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Abstract 

Background  Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected 
with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to com‑
paratively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait 
sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates.

Methods  Twenty healthy older adults, 20 people with Parkinson’s disease, 20 with multiple sclerosis, 19 with proximal 
femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were moni‑
tored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combin‑
ing inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single 
wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD 
and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and 
relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were 
investigated.

Results  We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a sin‑
gle best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, posi‑
tive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, 
with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best 
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identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances 
across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture).

Algorithms’ performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced per‑
formance of the CAD and SL algorithms.

Conclusions  Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed 
that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., 
slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms’ 
performances.

Trial registration ISRCTN – 12246987.

Keywords  Real-world gait, Algorithms, DMOs, Validation, Wearable sensor, Walking, Cadence, SL, Digital health, 
Accelerometer

Introduction
The adverse consequences of physical mobility loss and 
the importance of preserving mobility to ensure healthy 
ageing are undeniable [1, 2]. For this reason, a variety of 
behavioural, nutritional, and pharmacological interven-
tions aim to improve mobility in general, and more spe-
cifically target the preservation of an individual’s ability 
to walk independently and safely both within and outside 
their homes [3–6]. Evaluating the effectiveness of inter-
ventions by quantifying an improved gait pattern, how-
ever, remains a challenge when relying on traditional 
tools such as patient-reported outcomes or supervised 
gait tests in clinic or lab, as these typically lack ecological 
validity [7].

Therefore, there is a need for the development of accu-
rate, reliable, and sensitive tools for the quantification of 
gait and mobility in real-life [8, 9]. Digital health technol-
ogy, including body-worn or wearable devices, offers a 
way forward by providing digital outcomes to remotely 
measure and monitor gait [10, 11], a fundamental com-
ponent of mobility [12, 13]. Nonetheless, due to several 
persisting challenges in this field, current tools and tech-
niques are still in their infancy. These challenges need 
to be addressed before digital mobility outcomes can be 
confidently adopted in clinical trials and as part of stand-
ard healthcare, including a variety of technical, clinical, 
and regulatory aspects [9, 14].

Exciting technical advances in algorithms and data 
processing techniques have led to the deployment of 
a plethora of algorithms to extract digital mobility out-
comes from gait data recorded using inertial measure-
ment units embedded within wearable devices [15–17]. 
Even so, significant ongoing challenges exist, in particular 
establishing the technical validity of these algorithms. A 
thorough validation process must account for complex 
factors that simultaneously arise from multiple sources 
influencing digital mobility outcome measures, includ-
ing disease characteristics, patient specific habits, and 

the context in which walking is recorded (i.e. indoors, 
outdoors, public vs. private domain) [18–20]. All these 
factors concur to potentially limit the generalizability of 
validation data recorded during traditional gait protocols 
such as those administered within a controlled clinical 
or laboratory setting in which participants are asked to 
walk along a straight path or just a few daily life activities 
are simulated [21, 22]. Only recently, ad-hoc wearable 
devices have been developed, which finally allow mov-
ing the validation to more complex and realistic real-life 
scenarios [19, 23]. However, published validation studies 
generally only target a subset of specific digital mobility 
outcomes as calculated from one or a reduced number of 
algorithms and/or include only a few cohorts, hence pro-
viding partial information about generalizability of the 
results [22, 24].

The aim of this paper is to identify, compare and rank 
the most promising algorithms that quantitatively char-
acterize gait with digital mobility outcomes from con-
tinuous real-life monitoring in a diverse group of patients 
who present with different mobility challenges. Here we 
focus on detection of gait sequences (i.e., identified walk-
ing bouts), individual steps, and estimation of cadence 
and stride length from a single wearable device posi-
tioned on the lower back, an ergonomically easy-to-use 
position near the centre of mass, which is well accepted 
by participants [25, 26]. To establish generalizability, 
we independently compare algorithms in six cohorts: 
healthy older adults, Parkinson’s disease, multiple scle-
rosis, proximal femoral fracture, chronic obstructive pul-
monary disease and congestive heart failure. Specifically, 
we aim to:

(a)	 Identify, compare and rank the best performing 
(i.e., most accurate and reliable) algorithms for each 
cohort;

(b)	 Describe the performance of the identified best 
algorithms;
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(c)	 Analyse the influence of walking speed and walking 
bout duration on the algorithm performance;

(d)	 Provide recommendations to implement and select 
algorithms for real-world gait analysis tailored to 
different patient cohorts.

