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Abstract—Osteoporosis-related hip fragility fractures are a
catastrophic event for patient lives but are not frequently
observed in prospective studies, and therefore phase III
clinical trials using fractures as primary clinical endpoint
require thousands of patients enrolled for several years to
reach statistical significance. A novel answer to the large
number of subjects needed to reach the desired evidence level
is offered by In Silico Trials, that is, the simulation of a
clinical trial on a large cohort of virtual patients, monitoring
the biomarkers of interest. In this work we investigated if
statistical aliasing from a custom anatomy atlas could be
used to expand the patient cohort while retaining the original
biomechanical characteristics. We used a pair-matched
cohort of 94 post-menopausal women (at the time of the
CT scan, 47 fractured and 47 not fractured) to create a
statistical anatomy atlas through principal component anal-
ysis, and up-sampled the atlas in order to obtain over 1000
synthetic patient models. We applied the biomechanical
computed tomography pipeline to the resulting virtual cohort
and compared its fracture risk distribution with that of the
original physical cohort. While the distribution of femoral
strength values in the non-fractured sub-group was nearly
identical to that of the original physical cohort, that of the
fractured sub-group was lower than in the physical cohort.
Nonetheless, by using the classification threshold used for the
original population, the synthetic population was still divided
into two parts of approximatively equal number.

Keywords—Cohort expansion, In silico trials, Proximal

femur fracture, Bone biomechanics, Statistical atlas.

INTRODUCTION

Fragility fractures due to osteoporosis are a heavy
burden for the public health system worldwide:35

about 9 million new fragility fractures are estimated
every year, with 1.6 million located at the hip.18 Al-
though hip fractures represent about 20% of the total
fragility fractures, the related health cost is much
higher, exceeding 50%.10 This is because hip fracture
treatment requires expensive hospitalization, surgery,
and rehabilitation; moreover, this traumatic event of-
ten catastrophically affects patient life quality, leading
to permanent invalidity or even death within one
year.28 One of the main osteoporosis risk factors is
ageing, so that more and more people are being af-
fected by this disease from year to year, due to the
ageing population in most developed countries.

To test new drugs, we need phase III clinical trials
with a very high level of evidence. Osteoporosis ther-
apies aim to reduce the incidence of fragility fractures,
and any phase III clinical trial that uses fractures as
primary clinical endpoint involves thousands of
patients and requires years of follow-up, in order to
observe a sufficient number of fracture events.6,7,9,29

The alternative is to use surrogate endpoints that are
good predictors of the primary endpoint but can be
observed better and/or earlier. The most popular sur-
rogate biomarker for the incidence of proximal femur
fragility fractures is the areal bone mineral density
(aBMD) as measured by dual-energy X-ray absorp-
tiometry (DXA).2,33,34 In spite the fact that aBMD
correlates with the incidence of fragile fractures, when
used as a risk predictor its stratification accuracy is
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modest,3,5,21,32 with half of the hip fractures experi-
enced by patients classified as non-osteoporotic. A
more recent alternative as surrogate biomarker is
Biomechanical Computed Tomography (BCT), as it is
referred in some studies.19,20 BCT uses knowledge on
continuum mechanics and 3D morpho-densitometry
provided by quantitative CT (QCT) scans to inform a
mechanistic computer model that predicts the patient’s
bone biomechanical strength (primary determinant of
the risk of fracture). BCT bone strength shows a better
stratification accuracy than aBMD, and thus performs
better as surrogate biomarker, requiring smaller co-
horts for the clinical trials.3,5,24

But the fundamental problem remains: testing new
osteoporosis drugs is too complex. One can use the
fracture endpoint (and follow-up patients for at least
5 years), or use aBMD (and recruit many patients to
achieve the necessary discriminant power, and require
a DXA per control), or use BCT (that needs less
patients than aBMD but requires a CT scan per con-
trol). Also, animal testing is unfortunately not accurate
in predicting efficacy in humans for this class of drugs,
so it is not unusual to have osteoporosis drugs that fail
for efficacy in phase III clinical trials (e.g., Novartis’
SMC021 drug).17 One emerging option are In Silico
Trials.22,30 The idea is to use surrogate endpoints
provided by computer simulations, such as BCT, to
simulate the effect of the treatment being tested vs
placebo or another drug already in use (comparator)
on a large cohort of virtual patients. In the case of
osteoporosis, the generation of virtual cohorts involves
the description of population variability of the femur
3D morpho-densitometry, as provided by QCT, with
statistical anatomy atlases informed by a collection of
QCT done on a smaller cohort of physical patients. To
do so, a simple yet powerful technique is active shape
and appearance modelling (ASAM), that leverages
principal component analysis (PCA) for the extraction
of (at least linearly) uncorrelated features from the
starting original population.1,11,13,27 However, due to
the complex relationship between the femoral 3D
morpho-densitometry and femur biomechanical
strength, it is not clear if the resulting virtual cohort
will present a distribution of bone strength values
similar to that of the physical cohort used to generate
the statistical atlas.

