
MCBound: An Online Framework to Characterize
and Classify Memory/Compute-bound HPC Jobs

Francesco Antici
University of Bologna

Bologna, Italy
francesco.antici@unibo.it

Andrea Bartolini
University of Bologna

Bologna, Italy
a.bartolini@unibo.it

Zeynep Kiziltan
University of Bologna

Bologna, Italy
zeynep.kiziltan@unibo.it

Ozalp Babaoglu
University of Bologna

Bologna, Italy
ozalp.babaoglu@unibo.it

Yuetsu Kodama
Riken Center for Computational Science

Kobe, Japan
yuetsu.kodama@riken.jp

Abstract—Modern High-Performance Computing (HPC) sys-
tems play a fundamental role in driving scientific research, as they
execute computationally intensive jobs originating from diverse
domains. However, HPC jobs are characterized by conflicting
computational requirements, which may cause inefficiencies in
resource usage, system throughput and energy consumption. One
approach to tackling this problem is to distinguish between
memory-bound and compute-bound jobs at their submission time,
with the goal of making informed decisions about their execution.
In this paper, we present MCBound, the first online data-driven
framework to classify HPC jobs as memory/compute-bound before
job execution, without user intervention. We propose a systematic
characterization technique to generate a reference dataset from
historical data for initial classification model training. Using
the proposed characterization technique, we analyze the data
of 2.2 million job runs on the Supercomputer Fugaku1, a
production HPC system installed at the RIKEN Center for
Computational Science, in Japan. We implement MCBound for
Fugaku and classify the jobs executed during February 2024. Our
approach is proven effective, as it obtains an F1-macro average
score of at least 0.89 as prediction quality, while incurring a
negligible overhead on the system’s operations. Our Python-based
implementation of MCBound can be seamlessly configured and
deployed in other HPC systems.

I. INTRODUCTION

Modern High-Performance Computing (HPC) systems play
a fundamental role in driving scientific research, as they ex-
ecute computationally intensive jobs originating from diverse
domains, ranging from genomics and computational chemistry,
to weather forecasting and artificial intelligence. HPC jobs ,
like any application, can be classified based on the intensity of
their system resource usage as memory-bound and compute-
bound [8], [9]. The first category refers to the jobs whose
attainable performance are bound by their memory access rate,
often measured as the utilization level of the available system
memory bandwidth. In contrast, the compute-bound refers to
the ones whose performance is bound by the system’s arith-
metical performance, often measured as the rate of double-
precision floating-point operations computed per second. As

1https://www.fujitsu.com/global/about/innovation/fugaku/

jobs are often not engineered to simultaneously saturate the
different system resource types, failure in identifying their
category prior to their execution is likely to cause inefficiency
in resource usage, system throughput and energy consumption
[9], [27], [38].

Conversely, knowing if a job is compute-bound or memory-
bound upon submission allows making informed decisions
about its scheduling and execution. For instance, it can be used
to design specific hardware-software co-design techniques [5],
[19], [20], [24], [34], or a job co-scheduling strategy that
allocates the same node to jobs with different characteris-
tics [8], [9]. Both techniques have been proven effective in
enhancing system throughput, while significantly reducing
system energy consumption. Therefore, classifying jobs as
memory-bound and compute-bound, prior to their execution,
has the potential to improve the system energy efficiency and
throughput, without the need of any intervention by the user,
as shown in [5], [8], [9], [19], [20], [24], [34].

To develop reliable classification models to predict the
memory/compute-bound nature of a job before its execution,
a large amount of labelled job data is needed. However,
to the best of our knowledge, such a public dataset for a
production system does not exist. Without prior knowledge on
jobs’ computational operations and memory usage, they can
only be characterized by analyzing the performance metrics
collected during the execution. This requires a systematic
characterization technique leveraging the data collected during
job execution. Job data analysis based on this characterization
could also provide insights into the system usage; for instance,
whether the users submit jobs optimized to fully saturate
the different system resources and if specific actions can be
enacted to improve system throughput.

Despite recognizing its importance, no past work has pro-
posed a solution to systematically and seamlessly characterize
and classify memory/compute-bound jobs in an HPC system
before job execution, nor has proven the feasibility of such an
approach. The contributions of this paper are as follows:

• We introduce MCBound, the first online data-driven

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/31.00©2024IEEE

http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00062&domain=pdf&date_stamp=2024-11-17

framework to classify HPC jobs before job execution as
memory-bound and compute-bound, without user inter-
vention.

• We propose a systematic characterization technique to
generate a reference dataset from historical data for our
initial classification model training. Using the proposed
characterization technique, we analyze the data from 2.2
million job runs on the Supercomputer Fugaku to obtain
insights into their memory/compute-bound characteristics.

• We employ MCBound to classify the jobs executed on
Fugaku during February 2024, obtaining an F1-macro
average score [32] of at least 0.89 as prediction quality.

The MCBound framework is online in the sense that it
works in real-time on live streaming data and periodically
updates the classification model in the background. The job
characterization is performed systematically, leveraging job
performance metrics, system’s specifics, and the Roofline
model [36] technique. The classification is achieved through a
prediction algorithm relying on Natural Language Processing
(NLP) and supervised Machine Learning (ML) models, which
is trained on historical and properly characterized job data,
and is able to classify unseen jobs upon submission prior to
their execution. The algorithm is periodically retrained over
time on recent data. Our framework can be configured ad-hoc
to meet the needs and characteristics of the system on which
it is deployed.

Towards implementing MCBound in a production HPC
system, we extract job data from the Supercomputer Fugaku.
The dataset contains around 2.2 million jobs executed between
December 2023 and March 2024. Our job analysis using
our characterization technique reveals that the great majority
of Fugaku jobs are memory-bound and users execute large
numbers of compute-bound jobs with the system’s default
execution mode (i.e. 2.0 GHz), instead of the boost mode (i.e.
2.2 GHz), which may result in longer execution time, node-
hours wastage and increased energy consumption.

We implement MCBound for Fugaku and evaluate the online
prediction algorithm with over 700,000 jobs executed during
February 2024. We study the impact of choice of recent data
for periodic retraining and retraining frequency on prediction
accuracy and runtime overhead of training and inference. We
show that our approach is effective for the classification task
with an F1-macro average score of at least 0.89 as prediction
quality and it incurs low runtime overhead on the system.

To the best of our knowledge, this is the first work
that systematically and seamlessly characterizes and classifies
memory/compute-bound jobs in HPC systems before job exe-
cution, without requiring any intervention by the user. In the
rest of the paper, after we discuss related work in Section II,
we present our three contributions in Sections III to V, and
conclude in Section VI.

II. RELATED WORK

The use of the Roofline model to evaluate computational
bottlenecks and characterize memory-bound and compute-
bound applications is a standard in the field, and it has been

done in several past work [12], [16], [20], [21]. In [12], [16],
the authors rely on a technique based on the Roofline model
for an in-depth analysis of application bottleneck in the cache
memory. Whereas, in [20], [21] it is used to characterize
memory-bound and compute-bound applications and evaluate
the impact of optimization techniques on their execution. All
the cited work characterized a few well-known kernels or
benchmarks via visual analysis of the resulting Roofline model
of the computations, while we here do it systematically on
millions of real jobs, for which we have no prior knowledge
on the operations performed.

In recent years, several related work have used ML-based
predictive tools in conjunction with operational data. Two main
families of approaches exist: one focuses on fault prediction
and anomaly detection of system components, the other fo-
cuses on job characteristics prediction. We restrict the related
work analysis to the approaches that are compatible with
live and streaming data in time, i.e. they only require job
submission/execution features, or system operational data. [1],
[23] belong to the first family. Differently, [3], [4], [6], [22],
[29], [31], [33], [35], [37] belong to the second family. [35],
[37] predict during job execution the job finish time and job
power consumption while [3], [4], [6], [22], [29], [31], [33]
focus on predicting job failure, duration or power consumption
before job execution. In MCBound, we target predicting a new
job characteristic prior to job execution, as runtime prediction
may incur overhead on the system operations and necessitate
modification to the regular workload submission workflow, as
often thousands of jobs are submitted every second.

