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Abstract: This study aims to develop a restorative material having such mechanical and adhesive
properties that it can be used both as a reconstruction material and as a luting cement. The experi-
mental core build-up composite (CBC) was derived from a self-adhesive cement by the modification
of its chemical formula, requiring the use of dedicated dentin and ceramic primers. The adhesive
properties to zirconia and dentin were analyzed with a micro-Shear Bond Strength test (mSBS). The
mechanical properties were analyzed by a flexural strength test. The results were compared with
those obtained for other commercially available cements and core build-up materials, both before
and after addition of 2 wt.% fluorographene. The CBC obtained average values in the mSBS of
49.7 ± 4.74 MPa for zirconia and 32.2 ± 4.9 MPa for dentin, as well as values of 110.9 ± 9.3 MPa for
flexural strength and 6170.8 ± 703.2 MPa for Young’s modulus. The addition of fluorographene,
while increasing the Young’s modulus of the core build-up composite by 10%, did not improve
the adhesive capabilities of the primers and cement on either zirconia or dentin. The CBC showed
adhesive and mechanical properties adequate both for a restoration material and a luting cement.
The addition of 2 wt.% fluorographene was shown to interfere with the polymerization reaction of
the material, suggesting the need for further studies.

Keywords: dental composite; dental resin cement; core build-up material; 10-MDP; graphene;
fluorographene; mSBS; flexural strength; zirconia adhesion; dentin adhesion

1. Introduction

The possibility of having a single dental restorative material used both for reconstruc-
tive and luting purposes presents many clinical advantages, especially for the reconstruction
of endodontically treated teeth with or without fiber posts [1,2]. In this clinical scenario,
this multipurpose material could be employed for the cementation of an endodontic post,
for the reconstruction of a prosthetic abutment, and for the cementation of a prosthetic
crown to form a monoblock unit [3], simplifying clinical procedure and reducing operator-
dependent errors [2]. In order to fulfill these requirements, the material should possess
specific mechanical and rheological characteristics.

The literature reports that the addition of nanometric fillers to dental adhesive poly-
mers can improve bonding properties to dentin due to higher mechanical properties of the
adhesive layer and stronger interface interaction with the substrate [4–7]. In the same way,
nanometric fillers added to a resin matrix were shown to increase the mechanical properties
of composites [8].

In recent years, graphene and its derivatives have been extensively studied to improve
the mechanical properties of nanocomposites in several fields of application [9,10]. Since
the discovery of graphene in 2004 [11], many studies have been conducted on its integration
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into polymer matrices [9,10,12]. Its mechanical properties reach 1 TPa for Young’s modulus,
and it has an intrinsic strength of 130 GPa, values that assert graphene as the strongest
material ever tested [13]. The presence of particles with Young’s modulus values higher
than those of resin matrices hinders the formation and propagation of cracks thanks to the
crack branching, crack bridging, pull-out, and crack deflection phenomena [14,15].

In the literature, it has been described how the addition of graphene derivates can
increase mechanical properties in Portland-type cement [16], bioactive calcium silicate
cements [17], epoxy resins [18], nanocomposites based on bisphenol A-glycidyl methacry-
late/tetra(ethylene glycol) diacrylate (Bis-GMA/TEGDA) [19,20], ceramics [15], and glass-
ionomer cements [21]. The addition of graphene derivatives to dental adhesives has
been shown to improve adhesive properties [22–25], antibacterial properties [26,27], and
adhesion durability [28].

However, due to the dark color of graphene [29] and inherent aesthetic drawbacks,
its application in modern restorative dentistry is quite difficult and is restricted to thin-
layer materials, such as dentin adhesives [7]. Instead, fluorographene (FG), a fluorine-
functionalized graphene, may have great potential for application in the dental field because
of its bright white color when the fluorine is close to the full saturation level [29].

Fluorographene is a derivate of graphene sharing the same morphological and struc-
tural pattern but with lower mechanical properties due to presence of fluorine, which
creates imperfections in the lamellar structure [29,30]. The high mechanical and antibac-
terial properties in conjunction with the light color (provided that the concentration of
fluorine is up to 50 wt.%) make fluorographene a promising nanofiller for dental materials,
as has been reported by several authors [21,31,32]. Different concentrations of fluorine
within fluorographene also affect the hydrophobicity of the material itself, leading to
increased hydrophobicity at higher fluorine concentrations [29].

In light of the aforementioned considerations, the purposes of this study are to evalu-
ate the effect of a 2 wt.% fluorographene addition on the adhesive and mechanical prop-
erties of an experimental core build-up material and primer system with dentin and
zirconia substrates.

