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We provide an analytical formulation to model the
propagation of elastic waves in a homogeneous
half-space supporting an array of thin plates. The
technique provides the displacement field obtained
metasurfaces, Structure-soil-structure from the interaction between an incident wave
interactions generated by a harmonic source and the scattered
fields induced by the flexural motion of the plates.
The scattered field generated by each plate is
calculated using an ad-hoc set of Green’s functions.
The interaction between the incident field and the
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Antonio Palermo scattering formulation. Owing to the introduction
e-mail: antonio.palermo6@unibo.it of the multiple scattering formalism, the proposed

technique can handle a generic set of plates arbitrarily
arranged on the half-space surface. The method
is validated via comparison with finite element
simulations considering Rayleigh waves interacting
with a single and a collection of thin plates. Our
framework can be used to investigate the interaction
of vertically polarized surface waves and flexural
resonators in different engineering contexts, from the
design of novel surface acoustic wave devices to the
interpretation of urban vibrations problems.

1. Introduction

In the past two decades, the advent of so-called
metamaterials, structured materials equipped with resonant
elements, has opened new horizons in the control
of waves across different physics. In elastodynamics,
architected materials with unique effective properties
such as negative density and negative moduli have
shown the capability of tailoring the wavefields at will
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At their conception, elastic metamaterials were designed to filter the propagation of bulk
waves [2]. However, the fabrication of resonant elements in the host medium challenges the
feasibility of large-scale samples and eventually disrupts the integrity of the hosting material
to some extent [3].

These issues were partially mitigated by the design of elastic metasurfaces, thin resonant
interfaces comprising subwavelength resonant elements located on the surface of the waveguides
[4-7]. Nowadays, metasurfaces are proposed to manipulate waves across a wide range of scales,
from micro-mechanical systems [8] to ground-vibration mitigation devices [6,9,10]. In all these
contexts, the dispersion relation, a function of angular frequency w and wavenumber k, plays an
important role in describing the dynamics of infinite metasurfaces. Knowledge of the dispersion
curves provides physical insights on the existence of bandgaps, modes hybridization phenomena,
cut-on and cut-off frequencies of an infinite length system. Dispersion relations of metasurfaces
can be computed either via analytical formulations, by modelling the thin resonant interface as
dynamic boundary conditions (BCs) [4,11], or via finite element (FE) schemes by modelling a finite
size portion of the system including the substrate and the metasurface and by imposing proper
periodic BCs [12-14]. The analytical formulations often exploit homogenization and asymptotic
expansion techniques to obtain closed-form dispersion relation for compressional (rod-like) [6,15]
and flexural (beam-like) metasurfaces [16,17].

Nonetheless, dispersion curves provide only partial information on the dynamics of a finite
system. Evidences of complex phenomena in finite metasurfaces, like lensing [18,19], classical
[20] or umklapp [21] mode conversion, rainbow trapping [22] and wave localization [23] are
found only from the inspection of the full wave fields. In general, the computation of the
wave fields is obtained from numerical harmonic or time transient simulations, using tools like
FE software. Given the nature of the wave problems, such simulations are always bounded
by their computational cost and often limited by the available hardware resources. Analytical
strategies are thus desirable to reduce computational efforts. In addition, analytical methods
provide robust tools to study how incident waves interact with multiple scattering sources. In
fact, they have been frequently used to investigate how plane waves interact with building-like
structures exploiting, for example, series expansion [24], space-frequency mode-matching [25],
and homogenization techniques [26-28].

Within this context, in a recent work [29] we proposed a multiple scattering formulation
to model Rayleigh waves interacting with a finite length metasurface placed atop an elastic
half-space. The considered metasurface comprised an arbitrary number of discrete mass-spring
resonators, oscillating along their vertical direction (compressional resonance). In this work we
extend the previous formulation by considering flexural-type resonators, namely thin Kirchhoff
plates, coupled to the half-space. The formulation is able to account for an arbitrary number
N of thin plates. We focus on the low-frequency regime where the flexural contribution of the
plates dominates the dynamic response. Thus, we neglect the plates axial behaviour, and the
related axial resonances which generally occur at a much higher frequency with respect to the
first bending modes.

The key point of our formulation is the solution of the Lamb’s problem in terms of Green’s
functions. Such Green’s functions are used to model the incident wave field, due to a known
harmonic source acting normally at the surface of the half-space, as well as the scattered wave
fields generated by the thin plates when excited by an imposed base displacement. The unknown
amplitudes of the N scattered wave fields are found from the solution of the proposed multiple
scatting formulation by imposing proper boundary conditions at the half-space surface. The total
wave field in the half-space is thus obtained by the coupled contribution of the incident and N
scattered wave fields.