Among the last group, [3], [4], [22], [33] are the only past
work that advocate job characteristic prediction using an online
approach like ours, periodically retraining the model on recent
data. When it comes to ML models, also [3], [4] propose
to augment classical ML-models (like Random Forest and k-
Nearest Neighbors clustering) with NLP tools to improve pre-
diction performance. Differently from them, MCBound targets
the prediction of the memory/compute-bound job character-
istic. Our work proves that NLP-augmented Random Forest
and k-Nearest Neighbor clustering models are effective also in
predicting the memory/compute-bound job class. Moreover, we
study the impact of choice of recent data for periodic retraining
and retraining frequency on prediction accuracy and runtime
overhead of training and inference. Finally, we integrate the
algorithm as a component in a deployable framework.

III. MCBound FRAMEWORK

In this section, we first describe the MCBound framework
at a high-level, then detail its main components, and finally
explain how it is deployed on the target system.

The framework is designed to be deployed in a real system
where jobs are submitted and executed continuously, and
various information regarding job submission, execution and
completion (referred to as job data) is streaming in time. In
this context, classification of a job before its execution can
be done by leveraging only the job submission data, and the
historical data of the jobs that are already completed by that

Selected features

Performance
metrics

Jobs data
storage

Encoded data
Feature Encoder

Classification Model
(training)

Load

Trained
model

Memory/compute
bound labels

Job Characterizer

Job1 data

Jobn data

... SaveFetch
Data Fetcher

Encoded dataFeature Encoder Classification Model
(inference)

Selected features
New job data

Predicted
memory/compute

bound label

Training Worfklow

Data Fetcher

Inference Workflow

Query

Query Fetch

Fig. 1. High-level scheme of the components and the workflows of MCBound.

time. The workload of an HPC system can be very similar
in a short period, while may vary a lot in the long term
[3], [4]. To adapt to changes in the workload and guarantee
accurate classification, we periodically update the model over
time by using the recently executed job data for training. The
framework thus executes in two different modes: (i) periodic
model retraining on recent job data and (ii) model inference
on a newly submitted job. For this, the framework requires an
operational data analytics framework that collects job data and
stores them in a jobs data storage.

The framework is depicted in Figure 1, where the rect-
angular blocks represent the main components and the blue
containers show how they are employed in two Continu-
ous Integration/Continuous Delivery (CI/CD) workflows. The
components are:

• The Data Fetcher, which retrieves the job data by query-
ing the jobs data storage.

• The Feature Encoder, which takes as input a series of
raw job data, and returns the encoded data to be fed into
the Classification Model.

• The Job Characterizer, which takes the raw job data as
input and augments the job data with memory/compute-
bound labels.

• The Classification Model, which uses the encoded data
together with the memory/compute-bound labels for
model training, and just the encoded data for model
inference to classify each submitted job as memory or
compute-bound prior to its execution.

When triggered:

• the Training Workflow fetches the data of the jobs ex-
ecuted in the last α days to generate an instance of a
trained Classification Model once every β days;

• the Inference Workflow fetches the data of a new
(unseen and not yet executed) job and generates a
memory/compute-bound label for it.

In this paper, we target the Fugaku supercomputer, however,
the framework is designed to work universally for any system.
It requires only that the jobs data storage is integrated in
the system, containing job features referring to submission

(such as requested resources, user information, job name),
execution and completion (such as duration and #nodes
allocated), and performance metrics (such as #flops and
#moved_memory_bytes). The architecture is designed to
be modular and easy to customize for different systems, for
instance by implementing different Data Fetcher, Feature En-
coder, or Classification Model. All the framework components
are software components implemented as Python classes, with
a method for each functionality they provide.

A. Data Fetcher
The Data Fetcher is an interface to retrieve data from the

jobs data storage, which contains information of executed
and newly submitted jobs. At initialization time, the class
allows configuring the Data Fetcher object to interact with the
specific data storage technology deployed in the target system
(e.g., relational database, non-relational database, distributed
file system). In this paper, we implement the class to interact
with the relational database of Fugaku. The class provides
the fetch method, which takes as input either a job_id, or a
start_time and end_time. With the first parameter the method
fetches the data of a single job corresponding to the job_id,
with the second instead the data of all the jobs executed be-
tween start_time and end_time are fetched. These parameters
are used to generate an SQL query to the job’s data storage.
The query results in a list of job features and their values,
which is then returned as the output of the fetch method.

B. Feature Encoder
This component represents job features in a format suitable

to be fed into the Classification Model, i.e. an array of floating
point values. The class is endowed with an encode method
which takes as input the raw job data and outputs the encoded
job data. Internally, the method filters out a subset of job
features, selected empirically during an initial experimentation
phase and accordingly to the chosen classification model.
The corresponding feature values are then concatenated into
a comma-separated string and encoded with Sentence-BERT
(SBERT) [26].

SBERT is a state-of-the-art sentence embedding model, ob-
tained by fine-tuning pre-trained BERT (Bidirectional Encoder

Representations from Transformers) [11]. BERT is trained on
millions of textual documents in order to understand patterns
of one or more languages. The model is able to generate
word-level embeddings, namely a semantically meaningful
floating-points array representation. However, when working
with pieces of text or strings in regression tasks, this repre-
sentation is not suited. BERT would encode each sentence
as a high dimensional matrix (# of token in the string x 768),
which would require additional processing and memory. Thus,
SBERT is created by fine-tuning BERT models in sentence
similarity tasks, aiming to create a model which is ultimately
able to generate meaningful sentence-level embeddings. The
resulting representation of a text string from SBERT is a fixed-
size 384-dimensional floating-point array, which constitutes
the output of the encode method.

This method can be modified to select any subset of job
features and to leverage any encoding technique (such as
classical categorical mapping of feature values to integers,
transformers or neural encoder/decoder models) able to map
job features to a suitable format for the Classification Model.

C. Job Characterizer
The Job Characterizer component exploits the Roofline

model [36] which represents the compute-memory ratio of a
computation, and allows identifying if it is compute-bound
or memory-bound. By using system specifics (i.e. peak per-
formance and peak memory bandwidth), it computes the
operational intensity op (mean operations per byte of memory
traffic) of the ridge point opr for a machine m, namely the
minimum op needed to obtain the peak performance of m.
This value is then used to distinguish between memory-bound
and compute-bound computations. In our case, computations
are jobs, and machine m is a single node n of an HPC system.

The Job Characterizer class is initialized with the peak
performance and the peak memory bandwidth of a single node
n of an HPC system, and computes the operational intensity of
the ridge point opr. The generate_labels method of the class
returns the memory-bound or compute-bound label of a job j
given as input its feature values. These are the number of float-
ing point operations (#flopsj), the duration (durationj), the
number of nodes allocated (#nodes_allocj), and the amount
of moved memory bytes (#moved_memory_bytesj). These
features can be obtained by filtering the job execution statistics
and performance metrics. Internally, the method computes
the performance (pj), the memory bandwidth (mbj), and
operational intensity (opj) for j. As pj is a measure of Flops
per second, we divide the flopj by durationj . Furthermore,
since the Roofline model refers to a single node of the machine,
the performance of j needs to be normalized on #nodes_allocj ,
obtaining for each job the per node average pj , mbj and opj .
Then, pj , mbj and opj are computed as shown in Equations 1,
2 and 3. The generate_labels method returns compute-bound
if opj is greater than opr computed at class initialization time,
memory-bound otherwise.

pj =
#flopsj

durationj ∗#nodes_allocj
(1)

mbj =
#moved_memory_bytesj
durationj ∗#nodes_allocj

(2)

opj =
pj
mbj

(3)

In this first version of MCBound, we focus only on the
classes defined in the original Roofline paper [36]. However, by
adding to the Roofline model the bandwidth of other hardware
components (e.g. cache, interconnect and GPUs) it is possible
to expand the Job Characterizer to create other labels for the
job data, such as interconnect-bound and GPU-bound.

