNS). The selected QoIs describe the left ventricle blood transit and the kinetic energy and vorticity at 
the peak of diastolic filling. The PCE-based surrogate models provide straightforward approximations 
of these QoIs in the space of widely used diagnostic metrics embedding relevant information on left 
ventricle geometry and function. These surrogates are directly employable in the clinical analysis as 
we demonstrate by assessing their robustness against independent patient-specific cases ranging 
from healthy to diseased conditions. The surrogate models are used to perform global sensitivity 
analysis at a negligible computational cost and provide insights on the impact of each diagnostic 
metric on the QoIs. Results also suggest how common flow transit parameters are principally dictated 
by ejection fraction.

The study of fluid dynamics inside the left ventricle (LV) of the human heart is of considerable interest for the 
identification of long and short-term pathologies1,2. Several studies in the literature have highlighted how flow-
mediated metrics participate to the progression or regression of cardiac pathologies3,4, making intracardiac fluid 
dynamics an increasingly integral part of clinical evaluations. Cardiovascular imaging allows, to some extent, 
to measure cardiac fluid dynamics in vivo with results that are accumulating5. To date, various diagnostic tech-
niques are used for the identification of flow-related LV functional properties through the use of tools such as 
2D-transthoracic echocardiography, 4D-transesophageal echocardiography, and cardiac magnetic resonance 
(CMR), even though they present several limitations and are not routinely employed in clinical applications. At 
the same time, the direct numerical simulation (DNS) of the equation governing blood flow, carefully integrated 
with the boundary information obtained from routine diagnostic imaging, represents an alternate approach that 
is becoming popular in clinical research involving intraventricular fluid dynamics6–8; this approach is demon-
strating usefulness for analyzing patient-specific cardiac flow conditions2,9. DNS also represents a viable tool 
to integrate existing imaging technology and extend it with the capability of reproducing flow details in virtual 
conditions corresponding to hypothetical therapeutic solutions10.

The standard clinical assessment of cardiac pathology is based on a series of quantitative metrics that are 
directly or indirectly related to LV flow. First, the ejection fraction (EF), i.e. the reduction of LV volume normal-
ized with the initial value, represents the main measure of myocardial contraction and it is critical to describe 
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the cardiac systolic LV function11. Another clinical metric commonly employed to describe diastolic function is 
the ratio E/A12; it is defined as the ratio between the early (E-wave) and atrial (A-wave) peaks of the mitral inflow 
velocity, that is measured from pulsed-wave Doppler. This metric is used—in conjunction with others- for the 
classification of diastolic dysfunction as it reveals to which degree the LV fills passively during the early phase 
of diastole and how much LV filling must rely on the active support of atrial contraction to be completed13,14. As 
for LV geometry, the ventricular length and diameter measured at the end of diastole (End-Diastolic-Length, 
EDL, and End-Diastolic-Diameter, EDD) are also important determinants of the ventricular function15. All such 
metrics affect intracardiac blood flow although they do not represent direct measurements of fluid dynamics 
phenomena. More sophisticated tools and methods, such as 4D flow magnetic resonance imaging (MRI) and 
DNS, allow identifying flow-specific quantities that provide a more profound description of intraventricular fluid 
dynamics. For example, the kinetic energy (KE) is a quantitative measure of LV blood flow vitality particularly 
during diastolic filling16,17. The vorticity field, and its average value ω , plays a central role in the description 
of the flow patterns throughout the cardiac cycle18–20; indeed, vortices represent the underlying structure of 
intraventricular flow and they are crucial for stability and for the dynamic balance between rotating blood and 
myocardial tissue1,21. The description of blood transit through the LV is also fundamental in cardiovascular 
physiology22 to identify properties of blood transport and mixing inside the LV in order to assess the residence 
time and the rapidity of blood wash-out; phenomena that can be related to the risk of thrombus formation10,23.

The objective of this study is to explore the existence of relationships and dependencies between advanced 
flow-related quantities and the metrics used in the standard clinical assessment of cardiac function. This can lead 
on the one side to recognize the role (if any) of clinical metrics for describing blood flow properties, and on the 
other to identify the incremental value (if any) provided by more advanced flow analysis.

