
11 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

End-to-end Delay Prediction Based on Traffic Matrix Sampling / Krasniqi, Filip; Elias, Jocelyne; Leguay,
Jeremie; Redondi, Alessandro E. C.. - ELETTRONICO. - (2020), pp. 774-779. (Intervento presentato al
convegno IEEE International Conference on Computer Communications (INFOCOM 2020) Workshops
tenutosi a Virtual Conference nel 6-9 July 2020) [10.1109/INFOCOMWKSHPS50562.2020.9162765].

Published Version:

End-to-end Delay Prediction Based on Traffic Matrix Sampling

Published:
DOI: http://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162765

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/795014 since: 2021-02-04

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162765
https://hdl.handle.net/11585/795014

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Krasniqi, J. Elias, J. Leguay and A. E. C. Redondi, "End-to-end Delay Prediction
Based on Traffic Matrix Sampling," IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON,
Canada, 2020, pp. 774-779

The final published version is available online at
https://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162765

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162765

End-to-end Delay Prediction Based on
Traffic Matrix Sampling

Filip Krasniqi∗‡, Jocelyne Elias∗†, Jérémie Leguay∗, Alessandro E. C. Redondi‡
∗Huawei Technologies, France Research Center, France

†Dipartimento di Informatica, Scienza e Ingegneria (DISI), University of Bologna, Italy
‡Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico Di Milano, Italy

Abstract—In this paper we focus on the problem of predicting
Quality of Service (QoS), and in particular end-to-end delay, by
using traffic matrix samples. To this aim, we study different
models based on machine learning as a promising tool to
characterize performance in complex computer networks. More
specifically, we first provide a simulation platform, based on NS 3
network simulator, in which each Origin-Destination (OD) flow
is a mixture of UDP and TCP traffic and we generate useful data
for our study. We present three datasets over which we gradually
vary the network characteristics: incoming traffic intensity, link
capacities, and propagation delays. The datasets are leveraged
to train machine learning models, namely Neural Networks and
Random Forests, to predict end-to-end delay starting from the
knowledge of OD traffic matrix samples. The robustness of
these models is evaluated in different test scenarios. Numerical
results show that both models are able to accurately forecast the
end-to-end delay over all tested datasets, with Random Forests
outperforming Neural Networks with gaps as high as 40%.

Index Terms—End-to-end delay, QoS prediction, Machine
Learning, Traffic Measurement.

I. INTRODUCTION

Since ever, computer networks have been very complex
and challenging environments for both the research and in-
dustrial communities which try to understand and model their
performance as well as devise efficient mechanisms for their
maintenance and operation. In the last years, Software Defined
Networking (SDN) has emerged as a promising paradigm
to better control networks. By leveraging SDN, a (logically)
centralized controller platform can fully exploit the large
computing power available in the control plane and its central
position to globally optimize and control networks. From now
on, cutting-edge optimization and Machine Learning (ML)
algorithms can be used to operate networks in real-time. This
formidable opportunity transforms the way routing and traffic
engineering systems should be conceived and designed.

A critical duty of the SDN controller is to determine and
maintain the best appropriate routing policy so as to both
optimize bandwidth usage and meet Quality of Service (QoS)
requirements. In particular, the controller goal is to take rout-
ing decisions satisfying user requirements (e.g., bandwidth,
low packet loss, low end-to-end delay) and network uti-
lization constraints (e.g., link capacity constraints, maximum
link load). If congestion occurs in parts of the network, the
controller has to reroute flows and update forwarding rules at
equipment level (e.g., switches).

Delay degradation and packet losses are generally due to
congestion situations which may occur for various reasons:
bursty traffic, poor configuration of buffers and queuing poli-
cies, etc. To avoid congestion, state of the art solutions are
either reactive or proactive. In the reactive case, active or
passive measurements of QoS metrics can be conducted (see
i.e., [1]). These approaches may be costly for the operator and
encounter stability issues. In the proactive case, congestion can
be anticipated using analytical or machine learning models.
Our paper focuses on the proactive case and especially on the
application of machine learning to predict end-to-end delay
based on traffic observations.