Methods
Participants
A convenience sample of 108 participants were recruited 
to represent five disease cohorts (chronic obstructive 
pulmonary disease, Parkinson’s disease, multiple scle-
rosis, proximal femoral fracture, and congestive heart 
failure), as well as healthy older adults, encompass-
ing a broad range of mobility levels. Participants were 
recruited in five sites: The Newcastle upon Tyne Hospi-
tals NHS Foundation Trust, UK and Sheffield Teaching 
Hospitals NHS Foundation Trust, UK (ethics approval 
granted by London – Bloomsbury Research Ethics com-
mittee, 19/LO/1507); Tel Aviv Sourasky Medical Center, 
Israel (ethics approval granted by the Helsinki Commit-
tee, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, 
0551-19TLV), Robert Bosch Foundation for Medical 
Research, Germany (ethics approval granted by the ethi-
cal committee of the medical faculty of The University of 
Tübingen, 647/2019BO2), University of Kiel, Germany 
(ethics approval granted by the ethical committee of the 
medical faculty of Kiel University, D438/18). All partici-
pants gave written informed consent to take part in the 
study. Inclusion and exclusion criteria and details about 
the technical validation study experimental protocol are 
described in [19].

Experimental protocol
Participants were monitored for 2.5  h as they went 
about their usual activities in their habitual environment 
(home/work/community/outdoor). To ensure diversity 
of walking activity, participants were also asked to per-
form some specific tasks: outdoor walking; walking up 
and down a slope and stairs; and moving from one room 
to another. Participants wore a single McRoberts Dyna-
port MM+ wearable device (sampling frequency 100 Hz, 
triaxial acceleration range: ± 8  g/resolution: 1  mg, tri-
axial gyroscope range: ± 2000 degrees per second (dps)/
resolution: 70 mdps), secured to the lower back with an 
elasticated belt and Velcro fastening. A reference system 
was used to establish the accuracy of algorithms and was 
comprised of a multicomponent system of INertial mod-
ules, DIstance Sensors and Pressure insoles (INDIP) [19, 
23, 27]. The INDIP system and the associated algorithms 
to estimate digital mobility outcomes have been validated 
in previous studies in healthy and pathological cohorts 
(e.g., hemiparetic, Parkinson’s disease, Huntington’s 

disease and mild cognitive impairment) and in this study 
participants [23, 28–32]. The INDIP and the single wear-
able device on the lower back were synchronized using 
timestamps referred to a common clock [19].

Pre‑selection of algorithms for further validation 
and ranking
In this paper we focused on key metrics of real-world 
walking that form the basis from which a variety of digital 
mobility outcomes, including walking speed, can then be 
quantified. These are: gait sequence detection, foot initial 
contact detection, cadence and stride length estimation. 
For each metric, we identified published algorithms from 
laboratory-based or semi-structured protocols [8, 33]. 
This yielded 14 for gait sequence detection, 21 for initial 
contact detection, 23 for cadence and 18 for stride length 
estimation. For each digital mobility outcome, a shortlist 
of up to four most promising algorithms was selected 
based on initial testing in pre-existing data from older 
adults and pathological cohorts, including Parkinson’s 
disease [28, 34–36], multiple sclerosis [37, 38], stroke & 
chorea [28, 39]. Algorithms’ selection was based on the 
ranking methodology proposed in Bonci et al. [24]. The 
final subset of optimized algorithms (including detailed 
descriptions of implementation) are summarized in 
Table 1 and briefly outlined below.

Gait sequence detection (GSD) This metric identifies 
sections of the raw signal which correspond to walking/
gait. Three algorithms were selected: GSDA [40], GSDB 
[16] and GSDC [41].

Initial contact detection (ICD) This metric detects the 
foot initial contact within each gait sequence. Four algo-
rithms were selected: ICDA [16, 41, 42], ICDB [44], ICDC 
[16, 41, 42] and ICDD [45].

Cadence estimation (CAD) This metric identifies 
strides as a cyclic pattern from which cadence [number of 
steps within a minute (min)] is estimated in each walking 
bout [17]. Three algorithms were selected: CADA [41, 42, 
44], CADB [16, 46] and CADC [17, 45]. Cadence (steps/
min) was derived from identified strides as follows:

where i = 1, . . . , n are the different walking bouts and 
Stride Frequency is evaluated as:

where i = 1, . . . , n are the different walking bouts, 
n_STRIDEi is the number of strides (including right and 
left steps) in the relevant i – walking bout, STRIDEdk is 

(1)Cadencei = StrideFrequencyi ∗ 2,

(2)

Stride Frequencyi =

n_STRIDEi
k=1

60
STRIDEdk

n_STRIDEi
,
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the duration [seconds] of the k – stride in the relevant i− 
walking bout

Stride length estimation (SL) This metric quantifies 
stride length, evaluated as the distance between two 
non-consecutive initial contacts. Four algorithms were 
selected based either on biomechanical or machine-
learning models: SLA [47, 48], SLB [47, 48], SLC [49, 50] 
and SLD [17, 51].