Our approach enriches the analytical tools available to discuss the dynamics of flexural
metasurfaces, e.g., the closed form dispersion relationships in [16] and the effective models
in [27,28], by enabling the description of the finite-size flexural metasurface. To the best of our
knowledge, the analytical treatment of this problem remains yet unsolved.
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The work is organized as follows. In Section 2, we present the derivation of the theoretical
framework. In particular, in Section (a) we begin by recalling the Kirchhoff plate theory to derive
the shear and normal stresses at the base of the plates as impedance functions. Then, we recall
and use the solution of the Lamb’s problem to formulate the incident and scattered wave fields
in Section (b). The multiple scattering formulation is finally constructed in Section 3. In Section 4,
we investigate and discuss the response of a half-space equipped with a single and a collection
of thin plates, and validate our findings via FE simulations. We conclude our work with some
remarks and perspectives in Section 5.

2. Theoretical model

We investigate the multiple scattering effects of an array of flexural resonators, namely a flexural
metasurface, arranged on the surface of an elastic half-space, as shown in Figure 1. The flexural
metasurface can be composed of a series of N parallel thin plates, with different mechanical
and geometrical properties. Given the out-of-plane invariance of the configuration, we model
the system in the 2D plane described by the spatial coordinates « = (z, z).

The derivation comprises the following three steps: (i) definition of the impedance functions
describing the stresses exerted by a thin plate at its base when excited by an imposed base motion;
(ii) construction of the half-space Green'’s functions for such stresses; (iii) formulation of a multiple
scattering problem for a half-space coupled with an arbitrary /N number of thin plates under a
harmonic strip source at the surface.

(a) Impedance boundary conditions of thin plates on an elastic half-space

We model the plates using the Kirchhoff plate theory and their effect on the substrate dynamics
using ad-hoc impedance functions. The thin plates are made of homogeneous and linear elastic
materials, and are perfectly bonded to the surface of an elastic half-space. We denote the
displacement components in the half-space by u(z, z) and w(z, z) along the = and =z directions,
respectively. The displacement component of the thin plate along the z direction is U(z, z)
whereas ¥(z, z) = 90U (z, z) /0z denotes the cross-section rotation. For convenience, we introduce
aset Bp={z:2=2,,0<2<hp,ne Z+} C R? to indicate the n-th plate placed at z, such that
its displacements components read Un (z) and 95 (2), for n =1, .., N. We restrict our interest to the
harmonic regimes, so that the time-harmonic term e“* is omitted through the whole derivation.
The flexural motion of the n-th plate is governed by the equation:

4
<8—4 - 52) Un,=0, for weB, 2.1)
0z
where (3, denotes the wave number for flexural waves, namely:
l En I3
,Bfl = pgn" wg, where D, = 1 7"1/% Tg (2.2)

in which py, is the material density, I, is the plate thickness, Dy, is the flexural rigidity, Ey, is the
Young modulus, and vy, is the Poisson ratio. The general solution of (2.1) has the following form:

Un(z) = Cp1 cosh(Bnz) + Cpasinh(Bnz) + Cn3 cos(Bnz) + Crna sin(Bnz). (2.3)

in which the four coefficients C,; (i = 1,2, 3, 4) can be determined by imposing the four boundary
conditions (BCs) for flexural vibrations:

Un(0) =u(zn,0), 9n(0)=—0(xn,0). (2.4a)
Un 0 Un
5.7 emn, =0 55 aon, =0 (2.4b)
where the slope of the free surface 6(zr, 0) can be expressed in terms of the vertical displacement

in the soil w as W| .
=,

H
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Figure 1. Schematic of elastic waves interacting with a metasurface. (a) An array of arbitrary IV thin plates on an elastic
half-space, in which h,, and [,, denote the height and thickness of the n-th plate, respectively. (b) lllustration of the
continuity of displacements and slope at the plate-substrate interface. The assumed shear and normal stresses caused
by the flexural motion of the n-th plate are shown in (c) and (d), respectively.

Equation (2.4a) imposes the continuity of displacement and slope at the interface between
the n-th plate and the half-space, while (2.4b) implies null bending moment and shear force
at the plate free end. Expressing (2.4a) and (2.4b) in terms of (2.3) leads to the following
non-homogeneous system:

1 0 1 0 Crni u(an, 0)

0 1 0 1 Coz | | —0(zn,0)/Bn
cosh(Bnhn) sinh(Bnhn) —cos(Bnhn) —sin(Bnhn) Cpna | 0
sinh(Bnhn) cosh(Bnhn) sin(Bnhn) — cos(Bnhn) Cha 0

(2.5)
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which can be solved for the four unknowns C,,;:

1+ cosh(Bnhn) cos(Bnhn) + sinh(Bnhn) sin(Brnhn) ( 0)
2 + 2 cosh(Bnhn) cos(Brhn) En,
cosh(Bnhn) sin(Brnhn) — sinh(Bnhn) cos(Bnhn) 0(zn,0)
B 2 + 2 cosh(Bnhn) cos(Brnhn) Bn

Cnl =
(2.6a)

cosh(Bnhn) sin(Bnhn) + sinh(Bnhn) cos(Bnhn) 0)
2 + 2 cosh(Bnhn) cos(Bnhn) u(@n,
1 + cosh(Brhn) cos(Brhn) — sinh(Bnhn) sin(Brnhn) 0(xn, 0)
- 2 + 2 cosh(Bnhn) cos(Brnhn) Bn

