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a b s t r a c t

This paper tackles the constrained control problem of unmanned aerial vehicles with planar mul-
tirotors. The proposed solution splits the constrained control problem into two separate tasks, i.e.
stabilization and constraint enforcement. It is shown that the problems addressed by each individual
layer is much simpler than the original combined problem. For the unconstrained control of UAVs we
consider a control scheme based on a cascade structure. The Lyapunov function for the stabilized
cascaded system is then derived. Using this Lyapunov function, we develop an Explicit Reference
Governor for constraint enforcement. Numerical simulation shows the effectiveness of the proposed
approach.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, the advances in the field of Unmanned Aerial Ve-
icle (UAV) allow us to use them in an increasing number of
pplications performing a wide range of tasks, such as search and
escue (Tomic et al., 2012), surveillance (Kingston, Rasmussen, &
umphrey, 2016), transportation (Klausen et al., 2020), precision
griculture and smart farming (Tokekar et al., 2016), and so on.
lthough the free-flight control of these autonomous systems has
een largely investigated, see e.g. Hua et al. (2013) and references
herein, the constrained control of UAVs remains quite challeng-
ng due to their fast dynamics, strong nonlinearities, and mod-
st on-board computational power. Existing constraint handling
trategies can roughly be divided in two categories: optimization-
ased schemes and closed-form methods.
The idea behind optimization-based schemes is to solve an

ptimal control problem at each sampling time instant. In this
ontext, the most common approach is Model Predictive Control
MPC), which generates the control input by minimizing a cost
unction over a receding time horizon (Alexis, Nikolakopoulos, &
zes, 2012). Since these schemes are confined to a small compu-
ational footprint (Malyuta et al., 2022), i.e. flight control is only
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a small part of all the tasks that an autonomous vehicle must
perform, the main drawback of these schemes is the difficulty to
implement them in real-time.

An alternative optimization-based scheme is the Reference
Governor (RG) approach, which is an add-on control unit that
ensures constraint satisfaction by manipulating the reference of
a pre-stabilized system (Lucia, Franzè, & Sznaier, 2020; Lucia, Sz-
naier, & Franzè, 2014). The main interest RG schemes is that they
usually have lower computational requirements with respect to
MPC (Kahveci & Kolmanovsky, 2009). In the last few years, a
novel scheme, called Explicit Reference Governor (ERG) , was
introduced in the literature. The ERG is a framework inspired by
the RG philosophy whose main novelty is that it does not require
any online optimization. The main idea behind the ERG is to
manipulate the derivative of the applied reference in continuous
time using a suitable nonlinear control law that ensures that
constraints are satisfied at all time.

The objective of this paper is to propose a systematic frame-
work based on the ERG for enforcing both state and input con-
straints while maintaining a relatively small computational effort.
This will be done using a paradigm inspired by the multi-layer
approach known as the Guidance, Navigation, and Control (GNC)
architecture. In our framework Control Layer is tasked with pre-
stabilizing the UAV dynamics without taking constraints into
account. The Navigation Layer is tasked with enforcing constraint
satisfaction by manipulating the reference of the pre-stabilized
system. This will be done using the ERG. Finally, it is assumed that
at each time instant the Guidance Layer provide a single desired

set-point for the UAV.
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The unconstrained control of UAVs is the object of a rich
literature, see e.g. Hua et al. (2013) and references therein. The
most popular strategy for controlling UAVs consists in using a
cascade structure that controls the attitude and the position of
the UAV using two separate control loops, taking advantage of
a timescale separation between the attitude and the position
dynamics (Marconi & Naldi, 2007). Although this control architec-
ture is a well-known solution, to the authors’ best knowledge, the
existing literature does not provide a Lyapunov function for the
resulting closed-loop system. Since the availability of a Lyapunov
function for the pre-stabilized UAV is at the basis of the approach
proposed in this paper, the first part of the paper will derive an
analytical representation of such function. The navigation layer
will be based on a version of the ERG, which will take advan-
tage of the invariance of the Lyapunov level sets to develop a
suitable Navigation Layer. Preliminary results pertaining to the
constrained control of UAV by means of an ERG have been pre-
sented in Convens, Merckaert, Vanderborght, and Nicotra (2021),
Hermand et al. (2018) and Nicotra, Naldi, and Garone (2016).
These results have been obtained by considering conservative
assumptions during the design of the ERG, i.e. the inner loop
dynamics are assumed sufficiently fast inner to be treated as
either ideal or as a bounded external disturbance. Now, for the
first time, we can relax the above assumptions by providing a
Lyapunov function for the pre-stabilized system.

2. Preliminaries

In this section, we provide a brief summary of quaternion
algebra and of the nonlinear dynamic model of an UAV, including
some state and input constraints of interest.
Quaternion algebra - Let H denote the set of quaternions. Any
element h ∈ H can be expressed as h = a + ib + jc + kd, where
a, b, c, d are real numbers and i, j, k are imaginary numbers sub-
ect to the quaternion group multiplication rules (Shuster, 1993).
vector u ∈ R3 is an unit vector if uTu = 1. Likewise, a quaternion
∈ H is an unit quaternion if qq∗

= 1, where q∗ is the complex
onjugate of q. Given v ∈ H, it is possible to perform a rotation of

α radians around a unit vector u by defining the unit quaternion
q = cos(α/2) + (iu1 + ju2 + ku3) sin(α/2), and computing v′

=

v q∗.
The same operation can also be performed in R3 by computing

′
= R(q)v, where the R(q) satisfies the Euler–Rodriguez formula

(q) = I3 + 2qRq∧

I + 2q∧

I q
∧

I , (1)

where qR = cos α
2 ∈ R and qI = [u1 u2 u3] sin α

2 ∈ R3 are the
eal and imaginary component of q ∈ H, respectively, and ∧ :
3

→ R3×3 denotes the cross-product operator. Additional in-
ormation about quaternions, including the computation of their
ime derivative, can be found in Shuster (1993).
AV dynamic model As detailed in Hua et al. (2013), most
ertical Take-Off and Landing (VTOL) aircraft can be modelled
hrough the following state-space model⎧⎪⎪⎨⎪⎪⎩

mp̈ = mg · e3 − T · R(q)e3[
q̇R
q̇I

]
=

1
2
E(q)ω

Jω̇ = −ω∧Jω + τ ,

(2)

here g ≈ 9.81m/s2 is the gravitational acceleration, e3 =

0 0 1 ], p ∈ R3 is the VTOL position (defined in the global
eference frame), q ∈ H is its attitude (defined as the rigid
otation from the body reference frame to the global reference
rame), note that qq∗

= 1, ω ∈ R3 is its angular velocity (defined
 t

2

n the body reference frame), R(q) is the rotation matrix (1), and
(q) is the differential kinematics matrix

(q) =

[
−qTI

qRI3 + q∧

I

]
. (3)

he generalized control inputs are given in terms of a resulting
hrust force T ∈ R and torque vector τ ∈ R3, both of which are
efined in the body reference frame.1 The model parameters are
he aircraft mass m ∈ R; m > 0 and inertia matrix J ∈ R3×3

; J =
T > 0.

