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A B S T R A C T   

The improvement of economic management in farms has become an important research topic in recent decades 
as the most dominant feature of current farm management information systems (FMIS). Production cost statistics 
allow farmers to assess the economic impact of farm activities and compare historical data against previous farm 
practices or competitors’ activities. Therefore, the availability of reliable cost data is of utmost importance for 
FMIS, especially data on agricultural machinery usage. Technical sheets, grey literature, and international 
standards provide estimates of farm operation costs, but they suffer from low accuracy because agricultural 
machinery is subjected to the high variability of both environmental and working conditions. Based on these 
considerations, this work aims to develop a novel methodology for cost calculations of field operations har
nessing real-world CANBUS data based on the activity-based costing (ABC) approach. The research was con
ducted on a 198-kW tractor equipped with a CANBUS logger and several implements on which Bluetooth beacons 
were installed to automatically recognise agricultural operations. The acquired data were processed to identify 
the daily jobs performed by observing machine position (e.g., field, farm, or road) and operating condition states 
(e.g., moving, fieldwork, or idling). The ABC approach was applied in two steps: first, cost driver rates were 
assessed to define capital and non-capital costs; then, the costs of each agricultural operation performed were 
defined, correlating the cost drivers with the recorded jobs. The results show that fuel and labour costs combined 
affect 63%–71% of the total cost per hectare for the tested implements. The cost per hectare was found to be 
highly variable: the biggest gap between the higher and lower values registered with the same implement was 
216.48 € ha− 1. This methodology could help farmers to make more thoughtful decisions about crop, land, and 
farm operations management.   

1. Introduction 

Over the last twenty years, farms have become larger and more 
complex organisations, making good governance and the search for 
profitability crucial aspects of primary food production management. 
Farmers have begun to reliably control the management processes of 
crops, to an extent, which includes recording chronologies of all agro
nomic activities (Doerge, 1999). Moreover, various farm management 
strategies and methods have been employed to enhance farm produc
tivity and profit. Financial management includes tasks such as ac
counting, budgeting, planning, and management control. The latter has 
grown more important in the last decade; unsurprisingly, it is the most 
dominant feature of current farm management information systems 
(FMISs), in which it is primarily presented as tools to support farmers in 
making billing plans, performing financial analysis and planning, 
calculating economic results, and budgeting (Munz et al., 2020; Paraf
oros et al., 2017; Tummers et al., 2019). 

The expansion of farms facilitates the adoption of such management 
tools, which, in theory, allows them to simplify farming performance 
evaluations while improving farmers’ decision-making abilities. How
ever, the expansion also augments the lack of management abilities and 
skills necessary to make the best decisions. Farmers mostly rely on 
experience, intuition, and personal memory, but these are not sufficient 
to face the many challenges and risks that characterise modern agri
culture (Yang et al., 2018). 

1.1. Cost monitoring and activity-based costing 

Costs are pivotal elements in managerial decisions, especially for 
large organizations managing several activities and producing diverse 
outputs. At the farm level, production cost statistics contribute to 
improving assessments of farm activities, allowing farmers to evaluate 
farm operations and benchmark them against best or previous practices 
in their farm’s history as well as against the practices of their competi
tors. The subdivision of the cost-share is dependent on the type of farm; 

* Corresponding author. 
E-mail address: massimiliano.varani@unibo.it (M. Varani).  

Contents lists available at ScienceDirect 

Computers and Electronics in Agriculture 

journal homepage: www.elsevier.com/locate/compag 

https://doi.org/10.1016/j.compag.2022.106792 
Received 29 October 2021; Received in revised form 10 February 2022; Accepted 12 February 2022   

mailto:massimiliano.varani@unibo.it
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2022.106792
https://doi.org/10.1016/j.compag.2022.106792
https://doi.org/10.1016/j.compag.2022.106792
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2022.106792&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Electronics in Agriculture 194 (2022) 106792

2

for instance, a large share of field crop farm costs is from machinery, 
which comprises assets associated with depreciation and resource con
sumption (Hunt and Wilson, 2015; Vozka, 2007; Wang et al., 2021; 
Weersink et al., 2008). Moreover, the recent introduction of precision 
farming technologies in machinery could increase field operation effi
ciency and reduce resource waste. However, the purchase cost of these 
more advanced machines is higher (Zhang et al., 2018). 

