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Abstract

Generative Artificial Intelligence (AI) is one of the most exciting developments in Com-
puter Science of the last decade. At the same time, Reinforcement Learning (RL) has
emerged as a very successful paradigm for a variety of machine learning tasks. In this sur-
vey, we discuss the state of the art, opportunities and open research questions in applying
RL to generative AI. In particular, we will discuss three types of applications, namely, RL
as an alternative way for generation without specified objectives; as a way for generating
outputs while concurrently maximizing an objective function; and, finally, as a way of em-
bedding desired characteristics, which cannot be easily captured by means of an objective
function, into the generative process. We conclude the survey with an in-depth discussion
of the opportunities and challenges in this fascinating emerging area.

1. Introduction

Generative Artificial Intelligence (AI) is gaining increasing attention in academia, industry,
and among the general public. This has been apparent since a portrait based on Generative
Adversarial Networks (Goodfellow et al., 2014) was sold for more than four hundred thou-
sand dollars (Christies, 2018) in 2018. Then, the introduction of transformers (Vaswani
et al., 2017) for natural language processing and diffusion models (Sohl-Dickstein et al.,
2015) for image generation has led to the development of generative models characterized
by unprecedented performance, e.g., GPT-4 (OpenAI, 2023), LaMDA (Thoppilan et al.,
2022), Llama 2 (Touvron et al., 2023), Gemini (Gemini Team & Google, 2023), DALL-E 2
(Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022), just to name a few. In
particular, ChatGPT (OpenAI, 2022), a conversational agent based on GPT-3 and GPT-4,
is widely considered as a game-changing product; its introduction has indeed accelerated
the development of foundation models. One of the characteristics of ChatGPT and other
state-of-the-art large language models (LLMs) and foundation models1 is the use of Rein-
forcement Learning (RL) in order to align its production to human values (Christiano et al.,
2017), so as to mitigate biases and to avoid mistakes and potentially malicious uses.

1. We assume the following definitions: we refer to large language models as language models characterized
by large size in terms of number of parameters; they are are also usually based on transformer archi-
tectures. A foundation model is a large model that is trained on broad data of different types (textual,
audio, image, video, etc.) at scale and is adaptable to a wide range of downstream tasks, following
Bommasani et al. (2022).
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In general, RL offers the opportunity to use non-differentiable functions as rewards
(Ranzato et al., 2016). Examples include chemistry (Vanhaelen et al., 2020) and dialogue
systems (Young et al., 2013). We believe that RL is a promising solution for designing
efficient and effective generative AI systems. In this article, we will explore this research
space, which is, after all, largely unexplored. In particular, the contributions of this work
can be summarized as follows: we first survey the current state of the art at the interface
(and intersection) between generative AI and RL. We systematize the existing literature
according to three classes of applications, namely RL as an alternative way for generation
with the goal of approximating outputs in the domain of interest as best as possible; as a
way for generating outputs while concurrently maximizing quantifiable metrics or indicators;
and, finally, as a way of embedding desired characteristics, which cannot be easily captured
by means of an objective function, into the generative process. We then discuss the future
opportunities and challenges of each category, outlining a potential research agenda for the
coming years.

Several works have already surveyed deep generative learning (e.g., Franceschelli &
Musolesi, 2021; Foster, 2023), deep reinforcement learning (e.g., Lazaridis et al., 2020;
Sutton & Barto, 2018), its societal impacts (Whittlestone et al., 2021), and applications
of RL for specific generative domains (e.g., Fernandes et al., 2023). To the best of our
knowledge, this is the first survey on the applications (and implications) of RL applied to
generative deep learning.

The remainder of the paper is structured as follows. First, we introduce and review
key concepts in generative AI and RL (Section 2). Then, we discuss the different ways in
which RL can be used for generative tasks, both considering past works and suggesting
future directions (Section 3). Finally, we conclude the survey by discussing open research
questions and analyzing future research opportunities (Section 4).

2. Preliminaries

2.1 Generative Deep Learning

We will assume the following definition of generative model (Foster, 2023): given a dataset
of observations X, and assuming that X has been generated according to an unknown
distribution Pdata, a generative model Pmodel is a model that can mimic Pdata. By sampling
from Pmodel, observations that appear to have been drawn from Pdata can be generated.
Generative deep learning consists in the application of deep learning techniques to learn
Pmodel.

Several families of generative deep learning techniques have been proposed in the last
decade, e.g., Variational Autoencoders (VAEs; Kingma & Welling, 2014; Rezende et al.,
2014), Generative Adversarial Networks (GANs; Goodfellow et al., 2014), autoregressive
models like Recurrent Neural Networks (RNNs; Cho et al., 2014; Hochreiter & Schmid-
huber, 1997), transformers (Vaswani et al., 2017), and denoising diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020). These models and architectures aim to approximate
Pdata by means of self-supervised learning, i.e., by minimizing a reconstruction error when
trying to reproduce real examples from X. The only exceptions are GANs, which aim to
approximate Pdata using adversarial learning, i.e., by maximizing the predicted probability
that the outputs were generated by Pdata. We refer the interested reader to Franceschelli
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and Musolesi (2021) for a deeper analysis of the training and sampling processes at the basis
of these solutions. Although highly effective for a variety of tasks, the outputs generated
by these models do not always satisfy the desired properties. This happens for a variety of
reasons. In fact, specific objectives cannot always be cast as loss functions; and providing
carefully designed datasets is typically expensive. Few-shot learning (Brown et al., 2020),
prompt engineering (Strobelt et al., 2023) and fine-tuning (Dodge et al., 2020) are potential
solutions to these problems. We will discuss these issues in detail in the following sections.

2.2 Deep Reinforcement Learning

AGENT

ENVIRONMENT

Figure 1: The canonical reinforcement learning framework: at each timestep t, the Agent
performs an action at based on the current state st, which is a representation of
the Environment. Upon the execution of the action, the Agent finds itself in a
new state st+1, and receives a reward rt+1.