Cn2:_

(2.6b)

14 cosh(Brhn) cos(Brhn) — sinh(Bnhn) sin(Brnhn)
- 2 4 2 cosh(Bnhn) cos(Bnhn) b
sinh(Bnhn) cos(Brnhn) — cosh(Bnhn) sin(Bnhn) 0(zn,0)
a 2 + 2 cosh(Brnhn) cos(Brnhn) Bn

Cn 3

(In ’ 0)
(2.6¢)

cosh(Bnhn) sin(Bnhn) + sinh(Bnhn) cos(Bnhn)
2 4 2 cosh(Brnhn) cos(Bnhn)
1+ cosh(Bnhn) cos(Bnhn) + sinh(Brnhn) sin(Bnhn) 0(xn,0)
2 + 2 cosh(Bnhn) cos(Brhn) Bn
Given the displacement Uy (z), the shear and normal stresses on the contact area of the n-th

plate, i.e. in the region = € (xn — In/2, xn + ln/2) and z = 0, can be approximated as (see Figures
1c and 1d):

Cn4 =

u(xn, 0)
(2.6d)

™) (4. 0y = _ Pn 0°Un
7o (2,0) = ln 023

= 2™ u(zn,0) — 25020, 0),

Dy, 3
=—0n(Cy — C
lnﬂ(4 2) 274)

E, 98%°Un En

(n) - - =
Oz (x,O)— (l—V%) 022 (x CEn)

2
= V%)ﬂn(Cs —C1)(z —an) 27

=2 u(wn,0) — 2020, 0)](z — z0).

where the following parameters have been defined:

o™ = %ﬁ%ﬁ(ﬂnhn), (2.80)

oM = %‘ﬁ%fz(ﬁnhn), (2.80)

Qén) = _%631f3(ﬂnhn)y (2.8¢)

0 = =2 fa (Bl (2.84)
it h(Bnlin) sin(Buhn) + sinh(Buhn) cos(Bulin)
cosh(Bnhn) sin(Bnhn sinh(Bnhn) cos(Bnhn

F1(Buhn) = 1 + cosh(Bnhn) cos(Brnhn) ’ (2.94)

Fo(Bahn) = f3(Bhn) = — B Bnin) sin(Bnfin) (2.95)

" 14 cosh(Bnhn) cos(Brhn)’

_cosh(Bnhn) sin(Bnhn) — sinh(Bnhn) cos(Bnhn)
fa(Brhn) = 1 + cosh(Bnhn) cos(Bnhn) ' (2.90)
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In short, equations (2.7a) and (2.7b) provide the shear and normal stresses at the base of the
n-th plate for a given imposed harmonic motion at its base.

Since the system considers an arbitrary number N of plates, the total wave field must
be determined considering the incident wave field actuated by the given source plus the
contributions of the N scattered wave fields generated by the plates. In what follows, we set
a multiple scattering problem, exploiting the Green’s function of the Lamb’s problem for the
incident and scattered waves, and solve it to find the unknown amplitudes of the N scattered
wave fields. We show that such amplitudes can be determined by imposing continuity conditions
between the impedance functions of the plates, derived above, and the half-space.

(b) Green’s functions

Let us briefly recall the fundamental steps of the Lamb’s problem [30] to provide the Green’s
functions in terms of displacement components (u = [u, w]), for given time-harmonic shear and

() (s)

normal stress distributions, 7., and o’ respectively, acting at the top surface (z = 0) of the half-
space. This problem can be well defined as a boundary value problem as:

V-C:Vu=pt, forz<0 (2.10a)

T
(C:Vu).nz[ags),rz(;)] . forz=0 (2.10b)

where C and n denote the elastic tensor and the unit normal vector, respectively.
At first, we use the potentials ¢(z, 2), ¢y (z, z) to decouple the governing equation (2.10a) via
Helmholtz decomposition [31]:

(V2 +kp)p=0, (VZ+k2)iy=0. @11)

in which kp = 2> and ks = 2~ denote the wave numbers for compression and shear waves in the
» s
half-space, respectively, and where:

cp= M, csz\/E. (2.12)
\ P

are the compression and shear wave velocities, respectively, being A and ;. the Lamé constants
and p the mass density of the half-space.
Making use of the spatial Fourier transform pairs:

flk,z) = JOO Sz, z)efikI dz, f(z,2)= % JOO f(k, z)eikI dk. (2.13)

—co T J—o00

we obtain the transformed wave equations (2.11) as:

82 _ 82 -

which admit solutions of the form:

@k, 2) = A1e™P% + B1eP*,  ahy(k,z) = Age™ 9" + Boe?”. (2.15)
where p and ¢ read:

p=1/k2— k3, q=Vk2—k2. (2.16)

where the coefficients A1, A> must be zero to avoid an unbounded response for z = —oo, while
B1, By are determined by imposing stress BCs at z = 0.
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To this purpose, we first express the normal and shear stresses in the half-space in terms of the

H

potentials:
o 0?
oz(x,2)=—p k2o + 2 (82:20 — 8;?;)] , (2.17a)
9? 9?
Tza(T,2) = —p |:k31/1y -2 <8x§2 - 6;@’)] . (2.17b)

