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Abstract: 

Domino effects are severe accident scenarios affecting storage tanks and are often initiated by 

pool fires. Flame engulfment and heat radiation are the two major sources triggering domino 

effect. Threshold-based and probit-based methods are widely used to assess the possibility and 

probability of a secondary accident. These methods are also a part of advanced methods 

devoted to examining synergic or coupling effects. The current work examines (i) how 

effective the threshold-based methods are and (ii) how accurate the current time to failure 

(TTF) estimation models are, which are the basis of probit-based methods. The results suggest 

that threshold-based methods are not pertinent for the quantitative assessment of domino effect 

and that significant improvement can be made in the existing TTF prediction models using site-

specific structural response data. A new set of equations for TTF estimation using data analytics 

is proposed. Application to 4,080 pool fire scenarios demonstrates that the newly developed 

model can improve the TTF prediction performance compared to the existing models (around 

22% in terms of R2). In addition, a method has been proposed and validated to correlate time 

with the failure probability for time-dependent domino effect assessment, which is a limitation 

of probit-based methods. The current work unveils new insights into the empirical models used 

for domino effect assessment. 
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1. Introduction 

Process industries, which encompass chemical plants, refineries, and other manufacturing 

facilities, help modern society by providing several essential products and energy sources that 

propel the world (Rudberg et al., 2013). However, these industries are not exempt from inherent 

risks, particularly the daunting challenge of the domino effect (Abdolhamidzadeh et al., 2011; 

Reniers and Cozzani, 2013). The domino effect refers to a chain reaction of escalating incidents 

within or across process industry units, triggered by an initial event, with the potential to lead 

to severe accidents and catastrophic consequences (Necci et al., 2015; Xu et al., 2023). It is a 

high-impact low-probability (HILP) event that has the potential to cause more damage 

compared to a single accident (Amin et al., 2019; Rad et al., 2014). A good process safety 

management system should include domino effect mitigation and prevention plans (CCPS, 

2000; Li et al., 2017; Swuste et al., 2019).  

Though the Texas City disaster (1947) is regarded as the first documented domino accident, 

regulations on domino effect prevention were introduced starting with the 1982 Seveso 

regulations in the European Union (Cozzani and Reniers, 2021; Khan et al., 2021a). To respond 

to the process safety concerns raised in Europe due to this accident, the European Union (EU) 

introduced the first Seveso Directive (82/501/EEC), which included measures to prevent the 

reoccurrence of such accidents (Directive, 1982). This directive was further updated in 1996 

and 2012 (Directive, 2012, 1997). The Occupational Safety and Health Administration 

(OSHA) also guided industries on mitigating the consequences of domino effects in 29 CFR 

1910.119 (OSHA, 1994). Nevertheless, domino accidents kept occurring around the world. 

The 2005 Buncefield oil depot explosion in the UK, the 2005 Texas City Refinery Explosion 

in the USA, the 2009 Caribbean Petroleum Corporation (CAPECO) fire and explosion in 

Puerto Rico, the 2015 Tianjin explosions in China, the 2019 Intercontinental Terminal 

Company (ITC) Deer Park fire in the USA, and the 2020 Beirut explosion in Lebanon are some 

of the notable domino accidents in the past couple of decades. 

Fire incidents, including pool and jet fires, play a significant role in the escalation of accidents, 

accounting for a substantial portion of domino effects (Guo and Wang, 2023). Fires are 

responsible for nearly 43% of all domino effects, with pool fires being the more prevalent 

scenario, triggering around 80% of the fire-driven chain of events (Abdolhamidzadeh et al., 

2011). Tank farms, common in process industries, are considered more vulnerable to domino 

effects compared to other types of storage facilities due to the substantial quantities of 

hazardous chemicals that are commonly stored in these tanks and to the limited safety distances 

among tanks. In specific circumstances,  a fire in a tank can spread to others (Cui et al., 2022). 
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Heat radiation and fire engulfment are the escalation vectors potentially triggering domino 

effects in pool fire scenarios. Among these two, heat radiation is the dominant cause of domino 

accidents in tank farms due to pool fires (Cozzani et al., 2005; Hemmatian et al., 2014; Santana 

et al., 2021). 