This paper considers a VTOL subject to both actuator satura-
ion and collision avoidance concerns, leading to the following set
f state and input constraints

∈ [ 0, Tmax ], Tmax > mg; (4a)

τ∥ ≤ τmax, τmax > 0; (4b)
Tp + b ≥ 0, a ∈ R3, b ∈ R; (4c)

∥p − p0∥ ≥ c, p0 ∈ R3, c > 0. (4d)

here constraints (4a) and (4b) are introduced to avoid actuators
aturations, while constraints (4c) and (4d) are used to model a
lanar surface and a spherical surface, respectively, that define
o-fly zones for the UAV. Note that, while for the sake of sim-
licity we consider only one constraint in the form (4c) and one
n the form (4d), the proposed framework can easily account for
ultiple constraints in the form (4c) and (4d).

. Problem statement

Given a reference position r ∈ R3 and reference yaw φ ∈

−π, π], the objective of this paper is to design a stabilizing con-
rol law that steers the VTOL to the best steady-state admissible
pproximation of r while simultaneously enforcing at each time
nstant the dynamic constraints (4), meaning
∗

= argminw ∥r − w∥
2, (5a)

s.t. aTw + b ≥ 0, (5b)

∥w − p0∥ ≥ c, (5c)

here w ∈ R3 is an appropriate reference position. This objective
s achieved using a multilayered approach that partitions the
onstrained control problem in two distinct tasks based on the
xplicit Reference Governor framework detailed in Nicotra and
arone (2018).
The first task, addressed by the Control Layer, is to pre-stabilize

he VTOL dynamics to appropriate references w ∈ R3 and θ ∈

−π, π], without taking into account the constraints. The second
ask, addressed by the Navigation Layer, is to manipulate the
ynamics of w(t), θ (t) so that they asymptotically converge to
∗, φ while also ensuring that the pre-stabilized system does
ot violate the constraints (4). The following problem statements
ormalize the objectives of the control layer and the navigation
ayer, respectively.

roblem 1 (Control). Given the VTOL dynamic model (2), let x =

p, ṗ, qR, qI , ω] and u = [T , τ ] be the state and control vectors,
espectively. Given a constant reference position w ∈ R3 and yaw
∈ [−π, π ), design a pre-stabilizing feedback law

= h(x, w, θ ), (6)

1 This formulation captures a wide variety of VTOL configurations
e.g. quadrotors, planar multirotors, ducted fans) where the thrust vector belongs
o a fixed body axis.
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Fig. 1. Representation of the control scheme.

uch that the closed-loop system admits

¯w =
[
w 0 cos θ

2 sin θ
2 e3 0

]
(7)

as an asymptotically stable equilibrium point. □

Problem 2 (Navigation). Given the VTOL dynamic model (2) sub-
ject to the pre-stabilizing feedback law (6), determine a reference
governor law

ẇ = hw(r, φ,w, θ ) , θ̇ = hθ (r, φ,w, θ ) , (8)

such that, given suitable initial conditions,

1. constraints (4) are always satisfied, for any piece-wise con-
tinuous reference r(t) ∈ R3 and φ(t) ∈ [−π, π];

2. for any constant reference r ∈ R3 and φ ∈ [−π, π], w(t)
asymptotically tends to r∗ satisfying (5) and θ (t) asymptot-
ically tends to φ. □

4. Control layer

The objective of the control layer is to solve Problem 1 by
designing a primary feedback loop that pre-stabilizes the VTOL
dynamics. This will be done using the cascade control approach,
see e.g. Isidori, Marconi, and Serrani (2003), Marconi and Naldi
(2007) and Pflimlin et al. (2006), which consists in stabilizing the
VTOL position and attitude using two separate control loops. As
illustrated in Fig. 1, the proposed control scheme is based on the
idea of introducing the virtual control input qC ∈ H; qCq∗

C = 1 and
implementing the following steps: (i) Design an outer loop, which
computes the attitude qC needed to control the VTOL position;
design an inner loop to control the VTOL attitude using qC as a ref-
erence; (iii) determine under what conditions the interconnection
of the two control loops is asymptotically stable.

4.1. Outer loop control

The objective of the outer loop is to control the position of the
VTOL so that it asymptotically tends to a constant v ∈ R3 under
the assumption that the attitude can be used as a control input.
Given q = qC , the position dynamics of the state-space model (2)
become

mp̈ = mg · e3 − T · R(qC )e3, (9)

where −T · R(qC )e3 is the thrust vector expressed in the global
reference frame. Since both T and qC are control inputs, the
thrust vector can be assigned as a PD with gravity compensation
strategy,

T · R(qC )e3 = m
(
kp (p − w) + kdṗ + g · e3

)
, (10)

where kp, kd are positive scalars. For details on how to compute
qC given Eq. (10) and the yaw reference φ, the reader is referred to
Appendix A. The following proposition provides a strict Lyapunov

function for the resulting closed-loop system. p

3

Proposition 1. Let system (9) be subject to the control law (10)
with kp, kd > 0. Given a constant reference w, then

[
pT ṗT

]T
=

wT 0T
]T is a Globally Exponentially Stable (GES) equilibrium point

and

VOut =
1
2

[
p − w

ṗ

]T [
(kp + ϵk2d)I3 ϵkdI3

ϵkdI3 I3

][
p − w

ṗ

]
, (11)

s a strict Lyapunov function ∀ϵ ∈ (0, 1). □

Proof. Given ϵ < 1, Eq. (11) is a Lyapunov candidate function
for the equilibrium point p = w and ṗ = 0. By taking its
time derivative and substituting (9)–(10), it follows that V̇Out =[

p − w

ṗ

]T [
ϵkpkdI3 0

0 (1 − ϵ)kdI3

][
p − w

ṗ

]
, which is negative

efinite ∀ϵ ∈ (0, 1). ■

.2. Inner loop control

The objective of the inner loop is to control the attitude of the
TOL under the assumption that the desired control attitude qC
emains constant. Given the attitude error quaternion

˜ = qq∗

C , (12)

he attitude dynamics in (2) can be rewritten in error coordinates⎧⎪⎨⎪⎩
[

˙̃qR
˙̃qI

]
=

1
2
E(q̃)ω

Jω̇ = −ω∧Jω + τ ,

(13)

and stabilized using a PD controller in quaternion space

τ = −hpq̃I − hdω, (14)

where hp, hd are positive scalars. The following proposition pro-
vides a strict Lyapunov function for the resulting closed-loop
system.

