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Abstract We investigate properties of robust solutions of the Capacitated
Facility Location Problem with uncertain demand with different uncertainty
sets. We show that the monotonic behavior of the price of robustness is not
guaranteed, and that one cannot discriminate among alternative robust solu-
tions by simply relying on the trade-off price-vs-robustness. Furthermore, we
report a computational study on benchmark instances from the literature and
on instances derived from a real-world application, which demonstrates the
validity of our findings.
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1 Introduction

The Capacitated Facility Location Problem (CFLP) (Rosenwein 1994; Daskin
1995) considered in this paper can be described as follows. We are given a
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set M of potential facility locations and a set N of customers. Associated
with each i ∈ M is a maximum capacity of the facility si, and each user
j ∈ N is associated with a demand aj . Two type of costs arise: (i) the decision
to establish a facility at i incurs a fixed-charge (setup) cost di and (ii) for
i ∈M and j ∈ N , a unitary transportation cost cij for serving the demand of
customer j from facility i must be paid. The problem consists of minimizing
the sum of the setup costs of opened facilities and of the transportation costs,
while satisfying demand requirements and capacity constraints. The CFLP
can be mathematically formulated as follows:

(CFLP) min
∑

i∈M

diyi +
∑

i∈M

∑

j∈N

cijxij

s.t.
∑

i∈M

xij = 1, ∀j ∈ N, (1)

∑

j∈N

ajxij ≤ siyi, ∀i ∈M, (2)

x ∈ X, (3)

yi ∈ {0, 1}, ∀i ∈M, (4)

where X ⊆ Rm×n
+ or X = {0, 1}m×n. Problem CFLP deals with the following

two-level decision variables: (i) strategic variables y, used to model the long-
term decisions, and (ii) operational variables x, which model the short-term,
operational part of the problem. In the literature, there are two main variants
of the CFLP: the single source CFLP (SS-CFLP), where a customer must be
completely assigned to a single facility, and the multiple source CFLP (MS-
CFLP) where a customer could be assigned to several facilities (Laporte et al.
2015). Several applications in transportation, logistics, telecommunications,
and production planning, such as capacitated network design problems (Gen-
dron et al. 1999), can be formulated using models similar to model CFLP .

We assume that the demand coefficients aj are uncertain, and that the
model of data uncertainty is based upon the following scenario space.

Definition 1 Let each coefficient aj ≥ 0 be an (independent), symmetric,
and bounded random variable ãj taking values in the interval āj ± εāj, i.e.,
āj(1 − ε) ≤ ãj ≤ āj(1 + ε) with ε > 0 and āj corresponding to the nominal
value of the uncertain parameter. We define the scenario space U(ε) as follows:

U(ε) = {ãj ∈ R+ : āj(1− ε) ≤ ãj ≤ āj(1 + ε), ∀j ∈ N} .

Therefore, the scenario space is the uncertainty set within which the decision
maker hypothesizes every realization of the uncertain parameter will occur. In
addition, we assume that the uncertainty can affect the objective function of
problem CFLP , as the cost vector c can be computed as a function of the
uncertainty coefficients aj .

One way of dealing with the uncertainty of the parameters of the problem is
provided by Robust Optimization (RO) (Bertsimas and Sim 2004). RO ensures



Title Suppressed Due to Excessive Length 3

that a robust solution (y,x) be feasible with respect to every realization of the
robust parameters in the pre-specified interval defined by ε. However, while in
certain applications it might be of paramount importance to guarantee feasi-
bility of the robust solution 100% of the times (e.g., in medical applications, or
some critical engineering applications), in most realms of application of robust
optimization, e.g., in management, it is not necessary to produce a solution
that hedges against every possible realization of the uncertain parameters in
the scenario space, since full immunization comes at a high cost in terms of
objective function value. Therefore, while recognizing the nature of the data
in a support or uncertainty set U which defines the scenario space, to avoid
being overly conservative and, therefore, to mitigate the adverse effect of full
immunization on the objective function value, one might want to optimize over
a smaller support Ũ ⊆ U . The rationale is that, if Ũ is properly crafted, one
might obtain important benefits in terms of costs while keeping the risk of
incurring infeasible scenarios very low.