RL is a machine learning paradigm that consists in learning an action based on a current
representation of the environment in order to maximize a numerical signal, i.e., the reward
over time (Sutton & Barto, 2018). More formally, at each time step t, an agent receives the
current state from the environment, then it performs an action and observes the reward
and the new state. Figure 1 summarizes the process. The learning process aims to teach
the agent to act in order to maximize the cumulative return, i.e., a discounted sum of future
rewards. Deep learning is also used to learn and approximate a policy, i.e., the mapping
from states to action probabilities, or a value function, i.e., the mapping from states (or
state-action pairs) to expected cumulative rewards. In this case, we refer to it as deep
reinforcement learning. Several algorithms have been proposed to learn a value function
from which it is possible to induce a policy, e.g., DQN (Mnih et al., 2013) and its variants
(van Hasselt et al., 2016; Schaul et al., 2016; Wang et al., 2016), or to directly learn a policy,
e.g., A3C (Mnih et al., 2016), DDPG (Lillicrap et al., 2016), TRPO (Schulman et al., 2015),
PPO (Schulman et al., 2017). We refer the interested readers to Sutton and Barto (2018)
for a comprehensive introduction to the topic.

The RL community has developed a variety of solutions to address the specific theoretical
and practical problems emerging from this simple formulation. For example, if the reward
signal is not known, inverse reinforcement learning (IRL; Ng & Russell, 2000) is used to
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learn it from observed experience. Intrinsic motivation (Singh et al., 2004; Linke et al.,
2020), e.g., curiosity (Pathak et al., 2017) can be used to deal with sparse rewards and
encourage the agent to explore more. Imagination-based RL (Ha & Schmidhuber, 2018;
Hafner et al., 2020) is a solution that allows to train an agent, reducing at the same time
the need for interaction with the environment. Hierarchical RL (Pateria et al., 2021) allows
to manage more complex problems by decomposing them into sub-tasks and working at
different levels of abstraction. RL is not only used for training a single agent, but also in
multi-agent scenarios (Zhang et al., 2021).

3. Reinforcement Learning for Generative AI

In the following, we will discuss the state of the art in RL for generative learning considering
three classes of solutions, which are summarized in Table 1: RL as an alternative solution
for output generation with the goal of approximating outputs from a given domain of
interest with high fidelity; RL as a way for generating output while maximizing an objective
function which captures (additional) quantifiable properties or indicators at the same time;
and, finally, RL as a way of embedding additional desired characteristics (such as value
alignment) which cannot easily be captured by means of an objective function into the
generative process.

3.1 Reinforcement Learning for Mere Generation

3.1.1 Overview

The simplest approach is RL for mere generation, i.e., to train a generative model with
the goal of approximating outputs from a given domain of interest as best as possible.
Essentially, the objective function is used to replicate the behavior of the self-supervised
learning loss used in traditional generative learning approaches, as the adversarial ones. In
fact, due to its adherence to the formal framework of Markov decision processes (Sutton &
Barto, 2018), RL can be used as a solution to the generative modeling problem in the case
of sequential tasks (Bachman & Precup, 2015), e.g., text generation or stroke painting. The
generative model plays the role of the agent. The current version of the generated output
represents the state. For example, actions model how the state can be modified, e.g., which
token2 to be appended or which change applied to a picture. Finally, the reward is an
indicator of the “quality” in terms of the generation of the output. Figure 2 summarizes
the entire process.

It is possible to identify three fundamental design aspects: the implementation of the
agent itself, e.g., diffusion model or transformer; the definition of the dynamics of the system,
i.e., the transition between a state to another; the choice of the reward structure. The first
two depend on the task to be solved, e.g., music generation with LSTM composing one note
after the other or painting with CNN superimposing subsequent strokes. The third one is
instead responsible of the actual learning. While the reward can be structured so as to
represent the classic supervised target, it also provides the designers with the opportunity

2. We use the term “token” to refer to any discrete element an unstructured data point can be broken into,
independently the data source is in the form of text (e.g., Radford et al., 2019), music (e.g., Huang &
Wu, 2016), image (e.g., Ramesh et al., 2021) and so on.
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Goal Reward Advantages Limitations

Mere
generation

• GAN’s discriminative
signal

• Log-likelihood of real
or predicted targets

• Constraint satisfac-
tion

• Models domains
defined by non-
differentiable objectives

• Adapts GAN to se-
quential tasks

• Can implement RL
strategies, e.g., hierarchi-
cal RL

• Learning without su-
pervision is hard

• Pre-training can pre-
vent an appropriate ex-
ploration

Objective
maximization

• Test-time metrics

• Countable desired or
undesired characteristics

• Distance-based mea-
sures

• Quantifiable proper-
ties

• Output of ML algo-
rithms

• Satisfies quantfiable
requirements

• Optimizes a genera-
tor from a specific do-
main towards desirable
sub-domains

• Reduces the gap be-
tween training and eval-
uation

• Not every desirable
property is quantifiable
or easy to get

• Goodhart’s law

Improving
not easily
quantifiable
characteristics

• Output of a model
trained to reproduce
human or AI feedback
about non-quantifiable
properties (e.g., helpful-
ness, appropriateness,
creativity)

• Satisfies non-
quantifiable require-
ments (for example, the
alignment problem)

• Requires preferences
between candidates
instead of defining a
mathematical measure
of desired property

• Get user preferences is
expensive

• Users might misbe-
have, disagree, or be bi-
ased

• Reward modeling is
difficult

• Prone to jailbreaks out
of alignment

Table 1: Summary of the three purposes for using RL with generative AI, considering the
used rewards, their advantages, and their limitations.

of using a more diverse and complex set of reward functions, especially non-differentiable
ones (which cannot be used in supervised learning due to the impossibility of computing
their gradient for backpropagation).

The first example we consider is SeqGAN (Yu et al., 2017). Typically, GANs cannot be
used for sequential tasks because the discriminative signal, i.e., whether the input looks real
or not, is only available after the sequence is completed. SeqGAN circumvents this problem
by using RL, which allows to learn from rewards received further in the future as well. In-
deed, SeqGAN exploits the discriminative signal as the actual reward. The approach itself
is based on a very simple policy approximation algorithm, namely REINFORCE (Williams,
1992). A similar approach is also used in MaskGAN (Fedus et al., 2018), where the genera-
tor learns with in-filling (i.e., by masking out a certain amount of words and then using the
generator to predict them) through actor-critic learning (Sutton, 1984). Notably, hierar-
chical RL can also be used: for example, LeakGAN (Guo et al., 2018) relies on a generator
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GENERATIVE MODEL

ENVIRONMENT

REWARD MODEL

GENERATED
OUTPUT

Figure 2: The reinforcement learning framework for generative modeling: at each timestep
t, the Generative Model (i.e., the Agent) generates an action at based on the
current description of the generated output (i.e., current state) st, which updates
the current description of the generated output to st+1, and receives a reward
rt+1 related to it.