Proposition 2. Let system (13) be subject to the control law (14)
with hp, hd > 0. Then, [q̃R q̃I ω] = [1 0 0] is an exponentially stable
quilibrium point and

In = 2hp(1 − q̃R) +
1
2

[
q̃I
ω

]T [
4ηhdI3 2ηJ
2ηJ J

][
q̃I
ω

]
, (15)

is a strict Lyapunov function ∀η ∈ (0, η̄), where η̄ = min{hd/(µ(J)+
d/2hp) , hd/λ3{J}}, µ(J) = λ3{J} cos atan∆λ{J}

λ3{J} + ∆λ{J} sin atan
∆λ{J}
λ3{J} , ∆λ{J} = λ3{J} − λ1{J}, and λ1{J}, λ3{J} are equal to
he smallest and largest eigenvalue of the inertia matrix J , respect-
vely. □

roof. Given η < hd/λ3{J}, Eq. (15) is a Lyapunov candidate
unction for the equilibrium point q̃R = 1, q̃I = 0, and ω = 0. By
aking its time derivative and substituting2 (13)–(14), it follows
hat

V̇In = −

[
q̃I
ω

]T [ 2ηhpI3 ηhd(q̃R − 1)I3
ηhd(q̃R − 1)I3 hdI3 − ηJ(q̃RI3 − q̃∧

I )

][
q̃I
ω

]
. By

aking into account the modulus of q̃I and ω, V̇In can be upper-
ounded as

˙In ≤ −

[
sin |α̃|

2

∥ω∥

]T

QIn(α̃)

[
sin |α̃|

2

∥ω∥

]
, (16)

2 Performing this step requires the use of the properties a × (a · b) = 0 and
· (b × c) = c · (a × b), ∀a, b, c ∈ R3 , where × and · are the vector and scalar
roducts, respectively.
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here QIn(α̃) is equal to⎡⎣ 2ηhp ηhd

(
cos |α̃|

2 − 1
)

ηhd

(
cos |α̃|

2 − 1
)

hd − η

(
λ3{J} cos |α̃|

2 + ∆λ{J} sin|α̃|

2

)⎤⎦ .

ince λ3{J} cos |α̃|

2 + ∆λ{J} sin |α̃|

2 ≤ µ(J) and cos |α̃|

2 ≥ 0, ∀α̃ ∈

[−π, π], it follows that QIn(α̃) > Q̄In, where

Q̄In =

[
2ηhp ηhd

ηhd hd − ηµ(J)

]
(17)

is positive definite ∀η ∈ (0, hd/(µ(J) + hd/2hp)]. ■

4.3. Interconnection

The objective of this section is to show under what con-
ditions the proposed cascade control structure ensures asymp-
totic stability. Although this has already been addressed in the
literature by leveraging the classic Small Gain Theorem (Jiang,
Teel, & Praly, 1994), existing results, e.g. Isidori et al. (2003),
Marconi and Naldi (2007) and Pflimlin et al. (2006), limit them-
selves with implying the existence of a Lyapunov function. To
the authors’ best knowledge, existing literature does not actu-
ally provide a closed-form Lyapunov function for underactuated
VTOLs (Ryll, Bülthoff, & Giordano, 2015). By taking advantage of
the Lyapunov-based Small Gain Theorem developed in Jiang, Ma-
reels, and Wang (1996), this paper performs an in-depth stability
analysis that proposes the formulation of a Lyapunov function for
the interconnected system. This result is stated in the following
theorem.

Theorem 1. Let system (2) be subject to the control laws (10),
(14) with kp > 0, kd > 0, hp > 0 and hd ∝

√
hp. Then, given

constant reference position w ∈ R3 and yaw angle θ ∈ [−π, π ),
the equilibrium point (7) is asymptotically stable for sufficiently large
hp. Moreover,

V = max {VOut , χOut (ϕIn(VIn))} (18)

s a Lyapunov function for all initial conditions such that V (0) ≤

Out (∆α), where ∆α is subject to the restriction

< ∆α < arccos

(
b −

√
b2 − ac
a

)
, (19)

here a = (kp − ϵk2d)
2, b = k2p + 2ϵkpk2d(1 − ϵ) + ϵ2k4d , and

= (kp + ϵk2d)
2, VOut and VIn are given in (11) and (15),

In(VIn) = 2 arccos
(
1 −

VIn

2(hp + η(hd − ηλ3{J}))

)
, (20)

nd

Out (∥α̃∥∞) = max
σ∈[ 0 , d ]

[
σ

µ(σ )

]T [
W TPW W TPM
MTPW MTPM

][
σ

µ(σ )

]
, (21)

with

d = (1 − cα) g (22)

µ(σ ) = sgn
(
W TPM

)√
σ (d − σ )

W TW
MTM

(23)

=
1
2

√
QOut

−T
[
(kp + ϵk2d) ϵkd

ϵkd 1

]√
QOut

−1
, (24)

=

√
QOut

−T
[
ϵkd
1

]
, (25)

= Ker(W T ), (26)
 t

4

Fig. 2. Schematic representation of the ERG for the control of a VTOL.

QOut =
1
2

[
2ϵkpkd cα (kp + ϵk2d)(cα − 1)

(kp + ϵk2d)(cα − 1) 2kd(cα − ϵ)

]
, (27)

α = cos ∥α̃∥∞ . (28)

roof. See Appendix B.

Note that the restriction (19) must be verified at each time
nstant so that the stability analysis holds. Accordingly, from now
estriction (19) will be considered in the sets of constraints to be
atisfied at all time, together with (4). This result is a necessary
tepping stone for the following section, which will leverage the
yapunov level-sets to enforce the system constraints.

. Navigation layer

It is now possible to address Problem 2 by implementing an
xplicit Reference Governor. The ERG is based on two fundamen-
al components: the Dynamic Safety Margin and the Navigation
ield (Nicotra & Garone, 2018). A schematic representation of the
RG is illustrated in Fig. 2.
The dynamic safety margins ∆w(x , w) and ∆θ (x , θ ) represent

istances between the constraints and the system trajectory that
ould emanate from the state x given the constant references w
nd θ . The navigation fields ρw(w , r) and ρθ (θ , φ) represent the
irections along the path that lead from the current references
and θ to the desired references r and φ remaining strictly

nside the constraints. The ERG framework solves Problem 2 by
anipulating the applied references as follows

˙ (t) = ∆w(w , θ , x)ρw(w , r) , (29a)
˙ (t) = ∆θ (w , θ , x)ρθ (θ , φ) . (29b)

ntuitively, Eqs. (29) imply that the dynamic safety margins regu-
ate the modulus of ẇ(t) and θ̇ (t), and hence their values indicate
ow safe it is to change the applied references without risking
constraint violation, while the navigation field determines the
irection of ẇ(t) and θ̇ (t). In order to compute the dynamic safety
argins and the attractions fields in (29), we can separately
xploit the contributions of the constraints (4) and (19).
In particular, for the computation of the dynamic safety mar-

ins, we consider that

w(w, θ, x) = min{∆w
α (w, θ, x) , ∆τ (w, θ, x) , ∆T (w , x) ,

∆wall(w , x) , ∆obs(w , x)} , (30a)

∆θ (w, θ, x) = min{∆θ
α(w, θ, x) , ∆τ (w, θ, x)} , (30b)

here ∆w
α and ∆θ

α are the dynamic safety margins associated to
w
he restriction on the attitude error (19), ∆T is the dynamic safety
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argins associated to the constraint on the maximum thrust (4a),
τ is the dynamic safety margins associated to the constraint on

he maximum torque (4b), ∆w
wall is the dynamic safety margins

ssociated to the constraint of the wall avoidance (4c), and ∆w
obs

s the dynamic safety margins associated to the constraint of the
bstacle avoidance (4d).
For what concerns the navigation field, we can define

w(w , r) =
r − w

max (∥r − w∥ , ηw)
+ ρw

wall(w , r) + ρw
obs(w , r) ,

(31a)