Data and statistical analyses for validation and ranking 
of algorithms.
All calculations and statistical analysis were performed 
using Matlab® R2021a (Mathworks, Natick, MA).

Performance measures to describe and establish algorithm 
validity
To ensure objective comparison between systems (INDIP 
and wearable device), walking bouts detected by the 
INDIP were given as a standardized input to all algo-
rithms except for gait sequence detection where the full 
wearable device recording was given as input. A walk-
ing bout was defined as a walking sequence containing at 
least two consecutive strides of both feet (e.g., R–L–R–
L–R–L or L–R–L–R–L–R, with R/L being the right/left 
foot contact with the ground) [18]. Criteria for inclusion 
of a stride were: (a) duration of 0.2–3 s, and (b) a mini-
mum length of 0.15 m. A resting period/break of 3  s or 
more identified consecutive walking bouts [18], thus each 
walking bout could include resting periods/breaks ≤ 3  s. 
Each metric was determined by the algorithms imple-
mented on the single wearable device and by the INDIP.

Algorithm validation was established independently 
for each cohort by comparing digital mobility outcomes 
obtained from the selected algorithms applied to the 
wearable device with those from the INDIP using the 
following set of performance measures to describe and 
establish validity:

where TP = True Positive events, TN = True Negative 
events, FP: False Positive events, FN: False Negative 
events.

(3)Accuracy =
TP + TN

TN + TP + FN + FP

(4)Sensitivity =
TP

TP + FN

(5)Specificity =
TN

TN + FP

(6)Positive Predictive Value =
TP

TP + FP

•	 Intra class correlation coefficient (ICC(2,1)) [52] was 
calculated to assess the association between the digi-
tal mobility outcomes of the two systems using all 
walking bouts collected from each cohort separately. 
Based on ICC estimates, values less than 0.5, between 
0.5 and 0.75, between 0.75 and 0.9, and greater than 
0.9 were deemed to be indicative of poor, moderate, 
good, and excellent agreement, respectively [53].

•	 Absolute agreement was assessed by quantifying (i) 
absolute error, (ii) bias, and (iii) Limits of Agreement 
[54] between the wearable device and reference sys-
tem digital mobility outcomes calculated for each 
walking bout.

•	 Relative errors between the wearable device and 
INDIP digital mobility outcomes were determined 
for each walking bout.

Mean and 95% confidence intervals of all digital mobil-
ity outcomes were evaluated at a cohort level (i.e., quan-
tified using all walking bouts across all participants 
belonging to that specific cohort). Subsets of relevant 
measures were then used for the different digital mobility 
outcomes and evaluated as detailed below.

For gait sequence detection algorithms, each window 
of 0.1  s from the complete 2.5-h recording was classi-
fied (see Fig. 1) as either true positive, false positive, true 
negative or false negative and accuracy, sensitivity, speci-
ficity, positive predictive value were calculated. These 
measures were evaluated for each 2.5-h assessment. In 
addition, absolute errors and ICC(2,1) for the total accu-
mulated duration of all gait sequences identified in a 
2.5-h recording was assessed and compared between the 
two systems, for each participant.

In the case of initial contact detection, we defined each 
initial contact event within a walking bout as a true posi-
tive, false positive and false negative by comparing the 
initial contact events detected by the wearable device to 
the events detected by the INDIP within a tolerance win-
dow of 0.5 s (centred around the event identified by the 
INDIP, see Fig. 2), representative of a step duration [55]. 
This approach has been previously used and was adopted 
to take into account the potential mismatch on the event 
time between the INDIP and the wearable device [56]. To 
assess initial contact detection, true negative events were 
not evaluated, since true negative would correspond to 
all non-initial contact events identified as such by both 
systems.

For initial contact detection, we utilised the following 
measures: sensitivity, positive predictive values, absolute 
errors (which were estimated for each true positive ini-
tial contact (see Fig. 2)) and relative error (estimated by 
dividing all absolute errors, within a walking bout, by the 
average step duration estimated by the INDIP [55]).
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For cadence and stride length algorithms, the measures 
used were: relative errors, absolute errors and ICC(2,1).