composed of a manager, which receives leaked information from the discriminator, and a
worker, which relies on a goal vector as a conditional input from the manager. Since Se-
qGAN might produce very sparse rewards, alternative strategies have been proposed. Shi
et al. (2018) suggest to replace the discriminator with a reward model learned with IRL
on state-action pairs, so that the reward is available at each timestep (together with an
entropy regularization term). A more complex state composed of a context embedding can
also be used (Li et al., 2019). Instead, Li et al. (2017) is based on a variation of SeqGAN:
it uses Monte Carlo methods to get rewards at each timestep. In addition, the authors also
suggest to alternate RL with a “teacher”, i.e., the classic supervised training. This helps
deal with tasks like text generation where the action space (i.e., the set of possible words or
sub-words) is too large to be consistently explored using RL alone. Another solution to this
problem is NLPO (Ramamurthy et al., 2023), which is a parameterized-masked extension
of PPO (Schulman et al., 2017) that restricts the action space via top-p sampling, i.e., by
only considering the smallest possible set of actions whose probabilities have a sum greater
than p (Holtzman et al., 2020). TrufLL (Martin et al., 2022) uses top-p sampling as well;
however, it restricts the action space by means of a pre-trained task-agnostic model before
applying policy gradient with PPO. Similarly, ColdGAN (Scialom et al., 2020) forces the
sampling of a SeqGAN-like generator to be close to the distribution modes by selecting
actions with top-p sampling and low temperature (Holtzman et al., 2020) and training the
generator via importance sampling (Precup et al., 2000). Finally, Lamprier et al. (2022)
propose to substitute a top-p sampling strategy with a cooperative one based on the use
of Monte Carlo Tree Search structure, which is evaluated by the discriminator; again, the
generator is trained via importance sampling.
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Another reason to use RL is to take advantage of its inherent properties. For example,
GOLD (Pang & He, 2021) is an algorithm that substitutes self-supervised learning with
off-policy RL and importance sampling. It uses real demonstrations, which are stored in
a replay buffer; the reward corresponds to either the sum or the product of the action
probabilities over the sampled trajectories, i.e., of each single real token according to the
model. While it can be considered close to a self-supervised approach, off-policy RL with
importance sampling allows up-weighting actions with high (cumulative) return and actions
preferred by the current policy, encouraging to focus on in-distribution examples.

RL is also an effective solution for learning in domains in which a differentiable objective
is difficult or impossible to define. RL-Duet (Jiang et al., 2020) is an algorithm for online
accompaniment generation. Learning how to produce musical notes according to a given
context is a complex task: RL-Duet first learns a reward model that considers both inter-
part (i.e., with counterpart) and intra-part (i.e., on its own) harmonization. Such model is
composed by an ensemble of networks trained to predict different portions of music sheets
(with or without human counter-part, and with or without machine context). Then, the
generative system is trained to maximize this reward by means of an actor-critic architecture
with generalized advantage estimator (GAE; Schulman et al., 2016). CodeRL (Le et al.,
2022) performs code generation through a pre-trained model and RL. In particular, the
model is fine-tuned with policy gradient in order to maximize the probability of passing
unit tests: it receives a (sparse) reward quantifying if (and how) the generated code has
passed the test for the assigned task. In addition, a critic learns a (dense) signal to predict
the compiler output. The model is then trained to maximize both signals considering a
baseline obtained with a greedy decoding strategy. In order to obtain a denser and more
informative reward, PPOCoder (Shojaee et al., 2023) also considers three additional signals:
a syntactic matching score based on the Abstract Syntax Tree of the generated code; a
semantic matching score based on the data-flow graph; and a Kullback-Leibler (KL) penalty
to prevent the model from deviating considerably from its pre-trained version. The sum of
these four signals is then optimized via PPO.

Another interesting application area is painting. Xie et al. (2012) suggest to model stroke
painting as a Markov Decision Process, where the state is the canvas, and the actions are
the brushstrokes performed by the agent. Rewards calculated considering the location and
inclination of the strokes are then used to train the agent. For instance, Doodle-SDQ (Zhou
et al., 2018) fine-tunes a pre-trained sketcher with Double DQN (van Hasselt et al., 2016)
and a reward that is calculated by evaluating how well a sketch reproduces a target image
at pixel, movement, and color levels. Huang et al. (2019) use a discriminator trained to
recognize real canvas-target image pairs to derive a corresponding reward. Instead, Singh
and Zheng (2021) train a painting policy that operates at two different levels: foreground
and background. Each of them uses a discriminator; in addition, they adopt a focus reward
measuring the degree of indistinguishability of two object features. On the other hand,
Intelli-Paint (Singh et al., 2022) is based on four different types of rewards, which are
used to learn a painting policy with deep deterministic policy gradient (DDPG; Lillicrap
et al., 2016) based on a discriminator signal on canvas-image pairs, two penalties for the
color and position of consecutive strokes, and the same semantic guidance proposed by
Singh and Zheng (2021). Finally, RL has also been used for collage artwork. Lee et al.
(2023a) propose an RL-based method with the goal of composing different elements (such
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as newspaper or texture cuts) in order to obtain an output that resembles a target picture.
The state is composed by the canvas, the target image, and randomly (or value-based)
sampled material; the action determines which region of the material to cut and where
to paste it on current canvas; and the reward is the amount of similarity change between
consecutive timesteps (where the similarity between the canvas and the target image is
computed by a WGAN-GP discriminator (Gulrajani et al., 2017) trained in parallel to
discriminate between target-target and target-canvas pairs). A model-based soft actor-
critic (SAC; Haarnoja et al., 2019) is then used to optimize the reward minus a penalty for
each timestep in order to teach the agent to complete the tasks with the minimum number
of actions.

3.1.2 Discussion

RL can represent an alternative method for deriving generative models, especially if the
target loss is non-differentiable. It allows for the adaptation of known generative strategies,
e.g., GANs, to tasks for which traditional techniques are not suitable, e.g., in text gener-
ation. In addition, it can be applied to domains in which feasibility and correctness (e.g.,
running code as above) are essential dimensions to consider. In other words, RL can train a
generative model to produce observations that appear to have been drawn from the domain
of interest even when such domain cannot be modeled by means of generative functions
and corresponding differentiable losses. RL can also be used to derive more complex gen-
erative strategies (e.g., through hierarchical RL) and to reduce the model dependence on
training data, which might have an impact on copyright issues (Franceschelli & Musolesi,
2022; Henderson et al., 2023).