ρθ (θ, φ) =
φ − θ

max (|φ − θ | , ηθ )
, (31b)

where r−w
max(∥r−w∥,ηv)

and φ−θ

max(|φ−θ |,ηθ )
are generic attraction terms,

w > 0 ηθ > 0 are two scalar tuning parameters, ρw
wall is a

epulsion field associated to the constraint of the wall avoidance
4c), and ρw

obs is the repulsion field associated to the constraint of
he obstacle avoidance (4d). Notice that not all constraints gener-
te a repulsion field, as certain constraints (e.g. maximum torque
onstraints) do not introduce any limitation on the admissible
et-points.
In the following paragraphs we address one by one the con-

truction of suitable dynamic safety margins and navigation fields.

aximum Attitude Error - The limit on the attitude error |α̃| ≤

α ensures that (18) is a strict Lyapunov function and is fun-
amental for ensuring asymptotic stability and enforcing all the
ther constraints. For this kind of constraints it is convenient to
mplement a Lyapunov-based dynamic safety margin (see Nicotra
nd Garone (2018) for more details). To do so, it is necessary to
dentify a threshold value associated to the constraint |α̃| ≤ ∆α.
he following proposition shows a way to construct a dynamic
afety margin for this constraint.

roposition 3. Given the Lyapunov function (18) and given ∆α
atisfying (19), the threshold value

∆α = χOut (∆α) (32)

s such that V (p, ṗ, qR, qI , ω,w, φ) ≤ Γ∆α ensures |α̃| ≤ ∆α. □

roof. The statement follows directly from the proof of Theo-
em 1 since V (τ ) ≤ χOut (∆α) implies |α̃| ≤ ϕIn(VIn(t)) ≤ ∆α,
t ≥ τ . ■

Since the threshold value Γ∆α does not depend on the current
eference, it can be computed off-line and stored in memory.
urthermore, since r ∈ R3 and φ ∈ [−π, π ) represent a position
nd an angle, respectively, it is reasonable to assume that ẇ
nd θ̇ will have a significantly different effect on the system
ynamics. Hence, we decouple the two references based on their
ffect on the Lyapunov function. In particular, ẇ has a direct
nfluence on VOut (p, ṗ, w), whereas θ̇ has a direct influence on
In(q̃R, q̃I , ω). Due to the interactions between VOut and VIn, how-
ver, ẇ and θ̇ will also present an indirect influence on VIn and
Out , respectively. To account for this problem, we consider
w
α (w , θ , x) = κw (Γ∆α − VOut (p, ṗ, w))

min
(

∆α − ϕIn(VIn(q̃R, q̃I , ω))
∆ΓIn

, 1
)

, (33)

θ
α(w , θ, x) = κθ

(
∆α − ϕIn(VIn(q̃R, q̃I , ω))

)
min

(
Γ∆α − VOut (p, ṗ, w)

∆ΓOut
, 1
)

, (34)

here κw , κθ , ∆ΓIn and ∆ΓOut are positive scalars. Definitions
(33) and (34) of the dynamic safety margins ensure that ẇ and θ̇
5

ill behave independently as long as ∆α − φIn(VIn(q̃R, q̃I , ω)) >
ΓIn and Γ∆α − VOut (p, ṗ, w) > ∆ΓOut . However, the two ref-
rences will be coupled as soon as one of the two loops is in
roximity of a constraint violation.
For what concerns the navigation field, since at steady state

his constraint is always satisfied, so it does not introduce any
epulsive barrier.

aximum Torque - In this section, we show how to use an
nvariance-based approach to design a Dynamic Safety Margin
ble to enforce the torque saturation constraints ∥τ∥ ≤ τmax.

The following lemma provides a starting point for the proposed
approach.

Lemma 1. Given the inner loop controller (14) and the Lyapunov
function (15), let Γτ be the solution to the optimization problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min VIn(q̃, ω̃), s.t.
h2
p q̃TI q̃I + h2

d ωTω − τ 2
max = 0,⎡⎣ 0

hpq̃I
hdω

⎤⎦T [
1
2E(q̃)ω

J−1(−ω∧Jω − hpq̃I − hdω)

]
≥ 0,

(35)

hen, {(q̃, ω) | c(q̃, ω) ≤ 0} ∩ {(q̃, ω) | VIn(q̃, ω) ≤ Γτ }, with
(q̃, ω) = h2

pq̃
T
I q̃I + h2

dω
Tω − τ 2

max, is a positively invariant set. □

roof. The invariance of {(q̃, ω) | VIn(q̃, ω) ≤ Γτ } follows
irectly from the fact that (15) is a Lyapunov function. As detailed
n Blanchini (1999), the constraint boundary of the set {(q̃, ω) |

(q̃, ω) ≤ 0} is locally positively invariant if the system dynamics
oint in a non-increasing direction of c(q̃, ω), meaning if

c(q̃, ω)T
[

˙̃q
ω̇

]
≤ 0. (36)

t then follows from the definition of Γτ that the boundary of the
onstraint set is locally positively invariant ∀(q̃, ω) : VIn(q̃, ω) ≤

τ , which concludes the proof. ■

Note that (35) is lower-bounded by the largest Lyapunov level-
et contained in {(q̃, ω) | c(q̃, ω) ≤ 0}. This is sufficient to
nsure Γτ > 0. At this point, since the value of the inner
oop Lyapunov function is effectively limited by the maximum
ttitude error ∆α enforced in the previous section, it is possible to
nsure VIn(q̃, ω) ≤ Γτ by complementing (19) with the additional
estriction

< ∆α < ϕIn(Γτ ), (37)

ith ϕIn given in (20). Doing so enables us to assign the dynamic
safety margin associated to the maximum torque constraint as

∆τ (p, ṗ, qR, qI , ω,w, θ ) = κτ (τmax − ∥τ∥), (38)

ith κτ > 0. Note that, typically, (19) is more restrictive than
37).