In particular, the null hypotheses tested (α = 0.05) are as follows:

1. The adhesive and mechanical properties of the experimental CBC system are not signifi-
cantly different from those of other existing luting cements and core build-up materials;

2. The addition of 2 wt.% fluorographene to both dentin and ceramic primers has no
significant effect on adhesive properties to zirconia and dentin;

3. The addition of 2 wt.% fluorographene has no significant effect on the flexural proper-
ties of the CBC;

4. The addition of 2 wt.% fluorographene to both dentin and ceramic primers has no
significant effect on the mSBS of the CBC on zirconia and dentin when compared to
the controls.

2. Materials and Methods

Industrial fluorographene was purchased from ACS Material (Pasadena, CA, USA)
and observed with a scanning electronic microscope (SEM-FEG Nova NanoSEM 450, FEI,
Eindhoven, The Netherlands) for morphological characterization (Figure 1).

The manufacturer declared a fluorine content of at least 53 wt.%, a flake diameter of
4–10 µm, and a flake thickness of 5–10 nm. Two different composite and primer material
systems were prepared using the basic chemistry derived from a self-adhesive luting
cement (OverCEM SA, Overfibers Srl, Imola, Italy): (1) a core build-up composite (CBC)
prototype with dispersed, short glass fibers (200 µm) and (2) a CBC prototype derived from
the former by adding 2 wt.% fluorographene (FG) to the resinous fraction. The prototypes
had their own dentin (DP) and ceramic (CP) primers that were also made without 2 wt.%
FG addition (Table 1).
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Figure 1. SEM images of industrial fluorographene at different magnifications: (a) 400×; (b) 800×;
(c) 2000×; (d) 8000×. Typical fluorographene morphology showing a multilayered structure and
characterizing grain morphology at higher magnifications (white arrows in (d)).

Table 1. Compositions of the materials used in this study. Fluorographene was added to these
materials after micronization (CBC 2% FGm) and exfoliation (CBC 2% FGm, DP 2% FG, and CP
2% FG). Abbreviations: UDMA: urethane dimethacrylate; TEGDMA: tetraethyleneglycol dimethacry-
late; Bis-GMA: bisphenol A-glycidyl methacrylate; HEMA: hydroxy ethyl methacrylate; 10-MDP:
10-methacryloyloxydecyl dihydrogen phosphate; BPO: benzoyl peroxide; BHT: butylated hydroxy-
toluene; CQ: camphoroquinone; YbF3: ytterbium fluoride; C3H6O: acetone.

Material Batch No. Composition

CBC 170321B UDMA, TEGDMA, Bis-GMA, HEMA, 10-MDP, BPO, BHT, CQ, YbF3, glass fillers
Dentin Primer DP260321 10-MDP, H2O, C3H6O, HEMA

Ceramic Primer CP260321 10-MDP, ethanol, silane (3-trimethoxysilylpropyl methacrylate)

2.1. Graphene-Reinforced CBC Preparation

Fluorographene was added to the CBC prototypes in two different forms: (1) mi-
cronized and (2) exfoliated.

2.1.1. Micronized FG/CBC (CBC 2% FGm)

Micronization of the FG was accomplished in a ball-milling jar with 0.6 mm zirconia
spheres and isopropyl alcohol as a milling medium. After 3 h at 320 rpm, the FG was
separated from the spheres, and the alcohol was evaporated in a stove at 37 ◦C for 24 h. This
micronized FG was added to the CBC base paste at a concentration of 2 wt.% calculated
based on the resinous fraction. Then, it was processed in an orbital mixer (Speedmixer 800,
Hauschild, Germany) at 1500 rpm for 1 min.
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2.1.2. Exfoliated FG/CBS (CBC 2% FGe) and Dentin and Ceramic Primers (DP 2% FG;
CP 2% FG, Respectively)

The exfoliation procedure exploited the method described by Zhu et al. [33]. Briefly,
1.50 g of industrial FG was dispersed in 240 mL of chloroform (250 mg of FG dispersed
per 40 mL of chloroform). The solution was then ultrasonicated (Hielscher UP200St,
Hielscher, Germany) in an ice bath to maintain the temperature at 2–4 ◦C for about 5 h
(frequency = 26 kHz, power output = 100–130 W, continuous 100% duty cycle at 150 µm
oscillation amplitude using a titanium sonotrode of 14 mm in diameter. The solution
was then placed in 40 mL jars and centrifuged at 3840 rpm in a centrifuge 190 mm in
diameter to accelerate the sedimentation of the nonexfoliated, heavier particles, which
were then separated and prepared for the next exfoliation procedure. After evaporation
of the chloroform in air at 37 ◦C, residual powder of exfoliated FG was harvested and
dispersed in pure acetone. The evaporation of liquid acetone was carried on until the
desired concentration of exfoliated FG was obtained. The addition of exfoliated FG to
the catalyst paste of the CBC was achieved by dispersion of 0.06 g of FG in 1.2 mL of
acetone per 3 g of resin, and the acetone was left to evaporate for 24 h at 37 ◦C. The same
FG-dispersed acetone suspension was used to make the FG-containing dentin (DP) and
ceramic (CP) primers without any evaporation since the primers already required a certain
acetone content.