To answer these questions we apply surrogate models based on the Polynomial Chaos Expansion (PCE) 
technique24,25. These surrogates are a class of reduced-order models (ROMs) that allow decreasing the complexity 
of a given high-fidelity model (HFM) by learning the dynamics of a quantity of interest (QoI) directly from the 
HFM’s response. As a consequence, the surrogate is able to capture the key features of the underlying dynam-
ics for the specific QoI; at the same time, the high computational cost of physics-based simulations performed 
with the HFM is drastically reduced to a limited number of runs necessary to calibrate the surrogate model. 
This allows to perform in-depth analyses (otherwise unfeasible on the HFM) such as global sensitivity analysis 
(GSA) and Monte Carlo simulations (MCS) at a negligible computational cost (e.g.,26,27). The use of PCE-based 
surrogates in cardiovascular research is becoming popular for uncertainty quantification purposes to provide 
relevant information to assist the clinical practice. As an example, in the context of cardiovascular numerical 
simulations, the stochastic collocation method is used to propagate uncertainty from clinical data to the predic-
tions of hemodynamic quantities and surgical outcomes in28,29; while in30, uncertainty quantification based on 
the PCE is applied to 3D patient-specific cardiovascular models.

This study combines numerical simulations of blood flow in the LV with PCE surrogates to provide new 
insights on the fundamental understanding of the LV function. In the proposed framework of analysis, the HFM 
is given by a DNS method of intraventricular fluid dynamics that allows to simulate and analyze cardiac flow 
in individual patients. Numerical simulations are based on the immersed boundary method (IBM)31,32 where 
flow equations are solved in a regular Cartesian grid with a distribution of fictitious forces concentrated at the 
immersed solid boundaries (whose intensity is matched to ensure fulfillment of the boundary conditions); 
this computational approach is often employed to analyze LV fluid dynamics6,33. In the same framework, the 
dynamics of the mitral valve (MV) are reproduced by a kinematic model that was introduced and validated in 
previous studies7,8.

Surrogate models are used to approximate two QoIs describing LV blood transit as (i) the direct volume, 
hereinafter Vd , which is the volume of blood that enters the LV and is ejected during the same heartbeat, and 
(ii) the residual volume, hereinafter Vr , which is the amount of blood that is present in the LV at the beginning 
of diastole and is not ejected during systole; both volumes are expressed in dimensionless form as a percentage 
of the End Diastolic Volume (EDV)22. Surrogates are also computed for the following two dynamic QoIs: (iii) 
the ventricular kinetic energy, and (iv) the vorticity, both measured at the peak of early diastolic filling, herein-
after KEEpeak and ωEpeak . Both quantities are made dimensionless using the mitral velocity ( Epeak ), LV volume 
and, for the latter only, the MV diameter. Note that instantaneous values at the peak of early diastole may not 
provide an exhaustive description of the complex intraventricular flow pattern. Nevertheless, the values at the 
peak of the E-wave are considered a good reference as they are commonly assumed to well describe the diastolic 
function20,21,34. The core of the vortex ring develops from the beginning of the early filling and reaches its full 
development when this phase approaches its peak21. Recent studies have shown that at the E-wave peak the vortex 
is well-formed and differentiates healthy from pathological conditions8,10,20.

The response surfaces of the QoIs are approximated in the space of four parameters that we select among the 
diagnostic clinical metrics describing the overall LV health. These parameters embed relevant information on LV 
geometry and function and help discriminating healthy and diseased patients in numerous clinical conditions. 
The selected parameters are the ejection fraction, EF = (EDV − ESV)/EDV  ; the ratio E/A; the LV shape ratio 
LVr = EDL/EDD and the ratio MVLVr = MVa/LVa between the diameter of the MV annulus ( MVa ) and that of 
the entire LV valvular plane ( LVa ), which is useful for the correct identification of the MV orifice size35 and the 
transformation between LV size and blood velocity under different ventricular conditions20.

Calibration and validation of surrogate models is preformed on different datasets generated by running the 
HFM multiple times for a parameterized geometry that can be altered to arbitrary values of the governing clinical 
parameters. GSA is then performed for each QoI to assess the relative impact of the variability of the governing 
parameters. In addition, we assess the robustness of the predictions provided by the surrogates in comparison 
with results obtained by DNS (with the HFM) for several patient-specific cases under both healthy and diseased 
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conditions. Finally, the application of surrogate models in the present study allows us to uncover how common 
global flow transit quantities are related to standard clinical parameters.

Results
Computation of the surrogate models.  We consider the set of QoIs 

{

Vd ,Vr ,KEEpeak ,ωEpeak

}

 provided 
by the HFM, i.e. by DNS solving the Navier-Stokes equation to mimic intraventricular fluid dynamics in indi-
vidual patients8. Based on preliminary analysis against patient-specific cases, we identify four governing param-
eters, namely EF, E/A, LVr , MVLVr , able to embed key information on LV geometry and function. We provide 
a probabilistic description for the governing parameters by using uniform distributions, with ranges of variation 
covering both healthy and diseased conditions15,35–41 (see Table  1). A parameterized geometry, based on the 
combination of two patient-specific cases and varying only as a function of the governing parameters, is used for 
the purpose of generating the surrogate models.