D. Classification Model

This component provides methods for the classification
task via data-driven prediction algorithms. When an object of
the class is created, the initialization method takes as input
the name of the algorithm to employ. In our use case, we
implement two instantiations, using supervised ML algorithms
which are first trained on historical and properly characterized
job data, before performing inference on unseen jobs.

• KNN employs the k-Nearest Neighbors clustering [14]
algorithm, which does not rely on internal parameters.
Training is performed by only storing the values of a
fixed amount of data points in a given feature space. Then,
inference is done by a majority voting among the k most
similar data. The similarity is computed as the Minkowski
distance metric between the data input features.

• RF employs the Random Forest [7] algorithm, which is
an ensemble technique relying on a set of Decision Trees
(DTs). The DT [28] is an algorithm which learns decision
rules from the correlations observed between features
and target values of historical data used for training.
Differently from the KNN, the training consists of tuning
the parameters of the different DTs on a random subset
of the training data, and a random subset of the input
features. At inference time, a majority voting among the
trained DTs is carried out. This is done to make up for the
tendency of individual DTs to overfit on the training data
and thus obtain less error-prone prediction performance,
as explained in [7].

The chosen algorithms spend complementary effort in their
training and inference parts. While RF needs to dedicate a
significant amount of time to training, the KNN does that for
inference. Availability of algorithms with different learning
nature allows choosing the best trade off between the quality
of prediction and the runtime effort spent on it. We note that it
is possible to implement any data-driven prediction algorithm
for Classification Model, such as neural networks, other ML-
based or even heuristic algorithms.

Once initialized, the Classification Model instance provides
the training and inference methods. The training method takes
as input two arrays containing respectively encoded job data
and the corresponding memory/compute-bound labels. The
input data is then used to train the Classification Model
instance. The inference method can be called only after the

TABLE I
FUGAKU SYSTEM ARCHITECTURE.

System characteristic Description
Architecture Armv8.2-A SVE 512 bit
OS Red Hat Enterprise Linux 8
#Nodes 158,976
#Cores (per node) 48 + 4 assistant cores
Memory (per node) HBM2, 32 GiB, 1024 GBytes/s
Peak Performance ≈ 537 PFlops/s (FP64), ≈ 3.3 TFlops/s per node
Internal Network Tofu D Interconnect (28 Gbps)

Classification Model instance is trained. The method takes as
input an array of encoded job data and generates a list of
predicted memory/compute-bound labels for all the jobs.

E. MCBound Deployment

We implement MCBound as a flask2 backend, providing
APIs to perform the operations of the framework. Flask is
endowed with a built-in development server, but it can be
also easily deployed to any HTTP server. We also provide
a Docker [25] configuration, to distribute the framework as a
container and make it scalable through container orchestration
techniques, such as Kubernetes [10].

The workflows shown in Figure 1 are implemented as
Python scripts leveraging the framework APIs to perform the
necessary steps. The trained model instances are saved to the
machine file system by using the skops.io library,3 in order to
handle and maintain different versions of the models.

We provide a deploy script for the first deployment of
MCBound. The script first executes the Training Workflow
script to generate the trained instance of the Classification
Model, and then the flask application of MCBound is started.
Finally, a cronjob [17] is scheduled to re-execute the Training
Workflow script every β days.

The online prediction starts when a trained instance of the
Classification Model is generated. Then, the trained instance is
used by the Inference Workflow script to generate predictions
for the all jobs submitted in the following β days. Within this
period, the inference on a job can be triggered in two different
ways depending on how and when the prediction is needed:
at each new job submission, or by periodically querying the
jobs data storage to retrieve the accumulated new job data.
After β days, the cronjob for the Training Workflow script is
re-triggered, an instance of the Classification Model is trained,
and the framework is ultimately reloaded.

IV. MEMORY/COMPUTE-BOUND CHARACTERIZATION
AND ANALYSIS OF FUGAKU JOBS

In this section, we apply our characterization approach to
the job data obtained from the Fugaku system and analyze
the outcome. The characterization is necessary to acquire the
ground truth for the prediction algorithm evaluation in Section
V, while the analysis allows to obtain insights into the system

2https://flask.palletsprojects.com/
3https://skops.readthedocs.io/en/stable/index.html

20
23

-12
-01

20
23

-12
-15

20
24

-01
-01

20
24

-01
-15

20
24

-02
-01

20
24

-02
-15

20
24

-03
-01

Submission day

101

102

103

104

of

 Jo
bs

Fig. 2. Job submission distribution over time.

usage; for instance, whether the users submit jobs optimized
to fully saturate the different system resources and if specific
actions can be enacted to improve system throughput.

A. Fugaku Job Traces

We extract job data from the operational logs of Fugaku,
which was deployed in 2020 and at the time of writing ranked
4th among the most powerful supercomputers in the world. 4

A summary of the system characteristics is shown in Table I.
Fugaku relies on a proprietary operations management soft-

ware5, built as an extension of PBS [13] which features work-
load management operations like job manager, job scheduler,
and functions that enable the recording and storage of job data.
This data includes information about job submission (such as
submission time, requested resources, user information, and
system state), as well as job execution and completion (such as
duration and performance counters). The performance coun-
ters can be leveraged to compute performance metrics on the
job execution, such as #flops and #moved_memory_bytes.

Fugaku is used by hundreds of users, submitting thousands
of jobs to the system every day. We extract the data of 2.2
million jobs submitted and executed between December 2023
and March 2024 (the data is publicly available in Zenodo [2]).
Figure 2 shows the distribution of the jobs over the entire
period. We observe that the job submission rate is uniform
except for a few days in early February, when a scheduled
maintenance caused the shutdown of the system.

B. Job Characterization Setup

Following the methodology presented in Section III-C, we
extract the peak performance and peak memory bandwidth of
a Fugaku node from system’s specifications.6, which are 3380
GFlops/s in FP64 and 1024 GByte/s, respectively. The peak

4https://www.top500.org
5https://www.fujitsu.com/global/about/resources/publications/

technicalreview/2020-03/article10.html#cap-03
6https://www.fujitsu.com/global/about/innovation/fugaku/specifications/

https://flask.palletsprojects.com/
https://skops.readthedocs.io/en/stable/index.html
https://www.top500.org
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article10.html#cap-03
https://www.fujitsu.com/global/about/resources/publications/technicalreview/2020-03/article10.html#cap-03
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/

Fig. 3. Roofline model of the job data.

performance reported refers to FX1000 boost-mode configu-
ration (i.e. frequency = 2.2 GHz for the A64FX CPUs), as
we need to consider the best performance attainable by the
machine. Based on these characteristics, the ridge point is at
an opr of ≈ 3.3 Flops/Byte, which is used for the job labelling.

As described in Section III-C, for job j we compute
pj and mbj (and consequently opj), via #flopsj and
#moved_memory_bytesj . These two values in the target
system are computed starting from the performance counters
(perf2, perf3, perf4, perf5). In the Fugaku system, perf2
and perf3 correspond to the FP_FIXED_OPS_SPEC and
FP_SCALE_OPS_SPEC A64FX_PMU_Events, while perf4
and perf5 correspond to BUS_READ_TOTAL_MEM and
BUS_WRITE_TOTAL_MEM [15]. In Equation 4, perf2 is
the fixed amount of operations, while perf3 is the number of
operations per 128-bit SVE, and it is multiplied by 4 since
the A64FX of Fugaku is 512-bit SVE. In Equation 5, perf4
and perf5 are summed in order to obtain the total number
of requests to the memory, as they represent the amount of
memory read and write requests, respectively. Then, they are
multiplied by the size of the memory requests, (256 bytes of
cache line size), to obtain the total #moved_memory_bytesj .
Moreover, the cores of Fugaku nodes are grouped by 12 in
Core Memory Groups (CMGs). The perf4 and perf5 values
are generated by summing all the values collected by each
core for the whole CMG. Therefore, these values need to be
divided by 12 to eliminate redundant information.