Ranking algorithms using performance measures
A simplified version of the ranking methodology 
described in Bonci et  al. [24] was applied to compare 
algorithm performance using a decision matrix. This 

was based on the weighted combination of performance 
measures described above assessing agreement between 
the single wearable device and the INDIP system (classi-
fied as benefit or cost). Performance measures considered 
as benefits were: accuracy, sensitivity, specificity, positive 
predictive value and ICC(2,1) [52]. Performance measures 
considered as costs were absolute and relative errors. 

Fig. 1  Example of identification of False Positive (FP), False Negative (FN), True Positive (TP) and True Negative (TN) for the Gait Sequence Detection 
(GSD) algorithms, of each window (0.1 s). Events classified from the comparison of each individual window between the INDIP reference system 
(RS) and the single wearable device (WD) for the detection of gait sequences. Each window of the WD and RS outputs are depicted as a rectangle, 
where white rectangles represent windows of non-gait sequences, and grey rectangles denote windows of a detected gait sequence

Fig. 2  Example of performance analysis for initial contact detection (ICD) algorithms. The figure shows Initial contacts events identified by the 
reference system (IC-RS, depicted in black solid line) and initial contacts events identified by the single wearable device (IC-WD, depicted in orange 
dotted line). False Negatives, False Positive and True Positive events are defined with respect to the selected temporal tolerance window of 0.5 s (in 
grey) centred around the IC-RS. a Shows the identification of False Negative events (i.e., initial contact identified by the reference system but not 
identified by the single wearable device within the tolerance window) and False Positive events (i.e., initial contact wrongly identified by the single 
wearable device because although identified, it is outside the tolerance window). b Shows the identification of True Positives events (i.e., initial 
contact events correctly identified by the single wearable device) and example of other cases for identification of False Positive events (i.e., initial 
contact wrongly identified by the single wearable device). Note that the initial contact event, identified by the single wearable device, nearest to 
the true event (identified by the INDIP) will be considered a True Positive, and the rest of the identified events, False Positives. The figure also shows 
in blue how absolute errors are calculated only from True Positive events
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Each measure was weighted based on its relative impor-
tance to the algorithm’s validity assessment (see Bonci 
et al. [24] and Additional file 1 for further detail regard-
ing the specific performance measures and assigned 
weights for gait sequence detection, initial contact 
detection, cadence and stride length algorithms). This 
information was combined to determine a performance 
index (0 = worst, 1 = best), calculated as a weighted mean 
of the selected benefit and/or cost analysis, which was 
subsequently used to compare and rank the algorithm 
performances, and thus, to select the top performing 
algorithms for each cohort independently.

Influence of walking speed and walking duration 
on the algorithms’ performance
The performance of initial contact detection, cadence 
and stride length top-selected algorithms was then 
assessed considering the impact that walking bout walk-
ing speed values (calculated as the average stride speed 
by the INDIP system) and walking bout durations had 
on the relative error of each digital mobility outcome 
(i.e., step duration, cadence and stride length). Specifi-
cally, median relative errors for each digital mobility out-
come were quantified evaluating all the walking bouts 

characterized by specific walking speed and walking bout 
duration ranges; including errors observed in consecu-
tive walking speed windows of 0.05 m/s [57] and in con-
secutive walking bout duration windows of 2 s. For each 
digital mobility outcome, the resulting median errors 
were then employed in a best-fit approach to deter-
mine their association between the relative errors and 
walking speed or walking bout duration, respectively. 
In the best-fit approach, median error values were also 
weighted according to the relevant number of observa-
tions in a given window with respect to the total number 
of observations.

Results
Participant clinical and demographic characteristics per 
cohort are presented in Table 2.

The cohorts covered a wide range of mobility levels: 
the walking speed measured by the INDIP system during 
the 2.5-h assessment ranged from an average of 0.54 m/s 
(proximal femoral fracture) to 0.72  m/s (congestive 
heart failure), with a minimum measured walking speed 
of 0.10  m/s (in Parkinson’s disease) and a maximum of 
1.63 m/s (in healthy older adults) (Table 2).