In the past, a number of analytical models to estimate the de-
lay function (at link or end-to-end levels) have been proposed
such as the Kleinrock function [2] and classic queuing models,
like [3], [4], [5], [6], [7], [8] or polynomial functions [9],
[10]. However, in realistic network scenarios, queuing models
are either too simplistic (e.g., M/M/1 link delay model) to
capture non-Poisson traffic distribution, sophisticated queuing
disciplines, etc., or intractable. Therefore, in this work, we
study machine learning models, which recently emerge as
promising tools for learning and understanding end-to-end
delay [11], [12], [13].

In particular, we provide a simulation platform to generate
useful data for QoS prediction. We present three datasets over
which we gradually vary the characteristics of the environment
(including link capacities and propagation delays). We show
using Random Forests and Neural Networks that end-to-end
delay can be predicted based on traffic matrix samples and
we evaluate the robustness of these models against missing
inputs (e.g., knowledge of link capacities) and perturbations of
the environment (e.g., randomly evolving propagation delays).
From numerical results, we observe that Random Forests are
able to predict accurately the end-to-end delay over all tested
datasets, outperforming Neural Networks with performance
gaps as high as 40%.

Differently from what has been done in [11], [12], [13], we
use the NS 3 network simulator to conduct extensive simu-
lations with accurate traffic patterns for UDP and TCP, and
different link properties (capacities and propagation delays).
We measure not only the end-to-end delay but also the per-
link throughput, delay and packet losses. However, for our
contribution on QoS prediction, we focus on the end-to-end

delay. To summarize, our main contributions are fourfold: 1)
a simulation platform based on NS 3 to produce realistic
data, 2) several usable datasets for QoS prediction, 3) machine
learning models for the prediction of end-to-end delay, and 4)
a performance evaluation of these models.

The paper is structured as follows. Section III-A states our
problem, while Section II discusses related works. Section III
gives information on the generated data sets. Finally, Section
IV illustrates and analyzes numerical results that show the
efficiency of ML techniques in learning the delay and Section
V concludes the paper.

II. RELATED WORK

In this section, we discuss the most relevant work [11], [12],
as well as RouteNet [13] related to learning and inferring the
QoS performance metrics in a network.

In [11], the authors adopt a fully-connected feed-forward
neural network to model the mean delay of a set of net-
works using as input the traffic matrix. The main goal is to
understand how fundamental network characteristics (such as
traffic intensity) relate with basic neural network parameters
(e.g.: shallowness of the neural network). The authors used
the Omnet++ simulator (version 4.6) and considered different,
yet simple, network topologies (unidirectional ring, star and
scale-free networks) and traffic parameters (different packet
lengths and traffic intensities) in order to evaluate the impact of
these parameters on the learning model. They provided several
insightful conclusions which can be summarized as follows:
1) Simple NNs are affected by the additional complexity
introduced in the different scenarios. This suggests that the
delay function is complex and multi-dimensional, requiring
sophisticated regression techniques such as deep NNs. 2)
For the considered scenarios, the topology and the routing
configuration have no impact on the accuracy.

Deep-Q [12] is a data driven system that aims at model-
ing the distribution of the QoS of a network given traffic
conditions, using a Deep Generative Network (DGN). More
specifically, the authors of Deep-Q design a QoS inference
structure with a Long Short-Term Memory (LSTM)-enhanced
Variational Auto-Encoder (VAE). The LSTM module is used
to extract fine-grained traffic features and long-term depen-
dencies while the VAE module learns to reconstruct the QoS
distribution from the traffic features.

Some authors of ref. [11] with other researchers proposed
later RouteNet [13], which is based on a Graph Neural
Networks (GNN) model and able to produce quite accurate
estimates of performance metrics - delay and jitter - in more
general scenarios: in fact, in contrast to [11], [12], it does not
assume a fixed topology and/or a routing scheme, and thus it
aims at working with arbitrary topologies and routing schemes
not seen during the training phase.