In analogy to the attitude error constraint, the steady-state
orques τ = 0 are always smaller than τmax > 0. Thus all
teady-state configurations of the UAV satisfy constraints. As
uch, this constraint does not need any repulsion term in the
verall navigation field (31).

aximum Thrust - This section addresses the input saturation
onstraint T ≤ Tmax, which is not linear in the state variables
ince T = m

kp(p − w) + kdṗ + ge3
. A possible approach to

ackle this constraint is to make a distinction between the steady-
tate thrust mge3 and the dynamic feedback mkp(p − w) + mkdṗ.
his can be done by taking advantage of the triangular inequality

≤
mk (p − w) + mk ṗ

+ mg.
p d
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o enforce the maximum thrust constraint, it is therefore suffi-
ient to ensurekp(p − w) + kdṗ

 ≤
Tmax − mg

m
, (39)

hich can be rewritten as the quadratic constraint[
p − w

ṗ

]T [ k2pI3 kpkdI3
kpkdI3 k2dI3

][
p − w

ṗ

]
≤

(
Tmax − mg

m

)2

. (40)

s discussed in Section 4.1, the outer loop can be modelled as
linear system subject to a bounded3 time-varying uncertainty

α̃| ≤ ∆α. As a result, the Lyapunov-based dynamic safety margin
an be applied by finding a common Lyapunov function for all the
ossible perturbations of the outer loop dynamics. An option is to
se the outer loop Lyapunov function (11)

T (p , ṗ , w) =

[
p − w

ṗ

]T
PT

[
p − w

ṗ

]
, (41)

ith PT > 0. Following from Eq. (B.1), the common Lyapunov
function must satisfy the Lyapunov equation[

0 I3
kpR(q̃) kdR(q̃)

]T
PT + PT

[
0 I3

kpR(q̃) kdR(q̃)

]
≤ 0,

or all q̃ ∈ H such that 2 arccos(q̃R) ≤ ∆α. By taking advantage of
he rotational symmetry of the system, by defining

T =

[
P̂T ,11I3 P̂T ,12I3
P̂T ,21I3 P̂T ,22I3

]
,

and by introducing the 2 × 2 matrices

P̂T =

[
P̂T ,11 P̂T ,12

P̂T ,21 P̂T ,22

]
, K̂T =

[
k2p kpkd
kpkd k2d

]
,

a convenient Lyapunov function can be obtained as a solution
of the following optimization problem, similarly to what done
in Garone, Nicotra, and Ntogramatzidis (2018)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min log det(P̂T ), s.t.

A(0)T P̂T + P̂TA(0) ≤ 0;

A(∆α)T P̂T + P̂TA(∆α) ≤ 0;

P̂T ≥ K̂T ,

(42)

where

A(α̃) =

[
0 1

kp cos(α̃) kd cos(α̃)

]
. (43)

Note that K̂T is a dyadic matrix that can be written as K̂T = cT cTT
with cT = [kp kd] and given the quadratic Lyapunov function (41)
computed solving (42) we can compute the threshold value as
proposed in Nicotra and Garone (2018)

ΓT =
(Tmax − mg)2

m2cTT P̂
−1
T cT

, (44)

from which we obtain the dynamic safety margin related to the
input saturation

∆T (p , ṗ , w) = κT (ΓT − VT (p , ṗ , w)) , (45)

where κT is a positive constant. It can be noted that the Eqs. (42)
define a convex optimization problem that can be computed off-
line and that does not depend on the reference. Similarly, the

3 The bound on α̃ is ensured by the presence of the ERG and of the bound
on the maximum attitude error.
 r

6

value of ΓT in (44) does not depend of the current reference.
Accordingly, both the Lyapunov matrix PT and the threshold value
ΓT can be computed off-line and stored in memory.

As for the previous two cases, this constraint does not intro-
duce any repulsion term in the navigation field (31).

Wall Avoidance - Note that the wall constraint cTp+d ≥ 0 only
takes into account outer loop variables. Hence, the dynamic safety
margin can be computed by treating the outer loop as a linear
system with a bounded time-varying uncertainty |α̃| ≤ ∆α. As a
result, the following Lyapunov function is proposed

VW (p , ṗ , w) =

[
p − w

ṗ

]T
PW

[
p − w

ṗ

]
, (46)

where PW =

[
P̂W ,11I3 P̂W ,12I3
P̂W ,21I3 P̂W ,22I3

]
, and P̂W > 0 is the solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min log det(P̂W ), s.t.

A(0)T P̂W + P̂WA(0) ≤ 0 ,

A(∆α)T P̂W + P̂WA(∆α) ≤ 0 ,

P̂W ≥ cW cTW ,

(47)

ith A(α̃) given in (43) and cW =
[
1 0

]T . Since the solution
of the optimization problem (47) provides a Lyapunov function
which is specifically designed for limiting the maximum position
error ∥p − w∥, the threshold value associated to a wall constraint
cTp + d ≥ 0 is

ΓW (w) =
(cTw + d)2

cTW P̂−1
W cW

, (48)

from which, we obtain

∆wall(p , ṗ , w) = κwall (ΓW (w) − VW (p, ṗ, w)) , (49)

where κwall is a positive constant.
Unlike the previous constraints addressed in this Section, the

wall constraint cTp+ d ≥ 0 can potentially be violated at steady-
state p = w. As a result, the attraction term in (31a) is no longer
sufficient to ensure the correct behaviour of the ERG. Since the
domain D = {w : cTw + d ≥ 0} is convex, a suitable choice4 for
computing the repulsion field (31a) can be

ρw
wall(w, r) = max

(
ζ − (cTw + d)

ζ − δ
, 0
)
c, (50)

where ζ > δ is the influence region of the wall constraint and
δ > 0 is the static safety margin.

Obstacle Avoidance - The obstacle avoidance constraint ∥p − p0∥
− R ≥ 0 defines a non-convex admissible region. Given a fixed
reference v, it can be shown using triangular inequalities that
∥p − p0∥ ≥ ∥p0 − w∥ − ∥p − w∥. As a result, ∥p − p0∥ − R ≥ 0
an be enforced by simply ensuring

(p0 − w)T

∥p0 − w∥
(p − w) ≤ R − ∥p0 − w∥ . (51)

he main interest in Eq. (51) is that it defines a reference-
ependent virtual wall c(w)Tp + d(w) ≤ 0 that guarantees the
on-violation of the obstacle. The dynamic safety margin of the
revious subsection can therefore be used by choosing c(w) =

(p0−w)T

∥p0−w∥
and d(w) = ∥p0 − w∥ −

(p0−w)T

∥p0−w∥
w − R. In this way, we

define Γobs(w) =
(c(w)T v+d(w))2

cTW P̂−1
W cW

, from which, we obtain

∆obs(p, ṗ, w) = κobs (Γobs(w) − VT (p , ṗ , w)) , (52)

4 Eq. (50) assumes that ∥c∥ = 1. Otherwise, the wall constraint should be
escaled as ĉ = c/ ∥c∥ and d̂ = d/ ∥c∥.



G. Tartaglione, M.M. Nicotra, R. Naldi et al. Automatica 166 (2024) 111696

w

w
k

M
t
e

T
t
w
i
s
(
a
p

c

G
i
r

i
c
c
k

here κobs is a positive constant.
For what concerns the navigation field, it is worth noting that

the domain

D = {w : cT + d ≥ δ} ∪ {w : ∥w − p0∥ − R ≥ δ}

contains a spherical hole and as such the navigation field cannot
be continuous. Following the approach proposed in Nicotra and
Garone (2018), the repulsion field in (31a) can be computed as

ρw
obs(w, r) = max

{
ζ − (∥p0 − w∥ − R)

ζ − δ
, 0
}

·(
(p0 − w)T

∥p0 − w∥
+ ρ̃O(w)

)
, (53)

with

ρ̃O(w) = ˆsgn
(
ρT

w,W (w, r)(p0 − w)⊥
)
(p0 − w)⊥. (54)

Remark 1. Since (p0 − w) ∈ R3, it is worth noting that the
perpendicular vector (p0−w)⊥ is not uniquely defined. A possible
strategy consists in defining