The current literature frequently uses threshold-based and probit-based approaches for domino 

effect assessment (Cozzani and Reniers, 2021; Khan et al., 2021a). In the threshold-based 

methods, a cut-off value is considered the domino effect's initiating point. No escalation of a 

secondary accident is expected unless this value is reached. For example, the National Fire 

Protection Association (NFPA) suggested 30 kW/m2 as the threshold (Benedetti and May, 

1997). The other widely used thresholds are 15 kW/m2 and 37.50 kW/m2 (Cozzani et al., 2006; 

DNV, n.d.; Kadri et al., 2013). A list of threshold values used in different equipment can be 

found in the review by Alileche et al. (2015). Although threshold-based approaches are simple 

to use and crucial to support preliminary hazard screening activities, these are not useful in 

probabilistic domino effect assessment. 

Probit models overcome the limitations of threshold-based approaches. Eisenberg et al. (1975) 

were the first to use probit models for overpressure impact analysis. Cozzani et al. (2001) 

proposed a probit-based approach, which nowadays has become a standard tool for fire-driven 

domino effect assessment (Ding et al., 2022, 2020, 2019; Khakzad and Reniers, 2015; Zhang 

et al., 2019). The time to failure (TTF) is the most important parameter in this model. TTF 

measures the time that the target equipment can withstand the escalation vector before failure. 

Once TTF is calculated, the probability of a domino effect is estimated using the probit model. 

The existing probit-based technique only allows scenario-specific damage probability 

estimation. Therefore, it is generally not recommended for time-dependent domino effect 

assessment, that require the use of improved models (Zhou et al., 2021). Also, to develop an 

accurate probit model through regression analysis, it is required to know what percentage of 

damage is expected for a certain value of escalation vector, which is mostly done using 

available data in the public domain. Generally speaking, determining an equipment's damage 

percentage is arduous.  

In addition to the above approaches, computational fluid dynamics (CFD), thermal response, 

and graph-based methods are also used for domino effect assessment. CFD-based approaches 

allow modelling of a wide range of complex geometries at the cost of computational burden 

(Iannaccone et al., 2021; Jujuly et al., 2015; Yang et al., 2020). Thus, they are not appealing 

from the practitioners’ point of view, and their use is currently limited to academic research. 

The thermal response models mostly use finite element analysis (FEA) to assess the TTF due 
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to constant or varying heat loads (Landucci et al., 2009; Yang et al., 2023). Bayesian network 

(BN) and Petri net (PN) are the widely used tools for graph-based analysis. These tools allow 

modelling of dynamic scenarios considering dynamic evolutions (Kamil et al., 2019; Khakzad, 

2015; Zhou and Reniers, 2022). 

In recent years, the synergic effect of multiple hazards (e.g., fire and explosion or double pool 

fire) on the domino effect has drawn researchers’ attention (Ding et al., 2019; He and Weng, 

2022; Hou et al., 2022; Li et al., 2023, 2021). The general finding of these works is a higher 

domino effect possibility compared to that of a single source effect. Time-dependent domino 

effect assessment has also been focused on in recent studies (Jia et al., 2017; Cozzani and 

Reniers, 2021; Khan et al., 2021b). However, compared to other areas, it has been less studied 

yet. 

Threshold-based and probit-based models are the basis for several recent works mentioned 

above. For instance, Khan et al. (2021b) developed an analytical model for time-dependent 

damage probability estimation using the available damage thresholds. Li et al. (2023) used 

these thresholds as an important building block to their method to assess the domino effect in 

storage tank farms under the synergistic effect of explosion and fire. Yang et al. (2020) used 

the equation proposed by Cozzani et al. (2005) to determine the TTF due to heat load from a 

pool fire. The authors also used the probit model to determine a domino effect's probability. 

The same probit model by Cozzani et al. (2001) was used for the domino effects analysis of 

synergistic effect in the work by Li et al. (2021). Ricci et al. (2021) followed a similar approach 

to calculate safety distances between vegetation and equipment items in wildland-industrial 

interface areas. 

Though threshold-based and probit-based methods are simpler to use and have advanced the 

field notably, less focus was on the following issues: 

i. How efficient are the threshold-based models for domino effect assessment?  

ii. Can the existing models for TTF estimation be improved?  

iii. Can the TTF be used to predict dynamic domino effect assessment? 

The current work has addressed these questions by (i) comparing the failure behaviour against 

the existing thresholds and (ii) developing new equations for TTF computation and time-

dependent domino effect analysis. The results suggest that in quantitative risk assessment 

studies, the threshold-based approaches should be revised and if possible, avoided. The new 

TTF models can predict the domino effect better than the existing ones.  

The rest of the paper is organized as follows: Section 2 describes the proposed method with 

step-by-step illustrations. Section 3 validates the developed models using a couple of case 
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studies. The results and comparative study among the available models are demonstrated in 

Section 4. Finally, Section 5 summarises key findings and future direction and concludes the 

paper. 