Differently from previous work, we first provide an open
simulation environment to produce new datasets with a clear
description of traffic generation and measurement models. We
consider a realistic mixture of different traffic types (i.e., UDP
and TCP) as it impacts QoS, and we measure a larger set of

indicators including the per link delay/load/packet loss, both
at link and end-to-end levels. In Deep-Q [12], the authors
used real traces captured on their testbeds, however, they do
not give details about these traces. Furthermore, they present
their results focusing on a very simple topology (a single hop
link) or considering specific paths (the most congested one)
in a quite small network. With regards to end-to-end delay
prediction, we analyze the robustness of Random Forests and
Neural Networks models against different network configura-
tions (i.e., link capacities) and uncontrollable characteristics
of the environment (i.e., time-varying propagation delays).

III. METHODOLOGY AND DATASETS

As argued previously, the network is a complex environ-
ment, where it can be hard to predict QoS performance using
standard methods such as queuing models. Therefore, we study
the use of machine learning to learn and estimate end-to-
end delay. This section explains how we generated our own
datasets, and it details their characteristics.

A. Methodology

The end-to-end delay is impacted by the tight relationship
between the traffic demand, the network topology and the
network performance [14], that are in turn induced by a
number of factors. For instance, the traffic demand depends
on the traffic intensity, the nature of the random process
generating packets or the mixture of application types for all
source and destination pairs. The network topology is itself
characterized by parameters such as the graph connectivity,
link capacities or queue sizes. And also, network performance
can be influenced by propagation delays, queuing disciplines
or routing policies. In the general case, we can clearly see that
we need to learn a complex function f from inputs like traffic
measurements (M), topology parameters (T), routing policies
(R), etc., to predict an end-to-end delay vector DF for a set
of flows:

DF = f(M,T,R, ...).

As the number of influencing factors is too large in practice,
our long term objective is to define the simplest model as
possible and identify the subset of relevant input data (i.e.,
features) to achieve good accuracy and good robustness in
different environments.

To make a first step in this direction, we study the case
where the network topology and the routing policy (R =
Shortest Path First algorithm) are fixed, but we vary three
environmental characteristics that have a strong impact on
the delay: i) traffic intensity, ii) link capacities, and iii)
link propagation delays. In particular, we will consider three
scenarios with increasing degree of freedom / complexity:
• Traffic Only (TO): fixed capacity and propagation delay;
• Traffic and Capacity (TnC): fixed propagation delay

and variable capacity;
• Traffic and Capacity with Delays (TnCwD): all three

parameters (traffic intensity, link capacity and link prop-
agation delay) are variable.

Fig. 1: The Abilene network topology.

In Section IV we will study how machine learning models
perform when taking as input traffic matrix samples. We will
consider whether extra knowledge about the environment, such
as link capacities, improves accuracy.

B. Network simulations

To generate realistic datasets, we implemented a framework
based on the NS 3 network simulator [15]. This framework
permits to generate and measure traffic with specific charac-
teristics over a pre-defined network topology.

We considered the well-known Abilene [16] network (12
nodes and 15 links), illustrated in Figure 1. Link capacities
C and link propagation delays D are generated randomly
according to a truncated Gaussian distribution C having ranges
in [10 Mbps, 200Mbps] and a uniform distribution D within
[10ms, 100ms], respectively. Figure 2 shows the empirical
distributions observed in the instances we generated for link
capacities, link delays and OD flow rates.

In each simulation, nodes in the network are instructed to
generate traffic towards all other nodes. Each OD flow is a
mixture of two traffic types: (i) a constant bit rate (CBR) UDP
flow at a low bitrate r = 128Kbps, used as background traffic,
and (ii) either a CBR UDP flow or a TCP flow (uniformly
chosen at random). The application rate R of this latter TCP
or UDP flow is drawn from a Gaussian distribution with mean
rk and variance 1.5Mbps, truncated within the range [50Kbps,
40Mbps]. The specific value of rk controls the level of traffic
intensity, and is chosen according to the link capacities C
drawn during the generation of the network instance, avoiding
the creation of traffic flows that would likely result in excessive
congestion. In detail, let φ be the bottleneck link capacity
normalized by the maximum number of flows passing through
it: we define ten different distributions of traffic intensity Ik
(where k = 1 refers to the lowest intensity and k = 10 to the
highest), with mean rk chosen according to the following:

rk = φ+ (k × 7− 20)× 50Kbps. (1)

Figure 2c shows three of such distributions, corresponding to
k = 1, 7 and 10 for a value of φ = 1.4Mbps. Summarizing,
each single simulation run s is determined by a specific
drawing of link capacities C ∼ C, propagation delays D ∼ D
and traffic intensities I ∼ Ik, according to the selected
intensity level k.