#flopsj = perf2j + (perf3j ∗ 4) (4)

#moved_memory_bytesj =
(perf4j + perf5j) ∗ 256

12
(5)

Once we compute pj and mbj (and opj), we label the job j
based on the comparison of opr of the ridge point and opj .

20
23

-12
-01

20
23

-12
-15

20
24

-01
-01

20
24

-01
-15

20
24

-02
-01

20
24

-02
-15

20
24

-03
-01

Submission day

101

102

103

104

of

 Jo
bs

Label
memory-bound
compute-bound

Fig. 4. Distribution of job types over time.

C. Fugaku Job Analysis

Figure 3 shows the collective Roofline model, which reports
in x-axis op measured as Flops/Byte, and in y-axis p in
GFlops/s. We observe that the distribution of the operational
intensity of the jobs submitted to the Fugaku system is
significantly skewed toward values lower than the ridge point.
Moreover, as reported in Table II, the number of memory-
bound jobs is around 3.5 times as the number of compute-
bound jobs. Figure 4 reports the distribution of each job type
over the entire period. We notice that the proportion between
the memory-bound and compute-bound jobs is constant in
time, suggesting that this difference is a characteristic of
the studied Fugaku workload. This is interesting considering
that the A64FX of the Fugaku system has been co-designed
for memory-bound jobs [30], and thus, a more balanced job
distribution would be expected.

We can also see that many jobs are far from the Roofline.
This is particularly notable in the memory-bound area, where
only a few clusters of jobs are close to the peak memory band-
width line. The same can be observed in the compute-bound
area, where only some jobs with operational intensity around
the ridge point touch the peak performance line. This means
that while there are some well-engineered jobs saturating fully
the resources, it is not the case for the majority of the jobs.
Therefore, leveraging MCBound to classify memory/compute-
bound jobs has the potential to guide job scheduling, for
instance by enacting co-scheduling of memory-bound and
compute-bound jobs on the same node, or by adjusting the
amount of resource allocated to the job, and thus to reduce
system resource wastage.

Figure 5 shows the distribution of jobs in the Roofline
plane by highlighting the node frequency selected by the
user at job submission time. In Table II, we see that around
54% of the memory-bound jobs are executed in normal mode
(frequency=2.0 GHz), while only around 30% of compute-
bound jobs in boost mode (frequency=2.2 GHz). Moreover,

Fig. 5. Roofline model of the job data, divided by frequency.

TABLE II
DISTRIBUTION OF JOB TYPES.

Frequency memory-bound compute-bound Total
2.0 GHz (normal mode) 891,056 330,878 1,221,934
2.2 GHz (boost mode) 752,421 147,097 899,518
Total 1,643,477 477,975 2,121,452

Figure 5 shows that there is no observable correlation between
the user-selected frequency at submission time and the position
of the given job in the Roofline. These observations suggest
that users do not necessarily choose appropriate frequencies
for their jobs. Indeed, memory-bound jobs do not benefit from
running at higher frequencies, as their performance bottleneck
is the memory bandwidth, while compute-bound jobs are
likely to increase their performance at higher frequencies,
possibly resulting in shorter execution time and energy sav-
ings. Therefore, another advantage of leveraging MCBound
is the possibility to guide frequency selection, and thus the
improvement of system energy efficiency and throughput.

V. EXPERIMENTAL STUDY

In this section, we present the implementation of the Classi-
fication Model of MCBound for Fugaku, experimentally eval-
uate the online prediction algorithm, and discuss the results.

A. Classification Model Implementation for Fugaku

We rely on the scikit-learn7 library for the ML models
and use their default implementation. The SBERT model is
provided by the sentence transformers library8, while the
weights are pulled from Huggingface 9. We use the pre-trained
model all-MiniLM-L6-v210, since it has the best trade-off
between prediction quality and speed [26]. The code we used
for the implementation will be released in a public repository.

7https://scikit-learn.org/stable/
8https://www.sbert.net
9https://huggingface.co
10https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

We conduct an initial empirical evaluation of the dataset
to find the best set of features to represent the Fugaku jobs.
The set should be representative enough for jobs to maximize
the prediction accuracy while concise enough to minimize
the runtime overhead in processing them. Past work on job
power consumption of Fugaku jobs [4] found that the best
set is composed of user name, job name, #cores requested,
#nodes requested and environment. Our experiments confirm
their value in our prediction task and that including the
additional feature frequency requested improves the prediction
performance. We therefore use frequency requested and those
of [4] as augmented feature set.

As mentioned in Section III, the Inference Workflow can
be triggered periodically. For Fugaku, we do it once every β
days, using the job data accumulated since the last trigger. We
save the job characterizations and encodings of every trigger
of the Training Workflow and Inference Workflow, in order
to reuse them and avoid redundant computations during the
future triggers of the Training Workflow.

The Training/Inference Workflows are performed on a ma-
chine detached from Fugaku, accessible via HTTP calls. Thus,
no overhead to the HPC computing resources is incurred. As
the data were already collected for logging purposes, the only
additional storage required is for the saved trained model,
which is negligible in today’s HDD (around 1GiB)

B. Online Prediction Algorithm Evaluation

To evaluate the online prediction algorithm, we implement
an evaluate Python script, which is executed once at
the end of the testing period. This evaluation targets the
assessment of the prediction quality as well as the incurred
runtime overhead.

a) Evaluation setup: We employ the two ML models,
KNN and RF, described in Section III-D. The models are
trained on portions of the data of the jobs executed between
December 1st, 2023 and January 31st, 2024 and tested on
a subsequent time window composed of over 700,000 jobs
executed between February 1st and 29th, 2024.

Prediction quality is measured using the F1-macro average
score [32] - a widely used metric for classification problems
- computed as the mean of the F1-score obtained on specific
memory-bound and compute-bound classes. The F1-score on
a single class is computed as the harmonic mean between the
precision and recall on the target values. Hereafter, we will
refer to the F1-macro average as F1. The F1 for a model is
computed at the end of the testing period by our evaluate
script, on all the predictions generated by all the Inference
Workflow executions. The ground truth labels necessary for
F1 have been acquired via Fugaku job data characterization,
as described in Section IV.

The runtime overhead of the algorithm refers to the time
spent in training and inference, which are computed as the
average of all the Training Workflow and Inference Work-
flow runtimes. While job characterization time is negligible
(1∗10−6 seconds per job), the encoding incurs a higher over-
head (2 ∗ 10−3 seconds per job) which still is negligible. We

https://scikit-learn.org/stable/
https://www.sbert.net
https://huggingface.co
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2

note, however, that job encoding takes place during Training
Workflow only once at the first deployment of MCBound. This
is because there are no encodings of the historical job data at
the beginning. As models are retrained during future triggers
of the Training Workflow, the job encodings can be retrieved
from the previous Inference Workflow computations. Thus, we
do not include the job characterization and encoding time in
the training time, while we include the encoding time in the
inference time.

b) Experimental setup: We conduct three experiments.
As described in Section III, the online prediction algorithm
retrains a model using the recently executed job data (the last
α days’ data), and continues to do so periodically (at every β
days). In the first experiment, we use different combinations of
α and β values, to find the best time window of the recent data
for periodic retraining and retraining frequency. We iterate α ∈
{15, 30, 45, 60} and β ∈ {1, 2, 5, 10}. We avoid β = 0, i.e.
retraining upon each new job submission, as it incurs excessive
overhead, as well as exclude larger values of β so as not to
delay model update for long.