(p0 − w)⊥ = a Ker1(p0 − w)T

+

√
1 − a2 Ker2(p0 − w)T , (55)

here Keri for i = 1, 2 represents the ith column vector of the
ernel and a ∈ [0, 1] can be selected randomly.5 □

ain Result - The following theorem summarizes the proper-
ies of the proposed control law augmented with the proposed
xplicit reference governor.

heorem 2. Let a VTOL aircraft modelled by system (2) and subject
o the constraints (4) controlled with the control law (10) and (14),
ith kp > 0, kd > 0, hp > 0 and hd ∝

√
hp whose reference

s managed by (29) with navigation layer subject to the dynamic
afety margins (30), whose components are (33), (34), (38), (45),
49) and (52), and navigation fields (31), whose components are (50)
nd (53). Then any initial condition such that the auxiliary reference
osition w(0) ∈ R3 and yaw angle reference θ (0) ∈ [−π, π ) are

such that the

∆w(w , θ , x) ≥ 0, (56a)

∆θ (w , θ , x) ≥ 0 . (56b)

and if the influence regions of the obstacle constraints do not overlap
with each other and the influence regions of the wall constraints, the
following propositions hold

1. constraints (4) are always satisfied, for any piece-wise contin-
uous reference r(t) ∈ R3 and φ(t) ∈ [−π, π];

2. for any constant reference r ∈ R3 and φ ∈ [−π, π], w(t)
asymptotically tends to r∗ satisfying (5) and θ (t) asymptoti-
cally tends to φ. □

Proof. From Theorem 1 we obtain that the closed loop system
(2), (10) and (14) is asymptotically stable for all references and
states that verify arccos q̃R ≤ 2∆α .

By construction, dynamic safety margins (30) satisfy the re-
quirements of Nicotra and Garone (2018, Definition 1), moreover
∆w(w , θ , x) ≥ 0 and ∆θ (w , θ , x) ≥ 0 are sufficient to verify
the restriction (19) with the additional constraint (37), and hence
to avoid the input saturation (4). Moreover, it can be noted that
the navigation fields (31) satisfy the requirements of Nicotra and

5 Please note that Eq. (54) is designed to guarantee convergence for whatever
hoice of (p − w)⊥ .
0

7

Fig. 3. Planar trajectory performed by the UAV during the flight mission.

arone (2018, Definition 2) by construction. Finally, by consider-
ng the hypothesis (56) on the initial condition and the auxiliary
eference signals w(0) and θ (0), all the requirements of Nicotra
and Garone (2018, Theorem 1) are satisfied. Hence, the remainder
of the proof is therefore a direct result of Nicotra and Garone
(2018, Theorem 1). ■

6. Numerical validation

In this section we prove the effectiveness of the proposed
approach by considering a numerical simulation. We considered
the dynamic of a quadrotor characterized by a mass m = 2 kg
and an inertial matrix J = diag([0.0082 0.0082 0.0164]) kgm2.
The vehicle moves in a flight environment characterized by a
wall, which constraint is defined by c = [1 1 0]T/

√
2 and d =

60/
√
2, and a circular obstacle of radius R = 8m and centred

in p0 = [0 23 0]T m. The flight mission have been defined by
setting the reference position r = [0 80 0]T m and the reference
yaw φ = π , which have to been achieved starting from the
nitial position r = [0 0 0]T m and a null yaw angle. For the
ontrol laws (10) and (14), starting from the desired nominal
losed-loop dynamics, we have set the following control gains
p = 1.0966, kd = 1.4661, hp = 22.4808 and hd = 3.7768.

Fro the navigation layer, we have implemented the procedures
described in Section 5, by considering the obstacles in the flight
environment the maximum attitude error, and by setting the
values ∆α = 35 deg, τmax = 0.2Nm and Tmax = 39.24N.

Simulation results are summarized in Figs. 3–5. Fig. 3 shows
that the flight mission is successfully accomplished by the vehicle.
The UAV reaches the best steady-state admissible projection of
the desired reference by circumventing the obstacle and by avoid-
ing the wall. Moreover, from data in Fig. 4, it can be noted that
also input and state constraints are met during the flight mission
due to the applied references. Fig. 5 shows the performance of
the cascade control scheme. Moreover, we can note that the
navigation layer is able to guarantee the considered input and
state constraints, in spite of the control error.

7. Conclusions

In this paper we described the development of a GNC system
for the constrained control of an UAV. First we have developed a
stabilizing linear control system, based on a cascade architecture
for which we identified a Lyapunov function. Using this charac-
terization we developed a navigation layer which enforces the
constraints by manipulating the reference of the pre-stabilized
system based on an ERG. A numerical validations of the overall

scheme has been provided.
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Fig. 4. Evaluation of state and input constraints.

Fig. 5. Performance of outer loop controller.

Appendix A. Thrust Vectoring

Given the outer control law (10), it is necessary to determine
a suitable thrust T and control attitude qC , which provide the
esired thrust vector. To this end, consider the components of the
esired thrust vector
Fx
Fy
Fz

⎤⎦ = −mkp

⎡⎣px − vx

py − vy

pz − vz

⎤⎦− mkd

⎡⎣ṗx
ṗy
ṗz

⎤⎦− mg

⎡⎣0
0
1

⎤⎦ .

Since ∥R(qC )e3∥ = 1, ∀qC ∈ H, the required thrust can be
obtained directly from the modulus

T =

√
F 2
x + F 2

y + F 2
z . (A.1)

s for qC , it is useful to define β ∈ [−π, π] as the angle between
the axis e3 and the vector T · R(qC )e3, i.e.

β = arctan

√
F 2
x + F 2

y

Fz
.

The minimum rotation between e3 and R(qC )e3 is therefore given
by the unitary quaternion qβ , with6

qβ,R = cos
β

2
, qβ,I =

sin β

2√
F 2
x + F 2

y

[ Fy
−Fx
0

]
.

6 Please note that the solution is well-posed even if F 2
x + F 2

y = 0. Indeed, in
his case it follows that β = 0, which implies q = 1 and q = 0.
β,R β,I

8

Although qβ is such that R(qC )e3 = R(qβ )e3, this property does
ot imply qC = qβ . Indeed, given the unitary quaternion qθ , with

qθ,R = cos
θ

2
, qθ,I = sin

θ

2
e3,

it follows that e3 = R(qθ )e3. The control quaternion qC can thus
e obtained as the combination of an arbitrary rotation θ around
he yaw axis e3 and the minimum rotation β that aligns e3 with
the desired thrust vector. This is given by the quaternion-space
product qC = qβqθ , which can be computed in matrix form

qC,R
qC,I

]
=

[
qβ,R −qTβ,I
qβ,I qβ,RI3 + q∧

β,I

][
qθ,R
qθ,I

]
.

y taking advantage of the quaternion group multiplication rules
Mishchenko & Solovyov, 2000).

ppendix B. Proof of Theorem 1

The proof of Theorem 1 is based on four lemmas which are
rovided hereafter. The first two lemmas characterize the input-
o-state gains of the outer and inner loops.