Thus, the existence of robust and reliable cost data is of utmost 
importance for making informed decisions as they allow farm analysts to 
measure farm efficiency and advise farmers accordingly. As a result, 
farmers can be more aware of how to improve the efficiency and prof
itability of their work. Estimations of farm operation costs are available 
from technical sheets and grey literature but they suffer from rapid 
changes in prices and technology, thereby losing interest each year. 
Furthermore, ASAE developed standards to calculate the cost of ma
chines (ASAE, 2015) but they are based on the typical conditions of 
North American farms, leading to significant margins of error in 
different contexts, such as small-scale and organic farms, which are 
more popular in Europe. For example, tractors can operate at very 
different power levels as a function of their traction elements (i.e., 
pneumatic tires, tracks, etc.), the soil conditions, and the implement 
setup (Balsari et al., 2021; Mattetti et al., 2020; 2017). This implies to 
cope with high variability of machinery usage and fuel consumption, 
leading to very different cost estimates even on the same farm. 

Unfortunately, most farmers rely on rough cost estimations alone, 
particularly to assess general costs (overhead), which are allocated to 
final products based on only a few cost drivers (i.e., factors causing a 
change in the cost of an activity) – sometimes just direct labour or ma
chine hours in tabular formats. In enterprises that typically use shared 
resources to produce a variety of goods and services, this practice can be 
inaccurate and misleading because it may overestimate the cost of one 
final product and underestimate the cost of another, leading to a bias 
known as ‘cross subsidisation’ (Gupta and Galloway, 2003). This phe
nomenon can affect the evaluation of crop profitability and lead to 
inappropriate management choices. The risk of cross-subsidisation can 
be minimised by adopting a direct costing approach, such as the widely 
known practice of attributing variable costs to final products (e.g., fuel 

cost and agronomic input costs to food production for field crop farms or 
operations carried out for contractors). Activity-based costing (ABC) was 
introduced by Kaplan and Cooper (1998) and is one of the most well- 
known budget management tools for direct costing. It can be consid
ered as a different approach to management, not just budgeting, as well 
as a way to interpret economic performance. While most of the general 
farm costs (e.g., input costs, insurance costs, equipment purchases, 
amortizations) in conventional cost allocation approaches are allocated 
to final products on arbitrary bases, such as variation in input stocks 
across years, agricultural products, or approximate time of use of ma
chinery, an ABC system requires the collection of general costs for each 
performed activity (e.g., ploughing, subsoiling), identification of quan
titative measure of the activity output (i.e., cost drivers), and calculation 
of activity utilisation rates. ABC implementation is a complex process 
since it requires more data than traditional costing approaches, but it 
provides more informed estimates of product costs and focuses on 
managing activities to reduce costs. 

1.2. Agricultural machinery costs 

Among cost drivers, machinery costs are one of the most difficult for 
farmers to monitor; therefore, they are often overlooked. The only 
reason for farmers to monitor the activities of machinery is that they are 
tax-deductible expenses. Modern agricultural machinery integrates 
several sensors into the CANBUS network following the J1939 and ISO 
11783 (ISOBUS) standards. These technologies are well established in 
farms, and machinery embedded with these technologies has been 
commercially available for years: the first tractor equipped with the 
CANBUS was released in 1994 (Young, 1994), and the first implement 
equipped with ISOBUS was released in 2001 (Stone et al., 2008). Both 
technologies help collect detailed and specific data describing machin
ery operation (e.g., the torque developed by the engine, engine revolu
tion speed) and represent a useful source of data that must be mined to 
obtain the information required for farm decision-making. In fact, the 
use of CANBUS and ISOBUS technologies can pave the way to improving 
cost allocation to farm output products or activities, creating an op
portunity for the application of direct costing approaches. These 

Nomenclature 

c Driver rate for tractors and implements (€ h− 1) 
ci Driver rate assigned at the i-th cost item (see) (€ h− 1) 
dJ Job travelled distance (km) 
dT Task travelled distance (km) 
ḟ Fuel consumed by the engine per unit of time (l h− 1) 
fJ Job fuel consumption (l) 
fT Task fuel consumption v 
h Annual working hours (h) 
n Equipment economic life (years) 
ne Revolution speed of the engine crankshaft (rpm) 
r Money interest rate (%) 
tJ Job duration (s) 
tT Task duration (s) 
AJ Job worked area (m2) 
AT Task worked area (m2) 
CA