Such strategy is especially appealing to the business community, where the
fact that customers demands might vary does not typically have as drastic
repercussions as in, e.g., medical or engineering applications. Therefore, in
line with the reasoning put forth by (Bertsimas and Sim 2004), given a set
of uncertain parameters taking values in U , the goal of a practitioner using a
robust model could be to define a support Ũ ⊆ U and to find a robust solution
such that (i) if nature selects a realization of the uncertain parameters from Ũ ,
the solution is deterministically feasible, and (ii) if nature selects a realization
of the parameters in U \ Ũ , the probability of incurring an infeasible scenario
is still very low.

Our distinct contributions in this paper are as follows: (i) It is the first time
that a limitation/drawback associated with the price of robustness is identified
for the CFLP: the monotonicy of the trade-off price-vs-robustness cannot be
guaranteed a priori. Furthermore, we show that there always exists a situation
in which a nominal solution can be more robust, and cheaper, than a robust
solution, (ii) We conduct an extensive computational study on both real-world
and benchmark instances, to ascertain the significance of such phenomenon.
Empirical evidence suggests that such phenomenon cannot be neglected by the
decision maker, since it has a significant impact in terms of costs and reliability
of the implemented solution.

The remainder of the paper is organized as follows. The next section mo-
tivate our study by means of an introductory example. Section 2 reviews con-
tributions related to the optimization problems addressed in this paper. The
main results of this paper are given in Section 3, where the properties of nomi-
nal and robust solutions are investigated. Section 4 reports the computational
studies. Finally, in Section 5, managerial insights are discussed, together with
future research directions.
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1.1 Motivation and introductory example

The work in this paper is also motivated by a real-world application from a
major dairy company whose core business is the production and distribution of
perishable products (fresh milk, cheese, and butter, to name a few). Our study
addresses a strategic problem of defining the partition of the customers to a
set of depots under uncertain customer demands. We consider the following
robust formulation of SS-CFLP:

(R-SS-CFLP)min
∑

i∈M

diyi + max
a∈U(ε)

∑

i∈M

∑

j∈N

(ajcij)xij

s.t.
∑

j∈N

ajxij ≤ siyi, ∀i ∈M, a ∈ U(ε), (5)

(1), (4), xij ∈ {0, 1}, ∀i ∈M, j ∈ N,

where a ∈ Rn
+, and U(ε) ⊆ Rn

+ denotes the support (box uncertainty set) at
hand. We then consider the following experimental setup.

(i) Optimization over the support U(ε). We solve the robust counterpart of
formulation SS-CFLP with box support U(ε), with ε ∈ {0.1, 0.2, . . . , 0.9},
and we obtain the corresponding robust solution (y,x)BOX

ε of cost (z)BOX
ε .

Clearly, we have (z)BOX
ε′′ ≥ (z)BOX

ε′ if ε′′ > ε′;
(ii) Evaluation over the scenario space U(ε̂). We define a family of nested

scenarios spaces U(ε̂), with ε̂ ∈ {0.1, 0.2, . . . , 0.9}, and for each ε̂ we
generate 1,000,000 realizations of coefficients aj and we evaluate, in terms
of violation of constraints (5), the solutions (y,x)BOX

ε .

Figure 1 presents the results of the aforementioned experiment on a SS-
CFLP real-world instance (see instance A of Section 4). On the horizontal
axis, we indicate the size of the support used for the optimization step (ε),
and on the vertical axis we report the number of infeasible scenarios evaluated
by using the robust solution (y,x)BOX

ε over the nested scenarios spaces (ε̂).
In the figure, consider the pair of values ε = 0.45 and ε = 0.5, for the line

given by ε̂ = 0.85.We observe that the robust solution associated to the smaller
support, i.e., (y,x)BOX

0.45 , is more robust than the solution associated to the
larger uncertainty set, i.e., (y,x)BOX

0.5 . A similar behaviour can also be observed
for other values of ε and lines given by ε̂. This empirical observation poses a
problem when it comes to comparing and evaluating two robust solutions
using the “price of robustness” (Bertsimas and Sim 2004) as a proxy: due
to the fact that the monotonic behavior of the curve is not guaranteed, one
cannot discriminate among alternative robust solutions by simply relying on
the trade-off price-vs-robustness. As evinced from Figure 1, a more expensive
solution, obtained over a larger support, could be less robust than a cheaper
solution, obtained over a smaller support.