We are not interested in using more than α = 60 days of
training data either, as otherwise the model would have to
deal with a large amount of data during RF training and KNN
inference, possibly increasing the runtime overhead. Moreover,
the workload of an HPC system is variable and training based
on “older" data is not beneficial for prediction. We demonstrate
this in our second experiment, where the initial model training
is done using the best α found in the first experiment, and then
successively the model is retrained using the data of all the
past days, without forgetting the data older than α days. We
refer to this setting as α+ time window.

To observe whether the amount of data used within a given
α time window influences the prediction quality, in our third
experiment we retrain the models using a θ subset of the last α
days of data. To this end, we iterate θ in {102, 103, 104, 105}
after having analyzed the average training data size.

The experiments are run on the machine where the frame-
work is currently deployed for testing purposes, which is
equipped with two AMD EPYC 7302 CPUs, 64 cores and
512 GB RAM, running Python 3.11.5 on Linux Fedora 37. The
code of the experiments will be released in a public repository.

C. Experimental Results

a) Experiments with α and β values: Figure 6 shows
F1 values over different combinations of α and β values. In
both models, as β increases, F1 decreases, due to less frequent
model training and knowledge update. We therefore consider
the best retraining frequency as β = 1 (once a day). As
α increases, the models behave differently. The parametric
model RF tends to benefit from training using data spanning
to a larger time window, probably because parameter tuning
becomes more precise, but we observe no gains with α > 15
when β = 1. Whereas, the non-parametric nature of KNN does
not benefit from “older" data. In the specific case of β = 1, the
best performance is attained with α = 30 and then declines
with greater values. We theorize that the workload has more

1 2 5 10
β

60
45

30
15

α

0.87 0.87 0.86 0.86

0.88 0.88 0.87 0.86

0.89 0.88 0.87 0.87

0.83 0.81 0.80 0.80

KNN

1 2 5 10
β

60
45

30
15

α

0.90 0.89 0.88 0.87

0.90 0.88 0.87 0.86

0.90 0.88 0.87 0.86

0.90 0.88 0.87 0.86

RF

Fig. 6. F1 of KNN (above) and RF (below) with different α and β values.

similarities within 30 days. Given that KNN inference works
by finding similar data, training on data older than 30 days
infers past job behavior.

Figure 7 shows the average daily training time across
various values of α. KNN training time is almost negligible,
with a maximum duration of 0.32 seconds with α = 60. In
fact, KNN training consists of just building a model instance,
which stores the training data for future inference, and no
parameter is tuned. Conversely, RF requires an actual training
phase with parameter tuning, and as α grows, so does the
training time with the amount of data growing, up to almost 3
minutes. However, RF reaches the best prediction already with
α = 15, when the training time is lowest (around 26 seconds).

In Figure 8, we show the daily average inference time per
job (including job encoding time) across various values of α.
RF has a constant inference time, as inference is done through
tuned parameters independently of α. Though this value is
around 2 ∗ 10−6, it is dominated by the average job encoding
time (2 ∗ 10−3). KNN inference is about finding similarities
among the entire training data, thus inference time would grow
with larger values of α. However, the inference time is again
dominated by the encoding time and is around 2.3 ∗ 10−3,
not changing much across different values of α. Still, the
inference time per job of α = 30 is negligible (milliseconds)
w.r.t. job average waiting time for scheduling (time spent

15 30 45 60
α

10−1

100

101

102

Da
ily

 a
ve

ra
ge

 tr
ai

ni
ng

 ti
m

e
(in

 se
co

nd
s)

0.08

0.16
0.24

0.32

26.39

67.41
119.71

168.13model
KNN
RF

Fig. 7. Average model training time variation when β = 1.

until the scheduling decision of a job, after its submission),
which is around 3 minutes in the observed period. This means
that neither of the models would incur overhead on the job
submission workflow of the system. From Figures 6, 7 and 8,
we can conclude that the best algorithm settings are α = 15
(RF) and α = 30 (KNN), coupled with β = 1.

We further compare the RF and KNN to a simple baseline
that maps a tuple of (job name, # of cores requested) to a
memory/compute-bound label (which can be seen as a KNN
with k = 1 on the features job name, # of cores requested). The
baseline is updated over time using the same online algorithm,
with α = 30 and β = 1 (as the best KNN settings). While this
solution is simpler, it is also less accurate than ours (F1-score:
0.83 vs 0.90), justifying the need for our approach.

b) Experiments with α+: Starting with the best α and β
value combinations as described in the previous experiment,
we observe no improvement in prediction considering the α+

time window during training. F1 of RF with α+ is 0.90, which
is the same as α = 15. This is not surprising, as we saw in
the previous experiments that increasing α does not change
F1 when β = 1. F1 of KNN instead decreases to 0.86 with
α+ from 0.89 with α = 30. This supports our hypothesis that
jobs are most similar within 30-days.

Moreover, the growing time window jeopardizes the training
time of RF and the inference time of KNN, as they are both
dependent on the training data size. The average training time
of RF increases from 26.39 seconds with α = 15 to more than
200 seconds with α+. Differently, the training time increase
in KNN is marginal, going from 0.16 seconds with α = 30 to
0.39 seconds with α+. Conversely, while the average inference
time per job of RF remains the same, the KNN time increases
but slightly, going from 2.3 ∗ 10−3 seconds per job with α =
30 to around 2.5 ∗ 10−3 with α+.

This experiment confirms that a sliding time window, which
filters the recent job data for retraining, is beneficial for
the proposed online algorithm both for prediction accuracy

15 30 45 60
α

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Da
ily

 a
ve

ra
ge

 in
fe

re
nc

e
tim

e
pe

r j
ob

 (i
n

se
co

nd
s)

 2.1*10−3
 2.3*10−3

 2.4*10−3
 2.5*10−3

 2.0*10−3 2.0*10−3 2.0*10−3 2.0*10−3

model
KNN
RF

Fig. 8. Average job inference time variation when β = 1.

and overhead on the system’s operations. Therefore, in the
following experiment, we fix α to its best values of 15 (RF)
and 30 (KNN).

c) Experiments with θ: For a given α retraining time
window, we select a subset θ of data points either randomly,
or by considering the jobs with the most recent ending time.
When sampling data randomly, we repeat model training with
5 different random seeds11 and average the results of the 5
different trained models.

Figures 9 and 10 show F1 values of KNN and RF using
latest and random data over different values of θ. We observe
that having more data within a fixed time window improves
the prediction accuracy for both sampling approaches, where
the best result is obtained by using all the available data.
Interestingly, random sampling is more effective consistently
across all θ values. This can be attributed to the fact that
Fugaku jobs are usually submitted in batches of identical jobs,
and job data very near in time might lead to replicated data
during training. A higher percentage of such replicated training
data would result in a less general model, while sampling
the data randomly smoothes this effect. Our hypothesis is
supported by the fact that with smaller values of θ, i.e. from
102 to 104, the F1 difference between the two sampling
approaches is significant (up to 0.26), while the gap reduces
drastically (down to 0.02) with θ = 105. In fact, the more jobs
take part in training, the less batches of identical jobs would
impact the model, as the percentage of replicated data would
drop.

d) Discussion of results: The best settings of the algo-
rithm, in terms of retraining data time window α and retraining
frequency β, are α = 15, β = 1 days for RF and α = 30, β =
1 days for KNN, using all the available training data. With
these settings, we obtain accurate predictions (F1=0.90 for RF
and F1=0.89 for KNN), at the expense of 26 seconds for RF
and 0.16 for KNN daily average training time, and average

11The random seeds used for the experiments are 520, 90, 1905, 7, 22

102 103 104 105

θ

0.0

0.2

0.4

0.6

0.8

F1

0.48

0.65

0.73

0.86

0.57

0.79

0.87 0.88All data, f1: 0.89
KNN with α=30 and β=1

Data sampling
latest
random

Fig. 9. F1 of KNN with different θ values.

inference time per job of 2.0 ∗ 10−3 seconds with RF and
2.3 ∗ 10−3 with KNN. As the average number of submitted
jobs per day in the observed period is 25K, the daily overhead
of model inference can be estimated as around 50 seconds for
RF and 60 for KNN. The overall daily training and inference
overhead is negligible w.r.t. to job average waiting time for
scheduling, which is around 3 mins during our observation.