 

2. The Proposed methodology for domino effect assessment 

A methodology has been developed to assess the dynamic failure probability of an atmospheric 

tank due to heat radiation generated by a pool fire. The methodology comprises four steps and 

is shown in Figure 1. These four steps are described in sub-sections 2.1-2.4. 

Scenario generation

Failure data collection

Time to failure prediction model 
development

Domino effect probability 
assessment model development  

Lumped parameter approach 

von Mises failure index and axial 
instability failure index

Data analytics and optimization

Empirical analysis

Step 1

Step 2

Step 3

Step 4
 

Figure 1: The proposed methodology’s overview. 

 

2.1. Scenario generation 

The methodology starts with generating atmospheric tank failure scenarios due to pool fire 

exposure. Time to failure depends both on the features of the tank (design feature and operating 

conditions, such as filling level) and the heat load received from the fire. In turn, the latter 

depends on many factors (e.g., pool diameter, distance from the heat source, burning fuel type, 

wind velocity and direction, percentage of flame covered by the foot, and view factor). The 

solid flame and CFD models are the most common approaches to estimating heat loads (Yang 

et al., 2020). While CFD enables modelling complex geometries, it is computationally 

expensive, even with high-performance computing capacities. In the present work, the heat 

load from the fire is an input, while the time to failure is calculated based on the tank features 

and fire heat load using RADMOD, a lumped parameter model presented by Landucci et al. 

(2009), validated against FEM analysis results. This significantly reduces the computational 

time required to generate accident scenarios, with a tolerable reduction of output accuracy. 
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RADMOD is based on a lumped parameter approach that discretizes the domain in two fluid 

nodes (liquid and vapour) and two solid nodes (wall in contact with the liquid and wall in 

contact with the vapour). The tank’s external diameter, wall thickness for each shell, height of 

each shell, filling level, initial temperature, initial pressure, and total heat flux are the input to 

the model. RADMOD calculates node temperatures, tank pressure (accounting for the liquid 

head), axial stress, and the equivalent von Mises stress in the steel structure. RADMOD can be 

used to simulate the fire response of conical roof atmospheric tanks. Figure 2 illustrates how 

the tank domain is partitioned in RADMOD for atmospheric tanks. The model disregards the 

presence of any fitting, nozzles, and saddles. Benzene is considered a reference substance in 

this work. More details about the model are presented by Landucci et al. (2009) and Gubinelli 

(2005). 

  
Figure 2: Partition scheme adopted by RADMOD for atmospheric tanks. 

 

The atmospheric tank geometries were set based on the standard provided by the American 

Petroleum Institute (API) in Table A-2a from API 650: Welded Steel Tanks for Oil Storage 

(API, 1998). A total of 4,080 simulations were carried out considering different combinations 

of tank diameter and height, shell thickness, filling degree, and total heat flux. The range of 

model parameters input to RADMOD is displayed in Table 1.  

Table 1: Range of input parameters to RADMOD. 

Shell 
diameter, 

D (m) 

Tank 
height, 
H (m) 

Shell 
thickness, T 

(mm) 

Filling 
degree, 
FD (%) 

Total heat 
flux, I 

(kW/m2) 
3-66 1.8-18 5-12.50 20-80 9.50-105 

 

Uncertainty is a common phenomenon in domino effect assessment, arising from assumptions 

and imprecise modelling parameters (Ji et al., 2018; Xu et al., 2023). Conventionally, the heat 

Node 2

Node 1

Node 4

Node 3
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load received by the tank is considered constant. However, it may vary with time (Khan et al., 

2021b). This work has considered a heat load that may vary within the ±5% limit from the 

expected heat load. Therefore, each simulation was run thrice considering the ±5% uncertainty 

in total heat flux received by the target tank. For the same shell diameter, tank height, shell 

thickness, and filling degree, three heat fluxes: nominal heat flux (Inom), maximum heat flux 

(Imax), and minimum heat flux (Imin) are used. Inom is the expected heat flux due to a pool fire. 

Imax and Imin are the maximum and minimum heat fluxes, respectively. If Inom is 10 kW/m2, Imax 

and Imin will be 10.50 and 9.50 kW/m2, respectively.  