2.2. Micro Shear Bond Strength (mSBS) Tests of CBC Prototype and Composite Luting Cements

For mSBS on ceramic substrate, zirconia blocks (Katana STML A2, Kuraray Noritake,
Tokyo, Japan) were used. At the pre-sintering stage, the zirconia was severed with a micro-
tome (Micromet Evolution, Remet, Casalecchio di Reno, Italy) to obtain 15 × 19 mm2 plates
of ~3 mm thickness. These plates were polished with SiC abrasive paper at 100, 240, and
400 grit in wet conditions and then were washed, dried, and sintered with a conventional
sintering cycle (Z1800 Furnace, Forno Mab s.r.l., Ponte Sesto di Rozzano, Italy). Sintered
plates were embedded in acrylic resin (Technovit 4071, Kulzer, Germany), polished with
400-grit abrasive paper in wet conditions, and subjected to air abrasion treatment with
50 µm of aluminum oxide (Cobra, Renfert, Germany) using a bar pressure of 3.5, a 90◦

angle, and a 10 mm distance. Surface analysis was carried out on each sample by means
of a profilometer (Perthometer M4P, Mahr Perthen, Germany) to assess the final surface
roughness (Ra). Then, the specimens were ultrasonicated in distilled water for 2 min to
allow debris detachment and dried in air.

Dentin specimens were obtained from freshly extracted, sound human third molars.
The teeth were embedded in resin cylinders (Technovit 4071) and cut 4 mm below the
cuspal-tip plane with a 0.35 mm thick diamond blade to expose the dentin surface. The
specimens were polished with SiC sandpaper at 100, 240, and 400 grit in wet conditions,
cleaned with a solution of 0.2% chlorexidine and 0.2% cetrimide (Clotramid, Molteni
Farmaceutici SpA, Scandicci, Italy), and then rinsed with water spray. The DP and CP
were exclusively applied when using the CBC prototypes and the Panavia V5 (Kuraray
Noritake, Tokyo, Japan) luting cement since the other cements did not require any primer
(self-adhesive materials). A complete list of the materials used in the study is showed in
Table 2.

Then, several composite cylinders of 1.5 mm in diameter were made directly on
both zirconia and dentin specimens in a hexagonal array using a dedicated, custom-made
silicone rubber mold and a plexiglass pressure plate loaded with a force of 5 N. Light-curing
irradiation for 60 s (Valo Cordless, Ultradent Products, Inc., South Jordan, UT, USA) was
delayed for 1 min and 30 s to allow an undisturbed chemical reaction of the composite
cylinders with the substrate surface.

Samples were placed in distilled water and stored at 37 ◦C for 24 h. Tests of mSBS
were carried out with a universal testing machine (4301, Instron, Canton, MA, USA) at a
cross-head speed of 0.1 mm/min (Figure 2).
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Table 2. Materials used for mSBS test.

Material (n = 20) Batch Number Manufacturer Dentin Surface Treatment Zirconia Surface Treatment

OverCEM SA
(Self-adhesive cement) TRS1119 Overfibers s.r.l., Imola, Italy

400-grit SiC
paper + clotramid (30 s) −

water − air

Al2O3 sandblasting (50 µm, 3.5 bar
pressure, 10 mm distance)

Panavia SA
(Self-adhesive cement) 4A0010

Kuraray Europe GmbH,
Hattersheim am Main,

Germany

400-grit SiC
paper + clotramid (30 s) −

water − air

Al2O3 sandblasting (50 µm, 3.5 bar
pressure, 10 mm distance)

Panavia V5 +
Tooth Primer

(Adhesive cement)
950057

Kuraray Europe GmbH,
Hattersheim am Main,

Germany

400-grit SiC
paper + clotramid (30 s) −

water − air + tooth primer (20 s) −
wait (20 s) − air (20 s)

Al2O3 sandblasting (50 µm, 3.5 bar
pressure, 10 mm distance) + ceramic
primer (15 s) − wait (15 s) − air (15 s)

