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We provide an analytical formulation to model the
propagation of elastic waves in a homogeneous
half-space supporting an array of thin plates. The
technique provides the displacement field obtained
from the interaction between an incident wave
generated by a harmonic source and the scattered
fields induced by the flexural motion of the plates.
The scattered field generated by each plate is
calculated using an ad-hoc set of Green’s functions.
The interaction between the incident field and the
scattered fields is modelled through a multiple
scattering formulation. Owing to the introduction
of the multiple scattering formalism, the proposed
technique can handle a generic set of plates arbitrarily
arranged on the half-space surface. The method
is validated via comparison with finite element
simulations considering Rayleigh waves interacting
with a single and a collection of thin plates. Our
framework can be used to investigate the interaction
of vertically polarized surface waves and flexural
resonators in different engineering contexts, from the
design of novel surface acoustic wave devices to the
interpretation of urban vibrations problems.

1. Introduction
In the past two decades, the advent of so-called
metamaterials, structured materials equipped with resonant
elements, has opened new horizons in the control
of waves across different physics. In elastodynamics,
architected materials with unique effective properties
such as negative density and negative moduli have
shown the capability of tailoring the wavefields at will
[1].
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At their conception, elastic metamaterials were designed to filter the propagation of bulk
waves [2]. However, the fabrication of resonant elements in the host medium challenges the
feasibility of large-scale samples and eventually disrupts the integrity of the hosting material
to some extent [3].

These issues were partially mitigated by the design of elastic metasurfaces, thin resonant
interfaces comprising subwavelength resonant elements located on the surface of the waveguides
[4–7]. Nowadays, metasurfaces are proposed to manipulate waves across a wide range of scales,
from micro-mechanical systems [8] to ground-vibration mitigation devices [6,9,10]. In all these
contexts, the dispersion relation, a function of angular frequency ω and wavenumber k, plays an
important role in describing the dynamics of infinite metasurfaces. Knowledge of the dispersion
curves provides physical insights on the existence of bandgaps, modes hybridization phenomena,
cut-on and cut-off frequencies of an infinite length system. Dispersion relations of metasurfaces
can be computed either via analytical formulations, by modelling the thin resonant interface as
dynamic boundary conditions (BCs) [4,11], or via finite element (FE) schemes by modelling a finite
size portion of the system including the substrate and the metasurface and by imposing proper
periodic BCs [12–14]. The analytical formulations often exploit homogenization and asymptotic
expansion techniques to obtain closed-form dispersion relation for compressional (rod-like) [6,15]
and flexural (beam-like) metasurfaces [16,17].

Nonetheless, dispersion curves provide only partial information on the dynamics of a finite
system. Evidences of complex phenomena in finite metasurfaces, like lensing [18,19], classical
[20] or umklapp [21] mode conversion, rainbow trapping [22] and wave localization [23] are
found only from the inspection of the full wave fields. In general, the computation of the
wave fields is obtained from numerical harmonic or time transient simulations, using tools like
FE software. Given the nature of the wave problems, such simulations are always bounded
by their computational cost and often limited by the available hardware resources. Analytical
strategies are thus desirable to reduce computational efforts. In addition, analytical methods
provide robust tools to study how incident waves interact with multiple scattering sources. In
fact, they have been frequently used to investigate how plane waves interact with building-like
structures exploiting, for example, series expansion [24], space–frequency mode-matching [25],
and homogenization techniques [26–28].

Within this context, in a recent work [29] we proposed a multiple scattering formulation
to model Rayleigh waves interacting with a finite length metasurface placed atop an elastic
half-space. The considered metasurface comprised an arbitrary number of discrete mass-spring
resonators, oscillating along their vertical direction (compressional resonance). In this work we
extend the previous formulation by considering flexural-type resonators, namely thin Kirchhoff
plates, coupled to the half-space. The formulation is able to account for an arbitrary number
N of thin plates. We focus on the low-frequency regime where the flexural contribution of the
plates dominates the dynamic response. Thus, we neglect the plates axial behaviour, and the
related axial resonances which generally occur at a much higher frequency with respect to the
first bending modes.

The key point of our formulation is the solution of the Lamb’s problem in terms of Green’s
functions. Such Green’s functions are used to model the incident wave field, due to a known
harmonic source acting normally at the surface of the half-space, as well as the scattered wave
fields generated by the thin plates when excited by an imposed base displacement. The unknown
amplitudes of the N scattered wave fields are found from the solution of the proposed multiple
scatting formulation by imposing proper boundary conditions at the half-space surface. The total
wave field in the half-space is thus obtained by the coupled contribution of the incident and N

scattered wave fields.
Our approach enriches the analytical tools available to discuss the dynamics of flexural

metasurfaces, e.g., the closed form dispersion relationships in [16] and the effective models
in [27,28], by enabling the description of the finite-size flexural metasurface. To the best of our
knowledge, the analytical treatment of this problem remains yet unsolved.
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The work is organized as follows. In Section 2, we present the derivation of the theoretical
framework. In particular, in Section (a) we begin by recalling the Kirchhoff plate theory to derive
the shear and normal stresses at the base of the plates as impedance functions. Then, we recall
and use the solution of the Lamb’s problem to formulate the incident and scattered wave fields
in Section (b). The multiple scattering formulation is finally constructed in Section 3. In Section 4,
we investigate and discuss the response of a half-space equipped with a single and a collection
of thin plates, and validate our findings via FE simulations. We conclude our work with some
remarks and perspectives in Section 5.