 

2.2. Failure data collection 

Atmospheric tanks can fail due to plastic deformation and instability. When the equivalent von 

Mises stress in the tank wall equals the maximum allowable stress, plastic deformation occurs, 

and the tank fails. In case of instability, the tank fails when axial stress in the tank wall equals 

a critical stress value. Failures due to plastic deformation and instability can be measured by 

the von Misses failure index (VMFI) and the axial instability failure index (AIFI). For any node 

i, the VMFIi and AIFIi can be computed using Equations 2 and 3, respectively.  

 𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑖𝑖 =
𝜎𝜎𝑉𝑉𝑉𝑉,𝑖𝑖(𝑡𝑡) − 𝜎𝜎𝑦𝑦,𝑖𝑖(𝑇𝑇)

𝜎𝜎𝑉𝑉𝑉𝑉,𝑖𝑖(𝑡𝑡 = 0) − 𝜎𝜎𝑦𝑦,𝑖𝑖(𝑇𝑇 = 𝑇𝑇0)
 (2) 

 

 𝐴𝐴𝐼𝐼𝑉𝑉𝐼𝐼𝑖𝑖 =
𝜎𝜎𝐴𝐴𝐴𝐴,𝑖𝑖(𝑡𝑡) − 𝜎𝜎𝐶𝐶𝐶𝐶,𝑖𝑖(𝑇𝑇)

𝜎𝜎𝑉𝑉𝐴𝐴𝐴𝐴,𝑖𝑖(𝑡𝑡 = 0) − 𝜎𝜎𝐶𝐶𝐶𝐶,𝑖𝑖(𝑇𝑇 = 𝑇𝑇0)
 (3) 

where 

𝜎𝜎𝑉𝑉𝑉𝑉,𝑖𝑖(𝑡𝑡) = von Mises stress at time t for node i 

𝜎𝜎𝑦𝑦,𝑖𝑖(𝑇𝑇) = yield stress at temperature T for node i 

𝜎𝜎𝑉𝑉𝑉𝑉,𝑖𝑖(𝑡𝑡 = 0) = von Mises stress at the initial condition for node i 

𝜎𝜎𝑦𝑦,𝑖𝑖(𝑇𝑇 = 0) = yield stress at initial temperature for node i 

𝜎𝜎𝐴𝐴𝐴𝐴,𝑖𝑖(𝑡𝑡) = axial stress at time t for node i 

𝜎𝜎𝐶𝐶𝐶𝐶,𝑖𝑖(𝑇𝑇) = critical stress for instability at temperature T for node i 

𝜎𝜎𝐴𝐴𝐴𝐴,𝑖𝑖(𝑡𝑡 = 0) = axial stress at the initial condition for node i 

𝜎𝜎𝐶𝐶𝐶𝐶,𝑖𝑖(𝑇𝑇 = 0) = critical stress for instability at initial temperature for node i 

Atmospheric tanks are usually made of several shells featuring different thicknesses, the 

thinner ones at the top and the thicker ones at the bottom, in order to withstand pressure due to 

the liquid head. RADMOD allows defining of up to three shells. Thus, the check on the above 
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criteria is done at four different points in the tank wall (as illustrated in Figure 3). Points 1, 2, 

3, and 4 are the point connecting the upper shell to the middle one, the middle shell to the lower 

one, the point at the lower shell's base, and the point at the liquid vapour interface, respectively. 

 
Figure 3: Points where RADMOD performs failure checks for atmospheric tanks. 

 

In order to capture the overall condition of the tank, the minimum VMFIi and AIFIi among the 

four nodes are used. 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 (𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝑖𝑖) 

𝐴𝐴𝐼𝐼𝑉𝑉𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 (𝐴𝐴𝐼𝐼𝑉𝑉𝐼𝐼𝑖𝑖) 

At initial conditions, VMFIi = AIFIi = 1 

At failure conditions, min (VMFIi, AIFIi) = 0 

The simulation is run till tank failure. In all the cases, the tank failed due to plastic deformation 

since the Von Mises stress failure criteria were met. The time to failure (TTF) in all scenarios 

is collected.  

 

2.3. TTF prediction model development 

The dataset has five independent variables (shell diameter, tank height, shell thickness, filling 

degree, and total heat flux) and one dependent variable (time to failure). Shell diameter and 

tank height can be used to estimate the tank volume, V.  

 𝑉𝑉 =  
𝜋𝜋
4
𝐷𝐷2𝐻𝐻 (4) 

Therefore, TTF becomes a function of V, T, FD, and I. 