(a) Capacity (Mbps) (b) Delay (ms)

(c) Traffic (Mbps)

Fig. 2: Distribution, obtained from sampling corresponding real
distribution, of capacity C (a), propagation delay D (b) and traffic
intensity Ik (c), for low intensity (k = 1, yellow), medium intensity
(k = 7, orange) and high intensity (k = 10, red).

C. Dataset generation

Each single simulation s = (C,D, I) runs for 50 seconds
of NS 3 time1 and we measure the corresponding OD traffic
matrix every T = 0.1s, for a total of 500 traffic matrix samples
per simulation (12-by-12). Traffic matrix measurements are
performed using NS 3 callbacks, which allow to track the
amount of bits output by each node towards each other
destination at specific time intervals. The first 10 seconds
of measurements (i.e., the initial 100 traffic matrices) are
discarded in order to neglect any transient traffic regime (e.g.,
TCP slow start). The remaining 400 matrices are averaged
over with a rolling window of length Tw = 5s (i.e., each
period contains 50 matrices) and moving with a step size of
0.1s, resulting in a total of 350 observation periods. Within
each period, the mean and standard deviation of each OD
flow are computed, resulting in a total of 2× 12× 11 = 264
features. Concurrently, in each period the average end-to-end
delay matrix is extracted from the simulation and stored as
ground truth (for a total of 12 × 11 = 132 end-to-end delay
values per period). To compute such a delay, we leverage
NS 3 timer functionalities by tracking the reception instant
and the transmission instant of each IP packet for each OD
flow, and taking the difference. In addition to means and
standard deviations, we could have also used quantiles to
characterize traffic, similarly to what has been done for QoE
prediction [17]. However, to keep the number of features
manageable, we stick to two features per OD flow and leave
more advanced input data for future work.

As mentioned before, we considered in this work three

1The actual time spent for one simulation is much higher, varying between
30 minutes and 3 hours (depending on the traffic intensity) on a high-end
simulation machine, due to the large amount of packets to process.

(a) Load (Mbps) (b) Dropped Packets (%) (c) Delay (ms)

Fig. 3: Distribution of load (a) and dropped packets (b) for different traffic intensities on link 4-8. Distribution of the end-to-end delay (c)
for the longest OD flow crossing link 4-8 for different traffic intensities.

different datasets of increasing complexity, corresponding to
the three following scenarios:

1) Traffic Only (TO): we run different simulations with the
same values of link capacities C and propagation delays
D, changing only the traffic intensities I . For each
intensity level k from 1 to 10 we ran 200 simulations,
for a total of 2000 simulations and 2000× 350 = 700K
observations.

2) Traffic and Capacity (TnC): simulations are all run with
the same values of propagation delays D, but with
different traffic intensities I and link capacities C. In
details we ran simulations with 50 different realizations
of link capacities and 4 different realizations for each
one of the 10 traffic intensity levels, for a total of
50 × 10 × 4 = 2000 different simulations and again
700K observations.

3) Traffic and Capacity with Delays (TnCwD): finally, the
most challenging scenario consists in varying all param-
eters. This time we generate 50 different realizations of
link capacities C, 10 realizations of propagation delays
D and one realization for each one of the 10 traffic
intensities, for a total of 50×10×10 = 5000 simulations,
corresponding to 1.75M observations.

D. Dataset description

Let us have a closer look at the network instances we
generated. Figure 3a shows the distribution of the load ob-
served on the link 4-8, which is the one with the highest
probability of being the bottleneck link in the Abilene topology
given the routing obtained executing Dijkstra’s algorithm, for
three different values of traffic intensity level k (1,7 and 10),
and when the link capacity is equal to 70 Mbps. As one
can see, the observed load increases as the traffic intensity
level increases, saturating the link capacity. We also show in
Figure 3b the distributions of dropped packets on link 4-8,
corresponding to the same three traffic intensity levels. As
expected, when increasing the traffic intensity (and therefore
the link utilization), the distribution of the dropped packets
moves towards bigger values and widens. Finally, Figure 3c
shows how the end-to-end delay distribution changes when

varying only the intensity of the traffic (i.e., link capacities
and propagation delays are fixed). We focused on the OD
flow associated to the longest path resulting from the routing
algorithm (flow 0-9, 5 hops including the link 4-8). As one
can see, higher traffic intensity values are associated to higher
end-to-end delay values with increasing variance.