Relyx Unicem 2
(Self-adhesive cement) 6026795 3M ESPE Dental Products,

Saint Paul, MN, USA
400-grit SiCpaper + clotramid (30 s) −

water − air
Al2O3 sandblasting (50 µm, 3.5 bar

pressure, 10 mm distance)

Speedcem
(Self-adhesive cement) Y10129 Ivoclar Vivadent AG,

Schaan, Liechtenstein

400-grit SiC
paper + clotramid (30 s) −

water − air

Al2O3 sandblasting (50 µm, 3.5 bar
pressure, 10 mm distance)

Theracem
(Self-adhesive) 1900007482 Bisco, Inc.,

Schaumburg, IL, USA
400-grit SiCpaper + clotramid (30 s) −

water − air
Al2O3 sandblasting (50 µm, 3.5 bar

pressure, 10 mm distance)

CBC +
primers (Control)

170321B +
CP260321 + DP260321 -

400-grit SiCpaper + clotramid (30 s) −
water − air + DP (15 s) −

wait (15 s) − air (15 s)

Al2O3 sandblasting (50 µm, 3.5 bar
pressure, 10 mm distance) + CP (15 s)

− wait (15 s) − air (15 s)

CBC 2% FG + primer 071021 +
CP260321 + DP260321 - Not carried out due to early

polymerization of the material

Al2O3 sandblasting (50 µm, 3.5 bar
pressure, 10 mm distance) + CP (15 s)

− wait (15 s) − air (15 s)

CBC +
primers 2% FG

170321B +
CP210921 + DP210921 -

400-grit SiC paper + clotramid (30 s)
− water − air + DP 2% FGe (15 s) −

wait (15 s) − air (15 s)

Al2O3 sandblasting (50 µm, 3.5 bar
pressure, 10 mm distance) + CP 2%
FGe (15 s) − wait (15 s) − air (15 s)
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Figure 2. Representation of the mSBS test. (a) A pulling arm with a flexible ball-joint connection
(white arrow) was fixed to the Instron machine load cell. (b) A zirconia ceramic tablet with an array
of 20 CBC cylinders adhered to its surface was partially embedded in a green resin cylinder mounted
on a V-shaped holder. A 0.30 mm thick steel wire is pulling the first CBC cylinder in an upward
direction, generating shear stress on the adhesive interface in parallel to the ceramic plane.
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2.3. Three-Point Flexural Test of Core Build-Up Composites

Samples were made using a 25 ± 2 mm × 2.0 ± 0.1 mm × 2.0 ± 0.1 mm stainless-steel
mold in accordance with the ISO 4049:2019 standard. The material was injected into the
mold, starting from the edges and gradually filling the cavity to slight excess, avoiding
the inclusion of air bubbles and voids. Dedicated mixing tips were used for each material.
Table 3 shows the materials used for the mechanical tests.

Table 3. Materials submitted to the flexural strength test.

Materials Batch No. Manufacturer Sample Size

Bisfil 2B 4A0010 Bisco, Inc., Schaumburg, IL, USA 5
Build It 950057 Kerr Corporation, Orange, CA, USA 5
Core X Flow Y10129 Ivoclar Vivadent AG, Principality of Schaan, Liechtenstein 5
ProPILLAR 1900007482 P.L. Superior Dental Materials Gmbh, Hamburg, Germany 5
CBC 170321B 5
CBC 2% FGm 060521 6
CBC 2% FGe 071021 4

Through compression carried out with an insulated glass plate, all excess cement
was evacuated. The samples were polymerized with a 1000 mW/cm2 curing lamp (Valo
Cordless, Ultradent, South Jordan, UT, USA), starting from the center and moving towards
the ends, with sequences of 10 s each for both sides of the sample for a total of 50 s. The
whole mold was placed in water at 37 ◦C for 15 min; then, the solid composite beam was
removed, finished with 400-grit sandpaper, and kept in distilled water at 37 ◦C for 24 h
until mechanical testing.

Five specimens for each type of material were tested using a universal testing machine
(2530-1KN, Instron, Canton, MA, USA) with a descending speed of 0.75 mm/min. Then, the
means and standard deviations of both flexural resistance and flexural Young’s modulus
were calculated.

2.4. Optical and SEM Analysis

Morphological analysis of the composite specimens and substrate materials after
testing, as well as FG dispersion observations, were carried out with an optical stereomicro-
scope (Stemi 305, Zeiss, Aalen, Germany) at a maximum magnification of 40× using its
dedicated imaging software (Zen 2). Solid specimens were directly observed after cleaning
with a gentle stream of dry air. Liquid specimens were observed as drops placed on thin
microscope observation glass.