The PCE approximation of each QoI is realized in the space generated by M = 4 independent random vari-
ables, ξi , uniformly distributed in [−1; 1] ; ξi , with i = 1, . . . , 4 , are associated with the governing parameters 
through an isoprobabilistic transform42. As a consequence, the generic QoI ŷk ∈

{

Vd ,Vr ,KEEpeak ,ωEpeak

}

 is 
approximated as follows:

where �j are second-order ( q = 2 ) multivariate Legendre polynomials, P = (M + q)!/(M!q!) = 15 , and sj are 
the deterministic coefficients computed by running the HFM for N = P sampling points identified by the proba-
bilistic collocation method (PCM)24,25,43. Coefficients sj for each QoI are collected in Table 2.

The accuracy of the surrogate approximations, with respect to the HFM, has been then verified against 30 
newly simulated cases (synthetic cases of LV based on the parameterized geometry with random combination 
of parameters). Comparative results are shown in Fig. 1. Values of R2 , as well as the equations of the regression 
lines for each QoI, denote the high reliability of the proposed method.

Sensitivity analysis.  Once the PCE approximations of the QoIs are available, GSA on the surrogate models 
is performed at a negligible computational cost27.

The sensitivity indices of Sobol44 are computed as analytical post-processing of the PCE coefficients42, for 
the inputs EF, E/A, LVr , and MVLVr , with respect to each QoI, i.e. Vd , Vr , KEEpeak and ωEpeak . In particular, in 
Fig. 2 the total sensitivity indices (TSI) are shown; the sum of the TSI for each QoI is slightly higher than unity, 

(1)ŷk =

P−1
∑

j=0

sj�j(ξ1, ξ2, ξ3, ξ4),

Table 1.   Probabilistic distributions associated with the selected governing parameters.

Parameter Distribution

EF U[0.3, 0.7]

E/A U[0.5, 2.0]

LVr U[1.0, 2.0]

MVLVr U[0.4, 0.7]

Table 2.   PCE coefficients for each QoI.

QoI Vd Vr KEEpeak ωEpeak

s0 3.23E-01 3.23E-01 4.50E-01 6.02E+00

s1 1.62E-01 − 2.38E-01 2.07E-01 2.33E+00

s2 5.16E-03 5.16E-03 9.62E-02 1.28E+00

s3 − 1.87E-02 − 1.94E-02 − 5.81E-03 − 6.24E-01

s4 1.29E-02 1.29E-02 4.78E-02 6.69E-01

s5 1.61E-02 1.56E-02 6.11E-02 6.08E-01

s6 3.33E-03 3.33E-03 − 2.83E-02 − 1.87E-01

s7 3.33E-03 3.33E-03 − 5.33E-02 − 6.58E-01

s8 1.00E-02 1.00E-02 1.17E-02 − 3.15E-01

s9 − 7.78E-03 − 6.67E-03 − 2.61E-02 − 9.67E-02

s10 5.00E-03 3.33E-03 3.33E-03 1.17E-01

s11 2.00E-02 2.00E-02 8.50E-02 − 1.38E-01

s12 − 1.67E-03 − 1.11E-03 − 1.67E-03 1.77E-01

s13 6.67E-03 5.00E-03 4.50E-02 9.33E-02

s14 − 1.11E-03 − 1.11E-03 − 1.22E-02 7.61E-02
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thus indicating negligible second-order effects44. The parameter which explains more the variability of all the 
selected QoIs is EF; specifically, the variance of Vd and Vr , is almost totally attributable to the variability of EF. 
As for KEEpeak and ωEpeak , if EF reflects about the 75% and 70% of their variance respectively, E/A plays a second-
ary role (about 20% of the variance of both the QoIs), while the influence of LVr and MVLVr is lower ( ≤ 10%).

Surrogate predictions of patient‑specific cases.  The accuracy provided by the surrogate models is 
further explored by using them to reproduce left ventricular flow parameters in a series of real, patient-specific, 
cases. These geometries are recorded through 4D transesophageal echocardiography where the geometric data 
is extracted with the use of dedicated software (4D LV-Analysis, 4D MV-Assessment, TomTec Imaging Systems 
GmbH, Unterschleissheim, Germany).