The aim of this paper is to test if the distribution of
BCT femoral strength in a virtual cohort generated
with a statistical atlas is comparable to that of the
physical cohort from which the atlas was built.

MATERIALS AND METHODS

Original Cohort

The starting original cohort was composed by
proximal femur scans of 94 postmenopausal women
(age 75 ± 9 years, range 55–91; height 158 ± 6 cm,
range 145–173; weight 63.6 ± 13.4 kg, range 31–101;
BMI 25.45 ± 4.87 kg/m2, range 14.40–36.43; proximal
femur aBMD 0.800 ± 0.125 g/cm2, range 0.502–1.079;
femur neck aBMD 0.630 ± 0.096 g/cm2, range 0.425–
0.840); the cohort was pair-matched, so that for each
fractured woman there was an analogous one with
same age, height and weight, but not fractured. The
data were collected in a retrospective study approved
by the Sheffield Local Research Ethics Committee; the
details of the primary study are provided in Ref. 36.
The CT scans were performed at 120 kVp with tube
current modulation (range 80–200 mA), a pixel size of
0.74 mm 9 0.74 mm and a slice thickness of
0.625 mm, and were calibrated off-line by using the
European Spine Phantom; details are reported in Refs.
24,36. A local reference system was defined, with the
origin in femur head centre, X axis towards patient
head, and Y axis towards greater trochanter; the
proximal femur models were also fitted with an anat-
omy atlas in order to estimate knee rotation centre
position, as reported in Ref. 24.

PCA-Based Cohort Expansion

A high-quality 10-nodes tetrahedral mesh (mean
edge length 3 mm) of the femur (right side) with
median dimensions was generated (ANSYS ICEM
CFD 2019R2, ANSYS Inc., USA). The mesh (410,359
nodes + 4 landmarks (namely, femur head centre,
patient head direction, greater trochanter direction,
knee rotation centre), 295,589 elements) was subse-
quently morphed as described in Ref. 15 to fit the other
93 femurs (left femurs were reflected before the mor-
phing operation), and the element-wise material
properties were mapped (Bonemat V3)26 to obtain 94
isotopological patient-specific finite-element (FE)
models. PCA was then applied to node and reference
system point coordinates and to element Young
moduli in order to obtain active shape and appearance
models, respectively, which were then combined to
create a single 1,526,678 9 93 matrix for the genera-
tion of synthetic models, as reported elsewhere.27 In
Fig. 1 the first and second variation modes (together
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accounting for 41% of total variance) are represented,
mainly consisting in scaling and slenderness of the
proximal femur model together with general aBMD
variation and cortical bone thickness. The PCA rep-
resentation was not compact, and the first 70 compo-
nents were needed to explain 95% of the total variance,
similarly to what has been reported in literature for
statistical appearance models of proximal femur;8,12,25

we used all the 93 principal components for the syn-
thetic cohort generation. In order to generate principal
component weights with the same original component
distributions, we employed inverse transform sam-
pling, a standard method used to generate random
numbers with an arbitrary probability distribution,
provided its inverse cumulative distribution function.
Firstly, we calculated the empirical cumulative distri-
bution function for each principal component, and
approximated its inverse by piecewise linear interpo-
lation. Then we generated uniformly distributed ran-
dom numbers in the range 0.025–0.975 (equivalent to
a ± 2 SD range for gaussian variables), and by
applying the aforementioned inverse cumulative func-
tions we converted them into random variables with
the same distributions as the original principal com-
ponents. We created 1080 synthetic femurs, of which
1044 were successfully used for the simulations, while
the others showed excessive element distortion or
convergence problems during some simulations. Co-
hort expansion was performed in MATLAB environ-
ment (MATLAB 2019b, MathWorks Inc., USA).