 𝑇𝑇𝑇𝑇𝑉𝑉 =  𝑓𝑓(𝑉𝑉,𝑇𝑇,𝑉𝑉𝐷𝐷, 𝐼𝐼) (5) 
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Solving Equation 5 falls under a regression analysis problem. It is easier to develop a linear 

relation. However, it becomes difficult when nonlinearity exists. In this dataset, strong 

nonlinear relationships are observed among the parameters (see Figure 4). Therefore, nonlinear 

regression analysis is required. 

  

 

Figure 4: Biplot of (A) shell diameter and time to failure and (B) heat flux and time to failure 

showing nonlinear relationships. 

The following nonlinear correlation can be used to address these issues. 

 𝑇𝑇𝑇𝑇𝑉𝑉 =  𝑎𝑎 × 𝑉𝑉𝑏𝑏 × 𝑇𝑇𝑐𝑐 × 𝑉𝑉𝐷𝐷𝑑𝑑 × 𝐼𝐼𝑒𝑒 (6) 
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a, b, c, d, and e are the arbitrary constants. 

Taking natural logarithms on both sides of Equation 6, 

 𝑙𝑙𝑚𝑚(𝑇𝑇𝑇𝑇𝑉𝑉) =  ln (𝑎𝑎) + 𝑏𝑏 𝑙𝑙𝑚𝑚(𝑉𝑉) + 𝑐𝑐 𝑙𝑙𝑚𝑚(𝑇𝑇) + 𝑑𝑑 𝑙𝑙𝑚𝑚(𝑉𝑉𝐷𝐷) − 𝑒𝑒 𝑙𝑙𝑚𝑚 (𝐼𝐼) (7) 

The optimized values for a, b, c, d, and e must be estimated. The normalized difference between 

the actual and predicted values is minimized to get these model coefficients: 

 min
𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑,𝑒𝑒

��
𝑇𝑇𝑇𝑇𝑉𝑉𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑝𝑝𝑒𝑒𝑑𝑑 − 𝑇𝑇𝑇𝑇𝑉𝑉𝑎𝑎𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇𝑇𝑇𝑉𝑉𝑎𝑎𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎
�
2𝑛𝑛

𝑖𝑖=1

 (8) 

where n is the number of scenarios. 

A code has been written in Python environment to predict the optimized values for a, b, c, d, 

and e. The same technique has been adopted to develop the equations for TTFmin, TTFnom, and 

TTFmax. The obtained values are reported in Table 2. It should be noted that 3,630 random 

simulation scenarios were used to develop the TTF prediction models, while the remaining 

were used to test the model's accuracy. The R2 values have been used to measure the quality of 

the fit of the regression models developed using the optimized a, b, c, d, and e values. The 

results, presented in Table 3, suggest that a good fit is obtained, considering the similar values 

between the train and test sample and the high R2 values calculated (˃99.90%). 

Table 2: Optimized values for a, b, c, d, and e. 
 TTFmin TTFnom TTFmax 

a 2489694.657 2656768.598 2829566.646 
b 2.84E-03 3.03E-03 3.16E-03 
c 9.88E-01 9.88E-01 9.88E-01 
d -1.57E-03 -1.64E-03 -1.71E-03 
e -1.058 -1.062 -1.065 

 

Table 3: R2 values for train and test scenarios. 

 
Train 

scenarios 
Test 

scenarios 
TTFmin 99.94% 99.93% 
TTFnom 99.94% 99.92% 
TTFmax 99.93% 99.91% 

 

Using these optimized a, b, c, d, and e values, the equations for predicting minimum, nominal, 

and maximum TTF can be developed as presented in Equations 9, 10, and 11, respectively. 



11 
 

 
𝑙𝑙𝑚𝑚(𝑇𝑇𝑇𝑇𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛) =  14.73 + 2.84 × 10−3 𝑙𝑙𝑚𝑚(𝑉𝑉) + 9.88 × 10−1 𝑙𝑙𝑚𝑚(𝑇𝑇)

− 1.57 × 10−3 𝑙𝑙𝑚𝑚(𝑉𝑉𝐷𝐷) − 1.058𝑙𝑙𝑚𝑚 (𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚) 
(9) 

 

 
𝑙𝑙𝑚𝑚(𝑇𝑇𝑇𝑇𝑉𝑉𝑛𝑛𝑛𝑛𝑚𝑚) =  14.79 + 3.03 × 10−3 𝑙𝑙𝑚𝑚(𝑉𝑉) + 9.88 × 10−1 𝑙𝑙𝑚𝑚(𝑇𝑇)