Figure 3 compares the predictions of each QoI obtained with the HFM and the surrogate for these 20 cases, 
and provides the characteristics of the correspondent regression lines (equations and R2 ). Despite being cali-
brated against a parameterized geometry, the surrogates demonstrate to provide robust predictions also when 
compared to independent patient-specific simulations run with the HFM. In particular, it is noted that slope 
values of the regression lines are almost equal to 1 for Vd , Vr and KEEpeak and that the R2 value is above 0.8 for 
all the QoIs. Even ωEpeak , whose dynamic is more complicated to capture, is quite accurately represented by the 
correspondent surrogate model.

Figure 1.   Comparison between HFM and PCE predictions against synthetic cases. Solid blue lines 
represent the linear regressions, while dashed lines are the bisectors. Characteristics of regression lines: 
VdPCE = 0.95 · VdHFM+ 0.0099 (R2 = 0.98, p−value= 9.74E−27) ; VrPCE = 1.00 · VrHFM− 0.012 
(R2 = 0.99, p−value= 3.29E−33) ; KEEpeakPCE = 1.00 · KEEpeakHFM+ 0.0018 (R2 = 0.87, p−value= 4.68

E−14) ; ωEpeakPCE = 1.10 · ωEpeakHFM− 0.029 (R2 = 0.92, p−value= 1.50E−16).
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Discussion
The description of the cardiac mechanical function is commonly performed by measuring a series of geometrical 
and physical parameters (e.g., volume reduction or ventricular pressure) that represent physical phenomena 
describing the cardiac activity. Recent years have witnessed rapid advancements in imaging technology and 
methods of image analysis that provide deeper informative content regarding cardiac function. By first principles, 
heart function is about creating and sustaining blood motion; therefore, placing the focus on measures associated 
with blood flow promises further progress along this line1,45.

Imaging technology dedicated to blood flow (e.g. 4D Flow MRI) presents significant costs and complexity 
making it not appropriate to evaluations performed during the clinical routine. On the other hand, clinical 
assessments of blood flow can only be based on a few global, integral parameters and do not require explicit 
knowledge of the time- and space-resolved three-dimensional velocity vector field. This study presents, for the 
first time, the application of surrogate models to LV blood flow, calibrated on a series of statistically selected flow 
fields, to reproduce global parameters that are suggested to be of clinical interest.

The proposed surrogate model is characterized by simplicity and reproducibility, making it appropriate for 
straightforward application in clinical routine; it demonstrates a significant accuracy when tested on 20 patient-
specific (real) cases, by providing predictions very close to the results obtained with the DNS. This accuracy 
is excellent when the surrogate model is employed to evaluate the flow transit across the ventricle in terms of 
direct and residual flows.

The evaluation of transit volumes receive considerable attention in the clinical literature for their potential 
clinical relevance as a risk factor for thrombus formation and decision for anticoagulation therapy. In literature, 
these parameters are mainly evaluated by 4D Flow MRI and report that LVs with a reduced EF typically present 
a worsening of flow transit characterized by reduction of the direct flow accompanied by an increase of the 
residual volume. The excellent reliability of the surrogate model (Fig. 3), jointly with the dominant role played 
by EF in the model itself (Fig. 2), suggest that EF may represent a key factor in determining the values of the 
transit flow parameters.

It is possible to observe that the surrogate models suggest a sensibly linear relationship for both Vd and Vr as 
functions of EF (see Table 2). These relationships are shown in Fig. 4 where the average (solid) curve with 1% and 
99% quantiles (dashed) is reported for the two QoIs ( Vd and Vr ), accounting for the variability of the remaining 
parameters (i.e. E/A, LVr , and MVLVr ). The same Figure reports the values relative to the 20 patient-specific 
(real) cases as obtained by the HFM and the PCE-based surrogate models, which underline the robustness of 
this method. The pairs of (EF,V (lit)

d ) and (EF,V (lit)
r ) as extracted directly from the literature23,34,46–54 are also rep-

resented. These literature data match with the results provided by the proposed method up to a certain degree, 
although a noticeable discrepancy is detected. This difference can be preliminarily imputable to the presence of 
regurgitation, which is not present in the HFM cases employed for the calibration (as such it can’t be captured by 
the surrogate models). The difference should be partly imputable to the simplifying assumptions that are present 
in the numerical model; it can also be attributed -in some cases- to the limited accuracy of the calculation during 
imaging post-processing that are non-trivial (possibly performed with commercial software) and that sometimes 
gives rise to non-physical differences between LV inflow and outflow measurements. A more consistent compari-
son of literature data with our findings can be performed by correcting the literature data taking into account 
the balance of mass between inflow and outflow. This balance, even in presence of regurgitation, corresponds to 
an exact relationship between the direct and residual volumes