It is possible to identify some limitations of the proposed solution. Learning without
supervision is a hard task, especially when the reward is sparse. This is very likely to
happen for sequence generation, such as (long) text or music, where the reward is available
only at the last timestep. In addition to the aforementioned techniques for obtaining a
denser reward, a potential solution might consist in considering an intrinsic reward (Aubret
et al., 2019) as an additional learning signal, in order to encourage exploration as well.
Moreover, the action space can be very large (potentially orders of magnitude larger than
those of standard RL problems, Ammanabrolu & Hausknecht, 2020), especially for text
generation. Ensuring a sufficient exploration of all possible actions while still exploiting the
most promising ones to collect higher rewards is one of the key problems in RL. Starting
with some prior knowledge about the possible best actions for different situations might be
necessary for fast convergence. For this reason, pre-trained generative models are selected
for this task. This can cause the agent to initially focus on highly probable tokens, increasing
their associated probabilities and, because of that, failing to explore different solutions
(i.e., by only moving the probability mass of the already most probable tokens) (Choshen
et al., 2020). These problems can be avoided through variance reduction techniques (e.g.,
incorporating baselines and critics) and exploration strategies (Kiegeland & Kreutzer, 2021).
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3.2 Reinforcement Learning for Objective Maximization

3.2.1 Overview

RL can be formalized and studied as an objective maximization problem. In this subsec-
tion we will discuss how this type of formalization can be applied to generative AI. Since
RL allows us to use any non-differentiable function for modeling the rewards, it could be
the case that simply replicating the behavior of a self-supervised learning loss is not the
optimal solution. For example, Ranzato et al. (2016) point out the mismatch between how
deep learning models are trained (i.e., on differentiable losses) and how they are commonly
evaluated (i.e., on non-differentiable metrics): an emerging line of research is focusing on
the use of non-differentiable metrics as reward functions for generative learning capturing
a variety of requirements and constraints.

RL for quantity maximization has been mainly adopted in text generation, especially
for dialogue and translation. In addition to exposure bias mitigation, it allows for replacing
classic likelihood-based losses with metrics used at inference time. A pioneering work is the
one by Ranzato et al. (2016), where RL is adopted to directly maximize BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) scores. To deal with the size of the action space,
the authors introduce MIXER, a variant of REINFORCE algorithm that uses incremental
learning (i.e., an algorithm based on an optimal pre-trained model according to ground truth
sequences) and combines reward maximization with classic cross-entropy loss by means of
an annealing schedule. In this way, the model starts with preexisting knowledge, which is
preserved through the classic loss, while aiming at exploring alternative but still probable
solutions, which should increase score at test time. A similar approach is also used by
Google’s neural machine translation system (Wu et al., 2016). BLEU score is used as the
reward, while fine-tuning a pre-trained neural translator with a mixed maximum likelihood
and expected reward objective. Bahdanau et al. (2017) consider an actor-critic algorithm
for machine translation, with the critic conditioned on the target text, and the pre-trained
actor fine-tuned with BLEU as the reward. Paulus et al. (2018) suggest to learn to perform
text summarization by using self-critical policy training (Rennie et al., 2017), where the
reward associated with the action that would have been chosen at inference time is used as
baseline. ROUGE score is considered as the reward, and linearly mixed with teacher forcing
(Williams & Zipser, 1989), i.e., classic supervised learning. Scores alternative to ROUGE
have been proposed as well, e.g., ROUGESal and Entail both described by Pasunuru and
Bansal (2018). The former up-weights the salient sentences or words detected via a key-
phrase classifier. The latter rewards logically-entailed summaries through an entailment
classifier. They are then used alternatively in subsequent mini-batches to train a Seq2Seq
model (Sutskever et al., 2014) by means of REINFORCE. Finally, Zhou et al. (2017) con-
sider BLEU score to train a dialogue system on top of collected human interactions with
offline RL. An additional dialogue-level reward function (measuring the number of proposed
API calls) is also used. Recently, the RL4LM library (Ramamurthy et al., 2023) started
offering many of these metrics as rewards, thus facilitating their use for LM training or
fine-tuning. Different families of solutions are considered, i.e., n-grams overlapping such as
ROUGE, BLEU, SacreBLEU (Post, 2018) or METEOR (Lavie & Agarwal, 2007); model-
based methods such as BertScore (Zhang et al., 2020) or BLEURT (Sellam et al., 2020);
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task-specific metrics; and perplexity. Notably, RL4LM also allows to balance such metrics
with a KL-divergence minimization with respect to a pre-trained model.

Test-time metrics are not the only quantities that can be maximized through RL. For
example, Lagutin et al. (2021) suggest considering the count of 4-gram repetitions in the
generated text, to reduce the likelihood of undesirable results. The combination of these
techniques and classic self-supervised learning helps learn both how to write and how not to
write. Li et al. (2016) train a Seq2Seq model for dialogue by rewarding conversations that
are informative (i.e., which avoid repetitions), interactive (i.e., which reduce the probability
of answers like “I don’t have any idea” that do not encourage further interactions), and
coherent (i.e., which are characterized by high mutual information with respect to previous
parts of the conversation). Sentence-level cohesion (i.e, compatibility of each pair of consec-
utive sentences) and paragraph-level coherence (i.e., compatibility among all sentences in a
paragraph) can be achieved by maximizing the cosine similarity between the encoded ver-
sion of the relative text, with the encoders trained so that the entire discriminative models
are able to distinguish between real and generated pairs (Cho et al., 2019). A distance-based
reward can instead guide a plot generator towards reaching desired goals. Tambwekar et al.
(2019) train an agent working at event level (i.e., a tuple with the encoding of a verb, a
subject, an object, and a fourth possible noun) with REINFORCE to minimize the distance
between the generated verb and the goal verb. Other domain-specific rewards are used by
Yi et al. (2018), where two distinct generative models produce poetry by maximizing fluency
(i.e., MLE on a fixed language model), coherence (i.e., mutual information), meaningfulness
(i.e., TF-IDF), and overall quality from a learned classifier. In addition, the two models
also learn from each other: the worst performing can be trained on the output produced by
the other one, or its distribution can be modified in order to better approximate the other.