2. Theoretical model
We investigate the multiple scattering effects of an array of flexural resonators, namely a flexural
metasurface, arranged on the surface of an elastic half-space, as shown in Figure 1. The flexural
metasurface can be composed of a series of N parallel thin plates, with different mechanical
and geometrical properties. Given the out-of-plane invariance of the configuration, we model
the system in the 2D plane described by the spatial coordinates x = (x, z).

The derivation comprises the following three steps: (i) definition of the impedance functions
describing the stresses exerted by a thin plate at its base when excited by an imposed base motion;
(ii) construction of the half-space Green’s functions for such stresses; (iii) formulation of a multiple
scattering problem for a half-space coupled with an arbitrary N number of thin plates under a
harmonic strip source at the surface.

(a) Impedance boundary conditions of thin plates on an elastic half-space
We model the plates using the Kirchhoff plate theory and their effect on the substrate dynamics
using ad-hoc impedance functions. The thin plates are made of homogeneous and linear elastic
materials, and are perfectly bonded to the surface of an elastic half-space. We denote the
displacement components in the half-space by u(x, z) and w(x, z) along the x and z directions,
respectively. The displacement component of the thin plate along the x direction is U(x, z)

whereas ϑ(x, z) = ∂U(x, z)/∂z denotes the cross-section rotation. For convenience, we introduce
a set Bn = {x : x= xn, 0≤ z ≤ hn, n∈Z+} ⊂R2 to indicate the n-th plate placed at xn, such that
its displacements components read Un(z) and ϑn(z), for n= 1, .., N . We restrict our interest to the
harmonic regimes, so that the time-harmonic term eiωt is omitted through the whole derivation.

The flexural motion of the n-th plate is governed by the equation:(
∂4

∂z4
− β4n

)
Un = 0, for x∈Bn (2.1)

where βn denotes the wave number for flexural waves, namely:

β4n =
ρnln
Dn

ω2, where Dn =
En

1− ν2n
l3n
12

(2.2)

in which ρn is the material density, ln is the plate thickness, Dn is the flexural rigidity, En is the
Young modulus, and νn is the Poisson ratio. The general solution of (2.1) has the following form:

Un(z) =Cn1 cosh(βnz) + Cn2 sinh(βnz) + Cn3 cos(βnz) + Cn4 sin(βnz). (2.3)

in which the four coefficientsCni (i= 1, 2, 3, 4) can be determined by imposing the four boundary
conditions (BCs) for flexural vibrations:

Un(0) = u(xn, 0), ϑn(0) =−θ(xn, 0). (2.4a)

∂2Un
∂z2

∣∣
z=hn

= 0,
∂3Un
∂z3

∣∣
z=hn

= 0. (2.4b)

where the slope of the free surface θ(xn, 0) can be expressed in terms of the vertical displacement
in the soil w as ∂w(x,0)

∂x

∣∣
x=xn

.
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Figure 1. Schematic of elastic waves interacting with a metasurface. (a) An array of arbitrary N thin plates on an elastic

half-space, in which hn and ln denote the height and thickness of the n-th plate, respectively. (b) Illustration of the

continuity of displacements and slope at the plate-substrate interface. The assumed shear and normal stresses caused

by the flexural motion of the n-th plate are shown in (c) and (d), respectively.

Equation (2.4a) imposes the continuity of displacement and slope at the interface between
the n-th plate and the half-space, while (2.4b) implies null bending moment and shear force
at the plate free end. Expressing (2.4a) and (2.4b) in terms of (2.3) leads to the following
non-homogeneous system:


1 0 1 0

0 1 0 1

cosh(βnhn) sinh(βnhn) − cos(βnhn) − sin(βnhn)

sinh(βnhn) cosh(βnhn) sin(βnhn) − cos(βnhn)



Cn1
Cn2
Cn3
Cn4

=


u(xn, 0)

−θ(xn, 0)/βn
0

0


(2.5)
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which can be solved for the four unknowns Cni:

Cn1 =
1 + cosh(βnhn) cos(βnhn) + sinh(βnhn) sin(βnhn)

2 + 2 cosh(βnhn) cos(βnhn)
u(xn, 0)

− cosh(βnhn) sin(βnhn)− sinh(βnhn) cos(βnhn)

2 + 2 cosh(βnhn) cos(βnhn)

θ(xn, 0)

βn
,

(2.6a)

Cn2 =− cosh(βnhn) sin(βnhn) + sinh(βnhn) cos(βnhn)

2 + 2 cosh(βnhn) cos(βnhn)
u(xn, 0)

− 1 + cosh(βnhn) cos(βnhn)− sinh(βnhn) sin(βnhn)

2 + 2 cosh(βnhn) cos(βnhn)

θ(xn, 0)

βn
,

(2.6b)

Cn3 =
1 + cosh(βnhn) cos(βnhn)− sinh(βnhn) sin(βnhn)

2 + 2 cosh(βnhn) cos(βnhn)
u(xn, 0)

− sinh(βnhn) cos(βnhn)− cosh(βnhn) sin(βnhn)

2 + 2 cosh(βnhn) cos(βnhn)

θ(xn, 0)

βn
,

(2.6c)

Cn4 =
cosh(βnhn) sin(βnhn) + sinh(βnhn) cos(βnhn)

2 + 2 cosh(βnhn) cos(βnhn)
u(xn, 0)

− 1 + cosh(βnhn) cos(βnhn) + sinh(βnhn) sin(βnhn)

2 + 2 cosh(βnhn) cos(βnhn)

θ(xn, 0)

βn
.