− 1.64 × 10−3 𝑙𝑙𝑚𝑚(𝑉𝑉𝐷𝐷) − 1.062𝑙𝑙𝑚𝑚 (𝐼𝐼𝑛𝑛𝑛𝑛𝑚𝑚) 
(10) 

 

 
𝑙𝑙𝑚𝑚(𝑇𝑇𝑇𝑇𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚) =  14.86 + 3.16 × 10−3 𝑙𝑙𝑚𝑚(𝑉𝑉) + 9.88 × 10−1 𝑙𝑙𝑚𝑚(𝑇𝑇)

− 1.71 × 10−3 𝑙𝑙𝑚𝑚(𝑉𝑉𝐷𝐷) − 1.065𝑙𝑙𝑚𝑚 (𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛) 
(11) 

In Equations 9-11, V, T, FD, and I are in m3, m, %, and kW/m2, respectively.  

It should be noted that TTFmax and TTFmin refer to the TTF due to Imin and Imax, respectively. 

 

2.4. Domino effect assessment model development 

The final step is to develop the time-dependent domino effect assessment model. The aim is to 

develop equations correlating time, t, with the failure probability, P(F). Though yield stress, 𝜎𝜎𝑦𝑦 

can be used to assess the failure probability, it is not a straightforward and quick task to 

compute 𝜎𝜎𝑦𝑦 in the field condition. Nonetheless, variables such as the shell diameter, tank 

height, shell thickness, filling degree, and total heat flux are relatively easier to obtain. Since 

the TTF is a function of these variables, it can be used to predict the domino effect probability. 

Hence, most of the current studies adopt TTF in this context (e.g., Cozzani et al. (2005), 

Landucci et al. (2009), and Zhou et al. (2021)). 

The collected dataset suggests that the target tanks fails when time, after initiating the primary 

accident, falls within the TTFmin and TTFmax. No failure is noticed until TTFmin is reached. The 

tank can fail at TTFnom if the nominal heat flux is constantly received. However, as mentioned 

earlier, it may not be realistic to assume that the target tank is constantly receiving a specific 

heat load, due to inherent variations in pool fire intensity caused by the combustion 

characteristics of such fires. Nevertheless, all scenarios suggest that failure happens when the 

tank reaches TTFmax. Figure 5 shows the relation between failure probability and time as a 

function of TTF.  
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Figure 5: Time vs failure probability plot. 

At initial condition, no failure is expected, even with the initiation of the pool fire. The failure 

probability starts increasing once the atmospheric tank receives the load for a minimum period 

of time, TTFmin. The failure probability keeps increasing towards 0.50 until TTFnom is reached, 

and it will be unitary at TTFmax or any time beyond it. Therefore: 

• At any time lower than minimum TTFmin, P(F) is 0. 

• At any time higher than TTFmin and lower than TTFnom, P(F) will increase from 0 

towards 0.50. 

• At time TTFnom, P(F) is 0.50. 

• At any time higher than TTFnom and lower than TTFmax, P(F) will increase from 0.50 

towards 1. 

• At any time equal to or higher than TTFmax, P(F) will be 1.  

It is worth noting that the probability transition among TTFmin, TTFnom, and TTFmax can be 

linear or nonlinear depending on how uniformly the heat loads are received. However, this 

work has considered linear transitions for the sake of simplicity. Equation 12 can capture the 

failure phenomena mentioned above and can be used to estimate the failure probability of an 

atmospheric tank due to a pool fire. 

 𝑃𝑃(𝑉𝑉)𝑝𝑝 =  

⎩
⎪
⎨

⎪
⎧

0;  𝑚𝑚𝑓𝑓 𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛
0.50 − 𝑠𝑠1 × (𝑇𝑇𝑇𝑇𝑉𝑉𝑛𝑛𝑛𝑛𝑚𝑚 − 𝑡𝑡);  𝑚𝑚𝑓𝑓 𝑇𝑇𝑇𝑇𝑉𝑉𝑚𝑚𝑇𝑇𝑚𝑚 < 𝑡𝑡 < 𝑇𝑇𝑇𝑇𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛

0.50;  𝑚𝑚𝑓𝑓 𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑉𝑉𝑛𝑛𝑛𝑛𝑚𝑚
1 − 𝑠𝑠2 × (𝑇𝑇𝑇𝑇𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑡𝑡);  𝑚𝑚𝑓𝑓 𝑇𝑇𝑇𝑇𝑉𝑉𝑚𝑚𝑎𝑎𝑇𝑇 < 𝑡𝑡 < 𝑇𝑇𝑇𝑇𝑉𝑉𝑛𝑛𝑛𝑛𝑚𝑚