J Job total cost per hectare (€ ha− 1) 
Ct

J Job total cost per unit of time (€ h− 1) 
CA Total cost per hectare considering every job performed (€ 

ha− 1) 
Ct Total cost per unit of time considering every job performed 

(€ h− 1) 
CA

i,J Total resource costs per hectare for each job (€ ha− 1) 

Ct
i,J Total resource costs per unit of time for each job (€ h− 1) 

CA
i,J,of Cost per hectare of capital and non-capital resources used 

only in field passes (€ ha− 1) 
I Initial equipment investment (€) 
Ii Cost driver in the form of tJ for all resources, except for 

fuel, which takes the form of fJ (s)/(l) 
IDi Implements identifiers (–) 
IDJ Job identifiers (–) 
L Location identifiers 
Me Actual engine torque as a percentage of Mr (%) 
Mf Sum of the engine frictional and thermodynamic loss, 

pumping torque loss, and losses of fuel, oil, and cooling 
pumps as a percentage of Mr (%) 

Mr Maximum engine torque available (Nm) 
Pe Actual engine power (kW) 
Pe,T Task average engine power (kW) 
PofA

J Percentage of the cost per hectare spent on field for each 
job (%) 

Sn Equipment salvage value (€) 
Tf Temperature of the fuel (◦C) 
V Ground speed measured through the GNSS receiver (km 

h− 1) 
VT Task average ground speed (km h− 1)  
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approaches can also fit particularly well with site-specific operations in 
the context of precision agriculture, which is characterised by its sub
stantial potential to improve agricultural performance (Backman et al., 
2019; Pedersen et al., 2019). 

Based on these considerations, this work aims to develop a novel 
methodology for cost calculations of field operations based on real- 
world CANBUS data and the ABC approach to achieve more precise 
monitoring and allocation of farm costs and production costs. 

2. Materials and methods 

The developed method was applied to a 6230 CVT row-crop tractor 
made by Steyr (CNH Industrial N.V., Amsterdam, NL) with an engine 
power of 198 kW, an unballasted mass of 7300 kg and equipped with a 
continuously variable transmission (CVT) (LECTURA SPECS, 2015). 
This tractor was chosen mainly for its richness of embedded sensors, 
which allow for comprehensive identification of the operating state. The 
tractor was used by six different professional operators and employees of 
a contractor, and the data acquisition system was completely auto
mated; thus, the operators were not responsible for the recording pro
cess to avoid any influence on the tractor usage. The tractor was 
monitored for approximately two years (from October 2018 to January 
2021) using a custom-made CANBUS data logger developed in previous 
studies by one of the authors of this research (Mattetti et al., 2021; 
Molari et al., 2013). The tractor was used for 177 days, equivalent to 
1323 h. The CANBUS data logger was equipped with an embedded GNSS 
receiver (sampling rate of 5 Hz, circular error probable (CEP) of 2.5 m) 
and a Bluetooth Low Energy (BLE) scanner compatible with Bluetooth 
5.0. The BLE scanner was designed to scan the nearby BLE beacons 
attached to the implements hitched to the monitored tractor and record 
their identifiers (IDi). This approach was used because most of the 
contractor’s implements were not ISOBUS compliant. 

2.1. Data collection 

The CANBUS logger was set up in order the signals with the following 
suspect parameter numbers (SPNs) and parameter group numbers 
(PGNs) (ISO, 2012; SAE, 2013): 

SPN 544 and PGN 65251: ‘Engine Reference Torque’ reports the 
maximum engine torque available, denoted as Mr in the following 
equation; sampling rate of 0.2 Hz. 

SPN 513 and PGN 61444: ‘Actual Engine - Percent Torque’ reports the 
torque as a percentage of Mr and is denoted as Me in the following 
equation; sampling rate of 50 Hz. 

SPN 513 and PGN 5398: ‘Nominal Friction - Percent Torque’ reports 
the sum of the engine frictional and thermodynamic loss, pumping 
torque loss, and losses of fuel, oil, and cooling pumps as a percentage of 
Mr, denoted as Mf in the following equation; sampling rate of 20 Hz. 