Pure industrial FG was observed with a scanning electron microscope (SEM-FEG
Nova NanoSEM 450, FEI, Eindhoven, The Netherlands) to observe the original morphology
of the starting material. Dentin specimens were fixated in a 2.5% glutaraldehyde solution
and then dehydrated in ascending ethanol concentrations (50, 70, 80, 90, 95, and 100%) and
hexamethyldisilazane. Both dentin and zirconia specimens were sputter-coated with gold
and observed under SEM (JEOL, Tokyo, Japan).

2.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9 (GraphPad Software,
San Diego, CA, USA) statistical software. D’Agostino–Pearson normality tests (α = 0.05)
were carried out to evaluate the distribution of values.

1. Adhesion (mSBS) analysis: Due to the non-normal distribution of the data, the com-
parative analysis among the CBC prototypes and the luting cements was performed
using a nonparametric ANOVA (Kruskal–Wallis test) and Dunn’s multiple compar-
isons test (α = 0.05). The effect of 2 wt.% FG added to DP and CP was analyzed using
an unpaired t-test with Welch’s correction;



Polymers 2022, 14, 5301 7 of 15

2. Mechanical properties analysis: Because of the non-normal distribution recorded
in every group, Kruskal–Wallis and Dunn’s multiple comparisons tests were used
(α = 0.05) to compare the CBC prototype to the already-existing CBC materials, as
well as to the CBC after the addition of 2% FG.

3. Results
3.1. Micro Shear Bond Strength (mSBS) Tests of CBC Prototype and Composite Luting Cements

The results of the mSBS tests are given in Table 4. The Kruskal–Wallis test showed
a difference that was statistically significant among the medians of the CBC and other
cements (p < 0.0001), both on zirconia and dentin.

Table 4. Results of mSBS and flexural strength tests.

Adhesive Properties Mechanical Properties

Material mSBS on
Zirconia (MPa)

mSBS on Dentin
(MPa)

Material Flexural Strength
(MPa)

Young’s
Modulus (MPa)

OverCEM SA 36.84 ± 1.7 11.48 ± 2.0 Bisfil 2B 108.9 ± 12.57 8081 ± 189.9
Panavia SA 21.38 ± 2.7 8.25 ± 1.3 Build It 107.4 ± 8.2 6307 ± 419.4
Panavia V5 23.13 ± 3.1 28.12 ± 5.0 Core X Flow 117.1 ± 7.0 6730 ± 218.9

Relyx Unicem 2 27.22 ± 3.7 15.12 ± 2.9 ProPILLAR 118.0 ± 9.1 5855 ± 227.1
Speedcem 28.66 ± 2.0 8.55 ± 2.0 CBC 111.1 ± 7.8 6155 ± 481.5
Theracem 26.95 ± 2.3 6.20 ± 1.9 CBC 2% FGm 104.8 ± 3.7 6876 ± 261.1

CBC + primers 49.73 ± 4.7 32.89 ± 2.4 e-CBC 2% FGe 104.8 ± 3.7 3814 ± 202.5
CBC 2% FGe +

primers
46.53 ± 4.0 -

CBC +
primers 2% FGe

37.90 ± 4.0 16.74 ± 1.7

3.1.1. Zirconia

No statistical difference between the CBC prototype and OverCEM SA was found
(p = 0.7079). The CBC reached statistically higher adhesion values than the other tested
cements (p < 0.0001, Dunn’s multiple comparisons test).

An analysis of the results reached by materials with addition of FG showed that, on
zirconia, CBC + CP 2% FGe possessed significantly lower adhesion strength than the CBC
alone (p < 0.0001), while CBC 2% FGe had no statistical differences from the CBC alone
(p = 0.1520).

3.1.2. Dentin

On dentin, Dunn’s multiple comparisons test highlighted no statistical difference
between the CBC and Panavia V5 (p = 0.9999). The CBC reached statistically higher
adhesion values than the other tested cements (p < 0.05).

On dentin, CBC + DP 2% FGe possessed significantly lower adhesion capacity than
the CBC alone (p < 0.0001).

A graphical analysis is shown in Figure 3.

3.2. Flexural Strength Test

The results of the flexural strength test are given in Table 4.
The Kruskal–Wallis test for flexural strength reported no statistically significant dif-

ferences among the medians of the CBC and the other tested core build-up materials
(p = 0.2056).