Next, we Fourier transform the stress components in (2.17a) and (2.17b) and impose their
values at z = 0 equal to those given by the boundary condition in (2.100) as:

&2 (k,0) = p[(2k* — k2) By + 2ikqBs] = ) (k,0), (2.180a)
Toa(k,0) = pl2ikpBy — (2% — k2)Ba] =743 (k,0), (2.18b)

where the superscript (s) denotes the stresses generated by the source function. Solving (2.184)
and (2.18b) yields the coefficients:

(2ikg)78) (k,0) + (24 = k2)a ) (k, 0)

10000000 V 908 Y 0014 B10-BuiysiandAisioosieoreds:

B = 2.1
1 /LR(k) ) ( 961)
_ —(2F — )7 (h,0) + (2ikp)oL” (k,0)
By = WR(R) , (2.19b)
where R(k) is known as the Rayleigh function:
R(k) = (2k* — k2)? — 4k?pq. (2.20)

According to the Helmholtz decomposition, the displacement components in the half-space
can be expressed as:

_0p Oy _Op DUy
u=o % Y3, + oz (2.21)
Fourier transforming (2.21), and substituting (2.15), (2.194) and (2.19b), yield:
u(k, z) =ikg — 88%
—2k%qeP? + q(2k% — k2)e?* (5 ik(2k% — k2)eP? — (2ikpg)e?® _(s)
— : T2 (k,0) + oz’ (k,0),
WR(K) (k:0) LR (k,0)
(2.22a)
_ 9p . -
w(k,z) = 87820 + ikady
(2ikpq)eP? — ik(2k> — k2)e?? _(s) p(2k? — k2)eP* — 2k2pe?? _(s)
= T2z (k,0) + gz’ (k,0).
WE(K) 0 WE(F) 0
(2.22b)

At last, the inverse Fourier transform of (2.222) and (2.22b) provides the wave field
displacement components due to time-harmonic stresses imposed at the surface as:

1[0 [—2k%qeP? + q(2k% — k2)e?® (o) ik(2k? — k2)eP? — (2ikpq)e?® _(s) ik
uw) =g [ [ e 9 (k,0) + - 5 <k,o>} o g,
(2.23a)
_ 1 [ [(2ikpg)e* — ik(2k? — k2)e? _(5) P(2k* — k2)eP? — 2K%pe?® _(4) ika
w(z, z) = S JLOO [ Rk) Tz (k,0) + R{F) Gz (k,0)| ™" dk.
(2.23h)

In what follows, we specialize these Green'’s functions for the stress distributions considered
in this work, namely (i) a uniform normal stress distribution, used to model the external



source (see Figure 1a), and (ii) a constant shear stress distribution and (iii) a butterfly normal
stress distribution, as shown in Figure 1c and Figure 1d, respectively, used to model the stress
components generated by the flexural motion of the plates.

(i) Uniform normal stress distribution to model the source

We consider a vertically distributed source with footprint width Is centred at the origin of the
reference system, as shown in Figure 1a. The BCs on the free surface (z = 0) are:

_ ) Qo iffx]<ls/2 _
oz(:r,O){ 0 elsewhere Tz (2,0) =0, (2.24)

where Qg is the magnitude of the source. Fourier transforming (2.24) yields:

2Qo
k

52 (k,0) = =0 sin(kls/2), Tou(k,0)=0. (2.25)

Substituting (2.25) into (2.23a) and (2.23b) we can obtain the displacement components due to a
unitary normal stress ((Qo = 1 Pa) acting at the free surface, namely the Green’s functions:

(2k? — k2)eP* — 2pged®

oo _
Gou(z,2) = i J sin(kls /2) 90 e*? gk, (2.260)
— 00
o0 . 2 1.2\, pz _ 2 .9z .
Cow(,2) = ij Sm(kkls/ 2) p(2k k]);( 5 2KTpeT” ke gy, (2.26b)
— 00

Additionally, by deriving (2.26b) with respect to the = coordinate, we can obtain the Green’s
function related to the slope of the half-space:
. %)
Goaw, )= 28282 L™ gingat, j2)
— 00

ox T

p(2k? — k2)eP? — 2k2pe??
R(k)

e dk. (2.26¢)

(i) Uniform shear stress distribution

Following the same approach, we here deduce the Green’s functions for a uniform shear stress
distribution on the surface, as the one shown in Figure 1c. The BCs on the free surface (z = 0) are:

(n) e
02(2,0)=0, Ton(z,0)=4 @z lr—an[<n/2 2.27)
0 elsewhere
where Q(z") is the magnitude of 7. Fourier transforming (2.27) yields:
20 "
G2(k,0)=0, T.z(k,0)= k”” sin(kly, /2)e” %", (2.28)
Substituting (2.28) into (2.23a) and (2.23b) leads to the displacement components induced by
unitary shear stress (Q&n) =1 Pa) applied at the free surface, as:
(n) _ -1 > sin(kln/2) 2k:2qepz — q(2k2 — kz)eqz ik(z—2n)
Grif (x,2) = —” Jioo A R(E) e dk, (2.29a)
(n) i [ . 2pqeP? — (Qk2 — kg)eqz ik(z—z,)
- 2 . 2.2
Gl = J_OO sin(kln /2) 0 o dk (2.29)