Patient heights and weights showed a weak corre-
lation with femur neck aBMD and between themselves

(Pearson’s correlation coefficient around 0.4), thus we
assigned random weights and heights in dependence of
femur neck aBMD, preserving the correlation between
these parameters. Briefly, linear regression was applied
to weights and aBMDs of the original population,
according to the model

Weight ¼ aþ b� aBMDþ e

where a is the intercept, b is the slope, and e is a
zero-mean random gaussian error with a certain vari-
ance. By using Pearson’s correlation definition, the
error variance corresponding to a given correlation
value can be calculated as

Var eð Þ ¼ Var aBMDð Þ � b2 � 1� r2

r2

where Var Xð Þ is the variance of the stochastic variable
X, and r is the Pearson’s correlation coefficient
between the two variables of interest. Similarly, heights
were assigned with a bilinear regression with aBMD
and weights.

FE Side-Fall Model

To evaluate femur strength, 28 non-linear simula-
tions with different boundary conditions for each
model were run, as described in Ref. 3 (ANSYS
Mechanical APDL 2020R1, ANSYS Inc., USA).
Briefly, at the centre of the femur head a 1000 N load
was applied, spanning orientations from230� to 30� in
the antero-posterior direction, and 0� to 30� in medio-
lateral direction (with steps of 10� in both directions).

FIGURE 1. The first 2 modes of variation of the PCA-based statistical anatomy atlas.
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The distal femur diaphysis was allowed to rotate
around knee rotation centre with a rotation axis per-
pendicular to the applied load direction, while a rigid
plane was created in correspondence of the furthest
femur node along load direction; non-linear friction-
less contact between femur surface and the rigid plane
was imposed as boundary condition.

Fracture Risk Estimators

The failure load for a particular angle side-fall was
calculated as the load magnitude to apply in order to
reach a principal tensile strain of 0.73% or a principal
compressive strain of 1.04% (whichever was reached
first) on the femur surface;4 the local strains were
averaged over a sphere with 3 mm radius prior to
fracture load estimation. Starting from the different
angle failure loads, two fracture risk estimators were
defined, namely, Minimum Side Fall (MSF) strength
and Absolute Risk of Fracture at time 0 (ARF0). MSF
was taken as the minimum of the failure loads on the
different loading angles, while ARF0 calculation
required the generation of a patient-specific distribu-
tion of side-fall load magnitudes, starting from patient
height and weight; for details about the multiscale
model used, see Ref. 5. Briefly, for each falling angle
the fracture probability was calculated as the fraction
of falling loads that exceeded the estimated critical
load; the general fracture probability due to a side-fall
(P) was then computed as the mean value of the double
integral over the falling angles. Eventually, ARF0 was
evaluated as the risk for the patient to experience a
fracture due to at least one of the mutually exclusive
falls in the following year, considering a rate of 0.65

fall per year:5,14 ARF0 ¼ 1� 1� Pð Þ0:65.
Since in previous studies ARF0 was found to show a

better stratification accuracy than MSF strength,
hereinafter we will consider only ARF0.

Statistical Analysis

Receiver Operating Characteristic (ROC) curve for
the ARF0 fracture risk estimator was calculated for
the physical cohort; the threshold for classification was
chosen as that giving equal error rate. This optimal
threshold was subsequently used also to classify the
synthetic patients.

The distributions of ARF0 for both the physical
cohort and the virtual cohort were tested for normality
(Shapiro–Wilk, D’Agostino, and Anderson tests) and
were found not gaussian (p-value < 0.05). Therefore,
to test the distribution similarity a non-parametric test
(Kolmogorov–Smirnov) was used. In addition, the
ARF0 distributions were fitted with a two-component
gaussian mixture model using a non-Bayesian expec-

tation maximization algorithm, in order to separate
contributions from fractured and non-fractured pop-
ulations.

Fracture risk estimation and statistical analysis were
performed using NumPy,16 SciPy,31 and Scikit-learn23

standard Python function libraries.

RESULTS

The distribution of ARF0 in the virtual cohort was
found similar to that of the physical cohort, where it
showed a bimodal distribution. A Gaussian Mixture
model showed that the low-risk component of the
distribution in the virtual cohort remained practically
identical to that of the physical cohort (ARF0 = (28
± 12) % for the virtual cohort, vs. ARF0 = (29 ±

12) % for the physical cohort). The high-risk com-
ponent of the virtual cohort shifted towards higher
fracture risk, with the average ARF0 rising from
(55 ± 13) % for the physical cohort to (63 ± 15) %
for the virtual cohort. However, the physical and the
virtual ARF0 populations were found not statistically
different (p-value > 0.05).