IV. APPLYING MACHINE LEARNING MODELS

In this section, we introduce the machine learning models
we used to predict end-to-end delay and we present numerical
results based on simulations.

A. Machine Learning Models

The datasets generated according to the procedure described
in the previous section are used to train two machine learning
models, namely Random Forests (RF) and Neural Networks
(NN), both well known for their capacity of capturing com-
plex, non linear relationships between inputs and targets.
For each considered scenario, the datasets have been split
in training and test sets according to a 80%-20% ratio, and
according to the following steps:
• TO: the dataset contains 200 realizations for each traffic

intensity k. We take 160 realizations for training and 40
for testing for each traffic intensity.

• TnC: the training set is created by sampling 40 out of the
50 realizations of link capacities, and retaining for each
one all the 4 realizations for each traffic intensity.

• TnCwD: in this case we select 8 of the 10 different
realizations of propagation delay, each corresponding to
50 different realizations of links capacity and 10 different
intensity levels.

Both RF and NN require several input hyper-parameters,
whose setup is not trivial and need to be optimized. Therefore,
for each scenario, the training set is further split in a sub-
training set and a validation set, according to 5-fold cross-
validation with a ratio of 80-20. At each iteration of the cross-
validation phase, the sub-training set is trained with a fixed set
of hyper-parameters, and performance are computed on the
test set. The performance measure used is the MSE between
the ground truth and predicted end-to-end delay. Finally, the

Dataset TO TnC TnCwD
Neural Network Learning Rate: 0.003 Learning Rate: 0.005 Learning Rate: 0.005

(NN) λ: 0.0001 λ: 0.001 λ: 0.005
Num.Layers: 12 Num.Layers: 12 Num.Layers: 20

Hidden Nodes: 264 Hidden Nodes: 264 Hidden Nodes: 264
Random Forest Max Depth: 58 Max Depth: 60 Max Depth: 58

(RF) Max Features: 79 Max Features: 153 Max Features: 100
Num. estimators: 59 Num. estimators: 63 Num. estimators: 63

TABLE I: Best hyper-parameters found in all scenarios.

hyper-parameters corresponding to the best performance are
selected. For what concerns RF we used the Python scikit-learn
implementation and the following space of hyper-parameters
have been explored through Grid search: number of estimators
between 32 and 64, max depth between 32 and 48, max
number of features to consider when looking for the best
split between 64 and 192. As for NN we used the PyTorch
framework and we considered the following ranges for the
hyper-parameters: number of hidden layers in [1-20], number
of neurons per layer in [192 - 264] (we use the empirical
rule of having a number of neurons approximately equal to
the number of input features or equal to the square root
of the product between input features and output targets),
learning rate in [10−3, 5 × 10−3] and regularization rate
λ in [10−4, 5 × 10−3]. The neural network uses ReLU as
activation function, Adam as optimizer and a batch size of
512 observations.

Table I shows the finally selected parameters for RF and
NN models. The following observations can be made:
• For what concerns RF, the hyper-parameters search tends

to provide a complex model (high number of estimators
and max depth). These parameters affect both the time
spent for the training phase (6 hours on average) and
the size required to store the trained model (as large as
10GB in the configuration of hyper-parameters requiring
the largest amount of memory).

• As for NN, the best architecture found is composed of
12 layers for TO and TnC scenarios, and 20 layers for
TnCwD, with 264 neurons per layer and specific learning
rate and regularization parameter λ. The corresponding
computational and memory resources needed to train and
store the network are about 30 minutes and 4 MBs,
respectively, therefore greatly outperforming RF.