Another popular technique is hierarchical RL: it allows optimization of quantifiable ob-
jectives even when they work at a different level of abstraction with respect to the generative
model. For example, Peng et al. (2017) uses it to design a dialogue system able to perform
composite tasks, i.e., sets of subtasks that need to be performed collectively. A high-level
policy, trained to maximize an extrinsic reward directly provided by the user after each
interaction, selects the sub-tasks. Then, “primitive” actions to complete the given sub-task
are chosen according to a lower-level policy. A global state tracker on cross-subtask con-
straints is employed in order to provide the RL model with an intrinsic reward measuring
how likely a particular subtask will be completed. Finally, ILQL (Snell et al., 2023) learns
a state-action and a state-value function that are used to perturb a fixed LLM, rather than
directly fine-tuning the model itself. This allows to preserve the capabilities of the given
pre-trained language model, while still maximizing a specific utility function.

While text generation is one of the areas that have attracted most of the attention of
researchers and practitioners in the past years, RL with quantity maximization has been
applied to other sequential tasks as well. An important line of research (Jaques et al., 2016,
2017, 2017) consists of fine-tuning a pre-trained sequence predictor with imposed reward
functions, while preserving the learned properties from data. For instance, a pre-trained
note-based RNN can represent the starting point for the Q-network in DQN. A reward
given by the probability of the chosen token according to the original model (or based on
the inverse of the KL divergence) and one based on music theory rules (e.g., that all notes
must belong to the same key) are used to fine-tune the model. Another possibility is to
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extend SeqGAN to domain-specific reward maximization, as in ORGAN (Guimaraes et al.,
2017). ORGAN linearly combines the discriminative signal with desired objectives, also
dividing the reward by the number of repetitions made, in order to increase diversity in the
result. Music generation can then be performed by considering tonality and ratio of steps
as rewards; solubility, synthesizability and drug-likenesses are instead adopted to perform
molecule generation as a sequential task, i.e., by considering a string-based representation
of molecules (by means of SMILES language, Weininger, 1988). While the original work
considered RNN-based models, transformer architectures can be used as well (Li et al.,
2022).

Molecular generation is indeed one of the most explored task at the intersection be-
tween RL and generative AI. While MolGAN (De Cao & Kipf, 2018) adapts ORGAN to
graph-based generative models (Li et al., 2018) to directly produce molecular structures,
the majority of research focuses on simplified molecular-input line-entry system (SMILES)
textual notation (Weininger, 1988), so as to leverage the recent advancements in text gen-
eration. ReLeaSe (Popova et al., 2018) fine-tunes a pre-trained generator to maximize
physical, biological, or chemical properties (learned by a reward model). Olivecrona et al.
(2017) propose to fine-tune a pre-trained generator with REINFORCE so as to maximize a
linear combination of a prior likelihood (to avoid catastrophic forgetting) and a user-defined
scoring function (e.g., to match a provided query structure or to have predicted biological
activity). REINVENT (Blaschke et al., 2020) also avoids to generate molecules the model
already produced through a memory that keeps track of the good scaffoldings generated
so far. Atance et al. (2022) adopt REINVENT for the graph-based deep generative model
GRAPHINVENT (Mercado et al., 2021) in order to directly obtain molecules that maximize
desired properties, e.g., pharmacological activity. Instead, GENTRL (Zhavoronkov et al.,
2019) generates kinase inhibitors relying on a variational autoencoder to reduce molecules
to continuous latent vectors. Then REINFORCE is used to teach the decoder how to max-
imize three properties learned through self-organizing maps: activity of compounds against
kinases; closeness to neurons associated with DDR1 inhibitors within the whole kinase map;
and novelty of chemical structures. The average reward for the produced batch is assumed
as a baseline to reduce variance. Notably, RL is used here for single-step generation (i.e.,
by means of a contextual bandit). Gaudin et al. (2019) propose to generate molecules
maximizing their partition coefficient without any pre-training by working with a simpli-
fied language (Krenn et al., 2020); Thiede et al. (2022) suggest to use intrinsic rewards to
better explore its solution space. GCPN (You et al., 2018) trains a graph-CNN to optimize
domain-specific rewards and an adversarial loss (from a GAN-like discriminator) through
PPO. Other tasks have been investigated as well. Nguyen et al. (2022) merge GAN and
actor-critic in order to obtain a generator capable of producing 3D material microstructures
with desired properties. Han et al. (2020) use DDPG to train an agent to design buildings
(in terms of shape and position) so as to maximize several signals related to the perfor-
mance and aesthetics of the generated block, e.g., solar exposure, collision, and number of
buildings.

Finally, the use of techniques based on objective maximization can also be effective for
image generation. Denoising Diffusion Policy Optimization (DDPO; Black et al., 2023) can
train or fine-tune a denoising diffusion model to maximize a given reward. It considers
the iterative denoising procedure as a Markov Decision Process of fixed length. The state

427



Franceschelli & Musolesi

contains the conditional context, the timestep, and the current image; each action represents
a denoising step; and the reward is only available for the termination state, when the final,
denoised image is obtained. DDPO has therefore been used to learn how to generate
images that are more compressed or uncompressed, by minimizing or maximizing JPEG
compression; more aesthetically pleasing, by maximizing LAION score (Schuhmann, 2022);
or more prompt-aligned, by maximizing the similarity between the embeddings of prompt
and generated image description. Improving the aesthetics of the image while preserving
the text-image alignment has also been done at the prompt level (Hao et al., 2023). A
language model that given human input provides an optimized prompt can be trained with
PPO to maximize both an aesthetic score (from an aesthetic predictor) and a relevance
score (as CLIP embedding similarity) of the image generated from the given prompt.

3.2.2 Discussion

Reinforcement learning for objective maximization opens up several new possibilities: gen-
erators can be adapted for particular domains or for specific problems; they can be built
for tasks difficult to model through differentiable functions; and pre-trained models can be
fine-tuned according to given requirements and specifications. Essentially, RL is not used
only for mere generation, since it also allows more specific, goal-oriented generative model-
ing : instead of training a generator to produce correct, reasonable examples for the domain
of interest, the goal is to derive the best possible examples according to some specific target
functions. Any desired and quantifiable property can now be set as reward function, thus
in a sense “teaching” a model how to achieve it. While research has focused its attention on
sequential tasks like text or music generation, other domains might be considered as well.
As shown by Zhavoronkov et al. (2019), tasks not requiring multiple generative steps can
be performed simply by reducing the RL problem to a contextual bandit one. In this way,
RL can be considered as a technique for specific sub-domains, in a manner similar to neural
style transfer (Gatys et al., 2016) or prompt engineering (Liu & Chilton, 2022).