Statistically significant differences in Young’s modulus were found among the tested
materials with the Kruskal–Wallis test (p = 0.002). Dunn’s multiple comparisons test
highlighted a significant difference between the Young’s modulus values of the CBC and
Bisfil 2B (p = 0.0091).
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dentin substrates.

3.3. Effect of Fluorographene

The addition of 2% micronized FG to the CBC increased the Young’s modulus values
of the material by 10%, but the variations were not statistically significant in either flexural
strength (p = 0.5574) or Young’s modulus (p = 0.2084).

After the addition of 2% exfoliated FG to the CBC, a significant worsening of flexural
strength was observed (p = 0.0048). No statistically significant differences were observed in
the Young’s modulus values (p = 0.1783) (Figure 4).
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3.4. Morphological and Fractographic Analysis

The optical microscope analysis of the experimental CBC showed a correct dispersion
of the fillers inside the matrix in both the control sample and FG-containing CBC samples
(2% FGm and 2% FGe CBCs; Figure 5).

The presence of air bubbles was visible in the cement matrices prior the degasification
process. A morphological analysis with SEM showed a prevalence of adhesive fractures on
zirconia and the presence of adhesive and cohesive fractures on dentin (Figure 6).
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Figure 5. Light microscope images of (a) base paste and (b) catalyst of the CBC before degasification
showing the composite fillers embedded in the resin matrix. (c) Image of base paste of CBC 2%
FGm under optical microscope; note the relatively large size of the micronized fluorographene and
graphene clusters (black particles). (d) Image of catalyst paste of CBC 2% FGe; exfoliated FG clusters
are far beyond the optical microscope resolution.
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4. Discussion

The purpose of this study was to produce a CBC with adhesive properties that could
be used both as a restorative material and a luting cement. The CBC prototype was made
starting from a commercially available self-adhesive resin cement (OverCEM SA) by reduc-
ing the content of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP, an adhesive
monomer) and hydroxyethyl methacrylate (HEMA, a hydrophilic monomer), which are
used to facilitate the infiltration of wet dentin by acrylic, polymerizable molecules [34].

The above-mentioned monomers were substituted by hydrophobic, cross-linking
diacrylates, such as Bis-GMA, TEGDMA, and UDMA, with the aim of improving the
reticulation degree, the mechanical properties, and the hydrolytic stability of the resulting
composite in accordance with the structural requirements of a restorative CBC material.
The formulation of the fillers was also modified: glass fibers with an aspect ratio of ~20:1
(200 µm × 10–12 µm) were introduced to increase the fracture resistance properties through
a randomly distributed crack-bridging effect [35].

Since the self-adhesive properties of the CBC prototype were reduced by removing
the adhesive monomer content, it was necessary to introduce the 10-MDP monomer in two
separate primers to maintain high adhesion values between the new composite and the
dentin and ceramic substrates [34,36].

Indeed, when added to resin adhesives and self-adhesive luting cements, the 10-MDP
monomer induces a relevant increase in the strength and stability of dentin and zirconia
ceramic bonding [2,37]. On dentin, paired 10-MDP molecules joined by stable MDP-Ca salt
formation generate arrays of self-assembled, nano-layered structures that are responsible for
long-term adhesion. This bonding mechanism occurs without depleting the hydroxyapatite
crystals from the collagen fibrils [37,38], hindering the collagen degradation phenomena
observed with etch and rinse dentin adhesives [39,40] that, conversely, require collagen
exposure to generate bonding.

On zirconia, an increasingly used ceramic for restorative and prosthetic dentistry,
the 10-MDP bonding mechanism occurs through phosphoric group interaction with the
zirconium oxide substrate with the formation of both hydrogen and ionic bonding and,
possibly, lateral bonding between neighboring 10-MDP phosphate groups [41].

Searching for further improvements of the mechanical properties of the CBC prototype,
which are highly desirable in a structural dental composite, a derivative of graphene,
fluorographene (FG), was chosen as a nanofiller reinforcement and added to the CBC in
both micronized and exfoliated forms.

Exfoliated FG was also added to the CBC-associated primers with the aim of improving
their adhesion strength to both dentin and zirconia ceramics. Zirconia, in particular, is one
of the most difficult restorative dental ceramics to be adhered, even with the most advanced
dental luting cements. The rationale for the use of FG in the ceramic and dentin primers
was to exploit the mechanisms of crack branching, crack bridging, pull-out, and crack
deflection that nanofillers such as graphene and FG can develop to increase the strength
of the weak, thin resin polymer layer that forms when primers are applied to a substrate.
Evidence of the improvements generated by graphene-derived compounds added as a
filler in several dental materials (dental adhesive primers, luting cements, and restorative
composites) has been reported in the recent literature [18,21–26,31].