B. Numerical results

We report here the prediction results obtained on the test
sets for the three considered scenarios. We recall that for
each scenario the machine learning models were trained with
samples spanning the entire set of traffic intensity distributions
(from low to high). For what concerns the test phase, we show
prediction results grouped by intensity level k, computing the
Root Mean Squared Error (RMSE) restricted to those test sam-
ples corresponding to a particular intensity level. This allows
to better understand the impact of increasing traffic intensity
on the performance prediction. To provide a general result
we provide in Figure 4 boxplots of the RMSE distribution
for all tested scenarios, three representative traffic intensities

(low, medium and high, corresponding to k = 1, 7 and 10)
and the two tested machine learning models. Each boxplot is
computed as follows: first, we take the average RMSE over all
end-to-end delay predictions of a single simulation (132×350).
Then, we compute the distribution of such average RMSE over
all simulations in the test set for each specific scenario (i.e.,
0.2× 200 = 40 values for TO and TnC, and 0.2× 500 = 100
values for TnCwD). Blueish boxplots in Figure 4 correspond
to RF and reddish ones to NN, with color intensity related to
traffic intensity (from low to high).

Furthermore, we complete our experiments with the follow-
ing tests:
• Average value predictor: we always compare the obtained

performance with the one of a baseline predictor, which
always outputs the average end-to-end delay over all the
training samples. Such performance is illustrated using
the green dashed lines in Figure 4.

• Knowledge of link capacities: for those scenarios where
link capacities are variant (i.e., TnC and TnCwD), we
also consider a different version of the machine learning
models, where the specific configuration of link capacities
C is also passed as input during training (elevating the
number of input features from 264 to 279).

We start commenting on the performance of the machine
learning models trained without link capacities. Comparing
Figure 4(a) with Figure 4(c), the following observations can
be made:

1) In general, and as expected, the average and variance of
the RMSE increase as both the traffic intensity and the
scenario complexity increase. Both RF and NN show
outstanding performance for the first two scenarios (TO
and TnC), while in the TnCwD scenario the error is
considerably higher. RF improves the baseline predictor
by 84%, 80% and 50%, on average, in the TO, TnC
and TnCwD scenarios, respectively. As for NN, the
improvement is limited to 77%, 73% and 37%.

2) We observe that RF have better performance than NN in
all the datasets. The average gap is as high as 40% for
TO, 27% for TnC and 18% for TnCwD. We observe that
the gap between RF and NN decreases as the scenario
complexity increases: this is particularly interesting, also
considering the reduced time and memory resources
required by NN compared to RF.

For the performance obtained when the models are trained
also with link capacities as inputs, results are shown in
Figure 4(b) and Figure 4(d). We observe that for RF, there is no
visible difference in the average error between passing the link
capacities in input or not (differences are within 1%-3%). For
what concerns NN, we measure an improvement in the average
RMSE (about 8%) only for the TnCwd scenario, together
with a reduction of the error variance. Such limited impact of
passing link capacities as input of the models during training
can be explained considering that (i) link capacity features are
few compared to the traffic matrix samples (15 vs 264), and
especially for RF they have a smaller chance to be selected

(a) (b) (c) (d)

Fig. 4: Distribution of the end-to-end delay prediction RMSE in the different tested scenarios: (a) and (b) refer to random forest without
(w/C) and with (wC) link capacities as extra features, while (c) and (d) refer to neural network without (w/C) and with (wC) capacities as
extra features. Increasing color intensity corresponds to increasing traffic intensity (low with k = 1, medium with k = 7, high with k = 10).
Green lines correspond to the average value baseline predictor.

by each estimator, (ii) the number of different realizations of
link capacities is quite limited (only 50) and thus may not be
enough to completely characterize the relationship with end-
to-end delay for different traffic intensities, and (iii) the traffic
matrix samples have already a high correlation with the end-
to-end delay in our data as nearly 50% of traffic is TCP.

V. CONCLUSIONS

In this paper, we considered the problem of efficiently
predicting QoS metrics in a computer network, focusing in
particular on the end-to-end delay. We studied two machine
learning models, Neural Networks and Random Forests, which
are particularly adapted as we demonstrated in our simulation
campaign. We first provided a simulation platform (based on
NS 3), considering a realistic mix of UDP and TCP traffic
for origin-destination flows, which allowed us to generate
meaningful data for QoS (end-to-end delay) prediction in a
network. We further produced three datasets over which we
gradually varied the key network’s features that impact delay:
incoming traffic intensity, link capacities, and propagation
delays. Finally, with a thorough numerical analysis we demon-
strated that the end-to-end delay can be effectively predicted
by using traffic matrix samples, and we further evaluated
and quantified the robustness of our proposed models against
missing inputs and some perturbations in the network.