By deriving (2.29b) with respect to the = coordinate, we obtain the Green’s function related to the
slope of the half-space:

Gl (@, 2) = ksin(kln /2) e=n) dk. (2290

—o0 R(k)

BG(TZ? (x,2) -1 JOO 2pqgeP? — (214:2 — kg)eqz Wik
ox T
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(iii) Butterfly-shaped normal stress distribution

At last, we derive the Green'’s functions for a butterfly-shaped distribution of normal stress on the
surface, as shown in Figure 1d. In this case, the BCs on the free surface (z = 0) are:

(n) :
o 0) =4 200 @=wn)/ln ifle—an|<t/2 o0 (2.30)
0 elsewhere
in which a(()n) is the maximum values of .. Fourier transforming (2.30) yields:
; (n)
B dio kln kln, . kln —ikz, -
52(k,0) = L2 {7 cos(T) — sm(?)} e " 7 (k,0) =0. (2.31)

By substituting (2.31) into (2.23a) and (2.23b) we obtain the displacement components induced by

(n)

a butterfly-shaped normal stress (¢, * = 1 Pa) acting on the free surface:

_ 00 2 1.2\.pz _ qaz
GSTSL(JJ z) = 2 J {kl—n cos(k%n) — sin(lﬂl?n)} (2K~ — ki)e 2pge eik(@—zn) dk,

mln oo | 2 kR(k)
(2.320)
(n) 28 ([ [kln _ klny okl ] (2K — k3)eP® — 2k°pe?® k(z—s,)
Ggou,(x,z)——wuln J;OO[ 5 cos( 5 ) — sin( 5 ) KRR e dk.
(2.32b)

Finally, by deriving (2.32b) with respect to the = coordinate we obtain:

10000000 V 208 4 0014 Buo-BuysiandAieiosieforeds:
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&™) (2. 2) = OGow(x,2) _ —2 r" {kln kln %)} p(2k? — k2)eP — 2k2pe® ip(o—s,)
ool -

or e ) |2 eslm) Tsin(5 kR(k)

(2.320)

3. Multiple scattering formulation

In this section we develop a multiple scattering formulation to quantitatively model the
destructive or constructive interference between the waves generated by a harmonic distributed
source, acting at the surface, and those actuated by the flexural motion of the IV plates. Our scope
is to calculate the amplitude of the tangential and normal stresses at the base of each plate. Once
these stresses are known, the total wave field can be obtained by the superposition of the incident
and scattered waves computed using the Green’s functions introduced in Section 2b.

For convenience, we defineaset O ={x: 2 =xm,2=0,m=1,...,N} C R? to collect the plate
locations. When the incident field impinges on the array of N plates, the total wavefield can be
expressed as the summation of incident and scattered fields:

u(z, z) =uo(z, 2) + Z Q;n)GTu (z,2) + Z (n) G((,Tg)u( 2), (3.1a)
n=1 n=1

w(z, z) =wo(z, z) + Z Q(n)G’(n) (z,2) + Z (n)G((TOL} z), (3.1b)
N N

0(x,2)=00(z,2) + > QUG (@,2) + 3 0§ G (. 2), (3.10)
n=1 n=1

where ug, wg and 0 denote, respectively, the displacement components and rotation in the half-
space due to the incident wavefield as follows:

UO(-T,Z):QOGau(-T»Z)y (3261)
wo(z, 2) = QoGow(z, 2), (3.2b)
90(377 Z) = Q0G09<x7 Z) (32())



We substitute equations (3.24, 3.2¢) into (3.14) and (3.1c) and specify them at the plate location n

Tm:

u(@m,0) = QoGou(rm,0) + ZQ(")G ") (@m, 0) + Z o8 G (xm,0),  (3.3a)
n=1
N N

0(2m.,0) = QoCog(am,0) + 3 QG (@m,0) + 3 0§V G\")(@m,0).  (33D)
n=1 n=1

Similarly, we consider the shear and normal stresses at the base of the plate, i.e., (2.7a) and
(2.7D), respectively, and express them in force of (2.27) and (2.30):

Qgrn) — Q%m)u($m7 0) _ ng)g(wm, 0)7 (34@)
205" [l = 25" u(wm, 0) — 2™ 0(wm, 0). (3.4b)

At this stage, we can express the displacements u(2m, 0) and 8(zm, 0) in (3.44) and (3.4b) by means
of (3.3a) and (3.3b) to obtain:

Q =Qo [ )Gou (Tm,0) — Qém)Gae (zm, 0)}
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' Z Q" [ G (@, 0) - ™ G (@, 0)]

(3.5q)
I Z ol [ ™G, (@m,0) — ™Gl )g(xm,O)] :
208" flm = Qo [ 24" Gou @, 0) = 2™ Crowm, 0)]
N Z QY [ G (2. 0) — 2™ G (w1, 0)] (356)