FG was also chosen because of its light color, which is at a maximum at the highest
fluorine saturation. Color is an important property in restorative material since it can
influence the aesthetics of the final restoration. The FG powder employed in this study
showed grains with different fluorination degrees, resulting in an overall gray color, with
white and almost black fractions mixed together. However, since this research was mostly
focused on the theoretical contribution of FG to the structural resistance of the CBC, a
nonoptimal colored FG mixture was accepted to make the CBC prototypes. Further studies
should be focused on the correct color balance by selecting the most fluorine-saturated,
white-colored form of FG.
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The dispersion procedures of industrial FG inside the CBC and primer prototypes
were characterized by a fine-tuning phase due to the strong tendency of the filler to aggre-
gate into clusters. In pre-experimental tests, mechanical mixing showed an unacceptable
dispersion, and the resulting composite was, therefore, discarded. An industrial FG dis-
persion procedure was then carried out using an orbital mixer (Speedmixer 800) after a
FG micronization process in a ball-milling grinding machine, which was more satisfactory
in terms of material homogeneity (CBC 2% FGm). To further improve the exfoliation and
dispersion of FG, the procedure described by Zhu et al. [33] was adapted and applied,
which allowed the addition of exfoliated FG dispersed in acetone to the ceramic and
dentin primers.

The addition of exfoliated FG to the CBC base paste either by orbital mixing or using
acetone as a dispersion medium led to a fast polymerization reaction of the material,
suggesting a supporting role of FG for the CBC catalysts, a chemical interaction with
other substances contained in the composite, or even a direct catalytic role [42,43]. As
reported by Yam et al. [44] for graphene, due to the one-atom thickness and zero band-gap
with low density of states around the Fermi level, graphene could have great potential
roles in various catalysis applications. Since the FG used in this study was a mixture of
differently fluorine-saturated forms, a certain quantity of graphene could be present and
be responsible of the additional catalytic effect here recorded. Probably, the mixture of
saturated and unsaturated FG acted on the CBC initiators through the graphene fraction, in
particular on the benzoyl peroxide (BPO), which provided the autopolymerizing reaction
of the experimental composite.

Three different experimental groups were tested for their mSBS on zirconia and
dentin to evaluate their adhesive properties: CBC + primers, CBC + 2% FG primers, and
CBC 2% FGe + control primers (Table 4). However, the latter was not tested on dentin
due to the early polymerization of the CBC material mentioned above, which reduced the
working time necessary to make the mSBS cylinders.

Then, three different experimental groups were tested with a flexural strength test to
evaluate their mechanical properties: CBC, CBC 2% FGm, and CBC 2% FGe. CBC 2% FGm
was only tested for mechanical properties to evaluate the effects of the different procedures
of FG dispersion; it was not used in the mSBS comparison with luting cements since its
color was unacceptably dark for a current luting material.

A comparison of the CBC properties with the ones of other commercial resin luting
cements and core build-up materials was carried out to establish whether the adhesive
and flexural properties were similar to those of already-existing materials. The adhesive
strength of the CBC prototype was the highest among the different luting cements on both
the zirconia and dentin substrates. With the exceptions of OverCEM SA on zirconia and
Panavia V5 on dentin, all the other materials showed a statistically significant difference
from the CBC (p < 0.0001). On the basis of the results obtained, the first null hypothesis
could be only partially accepted since OverCEM SA on zirconia and Panavia V5 on dentin
reached adhesion values close to that of the CBC. It is remarkable that, on zirconia, a
self-adhesive cement (OverCEM SA) showed mSBS values even higher than that of Panavia
V5, a material that belongs to the category of resin cements with separate adhesive systems,
which are generally superior to self-adhesive cements regarding bonding to polycrystalline
ceramics. Considering the outstanding in vitro adhesive strengths showed by the CBC
prototype, this composite could be an excellent starting point for a definitive luting cement
able to strongly bond zirconia to dental substrates. The mSBS of the CBC prototype was
indeed at the highest level ever reported in the recent literature [45–47], but it must be
remembered that no aging treatments were applied to the specimens tested; thus, a drop
in mSBS values is likely to happen once the material undergoes long-term water storage
or thermocycling regimens. Further studies are necessary to confirm the residual bond
strength of the CBC in simulated clinical conditions.

As regards the flexural properties of the CBC prototype, no significant differences
were found when compared to the other already-existing core build-up composites in terms
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of flexural strength (p = 0.206), although the CBC showed significantly lower values of
Young’s modulus than Bisfil 2B (p = 0.009). The Young’s modulus of a resin cement is
an important parameter since metal-free restorations need a stiff cement layer to reduce
tensile strains at the intaglio surface, hindering the insurgence of radial cracks that lead to
restoration failure [48].