In the sequel, we will show that, for the robust formulation of problem
CFLP , it is always possible to find an instance of the problem and a realization
of the uncertain parameters such that the nominal, i.e., non-robust, solution
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Fig. 1 R-SS-CFLP: example about the real-world instance A.

is feasible while the robust solution is infeasible for that specific realization of
the uncertain parameters. In addition, we will show that it is possible to prove
that a robust solution obtained using a larger support could be less robust,
i.e., more likely to incur violation of constraints (2), than a robust solution
obtained using a smaller support of the same type.

2 Literature review

Robust optimization (RO) has received a considerable increase of interest over
the last decade. There exists a vast literature on this topic, and for a detailed
introduction to robust optimization, we refer the reader to (Ben-Tal et al.
2009) and (Bertsimas et al. 2011), whereas for an overview of developments in
robust optimization since 2007 the reader is referred to (Gabrel et al. 2014) and
(Lu and Shen 2020), where the latter provides a review with a special focus on
the application of robust optimization to operations management. More recent
works on robust optimization have developed solution frameworks to produce
less conservative solutions such as two-stage RO and more general multi-stage
RO, also known as robust adjustable or adaptable optimization (Ben-Tal et al.
2004).

When alternative robust solutions are compared, two prominent criteria
have been proposed in the literature, the Pareto Robust Optimality criterion
of (Iancu and Trichakis 2014) and the price of robustness of (Bertsimas and
Sim 2004). With respect to the former, the idea is to exploit the degeneracy of
many RO models and select a Pareto-optimal solution, i.e., a solution that is
optimal with respect to the worst-case scenario, and is not dominated by any
other solution for all the possible scenarios of the uncertainty set. For example,
if the uncertainty of the problem is in the objective function, a robust solution
x∗ is Pareto-optimal if the cost associated to the worst case realization of the
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uncertain parameter is minimal and, in addition, no other solution is cheaper
that x∗ for any realization of the uncertain parameter in the uncertainty set.
Therefore, the Pareto-optimality criterion focuses on the selection of alterna-
tive robust solution within the same uncertainty set. On the other hand, the
price of robustness is employed to discriminate among alternative robust solu-
tions obtained using different uncertainty sets. Thus, it considers the trade-off
between the size of Ũ , and therefore the value of the objective function, and the
probability of violation of the uncertain constraints (2) has been employed to
select and discriminate among alternative robust solutions. More specifically,
as mentioned, one would expect a monotonically non-decreasing behavior of
the price of robustness curve with respect to the size of the support Ũ . In other
words, if we assume that the size of Ũ is proportional to the value of ε, then
the trade-off captured by the price of robustness states that a larger values of
ε should lead to optimal solutions associated to an increase in the objective
function value and a decrease in the probability of violation of constraints
(2). Pareto-optimal solutions were also investigated by Chassein and Goerigk
(2016). The authors considered linear programming problems with uncertain
cost functions and presented a column generation approach that requires no
direct solution of the computationally expensive worst-case problem.

It is worth pointing out that our study goes beyond the search of a Pareto
Robust Optimal (PRO) solution, as done in (Iancu and Trichakis 2014) and
Chassein and Goerigk (2016). A PRO solution is defined as a minimum cost
solution which provides the maximum slack of the robust constraint (e.g.,
unused capacity in a facility location problem) for every realization of the un-
certain parameter in the uncertainty set. Our approach departs from that of
(Iancu and Trichakis 2014) since (i) their analysis is based on the fact that
the uncertainty sets used in the optimization and evaluation phases are the
same. We want to explore whether the price-of-robustness framework holds
when the uncertainty set used in the evaluation phase is decoupled from the
one used in the evaluation phase; (ii) our analysis is not limited to PRO solu-
tions, but we extend the analysis by comparing solutions in terms of expected
values of constraints violation, and (iii) we compare alternative robust solu-
tions obtained over different uncertainty sets extending the reasoning to other
measures to capture the robustness of a solution, which go beyond the slack
measure proposed in (Iancu and Trichakis 2014).

Facility location problems find application in a number of realms, e.g.,
supply chain management, distribution system design and telecommunication
network design, among others. (Melo et al. 2009) and (Laporte et al. 2015)
present a comprehensive literature review of facility location models in the
context of supply chain management.

Uncertain versions of the facility location problem consider different types
of uncertainties (for instance, regarding demand, costs, and facility reliability),
and mainly focus on the uncertainty of the demands. Different methods have
been proposed to deal with uncertainty, among them RO. For a comprehensive
overview of robust facility location approaches we direct the interested reader
to (Snyder 2006) and (Correia and da Gama 2015) and references therein. A



Title Suppressed Due to Excessive Length 7

detailed review of facility location with uncertain parameters and their solution
methods can also be found in (Laporte et al. 2015).