Table 2  Demographic and clinical characteristics of the participants

Values are presented as mean ± standard deviation, unless otherwise stated

CAT​ chronic obstructive pulmonary disease (COPD) Assessment Test; EDSS Expanded Disability Status Scale; FEV1 Forced Expiratory Volume in 1 Second; KCCQ-12 
Kansas City Cardiomyopathy Questionnaire-12; LLFDI Late Life Function and Disability Instrument; MDS-UPDRS III Movement Disorder Society Unified Parkinson’s 
Disease Rating Scale Part III; MoCA Montreal Cognitive Assessment; SPPB Short Physical Performance Battery; 6MWT 6 Minute Walking Test; HA healthy adults; PD 
Parkinson’s disease; MS multiple sclerosis; COPD chronic obstructive pulmonary disease; CHF congestive heart failure; PFF proximal femoral fracture

Characteristic (unit of measure) or [range] HA (n = 20) CHF (n = 12) COPD (n = 17) MS (n = 20) PD (n = 20) PFF (n = 19)

Number of walking bouts included in the 
analyses (n)

1343 416 1031 795 681 684

Age (years) 71.7 ± 5.8 69.1 ± 11.7 69.4 ± 9.1 48.7 ± 9.7 69.8 ± 7.2 80.0 ± 8.5

Height (cm) 1.66 ± 0.10 1.74 ± 0.10 1.69 ± 0.07 1.71 ± 0.13 1.73 ± 0.07 1.69 ± 0.08

Weight (kg) 75.1 ± 11.8 84.5 ± 16.8 73.7 ± 14.2 84.0 ± 22.9 78.2 ± 14.4 68.4 ± 16.0

Gender: % females [females n, males n] 45% [9, 11] 33% [4, 8] 47% [8, 9] 45% [9, 11] 20% [4, 16] 58% [8, 11]

WS during the 2.5-h assessment (mean and 
[range]) (m/s)

0.59 [0.12, 1.63] 0.72 [0.14, 1.46] 0.60 [0.11, 1.36] 0.58 [0.15, 1.60] 0.60 [0.10, 1.44] 0.54 [0.14, 1.29]

Walking Aid use: % of users [n] 5% [1] 25% [3] 6% [1] 25% [5] 30% [6] 68% [13]

MoCA [0–30] 27.7 ± 2.6 27.1 ± 2.9 24.6 ± 3.4 26.7 ± 3.1 24.6 ± 4.0 24.1 ± 4.2

LLFDI [0–100] 73.53 ± 14.22 67.29 ± 21.35 59.07 ± 7.96 57.34 ± 10.66 60.26 ± 12.51 52.59 ± 16.61

Hoehn & Yahr stage (n) H&Y I: 4
H&Y II: 11
H&Y III: 5

MDS-UPDRS III [0–132] 28.4 ± 13.6

EDSS [0–6] 3.5 ± 1.7

SPPB [0–12] 6.2 ± 3.9

CAT Score [0–40] 16.6 ± 8.9

FEV1 (litres) 1.6 ± 0.6

6MWT distance (m) 370.7 ± 115.6 357.6 ± 88.5

KCCQ-12 Score [0–100] 80.5 ± 20.2
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Nine participants (8%: three with chronic heart failure, 
two with multiple sclerosis, one with Parkinson’s dis-
ease and three proximal femoral fracture participants) 
were excluded from subsequent analysis due to data 
unavailability.

Gait sequence detection
Performance measures and ranking
We report in Table  3 the gait sequence detection algo-
rithms main peformance measures (All performance 
measures areconsidered for the evaluation of the perfor-
mance index are shown in the Additional file 1: Table).

Across all cohorts, performance measures for the three 
gait sequence detection algorithms were good to excel-
lent (sensitivity ranged between 0.60 and 0.92, specificity 
between 0.95 and 0.99, accuracy between 0.94 and 0.97 
and positive predictive value between 0.74 and 0.91 [41] 
(Table  3, Additional file  1: Table). The lowest sensitivity 
was observed for the most impaired cohort (proximal 
femoral fracture) for all algorithms.

The absolute error between the wearable device and the 
INDIP for the total accumulated duration of the detected 
gait sequences ranged from 71.9 to 358.5  s across the 
three algorithms which was approximately from 7 to 32% 
of the total duration estimated by the INDIP. Overall, 
except for the proximal femoral fracture cohort, GSDA 
and GSDB overestimated the total gait sequence duration, 
whereas GSDC underestimated it. The ICC(2,1) ranged 
from 0.68 to 1.00, with the lowest ICC(2,1) found for the 
multiple sclerosis cohort, in line with the largest disa-
greement, based on the largest limits of agreement [54], 
among all cohorts and the three algorithms.

Algorithm GSDA presented the overall best perfor-
mance index for healthy older adults (0.819), congestive 
heart failure (0.853), chronic obstructive pulmonary dis-
ease (0.822), multiple sclerosis (0.735) and Parkinson’s 
disease (0.852) cohorts (see Additional file 1). Algorithm 
GSDB presented the highest performance indexes for 
the proximal femoral fracture cohort (0.771) and similar 
good performances for multiple sclerosis (0.655) and Par-
kinson’s disease (0.726).