- Z 5 (25 GG wm, 0) = 27 G (i, 0)]

With some algebra, equations (3.512) and (3.5b) can be reorganized as:

N
~Qo |2 Goulwm, 0) = 2™ Goo(am, 0)] = - QL [2™ G (wm,0) = A4 G (@m, 0) - o7

n=1
+ Z " [Q(m)GUZL(zm»O) - oymel )0("”’”’0)] ’
(3.6a)

N
Qo [ 25" Goulam,0) = A" Coglam, 0)] = 3 Q" [ 6L (@m,0) - 24 G @, 0)]

n=1
+Z 2GS wm, 0) = 2™ GL (wm, 0) = 287 /1]

(3.6b)

where 6;," is the Kronecker delta.
Equations (3.6a) and (3.6D), applied to « € O, provide a system of 2 x N non homogeneous
(n)

linear equations, in the 2 x N unknown coefficients Q(n) and o/, written in compact form as:



Sy=b, (3.7)

in which the corresponding coefficients are:

(n)
511 S12 pY by
S= - . b= , 3.8
So1 Sao Y [ a(()”) ] [ b } (8)
with components:
N
Z [Q(m)G(n) (m, 0) — QS”)G%) (Tm, 0) — 521] , (3.9a)
n=1
N
S1=Y [Q(m G, (2m, 0) — ng)cfgﬂ, (xm,o)] 7 (3.9b)
n=1
N
Z (268 (@m, 0) - 2™ G (@, 0)] (3.9¢)
N
Spp=3Y [ MG (wm, 0) — 2™ G (2, 0) — 267" /zn} , (3.9d)
n=1
b1 =—-Qo [Qyn)Gau(l‘m, 0) — Qém)Gae(ﬂﬂma 0)} ) (3.9)
= —Qo [ ) Gou(@m,0) — ng)cgg(xm,o)] . (3.9f)

To avoid numerical instabilities in the solution of (3.7), we assume a small hysteretic damping
ratio ¢ = 0.1% in both the substrate and the plates elastic response to remove the poles at k = tk;
of the integrands in the Green’s functions, where +k; are the roots of the Rayleigh function
in (2.20). As such, the Lamé constants in integrands are replaced by the complex moduli as
N =X(1+2i¢) and ' = p(1 + 2i¢) [32]. Additionally, the Green’s functions are evaluated via
the Gauss-Kronrod quadrature formula by a truncated integration as J"J_rllzj() dk, where k; is
a truncated upper limit [33,34]. Due to the oscillating nature of the integrand, the integration
rapidly converges when ky > k.

The computed coefficients Qé") and cr(()n) are finally used into (3.1a) and (3.1b) to obtain the
total wavefield in the half-space.

4. Numerical examples

In this section, we assess the validity of the proposed multiple scattering formulation, namely
(3.1a, 3.1b) by modelling three case studies. The first case considers the interaction of Rayleigh
waves with a single plate; in the second example, we model the interaction between five distinct
plates arranged in a random configuration; the last scenario describes the response of a finite-
size metasurface composed of 30 plates. The mechanical and geometrical parameters of the three
examples are collected in Table 1.

Before delving into the description of the case studies, let us discuss the impedance properties
derived in (2.84-2.84) which depend on the dimensionless functions f; (¢ =1, ..., 4). The variations
of these dimensionless functions with respect to the frequency are reported in Figure 2, where the
dimensionless frequency @ = wl/(mcs) is used [31]. According to (2.7a), the shear stress provided
by the plate flexural motion is determined by both f; and fa2, here collected in Figure 2a.
In the frequency range w = [0, 0.18] the impedance parameters f; and fo present six identical
resonance peaks, which correspond to the first six flexural resonances of a cantilever plate,
i.e., 1+ cosh(Bh) cos(Bh) =0. Strong interaction effects between the plate and the half-space
dynamics are expected in the vicinity of these flexural resonances, while minimal coupling occurs
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Table 1. Mechanical parameters for plates and the elastic half-space [16].

Symbol Definition Value

Qo Distributed source amplitude 1 MPa

ls Footprint thickness of the source 1m

p Mass density of half-space 13000 kg/m3
A First Lamé constant of half-space 702 MPa

7 Shear modulus of half-space 325 MPa
In Plate thickness 03m

Pn Plate density 450 kg/m3
En Young modulus of plate 1547 MPa
Un Poisson ratio of plate 0.3

¢ Hysteretic damping ratio 0.1%

at the valley points. It should be noted that the minimum values of f; and f2 do not overlap
except for the static condition (zero frequency), suggesting that the flexural motion of the plate

always exchange non-zero shear stresses with the surface half-space. The same arguments apply

to the dimensionless impedance functions f3 and f4, reported in Figure 2b, which govern the

normal stress exerted by the plate on the half-space.
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Figure 2. Variations of the impedance parameters vs. frequency (I = 0.3 m and h = 14 m).