We can identify possible drawbacks as well. Reinforcement learning has typically a very
high computational cost (Ceron & Castro, 2021), due to the number of iterations required
to converge. In addition, certain desired properties (e.g. harmlessness or appropriateness)
can be difficult to quantify, or the related measures can be expensive to compute, especially
at run-time. This can lead to excessive computational time for training. While offline
RL might alleviate this problem, it would require a collection of evaluated examples, thus
eliminating the advantage of not needing a dataset and increasing the risk of exposure bias.
Finally, a fundamental issue arises from using test-time metrics as objective functions: how
should we evaluate the model we derive? In fact, according to the empirical Goodhart’s
Law (Goodhart, 1975), “when a measure becomes a target, it ceases to be a good measure”.
New metrics are then required, and a gap between training objective and test score might
be inevitable.
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3.3 Reinforcement Learning for Improving Not Easily Quantifiable
Characteristics

3.3.1 Overview

While test-time metrics as objectives reduce the gap between training and evaluation, they
not always correlate with human judgment (Chaganty et al., 2018). In these cases, us-
ing such metrics would not help obtain the desired generative model. Moreover, there
might be certain qualities that do not have a correspondent metric because they are sub-
jective, difficult to define, or, simply, not quantifiable. Typically users only have an implicit
understanding of the task objective, and, therefore, a suitable reward function is almost
impossible to design: this problem is commonly referred to as the agent alignment problem
(Leike et al., 2018).

One of the most promising directions is reward modeling, i.e., learning the reward func-
tion from interaction with the user and then optimizing the agent through RL over such
function. In particular, Reinforcement Learning from Human Feedback (RLHF; Christiano
et al., 2017) allows to use human feedback to guide policy gradient methods. A reward
model is trained to associate a reward to a trajectory thanks to human preferences (so
that the reward associated with the preferred trajectory is higher than that associated with
the others). In parallel, a policy is trained by means of this signal using a policy gradient
method, while the trajectories collected at inference time are used to obtain new human
feedback to improve the model. Ziegler et al. (2019) apply RLHF to text continuation, e.g.,
to write positive continuations of text summaries. A pre-trained language model is used to
sample text continuations, which are then evaluated by humans; a reward model is trained
over such preferences; and finally, the policy is fine-tuned using KL-PPO (Schulman et al.,
2017) in order to maximize the signal provided by the reward model. A KL penalty is used
to prevent the policy moving too far from its original version. Notably, these three steps
can be performed once (offline case) or multiple times (online case).

Similarly, Stiennon et al. (2020) use RLHF to perform text summarization. The follow-
ing three steps are repeated one or more times: human feedback collection, during which
for each sampled Reddit post different summaries are generated, and then human evalu-
ators are asked to rank them; reward model training on such preferences; policy training
with PPO with the goal of maximizing the signal from the reward model (still using a KL
penalty). Wu et al. (2021) propose to summarize entire books with RLHF by means of
recursive task decomposition, i.e., by first learning to summarize small sections of a book,
then summarizing those summaries into higher-level summaries, and so on. In this way, the
size of the texts to be summarized is smaller. This is more efficient in terms of generative
modeling and human evaluation, since the samples to be judged are shorter. InstructGPT
(Ouyang et al., 2022) fine-tunes GPT-3 (Brown et al., 2020) with RLHF so that it can fol-
low written instructions. With respect to Stiennon et al. (2020), demonstrations of desired
behavior are first collected from humans and used to fine-tune GPT-3 before actually per-
forming RLHF. Then, a prompt is sampled and multiple model outputs are generated, with
a human labeler ranking them. Such rankings are finally used to train the reward model.
The latter is then utilized (together with a KL penalty) to train the actual RL model with
PPO. In particular, this procedure is adopted in ChatGPT and GPT-4 (OpenAI, 2023),
which are fine-tuned in order to be aligned with human judgment.
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Although all these methods consider human feedback regarding the “best” output for a
given input (with “best” generally meaning appropriate, factual, respectful, or qualitative),
more specific or different criteria are also used. Bai et al. (2022a) consider human preferences
for helpfulness and harmlessness. Sparrow (Glaese et al., 2022) is trained to be helpful,
correct, and harmless, with the three criteria judged separately so that three more efficient
rule-conditional reward models are learned. In addition, the model is trained to query
the web for evidence supporting provided facts; and again RLHF is used to obtain human
feedback about the appropriateness of the collected evidence. Finally, Pardinas et al. (2023)
use RLHF to fine-tune GPT-2 to learn how to write haikus maximizing the relevance to the
provided topic, self-consistency, creativity, form, and avoiding toxic content through human
feedback. In addition to text, RLHF has been used to better align text-to-image generation
with human preferences. After collecting user feedback about text-image alignment, a
reward model is learned to approximate such feedback, and its output is used to weight
the classic loss function of denoising diffusion models (Lee et al., 2023c). On the contrary,
DPOK (Fan et al., 2023) directly applies online reinforcement learning for fine-tuning text-
to-image diffusion models, which are optimized using a learned reward model from human
feedback (Xu et al., 2023) and a KL regularization with respect to the pre-trained model.

While very effective, RLHF is not the only existing approach. When human ratings are
available in advance for each piece of text, a reward model can be trained offline and then
used to fine-tune an LLM (Böhm et al., 2019). Such a reward model can also be combined
with classic MLE to effectively train a language model (Kreutzer et al., 2018) or used to pre-
pend reward tokens to generated text, forming a replay buffer suitable for online, off-policy
algorithms to unlearn undesirable properties (Lu et al., 2022). Alternatively, A-LoL (Baheti
et al., 2023) adopts offline policy gradient with a single-action step assumption (i.e., the
entire sequence is a single action) to optimize for pre-trained, sequence-level reward models;
in order to improve learning efficiency, it filters out data points with negative advantages,
with the critic based on a frozen reference LLM. Since human ratings might be inaccurate,
Nguyen et al. (2017) suggest to simulate them by applying perturbations on automatically
generated scores. Alternatively, the provided dataset of scored text allows for batch (i.e.,
offline) policy gradient methods to train a chatbot (Kandasamy et al., 2017). A very
similar approach is also followed by Jaques et al. (2020), where offline RL is used to train a
dialogue system on collected conversations (with relative ratings) filtered to avoid learning
misbehavior. Other strategies can be implemented as well. RELIS (Gao et al., 2019) relies
on a learned reward model from human-provided judgment as the other systems discussed
above; however, such reward model is used to optimize a policy directly at inference time
for the provided text. Instead of training a policy over multiple inputs and then exploiting
it at inference time, it trains a different policy for each required input.