(2.6d)

Given the displacement Un(z), the shear and normal stresses on the contact area of the n-th
plate, i.e. in the region x∈ (xn − ln/2, xn + ln/2) and z = 0, can be approximated as (see Figures
1c and 1d):

τ
(n)
zx (x, 0) =−Dn

ln

∂3Un
∂z3

=
Dn
ln
β3n(C4 − C2)

=Ω
(n)
1 u(xn, 0)−Ω(n)

2 θ(xn, 0),

(2.7a)

σ
(n)
z (x, 0) =− En

(1− ν2n)

∂2Un
∂z2

(x− xn) =
En

(1− ν2n)
β2n(C3 − C1)(x− xn)

= [Ω
(n)
3 u(xn, 0)−Ω(n)

4 θ(xn, 0)](x− xn).

(2.7b)

where the following parameters have been defined:

Ω
(n)
1 =

Dn
ln
β3nf1(βnhn), (2.8a)

Ω
(n)
2 =

Dn
ln
β2nf2(βnhn), (2.8b)

Ω
(n)
3 =− En

1− ν2n
β2nf3(βnhn), (2.8c)

Ω
(n)
4 =− En

1− ν2n
βnf4(βnhn). (2.8d)

with:

f1(βnhn) =
cosh(βnhn) sin(βnhn) + sinh(βnhn) cos(βnhn)

1 + cosh(βnhn) cos(βnhn)
, (2.9a)

f2(βnhn) = f3(βnhn) =
sinh(βnhn) sin(βnhn)

1 + cosh(βnhn) cos(βnhn)
, (2.9b)

f4(βnhn) =
cosh(βnhn) sin(βnhn)− sinh(βnhn) cos(βnhn)

1 + cosh(βnhn) cos(βnhn)
. (2.9c)
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In short, equations (2.7a) and (2.7b) provide the shear and normal stresses at the base of the
n-th plate for a given imposed harmonic motion at its base.

Since the system considers an arbitrary number N of plates, the total wave field must
be determined considering the incident wave field actuated by the given source plus the
contributions of the N scattered wave fields generated by the plates. In what follows, we set
a multiple scattering problem, exploiting the Green’s function of the Lamb’s problem for the
incident and scattered waves, and solve it to find the unknown amplitudes of the N scattered
wave fields. We show that such amplitudes can be determined by imposing continuity conditions
between the impedance functions of the plates, derived above, and the half-space.

(b) Green’s functions
Let us briefly recall the fundamental steps of the Lamb’s problem [30] to provide the Green’s
functions in terms of displacement components (u = [u,w]), for given time-harmonic shear and
normal stress distributions, τ (s)zx and σ(s)z respectively, acting at the top surface (z = 0) of the half-
space. This problem can be well defined as a boundary value problem as:

∇ · C :∇u = ρü, for z < 0 (2.10a)

(C :∇u) · n =
[
σ
(s)
z , τ

(s)
zx

]T
, for z = 0 (2.10b)

where C and n denote the elastic tensor and the unit normal vector, respectively.
At first, we use the potentials ϕ(x, z), ψy(x, z) to decouple the governing equation (2.10a) via

Helmholtz decomposition [31]:

(∇2 + k2p)ϕ= 0, (∇2 + k2s)ψy = 0. (2.11)

in which kp = ω
cp

and ks = ω
cs

denote the wave numbers for compression and shear waves in the
half-space, respectively, and where:

cp =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
. (2.12)

are the compression and shear wave velocities, respectively, being λ and µ the Lamé constants
and ρ the mass density of the half-space.

Making use of the spatial Fourier transform pairs:

f̄(k, z) =

∫∞
−∞

f(x, z)e−ikx dx, f(x, z) =
1

2π

∫∞
−∞

f̄(k, z)eikx dk. (2.13)

we obtain the transformed wave equations (2.11) as:(
∂2

∂z2
− p2

)
ϕ̄= 0,

(
∂2

∂z2
− q2

)
ψ̄y = 0. (2.14)

which admit solutions of the form:

ϕ̄(k, z) =A1e−pz +B1epz , ψ̄y(k, z) =A2e−qz +B2eqz . (2.15)

where p and q read:

p=
√
k2 − k2p, q=

√
k2 − k2s . (2.16)

where the coefficients A1, A2 must be zero to avoid an unbounded response for z =−∞, while
B1, B2 are determined by imposing stress BCs at z = 0.
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To this purpose, we first express the normal and shear stresses in the half-space in terms of the
potentials:

σz(x, z) =−µ

[
k2sϕ+ 2

(
∂2ϕ

∂x2
− ∂2ψy
∂x∂z

)]
, (2.17a)

τzx(x, z) =−µ

[
k2sψy − 2

(
∂2ϕ

∂x∂z
− ∂2ψy

∂z2

)]
. (2.17b)

Next, we Fourier transform the stress components in (2.17a) and (2.17b) and impose their
values at z = 0 equal to those given by the boundary condition in (2.10b) as:

σ̄z(k, 0) = µ[(2k2 − k2s)B1 + 2ikqB2] = σ̄
(s)
z (k, 0), (2.18a)

τ̄zx(k, 0) = µ[2ikpB1 − (2k2 − k2s)B2] = τ̄
(s)
zx (k, 0), (2.18b)

where the superscript (s) denotes the stresses generated by the source function. Solving (2.18a)
and (2.18b) yields the coefficients:

B1 =
(2ikq)τ̄

(s)
zx (k, 0) + (2k2 − k2s)σ̄

(s)
z (k, 0)