Finally, numerical results show that both models are able to
predict accurately the end-to-end delay over all tested datasets,
with Random Forests outperforming Neural Networks and
a baseline predictor with gaps as high as 40% and 84%,
respectively.

Future extensions of this work that we deem promising
include the utilization of graph neural networks, able to
leverage the specific topology of the network, and con-
sidering routing as input feature so that our ML models
could generalize and be used for QoS routing. To allow
for reproducible research, the NS 3 framework used in
this paper and the datasets are publicly available online at
https://filipkrasniqi.github.io/QoSMLpresentation/.

REFERENCES

[1] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and
Laurent Vanbever. Stroboscope: Declarative network monitoring on a
budget. In Proc. USENIX NSDI, 2018.

[2] Leonard Kleinrock. Communication nets: Stochastic message flow and
delay. Courier Corporation, 2007.

[3] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by
optimizing ospf weights. In Proc. IEEE INFOCOM, 2000.

[4] Jennifer Rexford. Route optimization in IP networks. Handbook of
Optimization in Telecommunications, Springer, pages 679–700, Boston,
MA, 2006.

[5] Walid Ben-Ameur and Adam Ouorou. Mathematical models of the delay
constrained routing problem. Algorithmic Operations Research, 1(2),
2006.

[6] Jérôme Truffot, Christophe Duhamel, and Philippe Mahey. k-Splittable
delay constrained routing problem: A branch-and-price approach. Net-
works, 55(1):33–45, 2010.

[7] Bernard Fortz, Luis Gouveia, and Martim Joyce-Moniz. Models for the
piecewise linear unsplittable multicommodity flow problems. European
Journal of Operational Research, 261(1):30–42, 16 August 2017.

[8] Racha Gouareb, Vasilis Friderikos, and A Hamid Aghvami. Delay
sensitive virtual network function placement and routing. In Proc. IEEE
ICT, 2018.

[9] Ariel Orda, Raphael Rom, and Nahum Shimkin. Competitive routing
in multi-user environments. IEEE/ACM Transactions on Networking,
1(5):510–521, October 1993.

[10] Eitan Altman, Tamer Basar, Tania Jimenez, and Nahum Shimkin. Com-
petitive routing in networks with polynomial costs. IEEE Transactions
on automatic control, 47(1):92–96, 2002.

[11] Albert Mestres, Eduard Alarcon, Yusheng Ji, and Albert Cabellos-
Aparicio. Understanding the modeling of computer network delays using
neural networks. In Proc. ACM BigDaMa Workshop, 2018.

[12] Shihan Xiao, Dongdong He, and Zhibo Gong. Deep-Q: Traffic-driven
QoS Inference using Deep Generative Network. In Proc. ACM NetAI
Workshop, 2018.

[13] Krzysztof Rusek, Jos Suarez-Varela, Albert Mestres, Pere Barlet-Ros,
and Albert Cabellos-Aparicio. Unveiling the potential of graph neural
networks for network modeling and optimization in sdn. In arXiv
preprint arXiv:1901.08113, 2019.

[14] Thomas Bonald and James W Roberts. Internet and the erlang formula.
ACM SIGCOMM Computer Communication Review, 42(1):23–30, 2012.

[15] George F. Riley and Thomas R. Henderson. The ns-3 Network Simulator,
pages 15–34. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[16] Anukool Lakhina, Konstantina Papagiannaki, Mark Crovella, Christophe
Diot, Eric D Kolaczyk, and Nina Taft. Structural analysis of network
traffic flows. In ACM SIGMETRICS Performance eval. review, 2004.

[17] Michael Seufert, Pedro Casas, Nikolas Wehner, Li Gang, and Kuang Li.
Features that matter: Feature selection for on-line stalling prediction in
encrypted video streaming. In Proc. IEEE INFOCOM Workshops, 2019.