A simple (blind) manner to ensure fulfillment of this constraint in the empirical literature data is estimating theo-
retical values based on (2), i.e. V (th)

d = V
(lit)
r + 2EF − 1 and V (th)

r = V
(lit)
d − 2EF + 1 . Then, the error is equally 

distributed on both to obtain corrected values: V (corr)
d = (V

(lit)
d + V

(th)
d )/2 and V (corr)

r = (V
(lit)
r + V

(th)
r )/2 . Note 

(2)Vd − Vr = 2EF − 1.

Figure 2.   Total sensitivity indices (TSI) of Sobol.
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that the corrected values satisfy the balance (2), without making any specific assumption on the possible origin 
of the discrepancy; therefore the correction can be acceptable until the error of the balance given by (2) for the 
original data is not excessive in relative terms. Figure 5 presents the same results of Fig. 4 with the corrected 
values of literature data V (corr)

d  and V (corr)
r  . The agreement is noticeably improved and confirms the existence of 

a dominant influence of the value of EF on the global flow transit parameters in a wide range of LV conditions.
The finding that EF is the main determinant for overall quality of blood transit across the LV is in agree-

ment with the common clinical knowledge, in absence of atrial fibrillation, for the decision of anticoagulant 
therapy55. It must be remarked, however, that this does not invalidate the need for a blood flow analysis in the 
cardiac chambers. It rather stresses that simple global properties, like Vd and Vr , may not require a thoughtful 
evaluation of blood flow details; nevertheless, individual thrombus formations are often associated with regional 
ischemia56,57. In such cases, physics-based analysis of space-time-extended transit properties of intraventricular 
blood flow may be required to assess risk factors at the individual level and improve screening and prevention.

This study suggests how some common properties associated with blood flow can be estimated with surrogate 
models based on standard clinical parameters. Such surrogate models require a preparatory effort for the initial 
calibration (DNS or 4D Flow MRI), then they present a notable simplicity and can be employed in real-time 
during the clinical analysis.

Figure 3.   Comparison between HFM and PCE predictions against real cases. Solid blue lines 
represent the linear regressions, while dashed lines are the bisectors. Characteristics of regression lines: 
VdPCE = 0.98 · VdHFM+ 0.0084 (R2 = 0.95, p−value= 2.41E−13) ; VrPCE = 0.99 · VrHFM+ 0.0041 
(R2 = 0.97, p−value= 6.41E−15) ; KEEpeakPCE = 1.00 · KEEpeakHFM− 0.043 (R2 = 0.82, p−value= 4.98

E−08) ; ωEpeakPCE = 0.85 · ωEpeakHFM+ 0.15 (R2 = 0.82, p−value= 4.23E−08).
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Merging surrogate models and DNS represents a promising winning approach to describe the most important 
metrics in the cardiology field. In this exploratory study, we analyze the most common cardiological parameters 
such as EF, E/A, LVr , MVLVr , taking into account that the valvular dimension is also expected to have a direct 
influence on intraventricular flow. The selected parameters are commonly used in the context of diagnostic 
examination and clinical evaluation11–15, especially in presence of diastolic dysfunction where the flow can play 
a role; in addition, they can be considered, in the first instance, as independent. Our findings are the basis for 
more in-depth assessments involving further parameters to account for the regional function, synchrony, and 
deformation properties. Many of such parameters, however, are closely correlated to the value of EF58 that is pre-
ferred here as a starting point. As such, in future work, we aim to extend the analysis to other clinical parameters, 
possibly even in substitution of EF, by separating the properties concurring with the definition of its value. In a 
broader perspective, this work aims to suggest a method for a combined analysis of multiple clinical evaluations 
in a possible direct and non-invasive way.

Figure 4.   Vd and Vr against EF for the 20 patient-specific (real) cases analysed in this study and based on the 
predictions provided by the HFM and the PCE-based surrogate models. Other cases derived from literature, 
V

(lit)
d  and V (lit)

r  , are also represented. The red continuous line represents the mean of the QoI (either Vd or Vr ) 
against EF obtained with the surrogate model, given the variability of the remaining parameters (red dashed 
lines represent the 1% and 99% quantiles).