We conclude that regardless of the model used, the online
prediction algorithm is suitable to be deployed in a production
system, as it provides accurate predictions with negligible
overhead on the job submission workflow of the system. We
highlight that our approach can have a significant impact on
the system power, energy and performance. We estimate the
impact based on previous work on job and frequency mode
characterization [18]. The authors showed that using the boost
mode on Fugaku for compute-bound jobs can reduce the job
execution duration by 10% (with respect to normal mode),
while using the normal mode for memory-bound jobs can
reduce the job power consumption by 15% (with respect
to boost mode). Our algorithm classifies 90% of the jobs
correctly, hence we could perform semi-automatic frequency
selection and obtain the following improvements. There are
750k memory-bound jobs executed in boost mode, with an
average power consumption of 5000 W, and an average dura-
tion of 6000 seconds. By executing them in normal mode, we
could have reduced the power consumption by around 680W
per job, saving 450MW of power, and 14 GJoules of energy,
at the system level. Moreover, there are 330k compute-bound
jobs executed in normal mode, with an average duration of
13,500 seconds. By executing them in boost mode, we could
have saved around 20 minutes of computation per job, and
more than 1,700 hours of overall system computation.

We note that these kinds of improvements can be potentially
obtained in any system where the nodes’ frequency can be
decided by the user, and thus our results are not limited to the
Fugaku system.

102 103 104 105

θ

0.0

0.2

0.4

0.6

0.8

F1 0.47

0.66

0.77

0.85

0.73

0.84
0.88 0.89All data, f1: 0.90

RF with α=15 and β=1
Data sampling

latest
random

Fig. 10. F1 of RF with different θ values.

VI. CONCLUSIONS

We presented MCBound, the first online data-driven frame-
work to classify HPC jobs before job execution as memory-
bound and compute-bound. Our framework is designed to
be deployed in a real system where jobs are submitted and
executed continuously. The framework requires only that the
jobs data storage is integrated in the system, containing job
features referring to job submission, execution and completion,
and performance metrics. The classification is based on an
ML-based predictive model which is periodically updated
with the recent job data streaming in time. In addition to
classification, MCBound can be used for job characterization
as a stand-alone approach to analyze the memory/compute-
bound nature of the jobs of a system.

Using the proposed characterization technique, we analyzed
the data of 2.2 million jobs executed on the Fugaku super-
computer between December 2023 and March 2024, finding
out that the submitted jobs are not optimized to fully saturate
the system resources, and thus the system efficiency can
be improved. We then implemented MCBound for Fugaku
and demonstrated that MCBound is effective in classifying
memory/compute-bound jobs before their execution, as it ob-
tains an F1-macro average score of at least 0.89 on the data of
more than 700,000 jobs executed on Fugaku during February
2024, with negligible runtime overhead. These results are
obtained by studying the best setting for the online prediction
algorithm in terms of the choice of recent data for periodic
retraining and retraining frequency. We also argued how our
approach can have a significant impact on the system power,
energy and performance. We conclude that MCBound is suit-
able to be deployed in a production HPC system to guide the
job scheduling and allocation (dispatching), so as to improve
system energy efficiency and throughput. Our Python-based
implementation of MCBound can be seamlessly configured
and deployed in other HPC systems.

As future work, we plan to deploy the framework in other

systems where similar data can be collected, and expand it for
two purposes. First, to predict other job features (such as dura-
tion, power consumption or failure) with the KNN predictive
model. The KNN finds the most similar jobs regardless of the
target feature, hence we can easily adapt the framework for
the prediction of multiple features without having to rely on
different predictive models. Second, to predict other classes
of jobs (e.g. interconnect-bound and GPU-bound). We are
currently developing job dispatching strategies that can benefit
from the predictions of MCBound, aiming to optimize system
throughput and energy efficiency. We will investigate how to
integrate MCBound and the new dispatchers into the workload
management system of HPC systems.

ACKNOWLEDGEMENTS

This research was partly supported by the HE EU Graph-
Massivizer project (g.a. 101093202) and the EU DECICE
project (g.a. 101092582). We would like to thank Jens Domke
12 from Riken Center for Computational Science for his
precious contribution to this work.

REFERENCES

[1] B. Aksar, E. Sencan, B. Schwaller, O. Aaziz, V. J. Leung, J. Brandt,
B. Kulis, M. Egele, and A. K. Coskun, “Prodigy: Towards unsupervised
anomaly detection in production hpc systems,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2023, pp. 1–14.

[2] F. Antici, A. Bartolini, J. Domke, Z. Kiziltan, and K. Yamamoto,
“F-DATA: A Fugaku Workload Dataset for Job-centric Predictive
Modelling in HPC Systems,” Jun. 2024. [Online]. Available: https:
//doi.org/10.5281/zenodo.11467483

[3] F. Antici, A. Borghesi, and Z. Kiziltan, “Online job failure prediction
in an hpc system,” in Euro-Par 2023: Parallel Processing Workshops:
Euro-Par 2023 International Workshops, Limassol, Cyprus, August 28–
September 1, 2023, Revised Selected Papers. Springer Nature, 2023.

[4] F. Antici, K. Yamamoto, J. Domke, and Z. Kiziltan, “Augmenting ml-
based predictive modelling with nlp to forecast a job’s power con-
sumption,” in Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and
Analysis, 2023, pp. 1820–1830.

[5] K. Asifuzzaman, M. A. H. Monil, F. Liu, and J. S. Vetter, “Evaluating
hpc kernels for processing in memory,” in Proceedings of the 2022
International Symposium on Memory Systems, 2022, pp. 1–6.

[6] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Predictive modeling for job power consumption in hpc systems,” in
High Performance Computing: 31st International Conference, ISC High
Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings.
Springer, 2016, pp. 181–199.

[7] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[8] J. Breitbart, S. Pickartz, S. Lankes, J. Weidendorfer, and A. Monti, “Dy-
namic co-scheduling driven by main memory bandwidth utilization,” in
2017 IEEE International Conference on Cluster Computing (CLUSTER),
2017, pp. 400–409.

[9] J. Breitbart, J. Weidendorfer, and C. Trinitis, “Case study on co-
scheduling for hpc applications,” in 2015 44th International Conference
on Parallel Processing Workshops, 2015, pp. 277–285.

[10] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp. 50–57, 2016.

[11] J. Devlin, M.-W. Chang, K. Lee, and et al., “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of the 2019 NAACL: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Compu-
tational Linguistics, Jun. 2019, pp. 4171–4186.

12https://orcid.org/0000-0002-5343-414X

[12] N. Ding and S. Williams, An instruction roofline model for gpus. IEEE,
2019.

[13] H. Feng, V. Misra, and D. Rubenstein, “Pbs: a unified priority-based
scheduler,” in Proceedings of the 2007 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, 2007,
pp. 203–214.

[14] E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric
discrimination: Consistency properties,” International Statistical Re-
view/Revue Internationale de Statistique, vol. 57, no. 3, pp. 238–247,
1989.

[15] Fujitsu Limited, “A64fx pmu events,” 2019. [Online].
Available: https://raw.githubusercontent.com/fujitsu/A64FX/master/doc/
A64FX_PMU_Events_v1.2.pdf

[16] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrading
the loft,” IEEE Computer Architecture Letters, vol. 13, no. 1, pp. 21–24,
2013.

[17] M. S. Keller, “Take command: cron: Job scheduler,” Linux Journal, vol.
1999, no. 65es, pp. 15–es, 1999.