While the literature on the deterministic CFLP is vast, the robust ver-
sion of the CFLP has not received much attention so far. (Opher et al. 2010)
studied a variant of the multi-period CFLP in which the maximum capacity
of each facility must be determined, and showed that the robust approach
offers significant improvements when compared with the nominal solution. In
a similar fashion, (Gülpinar et al. 2013) presented different robust models for
the CFLP, with both known and ambiguous demand probability distribution
function. Both papers ascertain the superiority of the robust solution over
the deterministic one on an extensive set of benchmark instances. (An et al.
2014) investigated two-stage RO models for the reliable p-median facility lo-
cation problem by considering two practical features, i.e., facility capacity and
demand change due to site disruption. The authors designed an exact algo-
rithm based on column-and-constraint generation and Bender decomposition
methods, and solved to optimality instances with up to 49 sites. (Zeng and
Zhao 2013) described a column-and-constraint generation algorithm to solve
two-stage RO problems as an alternative to Benders-style cutting plane meth-
ods. The proposed solution framework was used to solve a two-stage robust
location-transportation problem. Recently, (Du et al. 2020) have considered
two-stage facility location problems in an uncertain and dynamic environ-
ment, aiming at building a network that serves demand in both general and
disruptive situations. The paper compared a two-stage robust model and a
two-stage stochastic model for the reliable p-center problem, and the exper-
iments reported showed that the solutions produced by the two-stage robust
model are not overly conservative.

3 Non-monotonicity of the price of robustness

In this section, we investigate properties of the nominal and robust solutions.
We first show that, given an optimal robust solution over a box support U(ε)
(i.e., optimization scenario), it is possible to construct a scenario from an
uncertainty set of size U(ε̂) ⊃ U(ε) (i.e., evaluation scenario) for which the
nominal solution remains feasible while the robust solution becomes infeasible.

As defined in the introduction, we assume a pre-specified symmetric sce-
nario space model of data uncertainty for the uncertain parameters of the
problem. However, for optimization purposes, and to reduce the conserva-
tivism of a robust solution, we aim at finding an optimal robust solution on
a support which is different from the scenario space hypothesized for the real
data. More specifically, at the cost of incurring in potentially infeasible real-
izations of the uncertain parameters, we restrict the optimization process to
all the realizations of the uncertain parameters aj within a less conservative
support or uncertainty set.
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Definition 2 A polyhedral support for the uncertain parameters aj is defined
as:

Q(ε) = {a ≥ 0 :Wa⊤ ≤ h},

where W ∈ Rr×n, and h = h(ε) ∈ Rr is increasing on the value of ε, i.e., the
parameter which controls the size of the support and, therefore, the degree of
immunization of the robust solution.

The robust counterpart of CFLP can be derived by reformulating the
semi-infinite constraints (5) as shown by the following theorem.

Theorem 1 (Ben-Tal and Nemirovski (2007)) The robust counterpart of
problem CFLP can be formulated as a the following MILP:

(RP) min
∑

i∈M

diyi +
∑

i∈M

∑

j∈N

cijxij

s.t. (1), (3), (4),
r

∑

t=1

htψit ≤ siyi, ∀i ∈M,

r
∑

t=1

wtjψit ≥ xij , ∀j ∈ N, i ∈M,

ψi ∈ R
r
+, ∀i ∈M,

where wtj ∈W and ht ∈ h, with W and h specified as in Definition 2.

We observe that the robust counterpart of CFLP is still a MILP, i.e.,
it retains the same complexity of the original problem (albeit with a larger
number of variables and constraints.)

Let (y∗,x∗) be an optimal solution to the nominal problem CFLP with
nominal values āij and cost z∗. Moreover, let (y,x)BOX

ε be an optimal solution
to formulation RP over the box support U(ε), ε > 0, of cost (z)BOX

ε > z∗.
The following theorem holds.

Theorem 2 If solution (y, x)BOX
ε is evaluated over a scenario space U(ε̂)

with ε̂ > ε > 0, there might exist a sample [âj ] ∈ U(ε̂) such that the nominal
solution (y∗, x∗) is feasible whereas solution (y, x)BOX

ε is infeasible.