SPN 190 and PGN 61444: ‘Engine Speed’ reports the revolution speed 
of the engine crankshaft, denoted as ne in the following equation; sam
pling rate of 10 Hz. 

SPN 1883 and PGN 65090: ‘Rear PTO Output Shaft Speed’ reports the 
speed of the rear PTO; sampling rate of 10 Hz. 

SPN 1882 and PGN 65090: ‘Front PTO Output Shaft Speed’ reports the 
speed of the front PTO; sampling rate of 10 Hz. 

SPN 183 and PGN 65266: ‘Engine Fuel Rate’ reports the fuel 
consumed by the engine per unit of time, denoted as ḟ in the following 
equation; sampling rate of 10 Hz. 

SPN 1873 and PGN 65093: ‘Rear Hitch Position’ reports the position 
of the rear three-point hitch; sampling rate of 10 Hz. 

SPN 174 and PGN 65262: ‘Engine Fuel Temperature 1′ reports the 
temperature of the fuel, denoted as Tf in the following equation; sam
pling rate of 1 Hz. 

In addition to these signals, the machine’s position and ground speed 
(V) were measured through the embedded GNSS receiver. From the 

recorded data, the actual engine power Pe was calculated using Equation 
(eq.) 1: 

Pe = Mr
Me − Mf

100
ne (1) 

Using MathWorks’s MATLAB (Natick, MA, USA), the signals were 
interpolated at 10 Hz using a cubic spline for a consistent sampling rate 
of all the signals and to remove any high-frequency disturbances. 

2.2. Data processing 

The signals were classified according to the types of agricultural 
activities performed for crop production. To this end, the classification 
scheme proposed by Mattetti et al. (2021) was adopted. According to 
this approach, the data were classified based on two parameters: 1) the 
machine position (e.g., field, farm, or road) and 2) the operating con
dition states (e.g., moving, fieldwork, or idling). The former was 
determined using a shapefile containing the geographic coordinates of 
roads, field boundaries, and farm units. An identification variable (L) 
was assigned to each position. The latter was determined according to 
the specific uses of the tractor subsystems (i.e., transmissions, three- 
point linkage, PTO). Combining these two classifications, the 
following work states were defined: on-road moving, off-road moving, 
field work, idle@field, idle@farm, and unclassified. 

In this context, a task was defined as a portion of signals during 
which neither the work states nor hitched implement varied. Each task 
was tagged to a certain location and implement through variables L and 
IDi, respectively. The tasks are further described by the following pa
rameters:  

• Duration (tT)  
• Average ground speed (VT)  
• Average engine power (Pe,T)

• Fuel consumption (fT), according to eq. (2): 

fT =

∫

tT
ḟ dt (2) 

Only for those tasks that took place in a field was the worked area 
(AT) considered and calculated using GNSS coordinates according to the 
approach proposed by Heiß et al. (2019). For moving tasks, the tractor’s 
travelled distance (dT) was calculated using eq. (3): 

dT = VT tT (3) 

The collected data included several errors leading to task misclassi
fication and other erroneous results. This may have been caused by a 
temporary signal loss of the GNSS receiver, inadvertent driver ma
noeuvres, or driver change-of-mind situations (i.e., situations where the 
driver started a manoeuvre but immediately changed the type of 
manoeuvre). These situations resulted in very short tasks that could 
complicate the subsequent data analysis since they could not be classi
fied to any field activity. Thus, to limit possible bias, tasks shorter than 
10 s or with AT lower than 0.3 ha were excluded from the analysis. That 
task filtering removed tasks accounted of 6.2 h – equal to 0.77% of the 
duration of the entire dataset and accounting for a fuel consumption of 
0.26% of the total fuel consumed in the monitoring campaign – so the 
impact of this filtering was negligible. 