µR(k)
, (2.19a)

B2 =
−(2k2 − k2s)τ̄

(s)
zx (k, 0) + (2ikp)σ̄

(s)
z (k, 0)

µR(k)
, (2.19b)

where R(k) is known as the Rayleigh function:

R(k) = (2k2 − k2s)2 − 4k2pq. (2.20)

According to the Helmholtz decomposition, the displacement components in the half-space
can be expressed as:

u=
∂ϕ

∂x
− ∂ψy

∂z
, w=

∂ϕ

∂z
+
∂ψy
∂x

. (2.21)

Fourier transforming (2.21), and substituting (2.15), (2.19a) and (2.19b), yield:

ū(k, z) = ikϕ̄− ∂ψ̄y
∂z

=
−2k2qepz + q(2k2 − k2s)eqz

µR(k)
τ̄
(s)
zx (k, 0) +

ik(2k2 − k2s)epz − (2ikpq)eqz

µR(k)
σ̄
(s)
z (k, 0),

(2.22a)

w̄(k, z) =
∂ϕ̄

∂z
+ ikψ̄y

=
(2ikpq)epz − ik(2k2 − k2s)eqz

µR(k)
τ̄
(s)
zx (k, 0) +

p(2k2 − k2s)epz − 2k2peqz

µR(k)
σ̄
(s)
z (k, 0).

(2.22b)

At last, the inverse Fourier transform of (2.22a) and (2.22b) provides the wave field
displacement components due to time-harmonic stresses imposed at the surface as:

u(x, z) =
1

2πµ

∫∞
−∞

[
−2k2qepz + q(2k2 − k2s)eqz

R(k)
τ̄
(s)
zx (k, 0) +

ik(2k2 − k2s)epz − (2ikpq)eqz

R(k)
σ̄
(s)
z (k, 0)

]
eikx dk,

(2.23a)

w(x, z) =
1

2πµ

∫∞
−∞

[
(2ikpq)epz − ik(2k2 − k2s)eqz

R(k)
τ̄
(s)
zx (k, 0) +

p(2k2 − k2s)epz − 2k2peqz

R(k)
σ̄
(s)
z (k, 0)

]
eikx dk.

(2.23b)
In what follows, we specialize these Green’s functions for the stress distributions considered

in this work, namely (i) a uniform normal stress distribution, used to model the external
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source (see Figure 1a), and (ii) a constant shear stress distribution and (iii) a butterfly normal
stress distribution, as shown in Figure 1c and Figure 1d, respectively, used to model the stress
components generated by the flexural motion of the plates.

(i) Uniform normal stress distribution to model the source

We consider a vertically distributed source with footprint width ls centred at the origin of the
reference system, as shown in Figure 1a. The BCs on the free surface (z = 0) are:

σz(x, 0) =

{
Q0 if |x| ≤ ls/2

0 elsewhere
, τzx(x, 0) = 0, (2.24)

where Q0 is the magnitude of the source. Fourier transforming (2.24) yields:

σ̄z(k, 0) =
2Q0

k
sin(kls/2), τ̄zx(k, 0) = 0. (2.25)

Substituting (2.25) into (2.23a) and (2.23b) we can obtain the displacement components due to a
unitary normal stress (Q0 = 1 Pa) acting at the free surface, namely the Green’s functions:

Gσu(x, z) =
i

πµ

∫∞
−∞

sin(kls/2)
(2k2 − k2s)epz − 2pqeqz

R(k)
eikx dk, (2.26a)

Gσw(x, z) =
1

πµ

∫∞
−∞

sin(kls/2)

k

p(2k2 − k2s)epz − 2k2peqz

R(k)
eikx dk. (2.26b)

Additionally, by deriving (2.26b) with respect to the x coordinate, we can obtain the Green’s
function related to the slope of the half-space:

Gσθ(x, z) =
∂Gσw(x, z)

∂x
=

i

πµ

∫∞
−∞

sin(kls/2)
p(2k2 − k2s)epz − 2k2peqz

R(k)
eikx dk. (2.26c)

(ii) Uniform shear stress distribution

Following the same approach, we here deduce the Green’s functions for a uniform shear stress
distribution on the surface, as the one shown in Figure 1c. The BCs on the free surface (z = 0) are:

σz(x, 0) = 0, τzx(x, 0) =

{
Q

(n)
x if |x− xn| ≤ ln/2

0 elsewhere
, (2.27)

where Q(n)
x is the magnitude of τzx. Fourier transforming (2.27) yields:

σ̄z(k, 0) = 0, τ̄zx(k, 0) =
2Q

(n)
x

k
sin(kln/2)e−ikxn . (2.28)

Substituting (2.28) into (2.23a) and (2.23b) leads to the displacement components induced by
unitary shear stress (Q(n)

x = 1 Pa) applied at the free surface, as:

G
(n)
τu (x, z) =

−1

πµ

∫∞
−∞

sin(kln/2)

k

2k2qepz − q(2k2 − k2s)eqz

R(k)
eik(x−xn) dk, (2.29a)

G
(n)
τw (x, z) =

i

πµ

∫∞
−∞

sin(kln/2)
2pqepz − (2k2 − k2s)eqz

R(k)
eik(x−xn) dk. (2.29b)

By deriving (2.29b) with respect to the x coordinate, we obtain the Green’s function related to the
slope of the half-space:

G
(n)
τθ (x, z) =

∂G
(n)
τw (x, z)