[18] Y. Kodama, T. Odajima, E. Arima, and M. Sato, “Evaluation of power
management control on the supercomputer fugaku,” in 2020 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2020, pp. 484–493.

[19] D. Lee, I. Dinov, B. Dong, B. Gutman, I. Yanovsky, and A. W. Toga,
“Cuda optimization strategies for compute-and memory-bound neu-
roimaging algorithms,” Computer methods and programs in biomedicine,
vol. 106, no. 3, pp. 175–187, 2012.

[20] A. Li, W. Liu, M. R. Kristensen, B. Vinter, H. Wang, K. Hou,
A. Marquez, and S. L. Song, “Exploring and analyzing the real impact of
modern on-package memory on hpc scientific kernels,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017, pp. 1–14.

[21] D. Marques, H. Duarte, A. Ilic, L. Sousa, R. Belenov, P. Thierry, and
Z. A. Matveev, “Performance analysis with cache-aware roofline model
in intel advisor,” in 2017 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2017, pp. 898–907.

[22] K. Menear, A. Nag, J. Perr-Sauer, M. Lunacek, K. Potter, and D. Du-
plyakin, “Mastering hpc runtime prediction: From observing patterns to
a methodological approach,” in Practice and Experience in Advanced
Research Computing, 2023, pp. 75–85.

[23] A. Netti, Z. Kiziltan, O. Babaoglu, A. Sîrbu, A. Bartolini, and A. Borgh-
esi, “A machine learning approach to online fault classification in hpc
systems,” Future Generation Computer Systems, vol. 110, pp. 1009–
1022, 2020.

[24] M. Orenes-Vera, E. Tureci, D. Wentzlaff, and M. Martonosi, “Dalorex: A
data-local program execution and architecture for memory-bound appli-
cations,” in 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2023, pp. 718–730.

[25] B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An introduction to docker and
analysis of its performance,” International Journal of Computer Science
and Network Security (IJCSNS), vol. 17, no. 3, p. 228, 2017.

[26] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[27] E. R. Rodrigues, R. L. Cunha, M. A. Netto, and M. Spriggs, “Helping
hpc users specify job memory requirements via machine learning,” in
2016 Third International Workshop on HPC User Support Tools (HUST).
IEEE, 2016, pp. 6–13.

[28] L. Rokach and O. Maimon, “Decision trees,” Data mining and knowl-
edge discovery handbook, pp. 165–192, 2005.

[29] T. Saillant, J.-C. Weill, and M. Mougeot, “Predicting job power con-
sumption based on rjms submission data in hpc systems,” in High Per-
formance Computing: 35th International Conference, ISC High Perfor-
mance 2020, Frankfurt/Main, Germany, June 22–25, 2020, Proceedings
35. Springer, 2020, pp. 63–82.

[30] M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,
H. Yashiro, M. Aoki, N. Shida, I. Miyoshi et al., “Co-design for a64fx
manycore processor and” fugaku”,” in SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2020, pp. 1–15.

[31] A. Sîrbu and O. Babaoglu, “Power consumption modeling and prediction
in a hybrid cpu-gpu-mic supercomputer,” in Euro-Par 2016: Parallel
Processing: 22nd International Conference on Parallel and Distributed
Computing, Grenoble, France, August 24-26, 2016, Proceedings 22.
Springer, 2016, pp. 117–130.

https://doi.org/10.5281/zenodo.11467483
https://doi.org/10.5281/zenodo.11467483
https://orcid.org/0000-0002-5343-414X
https://raw.githubusercontent.com/fujitsu/A64FX/master/doc/A64FX_PMU_Events_v1.2.pdf
https://raw.githubusercontent.com/fujitsu/A64FX/master/doc/A64FX_PMU_Events_v1.2.pdf

[32] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy,
f-score and roc: A family of discriminant measures for performance
evaluation,” vol. Vol. 4304, 01 2006, pp. 1015–1021.

[33] X. Tian, X. Li, J. Zhang, Z. Zhao, C. Wang, X. Wang, and J. Wang, “An
online incremental learning framework for hpc job power consumption
prediction,” in Proceedings of the 2023 7th International Conference on
High Performance Compilation, Computing and Communications, 2023,
pp. 176–183.

[34] M. Wahib and N. Maruyama, “Scalable kernel fusion for memory-
bound gpu applications,” in SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2014, pp. 191–202.

[35] Q. Wang, H. Zhang, J. Li, Y. Shen, and X. Liu, “Predicting job finish
time based on parameter features and running logs in supercomputing
system,” The Journal of Supercomputing, vol. 78, no. 17, pp. 18 551–
18 577, 2022.

[36] S. Williams, “Roofline: An insightful visual performance model for
floating-point programs and multicore,” ACM Communications, p. 16,
2009.

[37] K. Yamamoto, Y. Tsujita, and A. Uno, “Classifying jobs and predicting
applications in hpc systems,” in High Performance Computing: 33rd
International Conference, ISC High Performance 2018, Frankfurt, Ger-
many, June 24-28, 2018, Proceedings 33. Springer, 2018, pp. 81–99.

[38] F. V. Zacarias, P. Carpenter, and V. Petrucci, “Memory demands in dis-
aggregated hpc: How accurate do we need to be?” in 2021 International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS). IEEE, 2021, pp. 1–6.

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

In the paper, we propose the following contributions:
C1 We introduce MCBound, the first online data-driven

framework to classify HPC jobs before job execution
as memory-bound and compute-bound, without user
intervention.

C2 We propose a systematic characterization technique
to generate a reference dataset from historical data
for our initial classification model training. Using the
proposed characterization technique, we analyze the
data from 2.2 million job runs on the Supercomputer
Fugaku to obtain insights into their memory/compute-
bound characteristics.

C3 We employ MCBound to classify the jobs executed
on Fugaku during February 2024, obtaining an F1-
macro average score of at least 0.89 as prediction
quality.

B. Computational Artifacts

For the paper, we produce 3 artifacts, listed below along
with their DOIs.

A1 https://github.com/francescoantici/
MCBound-framework/tree/sc ad.

A2 https://github.com/francescoantici/
MCBound-framework/tree/sc ad/characterize
jobs.py

A3 https://github.com/francescoantici/
MCBound-framework/tree/sc ad/online algorithm
evaluation.py

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Figure 1

A2 C2 Table 2
Figures 2-5

A3 C2 Figures 6-10

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact A1 is related to the contribution C1, as this
artifact contains the source code allowing to deploy and
execute the operations of the MCBound framework.

Expected Results

The experiments are needed to show how MCBound is
deployed to the machine and used. This substantiates the
contribution A1, as it demonstrates that the framework is
implemented in a reproducible fashion.

Expected Reproduction Time (in Minutes)

All the times are evaluated considering the execution of the
artifact on a machine with two AMD EPYC 7302 CPUs, 64
cores and 512 GB RAM. The time to perform the artifact A1

setup is the time needed to install a Python distribution and all
the required Python libraries to the system, which is around 1
minute. The artifact execution is the time needed to execute the
deployment, and it is around 5*10−5 minutes (0.003 seconds).
The analysis time can be estimated by computing the average
time needed to perform a request to an endpoint of the backend
instance just started, and get a response in return. This time
is around 2*10−4 minutes (0.01 seconds).

Artifact Setup (incl. Inputs)

Hardware: The hardware requirements for the artifact A1

are the same requirements of Python3.11.5, namely at least 2
CPUs, 4 GB of RAM, and 5 GB of free disk space.

Software: The required software packages are listed below,
along with their version and URL. The deployment can be
performed either on the machine with Python, or through
containerization with Docker. Therefore, the requirements are
either:

Docker 4.29.0 1;

or:

Python 3.11.52.
dependency injector 4.41.03.
Flask 3.0.34.
Flask Cors 4.0.05.
numpy 1.26.46.
pandas 2.2.27.
scikit learn 1.4.28.
sentence transformers 2.6.19.
skops 0.9.010.