1;  𝑚𝑚𝑓𝑓 𝑡𝑡 ≥ 𝑇𝑇𝑇𝑇𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚

 (12) 



13 
 

 

where  𝑠𝑠1 =  0.50
𝑇𝑇𝑇𝑇𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛− 𝑇𝑇𝑇𝑇𝐹𝐹𝑛𝑛𝑚𝑚𝑛𝑛

 and  𝑠𝑠2 =  0.50
𝑇𝑇𝑇𝑇𝐹𝐹𝑛𝑛𝑚𝑚𝑚𝑚− 𝑇𝑇𝑇𝑇𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

 

 

3. Model validation: Case Studies 

Two case studies have been considered from the test scenarios to test and validate the efficacy 

of the developed model. The parameters for these scenarios are presented in Table 4.  

Table 4: Parameters of validation studies. 

Particulates Case 1 Case 2 
Volume, V 12310.06 m3 12.72 m3 
Shell thickness, T 10 mm 5 mm 
Filling degree, FD 50% 50% 
Minimum heat flux, Imin 95 kW/m2 9.50 kW/m2 
Nominal heat flux, Inom 100 kW/m2 10 kW/m2 
Maximum heat flux, Imax 105 kW/m2 10.50 kW/m2 
Minimum time to failure, TTFmin 207 s 1163 s 
Nominal time to failure, TTFnom 218 s 1229 s 
Maximum time to failure, TTFmax 230 s 1303 s 

 

Volume, shell thickness, filling degree, and heat flux values are fed into Equations 9-11 to 

obtain the TTF values. The TTFmin, TTFnom, and TTFmax values are calculated as 205 s, 216 s, 

and 227 s, respectively, in the first case study, while TTF values are computed as 1161 s, 1227 

s, and 1300 s, respectively, in the second case study. In both cases, the results yield a good 

match to the actual values. The failure probability is assessed using Equation 12 based on the 

obtained TTF values. The results are shown in Figures 6(A) and 6(B). It can be seen that the 

predicted failure probability can closely follow the actual failure probability. The predicted 

values give a conservative estimate. However, it is better to have an earlier assessment to 

minimize the consequences. The results imply that the developed model can successfully be 

used for domino effect assessment due to a pool fire. In particular, since the probability is given 

as a function of time, the model can be exploited in risk assessment approaches based on the 

analysis of the dynamic chain of events characterizing the evolution of domino effect scenarios, 

such as the dynamic Bayesian network approach proposed by Khakzad (2015) and the Petri-

nets approach presented by Kamil et al. (2019). 
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Figure 6: Domino effect probability assessment in (A) case study 1 and (B) case study 2. 

4. Results and discussions 

The following two important observations have been obtained from the current research. 

4.1. Revision of thresholds 

Threshold-based methods are widely used in domino effect assessment. For instance, 37.50 

kW/m2 has been suggested as an initiating heat flux for escalating the domino effect in many 

A 

B 
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sources (DNV, n.d.; Khan and Abbasi, 1998). In the second validation case study, the nominal 

heat flux received by the tank is 10 kW/m2, which is lower than this threshold. In fact, 10 

kW/m2 is lower than the majority of the threshold values available in the literature (see Cozzani 

et al. (2006) and Alileche et al. (2015)).  

However, as Figure 7 suggests, the tank can fail even with a heat flux lower than the threshold 

values if it is constantly subjected to this heat load for a long time period. In this case, the tank 

did not show any structural change for the first 662 s. Then, it starts losing its plasticity 

(depicted by lower VMFI). Finally, it fails at 1230 s, as VMFI reaches 0. Thus, threshold-based 

methods are found misleading in this scenario. Time is confirmed to be an important parameter 

in domino effect, and it needs to be included while mentioning the thresholds (e.g., 10 kW/m2 

for 20 min), confirming the findings of Cozzani et al. (2006), that proposed time-dependent 

threshold values for domino effect caused by radiation. 

Nevertheless, though some works report time with heat flux as the threshold, most works in 

the current literature ignore time while mentioning the threshold for domino effect. 

 
Figure 7: Time vs VMFI in the first case study when the tank is constantly exposed to 

nominal heat flux.  