∂x
=
−1

πµ

∫∞
−∞

k sin(kln/2)
2pqepz − (2k2 − k2s)eqz

R(k)
eik(x−xn) dk. (2.29c)
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(iii) Butterfly-shaped normal stress distribution

At last, we derive the Green’s functions for a butterfly-shaped distribution of normal stress on the
surface, as shown in Figure 1d. In this case, the BCs on the free surface (z = 0) are:

σz(x, 0) =

{
2σ

(n)
0 (x− xn)/ln if |x− xn| ≤ ln/2

0 elsewhere
, τzx(x, 0) = 0, (2.30)

in which σ(n)0 is the maximum values of σz . Fourier transforming (2.30) yields:

σ̄z(k, 0) =
4iσ

(n)
0

lnk2

[
kln
2

cos(
kln
2

)− sin(
kln
2

)

]
e−ikxn , τ̄zx(k, 0) = 0. (2.31)

By substituting (2.31) into (2.23a) and (2.23b) we obtain the displacement components induced by
a butterfly-shaped normal stress (σ(n)0 = 1 Pa) acting on the free surface:

G
(n)
σ0u(x, z) =

−2

πµln

∫∞
−∞

[
kln
2

cos(
kln
2

)− sin(
kln
2

)

]
(2k2 − k2s)epz − 2pqeqz

kR(k)
eik(x−xn) dk,

(2.32a)

G
(n)
σ0w(x, z) =

2i

πµln

∫∞
−∞

[
kln
2

cos(
kln
2

)− sin(
kln
2

)

]
p(2k2 − k2s)epz − 2k2peqz

k2R(k)
eik(x−xn) dk.

(2.32b)
Finally, by deriving (2.32b) with respect to the x coordinate we obtain:

G
(n)
σ0θ

(x, z) =
∂G

(n)
σ0w(x, z)

∂x
=
−2

πµln

∫∞
−∞

[
kln
2

cos(
kln
2

)− sin(
kln
2

)

]
p(2k2 − k2s)epz − 2k2peqz

kR(k)
eik(x−xn) dk.

(2.32c)

3. Multiple scattering formulation
In this section we develop a multiple scattering formulation to quantitatively model the
destructive or constructive interference between the waves generated by a harmonic distributed
source, acting at the surface, and those actuated by the flexural motion of the N plates. Our scope
is to calculate the amplitude of the tangential and normal stresses at the base of each plate. Once
these stresses are known, the total wave field can be obtained by the superposition of the incident
and scattered waves computed using the Green’s functions introduced in Section 2b.

For convenience, we define a set O= {x : x= xm, z = 0,m= 1, ..., N} ⊂R2 to collect the plate
locations. When the incident field impinges on the array of N plates, the total wavefield can be
expressed as the summation of incident and scattered fields:

u(x, z) = u0(x, z) +

N∑
n=1

Q
(n)
x G

(n)
τu (x, z) +

N∑
n=1

σ
(n)
0 G

(n)
σ0u(x, z), (3.1a)

w(x, z) =w0(x, z) +

N∑
n=1

Q
(n)
x G

(n)
τw (x, z) +

N∑
n=1

σ
(n)
0 G

(n)
σ0w(x, z), (3.1b)

θ(x, z) = θ0(x, z) +

N∑
n=1

Q
(n)
x G

(n)
τθ (x, z) +

N∑
n=1

σ
(n)
0 G

(n)
σ0θ

(x, z), (3.1c)

where u0, w0 and θ0 denote, respectively, the displacement components and rotation in the half-
space due to the incident wavefield as follows:

u0(x, z) =Q0Gσu(x, z), (3.2a)

w0(x, z) =Q0Gσw(x, z), (3.2b)

θ0(x, z) =Q0Gσθ(x, z). (3.2c)



10

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

We substitute equations (3.2a, 3.2c) into (3.1a) and (3.1c) and specify them at the plate location
xm:

u(xm, 0) =Q0Gσu(xm, 0) +

N∑
n=1

Q
(n)
x G

(n)
τu (xm, 0) +

N∑
n=1

σ
(n)
0 G

(n)
σ0u(xm, 0), (3.3a)

θ(xm, 0) =Q0Gσθ(xm, 0) +

N∑
n=1

Q
(n)
x G

(n)
τθ (xm, 0) +

N∑
n=1

σ
(n)
0 G

(n)
σ0θ

(xm, 0). (3.3b)

Similarly, we consider the shear and normal stresses at the base of the plate, i.e., (2.7a) and
(2.7b), respectively, and express them in force of (2.27) and (2.30):

Q
(m)
x =Ω

(m)
1 u(xm, 0)−Ω(m)

2 θ(xm, 0), (3.4a)

2σ
(m)
0 /lm =Ω

(m)
3 u(xm, 0)−Ω(m)

4 θ(xm, 0). (3.4b)

At this stage, we can express the displacements u(xm, 0) and θ(xm, 0) in (3.4a) and (3.4b) by means
of (3.3a) and (3.3b) to obtain:

Q
(m)
x =Q0

[
Ω

(m)
1 Gσu(xm, 0)−Ω(m)

2 Gσθ(xm, 0)
]

+

N∑
n=1

Q
(n)
x

[
Ω

(m)
1 G

(n)
τu (xm, 0)−Ω(m)

2 G
(n)
τθ (xm, 0)

]

+

N∑
n=1

σ
(n)
0

[
Ω

(m)
1 G

(n)
σ0u(xm, 0)−Ω(m)

2 G
(n)
σ0θ

(xm, 0)
]
,

(3.5a)

2σ
(m)
0 /lm =Q0

[
Ω

(m)
3 Gσu(xm, 0)−Ω(m)

4 Gσθ(xm, 0)
]

+

N∑
n=1

Q
(n)
x

[
Ω

(m)
3 G

(n)
τu (xm, 0)−Ω(m)

4 G
(n)
τθ (xm, 0)

]

+

N∑
n=1

σ
(n)
0

[
Ω

(m)
3 G

(n)
σ0u(xm, 0)−Ω(m)

4 G
(n)
σ0θ

(xm, 0)
]
.