Initial contact detection
Performance measures and ranking
Table 4 presents performance measures of initial contact 
detection algorithms, which were very similar for the 
four algorithms. Across algorithms and cohorts, sensitiv-
ity ranged from 0.76 to 0.83 and positive predictive val-
ues from 0.81 to 0.93, whilst relative errors ranged from 
7.6 to 21.2%.

Algorithm ICDA presented the highest overall per-
formance index across all cohorts: healthy older 
adults (0.804), congestive heart failure (0.771), chronic 

obstructive pulmonary disease (0.790), multiple sclerosis 
(0.805), Parkinson’s disease (0.798) and proximal femoral 
fracture (0.818) reflecting the lowest absolute and relative 
errors, highest sensitivity, and positive predictive values.

Effect of walking speed and bout duration
Relative errors for step duration, as extracted from 
the initial contacts, decreased with walking speed 
(R2 = 0.86), with errors lower than 10% reached for walk-
ing speeds > 0.25 m/s (Fig. 3a) [58]. Any value of walking 
bout duration showed median errors lower than 10%, but 
an overall error decrease was observed when the walk-
ing bout duration increased (R2 = 0.70, Fig.  4a). Overall, 
higher errors (> 50%) were observed only in the 0.9% of 
the detected walking bouts; these bouts were character-
ised by a short duration (8.37 ± 4.71 s) and slow walking 
speed (0.44 ± 0.24 m/s).

Cadence estimation
Performance measures and ranking
Performance measures of the cadence algorithms are 
presented in Table  5, reflecting a slight (4.6–7.2 steps/
min) overestimation of cadence by the wearable device 
with respect to INDIP for all the cohorts with algorithms 
CADB and CADC (except for proximal femoral fracture 
with CADC, in which case there is a misestimation). 
The absolute error ranged from 5.2 to 9.3 steps/min, the 
relative error between 6.6% to 11.8% and ICC(2,1) ranged 
from 0.44 to 0.82 across the three algorithms.

The highest absolute and relative errors, and the low-
est ICC(2,1) were found for the proximal femoral frac-
ture cohort. CADC had the highest performance index 
for healthy older adults (0.653), congestive heart failure 
(0.720), chronic obstructive pulmonary disease (0.693), 
multiple sclerosis (0.644), Parkinson’s disease (0.653). 
CADB presented the best performances for proximal 
femoral fracture (0.584) showing the lowest absolute 
error (7.2 steps/min), closest largest limits of agreement 
(−  10.1 to 24.2 steps/min), lowest relative error (8.5%) 
and highest ICC(2,1) (0.66). Overall good performances 
were also found for CADB for multiple sclerosis and Par-
kinson’s disease.

Effect of walking speed and bout duration
For both CADB and CADC, as walking speed increased, 
the relative error decreased (Fig. 3b), with speeds above 
0.3 m/s resulting in an error below a 10% threshold [58]. 
Generally, the highest errors were observed for the short-
est and slowest bouts (Fig.  4b). The walking bouts with 
higher errors [> 50%, n = 25 (0.8%)] had a mean duration 



Page 14 of 26Micó‑Amigo et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:78 

Ta
bl

e 
3 

G
ai

t 
se

qu
en

ce
 d

et
ec

tio
n 

(G
SD

) p
er

fo
rm

an
ce

 m
ea

su
re

s; 
ga

it 
se

qu
en

ce
 t

ot
al

 d
ur

at
io

n 
ob

ta
in

ed
 fr

om
 t

he
 IN

D
IP

 a
nd

 t
he

 s
in

gl
e 

w
ea

ra
bl

e 
de

vi
ce

, a
bs

ol
ut

e 
er

ro
r, 

bi
as

 a
nd

 
lim

its
 o

f a
gr

ee
m

en
t 

(L
oA

) 
an

d 
in

tr
a 

cl
as

s 
co

rr
el

at
io

n 
(IC

C
(2

,1
)) 

fo
r 

co
m

pa
ris

on
 b

et
w

ee
n 

sy
st

em
s, 

an
d 

ov
er

al
l p

er
fo

rm
an

ce
 in

de
x 

fo
r 

th
e 

G
SD

 a
lg

or
ith

m
s. 