Another possibility is to use AI feedback instead of, or in addition to, the human one.
Constitutional AI (Bai et al., 2022b) is a method to train a non-evasive and “harmless” AI
assistant without any human feedback, only relying on a constitution of principles to follow3.

3. While the selection of precepts to be included in the original “constitution” is defined by the researchers
at Anthropic, a follow-up project called Collective Constitutional AI (Anthropic, 2023) involves the
participation of humans for crowd-sourcing the underlying principles by means of Polis (Small et al.,
2021), which is a platform for running online deliberative processes augmented by machine learning
algorithms.
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In a first supervised stage, a pre-trained LLM is used to generate responses to prompts, and
then to iteratively correct them to satisfy a set of principles; once the response is deemed
acceptable, it is used to fine-tune the model. Then, RLHF is performed, with the only
difference that feedback is provided by the model itself and not by humans. RLAIF (Lee
et al., 2023b) completely replaces human preferences with preferences from an off-the-shelf
LLM for text summarization. The desired overall behavior is induced by careful prompting.
Liu et al. (2022) use RL to fine-tune a Seq2Seq model to generate knowledge useful for a
generic QA model. This is first re-trained on knowledge generated with GPT-3 (which is
prompted asking to provide the knowledge required to answer a certain question). Then,
RL is used to fine-tune the model so as to maximize an accuracy score using knowledge
generated by the model itself as a prompt. To avoid catastrophic forgetting, a KL penalty
(with respect to the initial model) is introduced. RNES (Wu & Hu, 2018) is instead a
method to train an extractive summarizer (i.e., a component that selects which sentences
of a given text should be included in its summary) using a reward based on coherence. A
model is trained to identify the appropriate next sentence composing a coherent sentence
pair; then, such a signal is used to obtain immediate rewards while training the agent (with
ROUGE as the reward for the final composition). Finally, Su et al. (2016) propose to limit
requests for human feedback to cases in which the learned reward model is uncertain.

3.3.2 Discussion

Reward modeling introduces a great level of flexibility in RL for generative AI. Generative
models can be trained to produce content that humans consider appropriate and of sufficient
quality, by aligning them with their preferences. This is useful and in many situations
essential: in fact a quantifiable measure might not exist or information to derive it might
be hard to obtain. This methodology has already shown its intrinsic value in obtaining
accurate, helpful, and useful text. In the same way, these techniques can be applied to
other domains in which desired qualities are difficult to quantify or hard to express in
a mathematical form, e.g., aesthetically pleasant or personalized (multimodal) content or
creative artifacts (Franceschelli & Musolesi, 2023). A summary on the applications discussed
in this paper is reported in Table 2.

RLHF has proven to be a highly effective approach. However, it suffers from several
open problems (Casper et al., 2023). For example, getting user feedback can be incredibly
expensive. Moreover, the users might misbehave, whether on purpose or not, be biased, or
disagree within each other (Fernandes et al., 2023). Also, they might not correctly represent
the population of end users or marginalized categories; and comparison-based feedback may
not correlate with the desirability of responses (Casper et al., 2023). For these reasons, other
techniques for modeling preferences might be considered. If human ratings are available in
advance, a reward model can be derived from them and used in offline mode. Using AI
itself to provide feedback is also an option; notably, AI-based feedback is also used outside
the RL paradigm, e.g., to provide verbal feedback to be appended to prompts (Shinn et al.,
2023) or to collaborate with other LLMs at inference time (Dong et al., 2023; Du et al.,
2023). In addition, other techniques such as IRL or cooperative IRL (Hadfield-Menell et al.,
2016) can be applied to induce a reward model from human demonstrations.
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Application Reward RL Type Example
Chemistry

Discriminator + chemical properties P (De Cao & Kipf, 2018)
Pharmacological activity + prior likelihood P (Atance et al., 2022)
Adversarial loss + desired properties P (You et al., 2018)

Molecule (graph)

Novelty + utility of inhibitors CB (Zhavoronkov et al., 2019)
Discriminator + chemical properties P (Guimaraes et al., 2017)
Learned desired properties P (Popova et al., 2018)
Desired property + prior likelihood P (Olivecrona et al., 2017)
As above + penalty for repetitions P (Blaschke et al., 2020)
Partition coefficient TD (Gaudin et al., 2019)

Molecule (text)

Desired property + intrinsic reward P (Thiede et al., 2022)
Computer Vision
Collage Discriminator on canvas-target pairs + length penalty P (Lee et al., 2023a)
Image Compression or aesthetic or prompt alignment P (Black et al., 2023)

Pixel, movement, color reproduction TD (Zhou et al., 2018)
Discriminator on canvas-target pairs P (Huang et al., 2019)
Background vs foreground + focus P (Singh & Zheng, 2021)

Stroke painting

Two above + adjacent color/position P (Singh et al., 2022)
RLHF on text-image alignment RWCE (Lee et al., 2023c)

Text-to-image
Learned reward model from human feedback P (Fan et al., 2023)

Design
Building Performance and aesthetic metrics P (Han et al., 2020)
Microstructure Adversarial loss + target properties P (Nguyen et al., 2022)
Music
Accompaniment Log-likelihood for pre-trained models P (Jiang et al., 2020)

Discriminator signal P (Yu et al., 2017)
Music theory rules + log-likelihood for original model TD (Jaques et al., 2016)Music
Discriminator signal + tonality + ratio of steps P (Guimaraes et al., 2017)

Natural language
Discriminator signal at each t through MC methods P (Li et al., 2017)
Discriminator signal at each t through IRL P (Shi et al., 2018)
Repetitive or useless answer penalty + mutual information P (Li et al., 2016)
Reward from user + likelihood of sub-task completion HP (Peng et al., 2017)
BLEU + number of proposed API calls OffP (Zhou et al., 2017)
RLHF P (Ouyang et al., 2022)
RLHF on helpfulness and harmlessness P (Bai et al., 2022a)
RLHF on helpfulness, harmlessness and correctness P (Glaese et al., 2022)
AI feedback based on a constitution of principles P (Bai et al., 2022b)
Collected human ratings OffP (Kandasamy et al., 2017)
Learned reward model of human ratings TD (Su et al., 2016)