Proof. The proof is by an example. Consider an instance of CFLP where
m = 2 (i.e., M = {1, 2}) and n = 3 (i.e., N = {1, 2, 3}) with X ⊆ R

2×3
+ ,

defined by the following parameters:

– ā1 = ā2 = ā3 = ā; d1 = d2; bij = 1, ∀i ∈M, j ∈ N , and ej = 1, ∀j ∈ N ;

– The cost matrix [cij ] is defined as follows: c =

[

c11 0 B

c21 B 0

]

where c11 < c21

and B is a large constant;
– s1 ≥ 2ā, s2 ≥ 2ā, s1 ≥ ā(2 + ε), s1 < 2ā(1 + ε), s2 ≥ ā(1 + ε).
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Then, the nominal solution (y∗,x∗) is y∗ =

[

1
1

]

, x∗ =

[

1 1 0
0 0 1

]

while the ro-

bust solution (y,x)BOX
ε depends on ε and is y =

[

1
1

]

, x =

[

s1−ā(1+ε)
ā(1+ε) 1 0

1− α 0 1

]

where the term x11 = α = s1−ā(1+ε)
ā(1+ε) < 1. Clearly, (z)BOX

ε > z∗.

Consider ε̂ such that ε̂ > ε, then there exists a scenario [âj ] ∈ U(ε̂) which
makes the robust solution (y,x)BOX

ε infeasible while the nominal solution
(y∗,x∗) remains feasible. Consider [âij ] =

[

ā(1 + δ) ā(1− ε̂)
]

, with 0 ≤ δ ≤ ε̂.
Below, we aim to find a value of δ such that constraints (2) are satisfied by the
nominal solution x∗ for the scenario [âj ], that is the constraints with i = 1, 2
are satisfied by solution x∗:

{

x∗11ā(1 + δ) + x∗12ā(1 − ε̂) ≤ s1 (a)

x∗23ā(1 + ε̂) ≤ s2, (b)
(6)

whereas the constraint (2) with i = 2 is violated by solution x, i.e.:

x21ā(1 + δ) + x23ā(1 + ε̂) > s2,

or, equivalently,










ā(1 + δ) + ā(1− ε̂) ≤ s1,

ā(1 + ε̂) ≤ s2,

(1− s1−ā(1+ε)
ā(1+ε) )ā(1 + δ) + ā(1 + ε̂) > s2,

which implies ε̂ ≤ s2−ā
ā

, and max{0, δL} < δ ≤ min{ε̂, δU} with δU =
s1−ā(1−ε̂)

ā
− 1 and δL = s2−ā(1+ε̂)

2ā(1+ε)−s1
(1 + ε)− 1.

Note that if constraint (a) (case i = 1) of inequalities (6) is satisfied, then
also constraint x11ā(1 + δ) + x12ā(1 − ε̂) ≤ s1 is satisfied by any x solution
since x12 = x∗12 and x13 = 0 and x11 < 1.

Since s1 ≥ 2ā, we have s1−ā(1− ε̂) > ā, hence δU > 0. Sufficient conditions
for the existence of a set of values of δ such that the statement of the theorem
is verified are:

{

s1 − ā(1− ε̂) ≥ [s2 − ā(1 + ε̂)] (1 + ε)

ā ≤ 2ā(1 + ε)− s1
,

which lead to ε ≥ s1−ā
2ā , ε̂ > ε, ε̂ ≤ s2−ā

ā
, and ε̂ ≥ s2(1+ε)−āε−s1

ā(2+ε) .

The choice of values of ε and ε̂ in the halfspaces derived above guarantees
that δL ≤ δU . Thus, a suitable value of δ exists. �

As previously stated, consider a nominal optimal solution (y∗,x∗) and an
optimal solution (y′,x′)BOX

ε′ to RP over the box support U(ε′) with cost
(z′)BOX

ε′ > z∗. In the following, we show that by optimizing RP on a larger
support U(ε′′) (with ε′′ > ε′) does not necessarily provide a solution which
is more robust than the solution associated with U(ε′), if the solutions are
evaluated over a scenario space U(ε̂), with U(ε̂) ⊃ U(ε′′) ⊃ U(ε′). Indeed, the
following theorem holds.
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Fig. 2 Representation of Theorem 3.