Figure 5.   Vd and Vr against EF for the 20 patient-specific (real) cases analysed in this study and based on the 
predictions provided by the HFM and the PCE-based surrogate models. Other cases derived from literature, 
V

(corr)
d  and V (corr)

r  , are also represented in their modified version after correction for the regurgitating volume. 
The red continuous line represents the mean of the QoI (either Vd or Vr ) against EF obtained with the surrogate 
model, given the variability of the remaining parameters (red dashed lines represent the 1% and 99% quantiles).
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Materials and methods
High‑fidelity model.  Geometric description.  The time-varying geometry of LV is extracted from 3D 
echocardiography; the moving borders are obtained by a semi-automatic procedure within a dedicated software 
(4DLV analysis, Tomtec Imaging Systems GmbH, Unterschleissheim, Germany). Subsequently, LV geometry 
during all phases of the heartbeat is described by the position vector X(ϑ , s, t) of its endocardial surface, where 
the structured parametric coordinates (ϑ , s, t) run along the circumference and from base to apex, respectively, 
and t is time59. The position vector marks the points of the LV material, and their velocity is obtained from 
temporal differentiation. Instead, MVs geometries are extracted from the images with the use of dedicated soft-
ware (4DMV-Assessment, TomTec Imaging Systems GmbH, Unterschleissheim, Germany), limitedly to the 
completely open (at the peak of diastole) and completely closed (at the peak of systole) positions, these open 
positions are described parametrically by the degree of opening of each of the two leaflets, ϕ1 and ϕ2 , respectively 
for the anterior and posterior leaflets, ranging from zero (closed leaflet) to π

2
 (fully open). The extracted MV 

geometries are rearranged for convenience in terms of another pair of parametric coordinates, Xv(ϑ , s,ϕ1,ϕ2) , 
where s range runs along the circumference and extends from the ring at the trailing edge8.The present numeri-
cal method has been extensively validated in previous studies from the computational point of view7,8,20, and by 
general comparison with clinical information2,10,60,61. Moreover, the global quantities that are used in this work, 
have been previously methodologically validated and satisfactorily compared with results obtained in clinical 
cases with advanced imaging techniques2,4,8,10,16,20,23,34,39,47–49,60–62. For this study, we use both patient-specific 
geometries (recorded and extracted as described above) and a parameterized geometry to calibrate the surrogate 
models. The geometries used for calibration purposes are created from the combination of two patient-specific 
geometries in healthy and pathological conditions, respectively. These two geometries are extracted and pro-
cessed as previously described to obtain two reliable physiological and pathological borderline cases, according 
to the parameters used in the study. The parameterization of the ventricle occurs through the interpolation of the 
two borderline cases and, according to an independent search system, values of the parameters are automatically 
detected (one at a time) until the desired final geometry is obtained. As such, each geometry defined through 
this parametrization method is generated by imposing values of EF, E/A, LVr , MVLVr , that are set by the user 
among a considerable series of options (e.g., for EF between 0.7 and 0.3). As an example of the geometries used 
in this study, Fig. 6 panel (a) shows a patient-specific case; this is a pathological case as can be deduced from the 
correspondent values of EF and E/A in panel (b) where the volume curve and dV/dt are represented; in panel (c), 
an example of a synthetic healthy case build with the parameterized geometry is shown, while panel (d) shows 
the correspondent volume curve and dV/dt, and exemplifies the parametrization method for the construction 
of the synthetic cases that we adopted. Specifically, Fig. 6 panel (d) shows dV/dt for the two borderline cases as-
sociated with maximum values of EF=0.7 and E/A=2 (blue curve, healthy case), and minimum values of EF=0.3 
and E/A=0.5 (red curve, pathological case); within these two curves, all the synthetic cases generated for given 
values of the governing parameters are included. Note that the EDD and EDL values are imposed by modifying 
the geometry in the x, y, and z axes, while the MVLVr value is identified by varying the size of the valve annulus 
as a function of the ventricular one.

The images of the human subjects were recorded at the Cardiovascular Department of the Azienda Sanitaria 
Universitaria Giuliano Isontina, Trieste. The geometries were provided in anonymous form for the numerical 
study. All procedures involving human subjects have been performed in accordance with the Declaration of 
Helsinki, and under the approval of the Ethics Committee of the University of Trieste (protocol no. 0025052).