A job was defined as a sequence of tasks leading to a field activity 
(Bochtis et al., 2019), including implement hitching at the farm, moving 
the tractor to the field, field work, moving the tractor to the farm, and 
tractor parking. Under this definition, a job was identified by a sequence 
of tractor tasks classified in certain work states; this sequence may 
change in both structure and duration depending on the activity per
formed. Thus, to classify a job, a specific encoding for automatically 
identifying sequences of work states was adopted, taking the form of a 
regular expression that searched for the following patterns: 
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(1) idle@farm: optional  
(2) off-road moving: optional  
(3) on-road moving: mandatory  
(4) off-road moving: mandatory  
(5) (repetitive sequence of field passes, headland turns, idle@field): 

mandatory  
(6) off-road moving: optional  
(7) on-road moving: optional  
(8) idle@farm: optional 

Each matching sequence of tasks was assigned a job identifier (IDJ). 
Fig. 1 reports the trajectory data of the tractor in two subsequent jobs. 
On the left side, the trajectory data are illustrated by work state classi
fication; on the right, the data are illustrated by job classification. In ‘job 
– 1′, the tractor moves from a farm unit to a field next to the farm, 
passing states 1, 3, 4, and 5, while in ‘job – 2′, the tractor moves from one 
field to another and then moves back to the farm unit, passing states 2, 3, 
4, 5, 6, 7 and 8. The last three states were assigned to ‘job – 2′ since it was 
the last job of the day. 

For each job, the following parameters were calculated:  

• Duration (tJ) as the sum of durations of all the tasks assigned to each 
IDJ: 

tJ =
∑

tT(IDJ) (4)    

• Fuel consumed in a job (fJ) as the sum of fuel consumed for all the 
tasks assigned to each IDJ: 

fJ =
∑

fT(IDJ) (5)    

• Distance travelled by the tractor (dJ) as the sum of the distances 
travelled by the tractor during moving tasks assigned to each IDJ: 

dJ =
∑

dT(IDJ) (6)    

• Area worked (AJ) as the sum of the worked areas of all the tasks 
taking place on a field assigned to each IDJ: 

AJ =
∑

AT(IDJ) (7)  

2.3. Application of ABC 

In applying the ABC framework in the context of this study, the costs 
that can be assigned to the performed activities (i.e., tasks and jobs) 
were defined in two steps: first, cost driver rates were assessed, defining 
capital and non-capital costs, which helped to define job costs as 
described in Medici et al. (2021). 

2.3.1. Cost driver rates 
Machines and implements are capital goods commonly shared 

among several field operations, and they are mostly used in combina
tion. Their capital costs include investment, interest, and depreciation. 
Reasonably, the annual costs of interest and depreciation can be esti
mated based on the annuity distributed over the economic life of the 
machine. A cost driver is a quantitative measure of the use of a resource. 
In this study, duration drivers, which represent the amount of time 
consumed by the resource (e.g., machines, implements, and human la
bour), and intensity drivers, which account for the quantity of fuel used, 
were directly assigned to each job. Driver rates (€ per unit time or mass) 
were estimated both for capital goods (i.e., tractors and implements) and 
non-capital resources (i.e., fuel and labour). The driver rates for tractors 
and implements were calculated with eq. (8), and the average yearly 
equipment costs were adapted from Schoney (1980): 

c =

[
(I − Sn)r

1 − (1 + r)− n + Snr
]

1
h

(8) 

where I is the initial equipment investment in € obtained from the 
purchase bill; h represents the annual working hours of each tractor and 
implement; Sn is the salvage value after n years in €, equal to 20% of the 
initial investment; n is the economic life in years; and r is the annual 
interest rate, assumed to be equal to 3% to account for ownership and 
operating costs, in line with Kay et al. (2016). Furthermore, an economic 
life of 10 years for most tillage implements, 8 years for the seeder, and 
15 years for the tractor were assumed, in line with the available litera
ture (Edwards, 2015; Medici and Canavari, 2021). The annual working 
hours (h) were estimated considering the estimated life of similar 
equipment reported by ASAE (2015), resulting in 200 annual working 
hours for all the implements except for the seeder, which was deter
mined to have 150 annual working hours. For the tractor, an annual 
value of 611 h was calculated based on the 1323 h recorded over the 
monitored period of 26 months. Table 1 reports the main specifications 
of the equipment used most often by the tractor in the recorded period. 