Theorem 3 Let (y′′, x′′)BOX
ε′′ be an optimal robust solution of RP over the

box support U(ε′′), with ε′′ > ε′. If solution (y′′, x′′)BOX
ε′′ is evaluated over a

scenario space U(ε̂) with U(ε̂) ⊃ U(ε′′) ⊃ U(ε′), and the uncertain parameters
aij are uniformly distributed in U(ε̂), then the violation probability of solution
(y′′, x′′)BOX

ε′′ can be strictly greater than the violation probability of solution
(y′, x′)BOX

ε′ and the ratio between solution costs (z′)BOX
ε′ and (z′′)BOX

ε′′ can be
a very small number.

Proof. The proof is by an example. Consider an instance of CFLP where
m = 3 (i.e., M = {1, 2, 3}) and n = 2 (i.e., N = {1, 2}) with X ⊆ R

2×3
+ ,

defined by the following parameters:

– The nominal values are ā1 = 3
2 and ā2 = 3

2 ; bij = 1, ∀i ∈ M, j ∈ N , and
ej = 1, ∀j ∈M ; d1 < d2 < d3; s1 = s2 = s3 = 3.

– The cost matrix [cij ] is defined as follows: c =





c11 c12
c21 c22
B c32



 where c11 = c12,

c21 = c22, c11 < c21, c12 < c22, c32 < c22, c12 < c32 + d3 and B is a large
constant;
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The nominal solution (y∗,x∗) is y∗ =





1
0
0



 , x∗ =





1 1
0 0
0 0



 . Consider ε′ = 1;

then the robust optimal solution (y′,x′)BOX
ε′ is y′ =





1
1
0



 , x′ =





1
2

1
2

1
2

1
2

0 0



 .

Clearly, (z′)BOX
ε′ > z∗.

Consider now a value ε′′ > ε′, with ε′′ = 4
3 ; we have U(ε′′) ⊃ U(ε′). For

the support U(ε′′), a corresponding optimal solution (y′′,x′′)BOX
ε′′ is y′′ =





1
1
1



 , x′′ =





6
7 0
1
7

1
7

0 6
7



 . Let (z′′)BOX
ε′′ be the cost of solution (y′′,x′′)BOX

ε′′ . We

have (z′′)BOX
ε′′ > (z′)BOX

ε′ > z∗. Note that, if d3 ≫ d2, the ratio between
solution costs (z′)BOX

ε′ and (z′′)BOX
ε′′ can be a very small number.

For solution (y′,x′)BOX
ε′ constraints (2) for i = 1, 2 correspond to: 1

2a1 +
1
2a2 ≤ 3, whereas the constraint for i = 3 is redundant. For solution (y′′,x′′)BOX

ε′′

constraints (2) are as follows:

i = 1 :
6

7
a1 ≤ 3; i = 2 :

1

7
a1 +

1

7
a2 ≤ 3; i = 3 :

6

7
a2 ≤ 3,

where the constraint for i = 2 is dominated by the constraints for i = 1, 3. Fig-
ure 2 illustrates the different regions corresponding to the above inequalities.
Consider a value ε̂ > ε′′, such that U(ε̂) ⊃ U(ε′′) ⊃ U(ε′), with ε̂ = 5

3 . As-
suming that the uncertain parameters aij are uniformly distributed in the box
U(ε̂), the probability that solution (y′,x′)BOX

ε′ is not feasible can be computed
as:

Pinfeas(y
′,x′) =

V ol(U(ε̂) \ {a ∈ U(ε̂) : 1
2a1 +

1
2a2 ≤ 3})

V ol(U(ε̂))
=

8

64
= 0.125,

where V ol(S) denotes the volume of region S, whereas the probability that
solution (y′′,x′′)BOX

ε′′ is not feasible can be computed as:

Pinfeas(y
′′,x′′) =

V ol(U(ε̂) \ {a ∈ U(ε̂) : a1 ≤ 7
2 , a2 ≤ 7

2}

V ol(U(ε̂))
=

15

64
≃ 0.23.

We therefore have Pinfeas(y
′,x′) < Pinfeas(y

′′,x′′), thus the probability
of violation of a supposedly more robust solution can be higher than the prob-
ability of the less robust solution. �

The counter-intuitive behavior showed in this section leads to less expen-
sive solutions obtained by considering a specified uncertainty set that are more
robust than more expensive solutions obtained by considering a larger uncer-
tainty set. In the following section we investigate how often this behaviour
happens in practice.
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4 Computational study

5 Conclusions
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