Datasets / Inputs: The artifact does not require any dataset.
Installation and Deployment: The requirement for the de-

ployment and execution of the experiments is the installation
of the packages listed in the Software paragraph of this
section, namely either the Docker distribution, or the Python
distribution along with the needed libraries. Then, no other
requirement needs to be satisfied to proceed with the deploy-
ment.

1https://www.docker.com
2https://www.python.org/downloads/release/python-3115/
3https://python-dependency-injector.ets-labs.org
4https://flask.palletsprojects.com/en/3.0.x/
5https://flask-cors.readthedocs.io/en/latest/
6https://numpy.org
7https://pandas.pydata.org
8https://scikit-learn.org/stable/
9https://www.sbert.net
10https://skops.readthedocs.io

https://github.com/francescoantici/MCBound-framework/tree/sc_ad
https://github.com/francescoantici/MCBound-framework/tree/sc_ad
https://github.com/francescoantici/MCBound-framework/tree/sc_ad/characterize_jobs.py
https://github.com/francescoantici/MCBound-framework/tree/sc_ad/characterize_jobs.py
https://github.com/francescoantici/MCBound-framework/tree/sc_ad/characterize_jobs.py
https://github.com/francescoantici/MCBound-framework/tree/sc_ad/online_algorithm_evaluation.py
https://github.com/francescoantici/MCBound-framework/tree/sc_ad/online_algorithm_evaluation.py
https://github.com/francescoantici/MCBound-framework/tree/sc_ad/online_algorithm_evaluation.py
https://www.docker.com
https://www.python.org/downloads/release/python-3115/
https://python-dependency-injector.ets-labs.org
https://flask.palletsprojects.com/en/3.0.x/
https://flask-cors.readthedocs.io/en/latest/
https://numpy.org
https://pandas.pydata.org
https://scikit-learn.org/stable/
https://www.sbert.net
https://skops.readthedocs.io

Artifact Execution

The experiment workflow is composed of two tasks, T1 and
T2. T1 consists of the installation of the dependencies for the
deployment of the framework, executed in T2. To this end, T2

is strictly dependent on the correct execution of T1, otherwise
it cannot be completed. T2 takes as input a port on which
the backend is deployed. For the sake of this experiment, we
pick port 8080, as it is not used by any other processes on the
deployment machine. Both T1 and T2 are executed only once.

Artifact Analysis (incl. Outputs)

The output of the execution of the A1 is a running in-
stance of a backend server on the selected port of a machine
(8080 for this experiment). Moreover, if the deployment is
performed with Python, the Python environment would contain
the packages described in the Software paragraph of this
section. Conversely, if performed with Docker, there would
be a running instance of a docker container, built on a docker
image of around 2 GB in size.

B. Computational Artifact A2

Relation To Contributions

The artifact A2 is related to the contribution C2, as this
artifact contains the source code to perform the systematic
memory/compute-bound characterization on the data of 2.2
million job runs on the Supercomputer Fugaku.

Expected Results

The outcome of the corresponding experiment is the data
to perform analysis of the memory/compute-bound nature of
the job executed on Supercomputer Fugaku between Decem-
ber 2023 and February 2024. The abstract substantiates the
contributions by allowing to perform such analysis and draw
conclusions on the memory/compute-bound nature of the job
runs of Fugaku.

Expected Reproduction Time (in Minutes)

The time to execute the artifact A2 on a machine with
two AMD EPYC 7302 CPUs, 64 cores and 512 GB RAM,
is around 2.2 minutes, where 3*10−2 minutes (2 seconds) are
spent for the job characterization, and the remaining is needed
to generate the plots.

Artifact Setup (incl. Inputs)

Hardware: The hardware requirements for the artifact A2

are the same as A1.
Software: The required software packages are listed below,

along with their version and URL.
A1.
Python 3.11.52.
seaborn 0.13.211.
matplotlib 3.8.412.
pandas 2.2.27.

11https://seaborn.pydata.org
12https://matplotlib.org

Datasets / Inputs: The artifact A2 requires the dataset of the
2.2 million job runs on Supercomputer Fugaku. This dataset
can be generated by using the A1 to fetch the data concerning
the job runs on the system between December 2023 and
February 2024.

Installation and Deployment: The requirements for the
execution of the experiments are the presence of a Python
distribution, the installation of the Python packages listed in
the Software paragraph of this section, and the execution of
A1, namely a running instance of the MCBound framework.

Artifact Execution

The experiment workflow is composed of three tasks, T1,
T2 and T3, where the correct execution of each of the tasks
is mandatory for the following ones. T1 consists of fetching
the data of the 2.2 job runs on Fugaku through the running
instance of MCBound. Then, such data are characterized in T2

to create the memory/compute-bound labels. Finally, in T3 the
labels are used to generate several plots on their distribution.
All the three tasks are executed only once.

Artifact Analysis (incl. Outputs)

The output of the execution of A2 is a dataset containing
the 2.2 million memory/compute-bound labels for all the job
data, and a series of plots showing their distributions.

C. Computational Artifact A3

Relation To Contributions

The artifact A3 is related to the contribution C3, as this
artifact contains the code to train the classification models,
classify the jobs executed on Fugaku during February 2024
with MCBound, and evaluate its prediction performance.

Expected Results

The outcome of the experiment should be the best perform-
ing classification model setting, and the fact that MCBound is
able to accurately classify Fugaku jobs as memory-bound or
compute-bound, before their execution.

Expected Reproduction Time (in Minutes)

The time to perform the artifact A3 setup is the time needed
to perform the training and inference of all the models, plus the
final evaluation of the prediction accuracy. In a machine with
two AMD EPYC 7302 CPUs, 64 cores and 512 GB RAM,
these operations are performed in around 500 minutes.

Artifact Setup (incl. Inputs)

Hardware: The hardware requirements for the artifact A3

are the same as A1 and A2.
Software: The required software packages are listed below,

along with their version and URL.
A1.
A2.
Python 3.11.52.
seaborn 0.13.211.
matplotlib 3.8.412.

https://seaborn.pydata.org
https://matplotlib.org

pandas 2.2.27.
Datasets / Inputs: The artifact A3 requires two datasets.

The first is the dataset of the job executed on Supercomputer
Fugaku during February 2024, which is generated by using the
A1 to fetch the corresponding job submission data. Moreover,
it also needs the dataset containing the memory/compute-
bound labels of all the jobs executed from December 2023
though February 2024. This dataset is obtained from the output
of A2, and it is necessary to train the classification models and
evaluate their prediction accuracy.

Installation and Deployment: The requirements for the
execution of the experiments are the presence of a Python
distribution, the installation of the Python packages listed in
the Software paragraph of this section, and the execution of
A1 and A2.

Artifact Execution

The experiment workflow is composed of three tasks, T1,
T2 and T3. T1 performs the training of a set of classification
models on the past job data. The trained models are used in
T2 to perform inference on the future job data and generate
the memory/compute-bound predictions. T2 depends on T1

and always comes after it. These two tasks are repeated 29
times, once per day, for all the day between February 1st and
29th. Finally, T3 is executed, which compares the predicted
labels to the actual ones stored in the dataset generated in A2,
and outputs the prediction performance of the classification
models.

Artifact Analysis (incl. Outputs)

The output of the execution of the A3 is a series of trained
instances of the classification models, and the prediction
accuracy of each model.

	Introduction
	Related Work
	MCBound Framework
	Data Fetcher
	Feature Encoder
	Job Characterizer
	Classification Model
	MCBound Deployment

	Memory/Compute-bound Characterization and Analysis of Fugaku Jobs
	Fugaku Job Traces
	Job Characterization Setup
	Fugaku Job Analysis

	Experimental Study
	Classification Model Implementation for Fugaku
	Online Prediction Algorithm Evaluation
	Experimental Results

	Conclusions
	References
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1
	Computational Artifact A2
	Computational Artifact A3