The driver rates for non-capital resources (i.e., fuel and labour) were 
assumed based on the market costs: a value of 0.77 € l− 1 was adopted for 

Fig. 1. Tractor trajectory data by tractor classification states (left) and job classification (right).  
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fuel (agricultural diesel) while an hourly salary of 19.60 € h− 1 was 
considered for labour costs, in line with projects funded by the EU Rural 
Development Programme in the Emilia-Romagna region (Italy). The 
driver rates are reported in Table 2. The machinery costs were calculated 
using eq. (8) and the investment costs reported in Table 1. Table 2 

2.3.2. Job costs 
Agricultural machines can be used by farmers or managed by con

tractors. Thus, job costs were reported per both surface and time units. 
Costs per hectare can benefit farmers, who are familiar with the pro
duction costs per unit of output (e.g., tons) that in turn depend on yields, 
expressed, e.g., as tons per area. At the same time, hourly costs can be 
directly interpreted by contractors who are mostly focused on the 
profitability of their activities and the return of their investment in 
machinery across time scales. Therefore, to calculate the total cost of 
each job performed, cost drivers were multiplied by the quantity or 
duration associated with each resource use. For each job, total resource 
costs per hectare (i.e., AJ) (CA

i,J) and time (i.e., tJ) (Ct
i,J) were calculated 

with eqs. (9) and (10), respectively: 

CA
i,J = ciIi/AJ (9)  

Ct
i,J = ciIi/tJ (10)  

where ci is the driver rate assigned at the i-th cost item (Table 2) and Ii is 
the cost driver that takes the form of the job time (tJ) for all resources 
(eq. (4)), except for fuel, which takes the form of fuel consumed for the 
job (fJ). For each job, the total cost was calculated as the sum of the costs 
of the capital and non-capital resources used (eqs. (11) and (12)): 

CA
J =

∑

i
CA

i,J (11)  

Ct
J =

∑

i
Ct

i,J (12) 

The percentage of the cost per hectare spent on fields for each job 
(PofA

J ) was calculated as: 

Pof A
J =

∑
iCA

i,J,of

CA
J

*100 (13)  

where CA
i,J,of is the cost per hectare of the capital and non-capital re

sources used only in field passes, headland turns, and idling at fields, 
excluding all the other activities listed in the patterns described in 
Section 3.2. 

The obtained values of CA
J , Ct

J, and PofA
J were organised in boxplots 

(Figs. 6, 7, and 8, respectively) grouped by the implement mounted on 
the tractor during each job observing the values of IDi. 

Moreover, the total costs of every job performed by the tractor were 
calculated with: 

CA =
∑

j

∑
iCA

i,JAJ

AJ
(14)  

Ct =
∑

j

∑
iCA

i,J tJ

tJ
(15) 

The obtained values were visualised in a stacked bar plot grouped by 
implement observing the values of IDi (Fig. 5). 

3. Results and discussion 

The work states describing all the tractor activities are shown in 
Fig. 2. The tractor was idle more than the average reported in other 
studies (i.e., 20%) (Jenkins, 1960; Molari et al., 2019; Perozzi et al., 
2016), which might be due to the longer duration of the data acquisition 
process that caused longer idling activities for machine servicing. 
Moreover, the extent of moving tasks was particularly high compared 
with a previous study conducted in similar conditions (Mattetti et al., 
2021), which might be because the monitored tractor was managed by a 
contractor and was used to cover a larger area, as the farther fields were 

Table 1 
Main equipment specifications and investment costs.  

Equipment model Equipment 
type 

Abbreviation Implement width 
(m) 

Implement mass 
(kg) 

Initial investment (I)
(€)  

Steyr 6230 CVT (CNH Industrial N.V., Amsterdam, NL) Tractor tra  (-) (-)  111,858.00 
MA/AG EDX780C/28 (MA/AG S.r.L., Casalbuttano (CR), IT) Cultivator cul  3.9 2230  8,240.00 
ER.MO FSV21024ML (ER.MO S.p.A., Casalbuttano (CR), IT) Plough plo  1.8 2200  8,034.00 
Frandent R303.19 

(Frandent Group S.R.L., Osasco (TO), IT) 
Power harrow ph3  3.0 1547  14,183.10 

PÖTTINGER Terradisc 3000 (PÖTTINGER Landtechnik GmbH, 
Grieskirchen, DE) 

Seeder see  3.0 1350  5,150.00 

Power harrow 
Frandent RP502.28 (Frandent Group S.R.L., Osasco (TO), IT) 

Power harrow  ph5  5.0 3378  27,501.00  

Table 2 
Cost driver rates for capital and non-capital resources.  