The optimal threshold for ARF0 for the physical
cohort was 39%. By using this threshold to classify the
virtual subjects we found a stratification for fracture in
the virtual cohort similar to that of the physical cohort,
with 531 (50.9%) virtual subjects classified as fractured
(Fig. 2).

Distribution of T-scores, heights, weights, and
BMIs were not statistically different for the original
and the virtual populations (p-value > 0.05).

DISCUSSION

The aim of this paper was to test if the distribution
of BCT femoral strength in a virtual cohort generated
with a statistical atlas was comparable to that of the
physical cohort from which the atlas was built.

The statistical distribution of ARF0 in the virtual
cohort presented the same bimodal shape observed in
the physical cohort. When a Gaussian Mixture model
was used to separate the two modes, we found that the
distribution of the low-risk mode (typically associated
to non-fractured subjects) was almost identical to that
of the physical cohort. However, when we compared
the distributions of the high-risk mode (typically
associated to fractured subjects), we found a significant
increase in the average value of ARF0, which moved
from 55% in the physical cohort to 63% in the virtual
cohort.

This result is not unexpected. A subject with no
osteoporosis would have a T-score in the range + 1 to
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2 1, e.g., within one standard deviation from the
normal reference population. If we exclude subjects
with diseases like osteopetrosis that increase bone
density to pathological levels, it is unlikely that anyone
can have a T-score greater than + 1. On the contrary,
whereas we define osteoporotic a subject with T-score
£ 2.5, it is not impossible to find subjects with T-score
£ 5. In other words, physiology limits the upper
boundary of the distribution, and thus oversampling
does not change the distribution; pathology has no
lower limit, and thus any oversampling will generate
some cases with more severe osteoporosis and higher
fracture risk. Also, the values of ARF0 can vary from
0 to 100%, and while the lower limit was well repre-
sented in the original cohort, its maximum ARF0 value
was around 80%; on the other hand, the virtual cohort
explored the entire range of possible ARF0 values.

But considering these virtual cohorts are used to
predict who fractures and who does not, this difference

in the high-risk mode distribution has a small impact.
In fact, the threshold found optimal for the physical
cohort stratified for fracture the virtual cohort in
proportion (50.9%) quite close to that of the physical
cohort (48.9%). Also, the distributions of atlas-derived
biomarkers (T-score, femoral length, and BMI) were
found to be very close to those measured in the phys-
ical cohort.

The main limit of this study is that the physical
cohort we used to generate the virtual cohort is not the
result of an observational trial, which would likely
result into a mono-modal distribution of ARF0, but a
carefully build pair-matched cohort, where for each
post-menopausal woman that was admitted with a
femoral neck fracture another osteopenic post-meno-
pausal woman with same age, height, and weight who
had no reported fractures was included. This creates
the bi-modal distribution we described in both the
physical cohort and in the virtual cohort derived from

FIGURE 2. ARF0 distributions: ARF0 probability density functions for the original (a) and the synthetic (b) cohorts; (c) ARF0
cumulative probabilities of the cohorts and Kolmogorov–Smirnov test; (d) ARF0 distributions showing the threshold used for
stratification.
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it. However, we see this as an advantage rather than a
limitation. In other phase III clinical studies (for
example, see Ref. 9) the inclusion–exclusion criteria
were crafted to build a high-risk cohort and a low-risk
cohort, to see the relative efficacy of the drug being
tested on these two typical sub-populations. Using a
Gaussian Mixture model, we are able to separate our
1000-subjects virtual cohort in two sub-cohorts of
roughly 500 virtual subjects each, one at high risk and
the other at low risk, similarly to the cited clinical
studies.

In conclusions, statistical anatomy atlases informed
by smaller physical cohorts can be used to generate
much larger virtual cohorts that retain the essential
statistical properties of the physical cohort. Thus, this
approach can be used for cohort expansion in In Silico
Trials, for example by converting 100 patient-specific
models obtained in the phase II clinical trial into a
1000-subjects virtual cohort, with a level of evidence
comparable to a phase III clinical trial.
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