Va
lu

es
 a

re
 e

xp
re

ss
ed

 a
s 

m
ea

n 
an

d 
95

%
 c

on
fid

en
ce

 in
te

rv
al

s 
(C

I) 
fo

r 
ea

ch
 c

oh
or

t. 
In

 it
al

ic
 a

nd
 b

ol
df

ac
e 

re
co

m
m

en
de

d 
al

go
rit

hm
s. 

U
nd

er
lin

ed
 p

er
fo

rm
an

ce
 in

de
x 

in
di

ca
te

s 
to

p
-r

an
ke

d 
al

go
rit

hm
 f

or
 

th
e 

sp
ec

ifi
c 

co
ho

rt
 o

f t
ha

t r
ow

Co
ho

rt
G

ai
t s

eq
ue

nc
e 

de
te

ct
io

n
G

ai
t s

eq
ue

nc
e 

to
ta

l d
ur

at
io

n
Pe

rf
or

m
an

ce
 

in
de

x
Se

ns
iti

vi
ty

Po
si

tiv
e 

pr
ed

ic
tiv

e 
va

lu
e

A
cc

ur
ac

y
Sp

ec
ifi

ci
ty

IN
D

IP
 m

ea
n 

an
d 

CI
 [s

]
Si

ng
le

 w
ea

ra
bl

e 
de

vi
ce

 m
ea

n 
an

d 
CI

 [s
]

Bi
as

 a
nd

 L
oA

 [s
]

A
bs

ol
ut

e 
er

ro
r 

[s
]

IC
C 

(2
,1

)

G
SD

A

 H
A

0.
84

 [0
.7

7,
 0

.9
2]

0.
81

 [0
.7

5,
 0

.8
8]

0.
94

 [0
.9

3,
 0

.9
6]

0.
96

 [0
.9

5,
 0

.9
7]

16
40

.0
 [1

27
3.

4,
 

20
06

.6
]

17
08

.5
 [1

31
6.

3,
 

21
00

.7
]

68
.5

 [−
 7

10
.6

, 
84

7.
5]

21
5.

7 
[5

7.
7,

 
37

3.
7]

0.
88

 [0
.7

3,
 0

.9
5]

0.
81

9

 C
H

F
0.

85
 [0

.6
8,

 1
.0

1]
0.

81
 [0

.7
2,

 0
.9

0]
0.

95
 [0

.9
2,

 0
.9

8]
0.

96
 [0

.9
4,

 0
.9

9]
15

45
.4

 [4
21

.1
, 

26
69

.6
]

15
95

.4
 [3

95
.2

, 
27

95
.6

]
50

.0
 [−

 6
89

.5
, 

78
9.

5]
24

2.
0 

[3
9.

6,
 

44
4.

4]
0.

98
 [0

.9
1,

 0
.9

9]
0.

85
3

 C
O

PD
0.

85
 [0

.8
1,

 0
.8

8]
0.

75
 [0

.6
8,

 0
.8

2]
0.

95
 [0

.9
3,

 0
.9

7]
0.

96
 [0

.9
5,

 0
.9

8]
10

04
.8

 [8
29

.2
, 

11
80

.4
]

11
51

.6
 [9

55
.7

, 
13

47
.6

]
14

6.
8 

[−
 3

69
.1

, 
66

2.
8]

17
6.

5 
[5

1.
5,

 
30

1.
5]

0.
68

 [0
.3

2,
 0

.8
7]

0.
82

2

 M
S

0.
92

 [0
.8

7,
 0

.9
7]

0.
75

 [0
.6

6,
 0

.8
4]

0.
95

 [0
.9

2,
 0

.9
8]

0.
95

 [0
.9

2,
 0

.9
8]

11
19

.5
 [7

36
.9

, 
15

02
.2

]
14

52
.0

 [9
90

.4
, 

19
13

.6
]

33
2.

5 
[−

 8
83

.9
, 

15
48

.8
]

35
8.

5 
[5

7.
7,

 
65

9.
4]

0.
68

 [0
.3

4,
 0

.8
7]

0.
73

5

 P
D

0.
86

 [0
.7

8,
 0

.9
4]

0.
81

 [0
.7

1,
 0

.9
1]

0.
96

 [0
.9

5,
 0

.9
8]

0.
97

 [0
.9

6,
 0

.9
9]

11
21

.8
 [6

26
.5

, 
16

17
.1

]
11

77
.3

 [6
56

.2
, 

16
98

.5
]

55
.6

 [−
 4

02
.4

, 
51

3.
6]

13
9.

1 
[4

5.
8,

 
23

2.
4]

0.
98

 [0
.9

4,
 0

.9
9]

0.
85

2

 P
FF

0.
71

 [0
.5

4,
 0

.8
9]

0.
74

 [0
.6

1,
 0

.8
8]

0.
95

 [0
.9

2,
 0

.9
7]

0.
97

 [0
.9

6,
 0

.9
9]

95
4.