Cost item Cost item nomenclature Driver rate c (€ h¡1)  

Fuel f  0.77* 
Labour OP  19.60 
Machinery cul  3.56 

plo  3.47 
ph3  6.12 
see  2.37 
ph5  11.88 
tra  13.37 

*value per unit of mass (€ l− 1). Fig. 2. Time contribution of each work state on the entire tractor activity.  
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55 km away. Last, turning to the work state, the tractor was used for 
working on fields 59% of the time, which is a typical value for this 
machine class (Mattetti et al., 2021). 

Signal processing identified 25,519 tasks grouped into 197 jobs. 
Some tasks were not assigned to any job because they did not match the 
defined job identification pattern; these tasks make up 31% of the entire 
acquisition duration. In these cases, the tractor was mainly used for 
moving activities such as moving implements from one farm unit to 
another. This occurred because the tractor was often used for moving 
tasks due to its large area of operation. 

The durations of the detected jobs ranged from 25 to 782 min with a 
median value of 156 min. The time contribution of each tractor work 
state among the jobs is reported on the left of Fig. 3. The largest time 
contribution is provided by the passes state, with a median value of 67%; 
the second-largest contribution was from the headlands, which 
contributed approximately 22%. The fuel consumption contribution of 
each work state among the jobs is reported on the right side of Fig. 3. The 
boxplot resembles that on the left of Fig. 3, but the contributions are 
mostly skewed towards the passes tasks since the fuel consumed is a 
combination of the fuel rate (i.e., engine load) and the work state 
duration, as passes tasks are more energy-consuming than the other 
work states (Cucinotta et al., 2019). The fuel contribution of the passes 
tasks reaches 88% in fields, where the primary time contribution is from 
passes states. 

Fig. 4 reports the cumulative distribution of the ratio between AJ and 
dJ. The median value of the distribution is 0.25 ha km− 1, but this value 
may significantly change across jobs as a function of the relative dis
tances between fields. The values observed in this study are much lower 
than those reported in other studies where it was assumed that, on 
average, tractors travel 2 km for each worked hectare (i.e., the ratio 
between AJ and dJ is 0.5 ha km− 1) (Lampridi et al., 2020; Nemecek and 
Kägi, 2007). This means that the actual amount of fuel used for opera
tions per hectare might be greater than typically assumed. 

The total cost per hectare CA for each implement mounted on the 
tractor is reported in Fig. 5. 

CA changes significantly depending on the type of implement. Im
plements characterised by low field capacities, such as the plo, ph3, and 
see, show the highest costs per hectare. It must also be considered that 
these implements were mostly used for working small and irregular 
fields, which are conditions that limit the field capacities of machines. 

For all the implements, the most significant cost drivers were fuel (CA
f ) 

and labour (CA
OP), with their sums reaching 63% and 71% of CA, 

respectively. The tractor (CA
tra), which had a higher driver rate than the 

implements, made the greatest contribution to capital resources 
(Table 2). These results can allow for a cost comparison between 
different tillage activities based on the cost per hectare. For example, the 
cost per hectare of a conventional tillage system can be compared with 
that of a minimum tillage system. For a conventional tillage system, this 
case study found the most convenient solution to be composed of the plo, 
ph5, and see, with a total cost per hectare of 290.19 € ha− 1. For a min
imum tillage solution composed of the cul and see, the total cost per 
hectare would be 135.02 € ha− 1, which is 53% lower than that of con
ventional tillage. Of course, these savings for minimum tillage do not 
consider costs other than those of the tillage operation (i.e., weed con
trol and fertilization), but this finding is in line with that of Sijtsma et al. 
(1998) from small plot calculations. This methodology can help farmers 
in make-or-buy decisions; in the context of this case study, the high 
value of CA registered by the ph3 (Fig. 5) would facilitate the 
outsourcing of harrowing operations. However, hourly costs (eq. (15)) 
were instead found to be irrelevant since both the tractor and human 
labour contributions were taken as constant, with the implement and 
fuel as the only two varying cost drivers, but not independently: the 
heavier the agricultural operation, the higher the demanded fuel rate for 
the field operation. Figs. 6 and 7 report the distributions of CA

J and Ct
J for 

each implement. The median values of CA
J grouped by implement type 

(Fig. 6) confirm the fact already observed in Fig. 5, that implements with 
low field capacities show the highest costs per hectare. This is particu
larly noticeable when comparing the results obtained by ph3 and ph5, 
since they are the same type of implement but with different widths: the 
median value of CA

J of the ph3 is 3.4 times higher than that of the ph5, 
even if the latter is more energy demanding and consumes more fuel. 
This can be also observed in Fig. 7, where the median value of Ct

J of the 
ph3 is 20% lower than that of the ph5, mainly due to the higher rate of 
fuel consumption required by the latter. 