Fluid dynamics.  The numerical method is extensively described and validated in a dedicated methodological 
study8, where the valvular dynamics is compared with that obtained by a complete fluid-structure interaction7. 
In this section, we briefly recall the main points of the method used. The intraventricular fluid dynamics is evalu-
ated by numerical solution of the Navier-Stokes and continuity equations

where v(t, x) is the velocity vector field, p(t, x) is the kinematic pressure field and ν is the kinematic viscosity 
(assumed 0.04cm2/s ) of a Newtonian fluid. Solution is achieved by the immersed boundary method in a bi-
periodic Cartesian domain as described in previous studies, e.g.8,31,63. Time advancement is achieved using a 
fractional step method as follows. Velocity is preliminarily advanced in time by the Navier-Stokes Eq. (3) using 
a low-storage, third-order Runge-Kutta explicit scheme. This preliminary velocity, say v̂ , does not satisfy the 
incompressibility constraint (4), is corrected by adding a potential field δv = ∇q , such that v = v̂ + δv satisfies 
the continuity and the boundary conditions. The correction potential is found by solution of the Poisson equation

and pressure is updated with q accordingly. In the IBM, explicit boundary conditions are only required at the 
edge of the computational box: they are set periodic in the x and y directions, while they are zero pressure and 
normal velocity on the upper and lower ends along z, respectively. The 2D periodicity permits a fast solution 
of the Poisson Eq. (5) through Fourier decomposition as a sequence of tridiagonal systems for each harmonic. 
Then a no-slip condition is imposed on the immersed boundaries8,60. These comprise the ventricle geometry and 
valves surface. In addition, two cylindrical regions are added extending from a region around the mitral valve 
(bounded by the LV edge on the mitral side and the curve separating MV and aortic valve) and from around the 

(3)
∂v

∂t
+ v · ∇v = −∇p+ ν∇2

v,

(4)∇ · v = 0;

(5)∇2q = −∇ · v̂;
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aortic valve to the upper edge of the computational domain; these additional boundaries represent surrogates of 
atrium and aorta. They are included for numerical convenience to avoid interference between the outflow and 
the inflow outside the LV and to avoid nonphysical sharp corners at the edge of the LV basal plane. The overall 
numerical implementation is extensively validated in previous studies2,8,10,20,60,61,63. In this study, it is used a bi-
periodic domain with a grid made 128×128×160 points and 8192 time steps. A sensitivity analysis of the Cartesian 
grid is performed in a series of previous methodological studies based on grid-refinement8,20. Additionally, it is 
also verified that the spatial and temporal resolutions employed here ensure a perfect relationship between the 
flow rate measured across the LV valves and the volumetric variation dV/dt in a series of conditions2. Once the 
parametric description of the model Xv(ϑ , s,ϕ1,ϕ2) is obtained, the dynamic equation of the leaflet opening 
angle is deduced from the constraint that the motion of the leaflet surface must correspond to the velocity of the 

Figure 6.   First row: panel (a) shows the LV geometry for a patient-specific case; panel (b) shows the 
correspondent volume curve and dV/dt with values of EF and E/A displayed. Second row: panel (c) depicts a 
synthetic LV obtained with the parameterized geometry; panel (d) depicts the correspondent volume curve and 
dV/dt where the general approach for the construction of the synthetic cases for given values of the governing 
parameters is exemplified.
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fluid in the position of the same surface; a complete description and verification of the computational method, 
including comparison with a fluid-structure interaction model with a given set of tissue parameters, is reported 
elsewhere8. The leaflet dynamics are obtained by least-squares minimization of the difference, integrated over 
the valvular surface Av , between the fluid and the valve velocity component normal to the valvular surface. The 
result is a 2 × 2 linear system,

for the two unknowns ∂ϕ1
∂t  and ∂ϕ2

∂t  , where v is the fluid velocity and n the local normal to valvular surface. The 
aortic valve, which are downstream of the LV flow fields, are modeled as a simple orifice with a surface that is 
open or closed. The aorta is considered open when the mitral valve is closed and the normal velocity, averaged 
over the position of the aortic valve surface, before setting boundary conditions, is directed outward. More 
details are given in8.

Vorticity and kinetic energy.  The formation of the vortex and its orientation inside the ventricle influence the 
correct course of the flow throughout the cardiac cycle until its expulsion18,19,33. The computation of the average 
vorticity inside the ventricle is

where V(t) is the ventricular volume, ω(t) = ∇ × v is the vorticity vector field. The numerical method is based 
on a staggered grid where, for each cell, the velocity components normal to each face are defined at the center 
of the face; therefore, the vorticity components are calculated numerically at the midpoints of each edge as the 
circulation produced by the corresponding velocity components. The KE of the blood is a fundamental com-
ponent of the work done by the two ventricles, indicated as the movement of the blood within them16,64 and is 
computed as follows

where ρ is the blood density. We then compute dimensionless QoIs, KEEpeak and ωEpeak , as follows: KEEpeak is 
equal to the Epeak of KE (Eq. 8), normalized with ρ , the square of the transmitral inflow Epeak and LV volume; 
while ωEpeak is equal to the Epeak of ω (Eq. 7), normalized with the transmitral inflow Epeak , the MV diameter 
and LV volume.