To characterize the outer loop behaviour in the presence of
non-zero attitude error q̃ = qq∗

C , consider the VTOL model
2). Given q = q̃qC , the position dynamics can be rewritten as
p̈ = mg · e3 − T · R(q̃)R(qC )e3. By substituting the control law
10), the closed-loop system becomes

¨ = −kpR(q̃)(p − w) − kdR(q̃)ṗ + g(I3 − R(q̃))e3. (B.1)

he following lemma extends the results of Proposition 1 by
haracterizing the ISS properties of the outer loop in the presence
f an attitude error.

emma 2. Let system (B.1), with kp, kd > 0, be subject to a constant
pplied reference v and a bounded attitude error ∥α̃∥∞ ≤ ∆α
atisfying (19). Then, the Lyapunov function in Eq. (11) satisfies the
symptotic gain VOut ≤ χOut (∥α̃∥∞), defined by (21). □

roof. Given ϵ < 1, (11) is an ISS-Lyapunov candidate function.
y taking its time derivative and substituting (B.1), it follows that

˙Out = −
1
2

[
p − w

ṗ

]T [
Q11 QT

21
Q21 Q22

][
p − w

ṗ

]
+

[
p − w

ṗ

]T [
ϵkdI3
I3

]
g(I3 − R(q̃))e3 , (B.2)

where Q11 = ϵkpkd(R(q̃)T + R(q̃)), Q22 = kd(R(q̃)T + R(q̃) − 2ϵI3),
21 = kp(R(q̃) − I3) + ϵk2d(R(q̃)

T
− I3).

Using the modulus of p − w and ṗ, Eq. (B.2) can be upper
ounded by

˙Out ≤ −

[
∥p − w∥

∥ṗ∥

]T
QOut

[
∥p − w∥

∥ṗ∥

]
+

[
∥p − w∥

∥ṗ∥

]T [
ϵkd
1

]
d,

(B.3)

with QOut = QOut (∥α̃∥∞) and d = d(∥α̃∥∞) given in Eqs. (27)
and (22), respectively. To prove ISS, it is sufficient to note that
restriction (19) is such that QOut (∥α̃∥∞) > 0, ∀ ∥α̃∥∞ ≤ ∆α.
The asymptotic gain can now be computed by finding χOut (∥α̃∥∞)
such that VOut ≥ χOut (∥α̃∥∞) implies V̇Out ≤ 0. To do so, consider
the change of coordinates ζ =

√
QOut [ ∥p − w∥ ∥ṗ∥ ]T . Using

(25), Eq. (B.3) can be rewritten as

V̇Out ≤ −ζ T ζ + ζ TWd. (B.4)

Since W and M in Eqs. (25)–(26) describe an orthonormal basis,
the vector ζ can be decomposed into

ζ = σW + µM. (B.5)
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s a result, (B.4) becomes V̇ ≤ −µ2MTM −σ (σ −d)W TW , which
s non-negative for σ ∈ [ 0, d ] and

∈

[ √
σ (d − σ )

W TW
MTM

,

√
σ (d − σ )

W TW
MTM

]
.

t this point, consider the Lyapunov function (11). By substituting
B.5), it follows that

Out =

[
σ

µ

]T [
W TPW W TPM
MTPW MTPM

][
σ

µ

]
.

To end the proof, it is sufficient to note that (21) is the largest
value of VOut such that V̇Out is non-negative. ■

It is worth noting that the scalar parameter ϵ ∈ (0, 1) in
the Lyapunov function (11) can be chosen freely and can be
used to maximize the upper bound on ∆α. Given kd = 2ζ

√
kp,

here ζ > 0 is the damping ratio of the outer loop, the coef-
icients of inequality (19) become a = (1 − 4ζ 2ϵ)2, b = 1 +

ζ 2ϵ(1 − ϵ) + 16ζ 4ϵ2 and c = (1 + 4ζ 2ϵ)2. This implies that
he bound on ∆α is independent from kp. Given a fixed value
f the damping ratio,7 it is possible to maximize the restriction

19) by solving maxϵ∈(0,1) arccos
(

b+
√

b2+ac
a

)
, which is a convex

scalar optimization problem that can be solved off-line. Moreover,
given suitable parameters kp, kd, ϵ, the optimization problem
(21) is the maximization of a smooth scalar function VOut (σ ) in
bounded interval σ ∈ [ 0 , d(∥α̃∥∞) ]. In particular, the upper

bound χOut (∥α̃∥∞) can be easily be computed off-line and stored
in a one-dimensional lookup table.

To characterize the inner loop behaviour in the presence of a
time-varying control attitude q̇C , consider the following modifi-
cation to the attitude error dynamics (13)⎧⎪⎨⎪⎩
[

˙̃qR
˙̃qI

]
=

1
2
E(q̃) (ω − ωC )

Jω̇ = −ω∧Jω + τ ,

(B.6)

here ωC is the angular velocity of the control attitude. The
following lemma extends the results of Proposition 2 by charac-
terizing the ISS properties of the inner loop

Lemma 3. Let system (B.6) be subject to the control law (14)
ith hp, hd > 0. Then, there exists an asymptotic gain χIn such that

VIn ≥ χIn(∥ωC∥∞) implies V̇In ≤ 0. Moreover, given η ∝ hd and
hd ∝

√
hp, the asymptotic gain χIn remains bounded for arbitrarily

arge hp. □

roof. Given η < hd/λ3{J}, (15) is an ISS-Lyapunov candidate
unction. By taking its time derivative and substituting (B.6), it
ollows that

˙In = −

[
q̃I
ω

]T [
2ηhpI3 Σ

Σ hdI3 − ηJ(q̃RI3 − q̃∧

I )

][
q̃I
ω

]
−

[
q̃I
ω

]T [(hp + 2ηq̃Rhd
)
I3

ηJ
(
q̃RI3 + q̃∧

I

) ]ωC ,

here Σ = ηhd(q̃R−1)I3. In analogy to the proof of Proposition 2,

he following upper-bounded is obtained V̇In ≤ −

[
sin |α̃|

2

∥ω∥

]T

Q̄In

sin |α̃|

2

∥ω∥

]
+

[
sin |α̃|

2

∥ω∥

]T

D̄In ∥ωC∥∞ , with Q̄In given in (17) and

7 The damping ratio ζ is usually chosen during the control design phase
ased on other considerations.
9

D̄In =

[
hp + 2ηhd

ηµ(J)

]T
. This is sufficient to prove ISS since Q̄In > 0

under the assumption η ∈ (0, hd/(µ(J)+hd/2hp)]. To characterize
the asymptotic gain, consider the change of coordinates ζ =√
Q̄In

[
sin |α̃|

2 ∥ω∥

]T
, and let V̇In ≤ −ζ T ζ +ζ T

√
Q̄In

−T
D̄In ∥ωC∥∞ ,

hich implies

∥ζ∥ ≥


√
Q̄In

−T

D̄In

 ∥ωC∥∞ ⇒ V̇In ≤ 0. (B.7)

By upper bounding the Lyapunov function (15) as VIn ≤ 2hp sin2 |α̃|

2

+
1
2

[
sin |α̃|

2

∥ω∥

]T [
4ηhd 2ηλ3{J}

2ηλ3{J} λ3{J}

][
sin |α̃|

2

∥ω∥

]
, and substituting ζ ,

(B.7) implies VIn ≤ λ3{Q̂ } ∥ζ∥
2, where

Q̂ =
1
2

√
Q̄In

−T [4(hp + ηhd) 2ηλ3{J}
2ηλ3{J} λ3{J}

]√
Q̄In

−1

. (B.8)

As a result, the asymptotic gain is

χIn(∥ωC∥∞) = λ3{Q̂ }

√Q̄In
−T

D̄In

2 ∥ωC∥
2
∞

.