The highest variability of the CA
J was registered by the ph3, with a 

difference between the upper and lower limits of 216.48 € ha− 1. This is 
mainly due to its small size, which leads it to be often used in small 
extension fields with irregular shapes; therefore, the time contribution 
of work states other than passes was significant (Fig. 3). In fact, ph5 

Fig. 3. Boxplots reporting the time contributions of the tractor work states among the jobs. Red crosses correspond to the outliers. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Empirical cumulative distribution of the ratio between the job worked area (AJ) and job moving distance (dJ).  

Fig. 5. Impact of each cost driver on the total cost per hectare (CA
J ) of every tested implement. * value is cul for the cultivator, plo for the plough, ph3 for the 3 m wide 

power harrow, see for the seeder and ph5 for the 5 m wide power harrow. 

Fig. 6. The total cost per hectare (CA
J ) grouped by implement mounted on the tractor. cul = cultivator; plo = plough; ph3 = 3 m wide power harrow; see = seeder; and 

ph5 = 5 m wide power harrow. 
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registered a variability 3.1 times lower than ph3 because it is mainly 
used on large and regular-shaped fields where the AJ/dJ ratio is high. On 
the other hand, the variability of Ct

J registered by the ph5 is 1.74 times 
higher than that of the ph3: the variability of Ct

J for the ph5 is mainly 
affected by the fuel rate consumption variability, which is directly 
proportional to the energy required to operate it. Operational parame
ters such as tractor speed, soil typology, and moisture content are the 
main cause of this variability. 

The analysis of the percentage of the cost per hectare of field (PofA
j ) 

presented in Fig. 8 shows that for all the considered implements, the 
median value of the percentage of CA

j due to the actual work on the field 
ranged from 60% to 91%. The high variability showed by some imple
ments, such as cul and see, was mainly due to variability in the distance 
of the field tilled by the contractor from the farm. 

4. Conclusions 

Machines embedded with CANBUS technologies that can collect data 
automatically are currently available to most farms. In this study, we 

developed an automated data collection process to feed an ABC system 
for farming activities. The method was applied using CANBUS data from 
a large database that covered recurring operating conditions and 
accounted for a large variety of environmental and human labour fac
tors. Data analysis highlighted that the tractor was used for on-field 
activities 59% of the time, while the percentage of idling time was 
25%. Higher costs per hectare were registered for the implements 
characterized by lower field capacities. Moreover, fuel and labour were 
found to be the most significant cost drivers: their sum contributes be
tween 63% and 71% of the total cost per hectare of the tested 
implements. 

The advantage of the methodology reported in this paper is that it 
will enable farmers to keep track of the working periods of their ma
chines, which are usually accounted for using tables that only consider 
the average conditions. Moreover, such a system will facilitate accurate 
recordings of the direct energy used in farms, thereby allowing for 
evaluation of the energy efficiency in alternative agricultural production 
systems (e.g., conventional tillage, minimum tillage, no-tillage). The 
method reported in the study could be further improved by monitoring 
the entire fleet of machines used by contractors/farms so the annual 

Fig. 7. The total hourly cost (Ct
J) grouped by implement mounted on the tractor. cul = cultivator; plo = plough; ph3 = 3 m wide power harrow; see = seeder; and ph5 

= 5 m wide power harrow. Red crosses represent the outliers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 8. Percentage of the cost per hectare of field. cul = cultivator; plo = plough; ph3 = 3 m wide power harrow; see = seeder; and ph5 = 5 m wide power harrow. Red 
crosses represent the outliers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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working hours of implements can be accurately calculated. This will also 
allow farmers to make informed decisions regarding their investments in 
machinery and operations management innovations. 
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