Flow transit.  The study of the flow transit is an important step for the evaluation of blood transport and mixing 
inside the LV, this is useful for the identification of the blood residences and wash-out properties; conditions that 
are related to the risk of the thrombus formation. Following the established literature in cardiology22,23,45, this 
evaluation is obtained through the subdivision of EDV in four sub-volumes

where Vdirect (also indicated as Vd ) is the volume of blood that entered during diastole and transits directly to the 
aortic outlet during systole, thus residing less than one heartbeat in the LV. Vdelayed is the quantity of blood already 
present in the LV at the beginning of diastole and ejected during the following systole. Vretained is the amount of 
blood volume that enters during diastole and is retained in the ventricle to be expelled on the next heartbeat. 
Finally, Vresidual (also indicated as Vr ) is present in the LV before the beginning of diastole and remains in the 
chamber after the end of systole. These sub-volumes are obtained through blood transport analysis performed 
by solving the transport-diffusion equation for a passive scalar

where C(x, t) is the concentration of a passive marker of particles. Equation (10) is solved in parallel to the 
Navier–Stokes Eq. (3) starting from the initial condition C(x, 0) = 1 at the beginning of diastole. The average 
concentration starts from a unitary value and decreases progressively every heartbeat when the marked particles 
are replaces by fresh blood entered from the atrium. In order to create a link with the existing literature in 4D 
Flow MRI, the flow transit is calculated in terms of direct and residual volume48. Vresidual is obtained with Eq. 
(10) from the evaluation as the following end systole

Vdirect instead is calculated through the linear combination with the sub-volumes of Eq. (9) as widely discussed 
in a previous work10.

(6)
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(8)KE(t) =
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2

∫

V
v2 dV ,

(9)EDV = Vdirect + Vdelayed + Vretained + Vresidual ,

(10)
∂C

∂t
+ v · ∇C = v∇2C,

(11)Vresidual =

∫

ESV
CdV .
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Polynomial chaos expansion.  Let f (·) denote a HFM predicting a set of QoIs, yk , as a function of a vector 
p = {p1, . . . , pM} including key governing parameters subject to variability. If the variance of yk is finite, the PCE 
approximation, namely ŷk , holds and reads as follows24,25:

In (12), multi-indices a = {a1, . . . , aM} ∈ N
M are associated with multivariate polynomials �a of degree 

|a| =
∑M

i=1 ai , which constitute an orthonormal basis with respect to the joint PDF of ξ ; ξi , with i = 1, . . . ,M , 
are independent standard random variables, associated with the governing parameters collected in p through 
an isoprobabilistic transform42; coefficients sa are deterministic coordinates of the spectral decomposition25.

In practical applications, the PCE (12) is opportunely truncated as

where q is the maximum degree of the expansion, i.e., |a| ≤ q for all a ∈ N
M . As a result of the approximation of 

(12) to polynomials of degree not exceeding q, the series reduces to a number of terms equal to P which depends 
on q and M as shown in (13).

Calibration of the PCE is performed using a non-intrusive approach based on regression, upon minimization 
of the variance of the residual ε = |ŷk − yk| , with respect to the vector of unknown coefficients si42. The number 
of regression points is generally N ≥ P . The optimum set of regression points in the standard normal space 
is provided by the PCM43, with the idea of employing the combinations of the roots of the next higher-order 
polynomial, i.e. q+ 1 , as the points at which the minimization is solved. As such, the dataset yk is generated by 
computing the HFM at the regression points, while ŷk is the approximation provided by the PCE at the same 
points. The accuracy of the PCE approximation is generally assessed by comparison with the HFM against a set 
of points in the parameter space not used during calibration. If the accuracy provided is not adequate, one can 
evaluate to improve the approximation by increasing the order of the expansion, q, which in turn increases the 
number of terms P in (13).

Moments of the QoI are estimated as follows42:

Similarly, computation of global sensitivity metrics, such as the Sobol’ indices44, consists in analytical post-
processing of the PCE coefficients26, thus drastically reducing the associated computational cost. The use of the 
surrogate (12) sensibly accelerates MCS for risk analysis purposes, thus allowing for the estimate of the proba-
bilistic behavior of the QoI27.

Data availability
All data generated or analysed during this study are included in this published article.
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