(3.5b)

With some algebra, equations (3.5a) and (3.5b) can be reorganized as:

−Q0

[
Ω

(m)
1 Gσu(xm, 0)−Ω(m)

2 Gσθ(xm, 0)
]

=

N∑
n=1

Q
(n)
x

[
Ω

(m)
1 G

(n)
τu (xm, 0)−Ω(m)

2 G
(n)
τθ (xm, 0)− δmn

]

+

N∑
n=1

σ
(n)
0

[
Ω

(m)
1 G

(n)
σ0u(xm, 0)−Ω(m)

2 G
(n)
σ0θ

(xm, 0)
]
,

(3.6a)

−Q0

[
Ω

(m)
3 Gσu(xm, 0)−Ω(m)

4 Gσθ(xm, 0)
]

=

N∑
n=1

Q
(n)
x

[
Ω

(m)
3 G

(n)
τu (xm, 0)−Ω(m)

4 G
(n)
τθ (xm, 0)

]

+

N∑
n=1

σ
(n)
0

[
Ω

(m)
3 G

(n)
σ0u(xm, 0)−Ω(m)

4 G
(n)
σ0θ

(xm, 0)− 2δmn /ln
]
.

(3.6b)

where δmn is the Kronecker delta.
Equations (3.6a) and (3.6b), applied to x∈O, provide a system of 2×N non homogeneous

linear equations, in the 2×N unknown coefficients Q(n)
x and σ(n)0 , written in compact form as:
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Sy = b, (3.7)

in which the corresponding coefficients are:

S =

[
S11 S12

S21 S22

]
, y =

[
Q

(n)
x

σ
(n)
0

]
, b =

[
b1
b2

]
, (3.8)

with components:

S11 =

N∑
n=1

[
Ω

(m)
1 G

(n)
τu (xm, 0)−Ω(m)

2 G
(n)
τθ (xm, 0)− δmn

]
, (3.9a)

S12 =

N∑
n=1

[
Ω

(m)
1 G

(n)
σ0u(xm, 0)−Ω(m)

2 G
(n)
σ0θ

(xm, 0)
]
, (3.9b)

S21 =

N∑
n=1

[
Ω

(m)
3 G

(n)
τu (xm, 0)−Ω(m)

4 G
(n)
τθ (xm, 0)

]
, (3.9c)

S22 =
N∑
n=1

[
Ω

(m)
3 G

(n)
σ0u(xm, 0)−Ω(m)

4 G
(n)
σ0θ

(xm, 0)− 2δmn /ln
]
, (3.9d)

b1 =−Q0

[
Ω

(m)
1 Gσu(xm, 0)−Ω(m)

2 Gσθ(xm, 0)
]
, (3.9e)

b2 =−Q0

[
Ω

(m)
3 Gσu(xm, 0)−Ω(m)

4 Gσθ(xm, 0)
]
. (3.9f )

To avoid numerical instabilities in the solution of (3.7), we assume a small hysteretic damping
ratio ζ = 0.1% in both the substrate and the plates elastic response to remove the poles at k=±kr
of the integrands in the Green’s functions, where ±kr are the roots of the Rayleigh function
in (2.20). As such, the Lamé constants in integrands are replaced by the complex moduli as
λ′ = λ(1 + 2iζ) and µ′ = µ(1 + 2iζ) [32]. Additionally, the Green’s functions are evaluated via
the Gauss-Kronrod quadrature formula by a truncated integration as

∫+k`
−k` (·) dk, where k` is

a truncated upper limit [33,34]. Due to the oscillating nature of the integrand, the integration
rapidly converges when k`� kr .

The computed coefficients Q(n)
x and σ

(n)
0 are finally used into (3.1a) and (3.1b) to obtain the

total wavefield in the half-space.

4. Numerical examples
In this section, we assess the validity of the proposed multiple scattering formulation, namely
(3.1a, 3.1b) by modelling three case studies. The first case considers the interaction of Rayleigh
waves with a single plate; in the second example, we model the interaction between five distinct
plates arranged in a random configuration; the last scenario describes the response of a finite-
size metasurface composed of 30 plates. The mechanical and geometrical parameters of the three
examples are collected in Table 1.

Before delving into the description of the case studies, let us discuss the impedance properties
derived in (2.8a-2.8d) which depend on the dimensionless functions fi (i= 1, ..., 4). The variations
of these dimensionless functions with respect to the frequency are reported in Figure 2, where the
dimensionless frequency ω̄= ωl/(πcs) is used [31]. According to (2.7a), the shear stress provided
by the plate flexural motion is determined by both f1 and f2, here collected in Figure 2a.
In the frequency range ω̄= [0, 0.18] the impedance parameters f1 and f2 present six identical
resonance peaks, which correspond to the first six flexural resonances of a cantilever plate,
i.e., 1 + cosh(βh) cos(βh) = 0. Strong interaction effects between the plate and the half-space
dynamics are expected in the vicinity of these flexural resonances, while minimal coupling occurs
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Table 1. Mechanical parameters for plates and the elastic half-space [16].