 

4.2. Site-specific domino effect model requirement 

TTF is the crucial parameter in domino effect modelling. Currently, the simplified model 

proposed by Cozzani et al. (2005) is the most widely used method (Equation 13) for TTF 

estimation.  
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 𝑙𝑙𝑚𝑚(𝑇𝑇𝑇𝑇𝑉𝑉) =  −1.128(𝐼𝐼) − 2.667 × 10−5𝑉𝑉 + 9.877 (13) 

Recently, Yang et al. (2023) have proposed revised TTF models for domino accident analysis 

under the coupling effect. The authors have proposed a total of three equations. The first 

analytic model (shown in Equation 14) is developed to estimate the TTF for a tank that receives 

heat from another tank (where a pool fire has formed) without any coupling effect. This 

equation from Yang’s work has been considered for a fair comparison. 

 𝑙𝑙𝑚𝑚(𝑇𝑇𝑇𝑇𝑉𝑉) =  −1.179(𝐼𝐼) − 2.256 × 10−5𝑉𝑉 + 9.769 (14) 

The TTF prediction comparison of this model with the current models to the test scenarios is 

shown in Figure 8. In addition, Table 5 reports an extensive performance comparison of the 

overall dataset in terms of commonly used measures for regression analysis, such as R2, mean 

absolute error (MAE), and root mean square error (RMSE).  

It can be seen that the developed correlation can predict the TTF more accurately. The existing 

models provide good performance in lower TTF. Nonetheless, their performance notably 

degrades in case of higher TTF (>1000 s). The R2, MAE, and RMSE values are significantly 

improved in the current model. Yang’s model provides better performance than Cozzani’s 

model in terms of R2. However, MAE and RMSE suggest that the latter performs well in case 

of nominal TTF prediction. 

However, the models proposed by Cozzani et al. (2005) and Yang et al. (2023) have been 

developed considering two variables (volume and heat flux). On the contrary, the current work 

includes the other crucial parameters (i.e., shell thickness and filling degree). Though, even if 

it slightly increases the computational complexity, it provides significantly improved results. 

Using a different range of modelling parameters (e.g., range of tank volume) can be another 

reason. Typically, a regression model works well within its known boundary. The current 

models should give good results when the available information falls within the range of values 

mentioned in Table 1. However, plant-specific information (e.g., fuel type, tank volume, shell 

thickness, filling degree, heat flux, and time to failure) should be incorporated to get a better 

prediction. 
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Figure 8: Actual vs predicted TTF by different models for the test scenarios. 

Table 5: Performance comparison between the current work and existing TTF prediction 

models. 

Parameter Current work Cozzani et al. (2005) Yang et al. (2023) 

R2 
TTFmin 99.94% 76.80% 77.84% 
TTFnom 99.93% 76.76% 77.80% 
TTFmax 99.92% 76.83% 77.87% 

MAE 
TTFmin 7.73 144.11 135.81 
TTFnom 8.48 122.89 155.27 
TTFmax 9.54 132.67 124.55 

RMSE 
TTFmin 16.93 293.19 276.86 
TTFnom 18.59 245.94 309.61 
TTFmax 21.03 272.02 257.24 
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5. Conclusion 

This work investigates the accuracy of threshold-based and probit-based methods in assessing 

cascading events. A total of 4,080 pool fire scenarios in atmospheric tanks have been generated 

using a lumped parameter modelling approach – a technique that allows simulating scenarios 

much faster than CFD and has been validated in the work by Landucci et al. (2009). The tank 

dimensions have been selected according to the guidelines provided by the API. The tanks have 

been allowed to fail in all scenarios due to heat radiation. The VMFI and AIFI indicators are 

used as failure indicators, and TTF is used as the measure of structural response. It has been 

observed that the tanks have failed due to plastic deformation in all cases. 

Threshold-based methods are found ineffective for domino effect assessment, as it is observed 

that a failure may happen with heat radiation lower than the suggested thresholds provided that 

the exposure to fire lasts for a sufficiently extended time. A new TTF prediction model is 

developed that can improve probit-based method's prediction accuracy, as it has been observed 

that the developed model can outperform the existing models by significant margins in terms 

of commonly used performance indicators, such as R2, MAE, and RMSE. Also, to overcome 

probit-based method’s limitation in predicting dynamic failure probability, a new method for 

domino effect assessment in atmospheric tanks due to a pool fire has been proposed. 

Uncertainty in received heat load has been considered while developing the model. The 

developed model has been tested and validated in two case studies. 

The current model applies to atmospheric tanks and pool fire scenarios. Future works may 

include extending it to other fire and explosion scenarios and pressurized tanks. Also, the 

synergic effect of multiple fires or of simultaneous exposure to different types of hazards needs 

to be considered.  
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