Chatbot

Learned sequence-level reward model of human preferences OffP (Baheti et al., 2023)
Reward model from human ratings TD (Gao et al., 2019)Extractive

summarization Coherence ratings + ROUGE P (Wu & Hu, 2018)
Discriminator signal P (Fedus et al., 2018)
Sum or product of log-likelihood of tokens from target text OffP (Pang & He, 2021)
4gram repetition penalty + log-likelihood of target output P (Lagutin et al., 2021)
Discriminator signals on coherence and cohesion P (Cho et al., 2019)

Generic text

Specific utility function to maximize at inference time TD (Snell et al., 2023)
Knowledge Accuracy score + kl penalty P (Liu et al., 2022)

BLEU + log-likelihood of target output P (Ranzato et al., 2016)
BLEU P (Bahdanau et al., 2017)
Implicit task-based feedback from users P (Kreutzer et al., 2018)

Machine translation

Perturbed predicted human ratings CB (Nguyen et al., 2017)
Plot Generated vs target verbs distance P (Tambwekar et al., 2019)
Prompt optimization Aesthetic score + CLIP similarity P (Hao et al., 2023)

Discriminator signal P (Yu et al., 2017)
Fluency + coherence + meaningfulness + quality P (Yi et al., 2018)Poetry
RLHF on relevance, consistency, creativity, form, toxicity P (Pardinas et al., 2023)

Text continuation RLHF P (Ziegler et al., 2019)
ROUGE + log-likelihood of target output P (Paulus et al., 2018)
ROUGESal + Entail P (Pasunuru & Bansal, 2018)
RLHF P (Stiennon et al., 2020)
Reward model trained on human ratings TD (Böhm et al., 2019)

Text summarization

RLAIF P (Lee et al., 2023b)
Programming
Code Result of unit tests P (Le et al., 2022)

Table 2: Summary of all the applications covered by past research in RL for generative AI,
with the considered rewards and the relative references. Type of algorithms used:
On-Policy; Off-Policy; Temporal-Difference; Contextual Bandit; Hierarchical
Policy; Reward-Weighted Cross-Entropy.

Reward modeling can be problematic as well. Reducing the diversity of society to a
single reward function might cause the majority views to disproportionately prevail (Feffer
et al., 2023). In addition, seemingly well-performing preference-based reward models might
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fail to generalize to out-of-distribution states (Tien et al., 2023), thus being prone to reward
hacking (i.e., optimizing an imperfect proxy reward function that leads to poor performance
according to the true reward function, Skalse et al., 2022). For these reasons, recent work
has focused on eliminating the need for a reward model at all (e.g., Rafailov et al., 2023;
Song et al., 2023).

Finally, Wolf et al. (2023) show that, even if aligned, LLMs can still be prompted in
ways that lead to undesired behavior. In particular, “jailbreaks” out of alignment can
be obtained via single prompts, especially when asking the model to simulate malicious
personas (Deshpande et al., 2023). This is more likely to happen in the case of aligned
models rather than of non-aligned ones because of the so-called waluigi effect : by learning
to behave in a certain way, the model also learns its exact opposite (Nardo, 2023). More
advanced approaches would be required to mitigate this problem and completely prevent
certain undesired behaviors.

4. Conclusion

Reinforcement learning for generative AI has attracted huge attention after the recent break-
throughs in the area of foundation models and, in particular, large-scale language models.
In this survey, we have investigated the state of the art, the opportunities and the open
challenges in this fascinating area. First, we have discussed RL for classic generation, where
RL simply provides a suitable framework for domains that cannot be modeled by means of
a well-defined and differentiable objective, also reducing exposure bias. Then, we have con-
sidered RL for quantity maximization, where RL is used to teach a commonly pre-trained
model how to maximize a numerical property. This closes the gap between what the model
is optimized for and how it is evaluated, but also to search for particular characteristics
and sub-domains. Finally, we have analyzed RL for non-easily quantifiable characteristics,
where RL is used for aligning it with human requirements and preferences that are not
easily expressed in a mathematical form.

Since non-differentiable functions can be used as target objectives, RL allows for a
broader adoption of generative modeling, taking into consideration a wide range of objec-
tives, requirements and constraints. Current and emerging solutions are characterized by
the integration of a variety of RL mechanisms, such as IRL, hierarchical RL or intrinsic
motivation, just to name a few. On the other hand, the use of RL for generative AI intro-
duces the problem of balancing exploitation and exploration, especially when dealing with a
large action space; this results in the need of using pre-trained models or a mixed objective
both considering rewards and classic self-supervision. In addition, the adoption of test-time
metrics as reward functions might be problematic per se (see the so-called Goodhart’s Law,
Goodhart, 1975), while reward modeling is prone to human biases and adversarial attacks.
Many challenging problems are still open, such as the integration of techniques such as
IRL and multi-agent RL and the robustness of these models, in particular for preventing
“jailbreaks” out of alignment.
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Nguyen, K., Daumé III, H., & Boyd-Graber, J. (2017). Reinforcement learning for bandit
neural machine translation with simulated human feedback. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing (EMNLP’17),
Copenhagen, Denmark.

Nguyen, P. C. H., Vlassis, N. N., Bahmani, B., Sun, W., Udaykumar, H. S., & Baek, S. S.
(2022). Synthesizing controlled microstructures of porous media using generative
adversarial networks and reinforcement learning. Scientific Reports, 12 (1), 9034–9049.

Olivecrona, M., Blaschke, T., Engkvist, O., & Chen, H. (2017). Molecular de-novo design
through deep reinforcement learning. Journal of Cheminformatics, 9 (1), 48–61.

OpenAI (2022). Introducing ChatGPT. https://openai.com/blog/chatgpt [Accessed
January 12, 2024].

OpenAI (2023). GPT-4 Technical Report. arXiv:2303.08774 [cs.CL].

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agar-
wal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens,
M., Askell, A., Welinder, P., Christiano, P. F., Leike, J., & Lowe, R. (2022). Training
language models to follow instructions with human feedback. In Advances in Neural
Information Processing Systems (NIPS’22).

Pang, R. Y., & He, H. (2021). Text generation by learning from demonstrations. In Pro-
ceedings of the 9th International Conference on Learning Representations (ICLR’21).

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics (ACL’02).

Pardinas, R., Huang, G., Vazquez, D., & Piché, A. (2023). Leveraging human preferences
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