(a) Single plate scenario

A thin plate with [{ =0.3m and h; =14 m is located at 1 =100 m, z = 0m and is excited by a
harmonic distributed source with footprint thickness ls = 1 m and amplitude Qg = 1 MPa located
at the origin of the coordinate system. To evaluate the interaction between Rayleigh waves and
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flexural motions of plates, we introduce the amplitude ratio on the half-space surface (z =0)
as [35]:
AR = ufug|. 41)

Figure 3a shows the A at z =120 m, z = 0 m for @ € [0, 0.18] which includes the first six flexural
resonances.

(CORNETY) Y s—s W i
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, ‘ Y ‘\E
=) I \ (i
§ 0.8 1 | \
= , [ )
[ iwt
Mver ----FE simulation .
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Figure 3. (a) Amplitude ratio Ar = |u/uo| of a single plate (1 = 0.3 m and hq = 14 m). The plate is located at z1 =
100 m and the receiver x = 120 m. (b) Zoomed-in amplitude ratio in the low-frequency regime. (c) Spectrum and phase
of the scattered field vs. the free field, denoted by the solid line and circles, respectively.

For comparison, we provide the same amplitude ratio computed via a 2D FE simulation
(dashed line). In the FE environment, both the plate and the half-space are modelled using 2D
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plane strain elasticity (see the supplementary material for details on the model). Nonetheless, a
very good agreement between the results obtained by using the proposed formulation and the
FE is found. One can observe that the interaction between the plate and the half-space in the
vicinity of the plate resonances yields minimal values of the amplitude ratio. The drops in the
low-frequency range can be better appreciated in Figure 3b, where the amplitude ratio is shown
in the frequency range w € [0,0.015].

To better understand the Ar, we expand the expression as:

Us

0 uo

2
+2 ’ﬁ cos(Ag), 4.2)
uQ

where A¢ is the relative phase between the scattered and incident horizontal displacements,
namely, us/ug. Equation (4.2) indicates that the Ag is determined by both the amplitude and
relative phase of scattered wave fields. The scattered field reaches its peak at the resonance
frequencies of the plate, accompanied by a phase shift about 180 degrees (see Figure 3c), which
results in the peaks/drops of the amplitude ratio in Figure 3b.

Note that the flexural resonances computed by the analytical model occur at frequency values
slightly higher than the actual 2D FE results. Indeed, our formulation based on the Kirchhoff plate
theory neglects both the shear deformation and rotary inertia, making the model more rigid than
the 2D plane strain model. Besides, we remind that the proposed formulation does not capture the
axial resonance of the plate, i.e. the valley between the fifth and sixth bending resonance, since we
consider the flexural motion of the plate only. The reader can appreciate the nature of the different
resonant modes from the modal shapes provided in the figure inset.

Additionally, let us remark that the proposed formulation reduces significantly the
computational cost needed to obtain the amplitude ratio, as it can compute the output at the
desired receiver location without the need for a discretization of the whole model, as in the case
of FE models. For example, with a personal computer, it takes only a few seconds to simulate
the system in Figure 3 while around one hour for the FE model. Finally, we remark that the
proposed methodology is capable of discussing the mass-loading effect. The reader can appreciate
the details in the supplementary material.

(b) Randomly distributed plates

As a second example, we consider a system of five different plates arranged atop the half-space
in the arbitrary configuration shown in the inset of Figure 4. Random arrangements of flexural
resonators are often found in urban vibration problems, i.e., where a series of buildings are
impacted by seismic waves and their responses are affected by those of the other buildings, also
known as building-soil-building interactions [24,25]. We show that an arbitrary configuration of
flexural resonators can be readily modelled by our formulation.
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The five plates are characterized by the following geometrical parameters: [ = [0.3, 0.2, 0.6, 0.4, 0.5] m,

h=1[14,10,16,12,10] m, and location = = [100, 102, 106, 116, 118] m. The fundamental resonance
frequencies of the five plates atop the half-space are [0.47, 0.61, 0.7, 0.83, 1.48] Hz. The amplitude
ratio at =130 m, z = 0 m for @ € [0, 0.085], as calculated by our formulation, is shown in Figure
4 (solid line). As for the single plate scenario, the interaction between the plates resonances
and the substrate wave field results in multiple drops of the amplitude ratio, located at the
plate resonances. For comparison, we also provide the results of a FE simulation (dashed line),
developed using 2D plane-strain elasticity model, which well agree with those of the analytical
framework.

Finally, in Figure 5 we show the horizontal response of the top of the first plate, i.e., Ui (h1),
calculated using our formulation (solid line). In particular, the response at the top of the plate is
found via equation (2.3) once the base displacement and rotation, namely u(z1,0) and 6(z1,0),
are computed. It can be observed that the four peaks in the spectrum match perfectly with the
first four resonances of the plate (see Figure 3). Additionally, we still observe some small valleys
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Figure 4. Amplitude ratio Ar = |u/uo| for a configuration of five randomly distributed plates. The receiver is located at

=130 m.
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Figure 5. Horizontal response spectrum at the free end of the first plate U1 (h1).

in the spectrum, which evidence the mutual interactions among these plates [29]. The analytical
solutions are again validated with FE simulations (the dashed line).