Symbol Definition Value

Q0 Distributed source amplitude 1 MPa
ls Footprint thickness of the source 1 m
ρ Mass density of half-space 13000 kg/m3

λ First Lamé constant of half-space 702 MPa
µ Shear modulus of half-space 325 MPa
ln Plate thickness 0.3 m
ρn Plate density 450 kg/m3

En Young modulus of plate 1547 MPa
νn Poisson ratio of plate 0.3
ζ Hysteretic damping ratio 0.1%

at the valley points. It should be noted that the minimum values of f1 and f2 do not overlap
except for the static condition (zero frequency), suggesting that the flexural motion of the plate
always exchange non-zero shear stresses with the surface half-space. The same arguments apply
to the dimensionless impedance functions f3 and f4, reported in Figure 2b, which govern the
normal stress exerted by the plate on the half-space.

Figure 2. Variations of the impedance parameters vs. frequency (l= 0.3m and h= 14m).

(a) Single plate scenario
A thin plate with l1 = 0.3 m and h1 = 14 m is located at x1 = 100 m, z = 0 m and is excited by a
harmonic distributed source with footprint thickness ls = 1 m and amplitudeQ0 = 1 MPa located
at the origin of the coordinate system. To evaluate the interaction between Rayleigh waves and
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flexural motions of plates, we introduce the amplitude ratio on the half-space surface (z = 0)

as [35]:

AR = |u/u0|. (4.1)

Figure 3a shows the AR at x= 120 m, z = 0 m for ω̄ ∈ [0, 0.18] which includes the first six flexural
resonances.

(a)

(b)

(c)

Figure 3. (a) Amplitude ratio AR = |u/u0| of a single plate (l1 = 0.3m and h1 = 14m). The plate is located at x1 =

100m and the receiver x= 120m. (b) Zoomed-in amplitude ratio in the low-frequency regime. (c) Spectrum and phase

of the scattered field vs. the free field, denoted by the solid line and circles, respectively.

For comparison, we provide the same amplitude ratio computed via a 2D FE simulation
(dashed line). In the FE environment, both the plate and the half-space are modelled using 2D
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plane strain elasticity (see the supplementary material for details on the model). Nonetheless, a
very good agreement between the results obtained by using the proposed formulation and the
FE is found. One can observe that the interaction between the plate and the half-space in the
vicinity of the plate resonances yields minimal values of the amplitude ratio. The drops in the
low-frequency range can be better appreciated in Figure 3b, where the amplitude ratio is shown
in the frequency range ω̄ ∈ [0, 0.015].

To better understand the AR, we expand the expression as:

AR =

∣∣∣∣1 +
us
u0

∣∣∣∣=
√

1 +

∣∣∣∣usu0
∣∣∣∣2 + 2

∣∣∣∣usu0
∣∣∣∣ cos(∆φ), (4.2)

where ∆φ is the relative phase between the scattered and incident horizontal displacements,
namely, us/u0. Equation (4.2) indicates that the AR is determined by both the amplitude and
relative phase of scattered wave fields. The scattered field reaches its peak at the resonance
frequencies of the plate, accompanied by a phase shift about 180 degrees (see Figure 3c), which
results in the peaks/drops of the amplitude ratio in Figure 3b.

Note that the flexural resonances computed by the analytical model occur at frequency values
slightly higher than the actual 2D FE results. Indeed, our formulation based on the Kirchhoff plate
theory neglects both the shear deformation and rotary inertia, making the model more rigid than
the 2D plane strain model. Besides, we remind that the proposed formulation does not capture the
axial resonance of the plate, i.e. the valley between the fifth and sixth bending resonance, since we
consider the flexural motion of the plate only. The reader can appreciate the nature of the different
resonant modes from the modal shapes provided in the figure inset.

Additionally, let us remark that the proposed formulation reduces significantly the
computational cost needed to obtain the amplitude ratio, as it can compute the output at the
desired receiver location without the need for a discretization of the whole model, as in the case
of FE models. For example, with a personal computer, it takes only a few seconds to simulate
the system in Figure 3 while around one hour for the FE model. Finally, we remark that the
proposed methodology is capable of discussing the mass-loading effect. The reader can appreciate
the details in the supplementary material.

(b) Randomly distributed plates
As a second example, we consider a system of five different plates arranged atop the half-space
in the arbitrary configuration shown in the inset of Figure 4. Random arrangements of flexural
resonators are often found in urban vibration problems, i.e., where a series of buildings are
impacted by seismic waves and their responses are affected by those of the other buildings, also
known as building-soil-building interactions [24,25]. We show that an arbitrary configuration of
flexural resonators can be readily modelled by our formulation.

The five plates are characterized by the following geometrical parameters: l= [0.3, 0.2, 0.6, 0.4, 0.5] m,
h= [14, 10, 16, 12, 10] m, and location x= [100, 102, 106, 116, 118] m. The fundamental resonance
frequencies of the five plates atop the half-space are [0.47, 0.61, 0.7, 0.83, 1.48] Hz. The amplitude
ratio at x= 130 m, z = 0 m for ω̄ ∈ [0, 0.085], as calculated by our formulation, is shown in Figure
4 (solid line). As for the single plate scenario, the interaction between the plates resonances
and the substrate wave field results in multiple drops of the amplitude ratio, located at the
plate resonances. For comparison, we also provide the results of a FE simulation (dashed line),
developed using 2D plane-strain elasticity model, which well agree with those of the analytical
framework.