Due to the exception of the significantly higher Young’s modulus of Bisfil 2B, the sec-
ond null hypothesis was partially accepted, although in general, the mechanical properties
of the CBC were proved to be not statistically different from those of commercially available
core build-up materials. These results suggest that the CBC prototype could be used as a
core reconstruction material, as far as flexural properties are concerned.

The addition of micronized FG to the CBC was shown to have no effect on either the
flexural strength or the Young’s modulus, although an increase of 10% in Young’s modulus,
still not statistically significant, was observed. The addition of 2% exfoliated FG showed
a significant worsening of the flexural strength of the CBC (p = 0.0048); accordingly, the
third null hypothesis was rejected. All these unexpected results suggest that the exfoliation
procedures and inclusion techniques of FG in resin matrices should be perfected and deeply
analyzed in order to obtain increases in composite mechanical properties.

One concern about the addition of FG to the CBC prototype is the toxicity potential that
could emerge from its use in restorative dental material. Although a toxicity assessment
was not completed in this study, the literature has reported some contrasting data. Romero-
Aburto et al. [49] reported that the incubation of FG with human breast cancer cell line
MCF-7 did not show any cytotoxicity effects, even after 3 days, using a concentration of
576 µg/mL. Conversely, Teo et al., in two more recent studies [50,51] reported a dose-
dependent cytotoxic effect of FG and other fluorinated nanocarbon materials. On human
lung cancer cell line A549 after 24 h at concentrations of 12.5 µg/mL, the cell viability
was between 100% and 95%, depending of the type of FG nanomaterial; with a higher
concentration (400 µg/mL), the cell viability dropped to values ranging from ~85% to 5%.
The data from these studies suggest that cytotoxic effect, although largely variable, is also
dependent on the size and shape of fluorine-containing groups present in the nanomaterial,
with higher fluorine content seeming to be related to higher cytotoxic effects.

The absolute percentage of FG used in the experimental CBC was 2 wt.% calculated
based on the resin matrix fraction, and this quantity corresponded to ~0.7% of the whole
CBC mass. Considering that the mean solubility recently reported for two resin luting
cements [52] ranged from 3.20 to 5.41 µg/mm3, depending on the pH value of the artificial
saliva medium, it seems unlikely that the percentages used in the CBC prototype could
generate any serious adverse biological effect. Further studies are necessary to establish
the real risk related to the use of FG in dentistry.

The addition of exfoliated FG to the CBC primers had significant detrimental effects
on the adhesion; consequently, the fourth null hypothesis was rejected. FG was shown
to significantly worsen the adhesion to zirconia and dentin when added to both the CP
(p < 0.0001) and DP (p < 0.0001). The expected reinforcement of the thin primer layer and
the interactions with the substrate operated by the FG inclusion did not properly occur. It
could be hypothesized that the rearrangement of FG in clusters of excessive size caused
weakening of the binding energy in the microstructure when the concentration became
too high [20]. In addition, the phenomenon of early polymerization observed during
the dispersion of exfoliated FG inside the base paste of the core build-up composite also
suggest an incorrect crosslinking of the materials when they came in contact with exfoliated
fluorographene. Recently, Lai et al. [53] reported that FG could directly initiate the highly
efficient free-radical polymerization reaction of a styrene monomer with a high yield of
free polystyrene of high molecular weight. Furthermore, the FG initiator seems to possess
a long lifetime of chain radical centers and insensitivity to molecular oxygen; the latter
is a very interesting property for dental composite material if an FG initiator role is also
confirmed for acrylate monomers.
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5. Conclusions

– The experimental CBC tested in this study associated with ceramic primer and dentin
primer based on 10-MDP showed adhesive and mechanical properties compatible for
use both as a cement and as a core build-up material;

– The addition of micronized fluorographene to the CBC at a percentage of 2 wt.% of
the resin fraction increased the elastic modulus by about 10% but had no significant
effects on flexural strength;

– The addition of exfoliated fluorographene at a percentage of 2 wt.% to the 10-MDP
dentin and ceramic primers reduced the adhesive strength of the CBC and ceramic
primer system when applied to zirconia;

– The addition of 2% exfoliated fluorographene to the core build-up composite reduced
both the flexural strength and the Young’s modulus values;

The results suggest an interesting activity of fluorographene as a polymerization
initiator or promoter; this finding, which to our knowledge has never been described for
dental acrylates, strongly encourages further studies.
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