(c) Finite-size metasurfaces

We now consider the propagation of Rayleigh waves across a cluster of plates, i.e., a flexural
metasurface. We aim to show the capability of the proposed formulation to reproduce the wave
field in this complex configuration.

Thus, we consider an array of 30 identical plates (! = 0.3 m and h = 14 m), which are arranged
periodically with a lattice constant L =2m. A similar configuration was considered in Ref.
[6] for Rayleigh waves interacting with rods. To predict the effect of flexural resonators on
the propagation of Rayleigh waves, we first compute the dispersion relation for the infinite
system. The dispersion relation can be obtained either analytically, by exploiting the thin-plates
impedances, or via 2D FE models imposing periodic BCs, as shown in Figure 6a (more details on
the computation can be found in the supplementary material).

10000000 V 208 4 0014 Buo-BuysiandAieiosieforeds:



(@) 0,09 — : — (b)

4 :
0.06
o
13 dlSp.
min I T max
(c)
0 %
&
N—lO
-20
e, -30
0 0.2 0.4 0.6 70 90 110 130 150
kL/w z (m)

Figure 6. Rayleigh wave interacting with a metasurface atop an elastic half-space. (a) The dispersion curves for an infinite
array of plates resting on the half-space (L = 2 m). Solid lines and circles denote, respectively, the analytical solution and
the FE simulation, while the dashed line indicates the shear wave sound-line. (b) Analytical solution and (c) FE simulation
of the wave field at the fourth flexural resonance for the half-space supporting a periodic array of N = 30 plates.

In particular, we show with solid black lines the solution obtained from the analytical
dispersion equation (see the supplementary material) and with orange circles the dispersion
relation calculated by FE. The dashed blue line indicates the shear wave sound-line. Overall, a
good agreement is found between the analytical and FE computed dispersion curves. Note that,
differently from a metasurface of longitudinal resonators [6], the bandgap induced by the plate
flexural resonance is barely visible in this scenario. Indeed, the bandgap width is related to the
slenderness of the plate as well as the stiffness ratio of the plate to the substrate. For further details,
the reader can refer to [6,17]. Nevertheless, for incident waves at one of the plate resonance, we
still expect a strong localization of the wave field at the onset of the metasurface, as a result of the
interaction between the incident field and the plate flexural motion.

To visualize this phenomenon, we consider an incident Rayleigh wave at the fourth flexural
resonance of the plate (0 = 0.06), which is excited by the source Qpe'’ placed 100 m away
from the first plate. The wave field, calculated by (3.1a) and (3.1b), is displayed in Figure 6b and
highlights the strong interaction between the Rayleigh waves and the plates. As shown in Figure
6¢, the predicted wave field is in very good agreement with the one computed by using the FE
simulation.

5. Conclusion

We have provided a multiple scattering formulation to investigate the interaction of Rayleigh
waves with an array of thin plates located at the surface of an elastic half-space. The presence of
the plates on top of the half-space is modelled by means of their equivalent impedances, derived
by exploiting the Kirchhoff plate theory. The flexural motion of the plates, under the action of
Rayleigh waves, provides additional scattered wave fields which are modelled invoking ad-hoc
Green’s functions. The amplitudes of the scattered wave fields are obtained from a multiple
scattering formulation by imposing the continuity of displacement and slope at the footprint of
the thin plates. Our approach enables the treatment of a flexural metasurface in an arbitrary way,
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namely with no restriction on the mechanical and geometrical properties of the plates as well as
in their spatial configuration. The capability of the method has been discussed by investigating a
single and an array of thin plates atop a homogeneous half-space. The methodology can capture
the interaction between the plate dynamics, mediated by the elastic substrate, and the complex
wave patterns induced by the presence of multiple flexural resonators.

The advantages of the proposed semi-analytical formulation over a standard FE solution are
not limited to the reduction of the computational effort. The major advantage of the multiple
scattering technique stems from the possibility of computing the contribution of each scatter
to the total wavefield. Evaluating and separating the contribution of each scatter to the overall
dynamics of the metasurface open new paths towards the inverse design of scattering based
devices, as demonstrated in recent works concerning the dynamics of metasurfaces over plates
[36]. Similarly, in the context of structure-soil-structure interaction and urban vibration problem,
it is beneficial to evaluate the contribution of each building to the wavefield and to assess, for
example, the effect of a new construction on the response of existing buildings.

We recognize that the Kirchhoff-Love plate formulation used to model the flexural resonators
neglects the shear deformation and the rotary inertia, resulting in discrepancies for higher modes.
Nevertheless, the accuracy is sufficient to properly model the dynamics of the metasurface in the
low-frequency regime, namely around the first flexural modes of the scatters. Finally, we envision
that our formulation can be extended to deal with 3D problems. Note that, Green’s functions for
axial point/strip sources on a 3D half-space surface are readily available in Ref. [37]. Further
efforts should be instead devoted to develop Green’s functions for stress distributions generated
by the flexural motion of beam-like resonators on a 3D half-space.
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