To study the behaviour of χIn(∥ωC∥∞) for increasing hp, con-
ider η ∝ hd and hd ∝

√
hp. Given (17), the following proportion-

alities hold true

Q̄In ∝

[√
hphp hp

hp
√
hp

]
D̄In ∝

[
hp√
hp

]
. (B.9)

By applying the following property of 2 × 2 matrices

√
A =

1√
Tr(A)+2

√
det A

[
a11 +

√
det A a12

a21 a22 +
√
det A

]
,

it can be shown that
√
Q̄In

−1
∝ 4
√
hp

⎡⎣ 1
hp

1
hp

1
hp

1√
hp

⎤⎦ .

Therefore, given Eqs. (B.8) and (B.9),√
Q̄In

−T
D̄In ∝ 4

√
hp

[
1
1

]
, Q̂ ∝

1√
hp

[
1 1
1 1

]
.

Since χIn ∝ λ3{Q̂ }

√Q̄In
−T

D̄In

2 =

√
hp

√
hp

= 1, the asymptotic

ain χIn(∥ωC∥∞) remains bounded for arbitrarily large hp. ■

Remark 2. The assumption hd ∝
√
hp presented in Lemma 3 is a

fairly reasonable design choice. Indeed, for linear systems in the
form ẍ = −hpx−hdẋ, it is customary to assign hd = 2ζ

√
hp where

ζ is the damping ratio and
√
hp is the natural frequency. □

Having determined the asymptotic gains between the distur-
ances and the value of the Lyapunov function, the next step
s to characterize the maximum gain between the value of each
yapunov function and the output of each loop. By using a thrust
ectoring technique, the control attitude qC can be computed
irectly from the desired outer loop control law (10). Since the
nner loop considers the angular velocity ωC as a disturbance, it is
necessary to characterize the maximum gain between the outer
loop Lyapunov function VOut and the resulting derivative of the
control attitude. This is done in the following lemma.

Lemma 4. Given the outer loop control law (10), subject to a con-
stant reference position v and yaw angle φ, there exists a maximum
gain ϕOut between the Lyapunov function (11) and the output ωC .
oreover, ∥ω ∥ is bounded for arbitrarily large values of V . □
C Out
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roof. Given a constant yaw angle φ, the angular velocity ωC is
equal to the derivative of the minimal angle α between the axis
e3 and the vector T · R(qC )e3, i.e.

α = arctan
(

1
Fz

√
F 2
x + F 2

y

)
, (B.10)

where Fx, Fy and Fz are the components the desired thrust vector.
iven Eq. (B.10), it follows that

C =
FxyḞz − Fz Ḟxy
F 2
xy + F 2

z
, (B.11)

ith Fxy =

√
F 2
x + F 2

y . From the outer loop control law (10), we

obtain that the derivative of Fz is Ḟz = mkpkd(pz − wz) + m(k2d −

p)ṗz, which is proportional to |pz − wz | and |ṗz |. Likewise, it can
e shown that Ḟxy ∝ |px − wx| +

⏐⏐py − wy
⏐⏐ + |ṗx| +

⏐⏐ṗy⏐⏐. Since
11), (B.11) are continuous functions of p−w and ẇ, there exists
maximum gain ϕOut such that ∥ωC∥ < ϕOut (VOut ). To prove

hat ∥ωC∥ is bounded, consider what happens for arbitrarily large
Out and, therefore, for arbitrarily large ∥p − w∥ and ∥ẇ∥. Given
B.11), it follows that

ωC ∝
(|px−wx|+|py−wy|+|ṗx|+|ṗy|)·(|pz−wz |+|ṗz |)

|px−wx|2+|py−wy|
2
+|pz−wz |2+|ṗx|2+|ṗy|

2
+|ṗz |2

.

As a result, ∥ωC∥ is bounded for any combination of state
variables going to infinity. Since it is also continuous, ϕOut (VOut )
admits a global maximum. ■

Although Lemma 4 does not explicitly state the gain ϕOut (VOut ),
its existence and global boundedness will be sufficient for the re-
mainder of this paper. The following lemma will instead provide
a more detailed characterization of the maximum gain between
the inner loop Lyapunov function and the output α̃.

Lemma 5. Given the Lyapunov function (15), the output α̃ satisfies
the maximum gain |α̃| ≤ ϕIn(VIn).

Proof. The Lyapunov function (15) is minimum with respect to
the vector ω for ω = −2ηq̃I . By substituting this value in (15), it
follows that VIn ≥ 2hp(1 − q̃R) + 2η˜qTI (hdI3 − ηJ) q̃I . By taking
into account q̃TI J q̃

T
I ≤ λ3{J}

q̃I2 and sin2(x) ≥ (1 − cos(x)),
∀x ∈ [−π/2, π/2], the following lower bound holds true

VIn ≥ 2(hp + η (hdI3 − ηλ3{J}))
(
1 − cos

α̃

2

)
, ∀α̃ ∈ [−π, π] .

he statement is then proven by inverting this inequality to
btain (20). ■

Finally, by combining the results presented in the previous
emmas, Theorem 1 can be proven as follows.

roof (Theorem 1). From Lemma 4 we obtain that ∥ωC∥∞ <

Out (VOut ) is bounded regardless of VOut . Additionally, it follows
rom Lemmas 3 and 5 that the attitude error α̃ will asymptoti-
ally satisfy ∥α̃∥ ≤ ϕIn(χIn(∥ωC∥∞)), where χIn remains bounded
hereas ϕIn becomes arbitrarily small for arbitrarily large hp. As
result, there exists a sufficiently large hp such that ∥α̃(t)∥ ≤

α, ∀t ≥ τ , where τ ≥ 0 is a finite time instant. Without loss
f generality,8 consider the case τ = 0. Since the requirements
f Lemma 2 hold true, the outer loop will satisfy the asymptotic
ain VOut ≤ χOut (∥α̃∥∞). The stability of the interconnected
oops is therefore proven using the Small Gain Theorem since
Out (ϕIn(χIn(ϕOut (VOut )))) < VOut holds true for sufficiently large
p. As a result, it follows from Jiang et al. (1996) that (18) is a
yapunov function. To conclude the proof, it is sufficient to note
hat V (0) ≤ χOut (∆α) implies ϕIn(VIn(t)) ≤ ∆α, ∀t ≥ 0. ■

8 If τ > 0, it is sufficient to define a new timescale t̃ = t − τ and study the
ystem for t̃ ≥ 0.
10
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