Finally, in Figure 5 we show the horizontal response of the top of the first plate, i.e., U1(h1),
calculated using our formulation (solid line). In particular, the response at the top of the plate is
found via equation (2.3) once the base displacement and rotation, namely u(x1, 0) and θ(x1, 0),
are computed. It can be observed that the four peaks in the spectrum match perfectly with the
first four resonances of the plate (see Figure 3). Additionally, we still observe some small valleys
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Figure 4. Amplitude ratio AR = |u/u0| for a configuration of five randomly distributed plates. The receiver is located at

x= 130m.

Figure 5. Horizontal response spectrum at the free end of the first plate U1(h1).

in the spectrum, which evidence the mutual interactions among these plates [29]. The analytical
solutions are again validated with FE simulations (the dashed line).

(c) Finite-size metasurfaces
We now consider the propagation of Rayleigh waves across a cluster of plates, i.e., a flexural
metasurface. We aim to show the capability of the proposed formulation to reproduce the wave
field in this complex configuration.

Thus, we consider an array of 30 identical plates (l= 0.3 m and h= 14 m), which are arranged
periodically with a lattice constant L= 2 m. A similar configuration was considered in Ref.
[6] for Rayleigh waves interacting with rods. To predict the effect of flexural resonators on
the propagation of Rayleigh waves, we first compute the dispersion relation for the infinite
system. The dispersion relation can be obtained either analytically, by exploiting the thin-plates
impedances, or via 2D FE models imposing periodic BCs, as shown in Figure 6a (more details on
the computation can be found in the supplementary material).
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min max
disp.

(a) (b)

(c)

Figure 6. Rayleigh wave interacting with a metasurface atop an elastic half-space. (a) The dispersion curves for an infinite

array of plates resting on the half-space (L= 2m). Solid lines and circles denote, respectively, the analytical solution and

the FE simulation, while the dashed line indicates the shear wave sound-line. (b) Analytical solution and (c) FE simulation

of the wave field at the fourth flexural resonance for the half-space supporting a periodic array of N = 30 plates.

In particular, we show with solid black lines the solution obtained from the analytical
dispersion equation (see the supplementary material) and with orange circles the dispersion
relation calculated by FE. The dashed blue line indicates the shear wave sound-line. Overall, a
good agreement is found between the analytical and FE computed dispersion curves. Note that,
differently from a metasurface of longitudinal resonators [6], the bandgap induced by the plate
flexural resonance is barely visible in this scenario. Indeed, the bandgap width is related to the
slenderness of the plate as well as the stiffness ratio of the plate to the substrate. For further details,
the reader can refer to [6,17]. Nevertheless, for incident waves at one of the plate resonance, we
still expect a strong localization of the wave field at the onset of the metasurface, as a result of the
interaction between the incident field and the plate flexural motion.

To visualize this phenomenon, we consider an incident Rayleigh wave at the fourth flexural
resonance of the plate (ω̄= 0.06), which is excited by the source Q0eiωt placed 100 m away
from the first plate. The wave field, calculated by (3.1a) and (3.1b), is displayed in Figure 6b and
highlights the strong interaction between the Rayleigh waves and the plates. As shown in Figure
6c, the predicted wave field is in very good agreement with the one computed by using the FE
simulation.

5. Conclusion
We have provided a multiple scattering formulation to investigate the interaction of Rayleigh
waves with an array of thin plates located at the surface of an elastic half-space. The presence of
the plates on top of the half-space is modelled by means of their equivalent impedances, derived
by exploiting the Kirchhoff plate theory. The flexural motion of the plates, under the action of
Rayleigh waves, provides additional scattered wave fields which are modelled invoking ad-hoc
Green’s functions. The amplitudes of the scattered wave fields are obtained from a multiple
scattering formulation by imposing the continuity of displacement and slope at the footprint of
the thin plates. Our approach enables the treatment of a flexural metasurface in an arbitrary way,
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namely with no restriction on the mechanical and geometrical properties of the plates as well as
in their spatial configuration. The capability of the method has been discussed by investigating a
single and an array of thin plates atop a homogeneous half-space. The methodology can capture
the interaction between the plate dynamics, mediated by the elastic substrate, and the complex
wave patterns induced by the presence of multiple flexural resonators.

The advantages of the proposed semi-analytical formulation over a standard FE solution are
not limited to the reduction of the computational effort. The major advantage of the multiple
scattering technique stems from the possibility of computing the contribution of each scatter
to the total wavefield. Evaluating and separating the contribution of each scatter to the overall
dynamics of the metasurface open new paths towards the inverse design of scattering based
devices, as demonstrated in recent works concerning the dynamics of metasurfaces over plates
[36]. Similarly, in the context of structure-soil-structure interaction and urban vibration problem,
it is beneficial to evaluate the contribution of each building to the wavefield and to assess, for
example, the effect of a new construction on the response of existing buildings.

We recognize that the Kirchhoff-Love plate formulation used to model the flexural resonators
neglects the shear deformation and the rotary inertia, resulting in discrepancies for higher modes.
Nevertheless, the accuracy is sufficient to properly model the dynamics of the metasurface in the
low-frequency regime, namely around the first flexural modes of the scatters. Finally, we envision
that our formulation can be extended to deal with 3D problems. Note that, Green’s functions for
axial point/strip sources on a 3D half-space surface are readily available in Ref. [37]. Further
efforts should be instead devoted to develop Green’s functions for stress distributions generated
by the flexural motion of beam-like resonators on a 3D half-space.
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