4 
[5

99
.5

, 
13

09
.4

]
97

5.
7 

[5
89

.8
, 

13
61

.6
]

21
.3

 [−
 3

65
.3

, 
40

7.
9]

14
4.

4 
[7

2.
1,

 2
16

.7
]

0.
96

 [0
.8

9,
 0

.9
9]

0.
77

0

G
SD

B

 H
A

0.
86

 [0
.8

2,
 0

.9
0]

0.
85

 [0
.7

9,
 0

.9
2]

0.
95

 [0
.9

4,
 0

.9
6]

0.
97

 [0
.9

6,
 0

.9
8]

16
45

.8
 [1

25
8.

1,
 

20
33

.5
]

16
57

.4
 [1

28
3.

5,
 

20
31

.3
]

11
.6

 [−
 5

92
.4

, 
61

5.
6]

17
0.

5 
[4

8.
1,

 2
92

.8
]

0.
93

 [0
.8

3,
 0

.9
7]

0.
72

7

 C
H

F
0.

91
 [0

.8
8,

 0
.9

4]
0.

82
 [0

.7
1,

 0
.9

2]
0.

96
 [0

.9
4,

 0
.9

8]
0.

96
 [0

.9
4,

 0
.9

9]
15

45
.4

 [4
21

.1
, 

26
69

.6
]

16
89

.6
 [5

57
.8

, 
28

21
.5

]
14

4.
3 

[−
 3

31
.8

, 
62

0.
4]

17
6.

1 
[1

9.
8,

 3
32

.3
]

0.
99

 [0
.9

5,
 1

.0
0]

0.
79

2

 C
O

PD
0.

84
 [0

.8
1,

 0
.8

8]
0.

80
 [0

.7
7,

 0
.8

2]
0.

96
 [0

.9
5,

 0
.9

7]
0.

97
 [0

.9
7,

 0
.9

8]
10

04
.8

 [8
29

.2
, 

11
80

.4
]

10
58

.4
 [8

65
.5

, 
12

51
.4

]
53

.6
 [−

 1
20

.3
, 

22
7.

6]
71

.9
 [3

4.
0,

 1
09

.8
]

0.
96

 [0
.9

0,
 0

.9
9]

0.
81

4

 M
S

0.
91

 [0
.8

7,
 0

.9
5]

0.
75

 [0
.6

5,
 0

.8
5]

0.
95

 [0
.9

2,
 0

.9
8]

0.
95

 [0
.9

2,
 0

.9
8]

11
19

.5
 [7

36
.9

, 
15

02
.2

]
14

16
.3

 [9
47

.8
, 

18
84

.8
]

29
6.

8 
[−

 9
11

.6
, 

15
05

.2
]

32
3.

1 
[2

3.
5,

 6
22

.6
]

0.
70

 [0
.3

8,
 0

.8
8]

0.
65

5

 P
D

0.
84

 [0
.7

6,
 0

.9
2]

0.
83

 [0
.7

3,
 0

.9
3]

0.
96

 [0
.9

5,
 0

.9
7]

0.
98

 [0
.9

6,
 0

.9
9]

11
21

.8
 [6

26
.5

, 
16

17
.1

]
11

45
.9

 [6
29

.1
, 

16
62

.6
]

24
.1

 [−
 4

50
.9

, 4
99

.0
]

16
7.

9 
[8

5.
1,

 2
50

.8
]

0.
97

 [0
.9

4,
 0

.9
9]

0.
72

6

 P
FF

0.
73

 [0
.6

0,
 0

.8
6]

0.
84

 [0
.7

6,
 0

.9
3]

0.
96

 [0
.9

5,
 0

.9
8]

0.
98

 [0
.9

7,
 0

.9
9]

91
1.

7 
[5

69
.4

, 
12

54
.0

]
86

1.
1 

[5
42

.8
, 

11
79

.3
]

−
 5

0.
7 

[−
 4

45
.9

, 
34

4.
6]

14
1.

4 
[6

2.
2,

 
22

0.
6]

0.
95

 [0
.8

6,
 0

.9
8]

0.
77

1

G
SD

C

 H
A

0.
77

 [0
.7

1,
 0

.8
3]

0.
91

 [0
.8

5,
 0

.9
8]

0.
95

 [0
.9

4,
 0

.9
6]

0.
99

 [0
.9

8,
 1

.0
0]

16
45

.8
 [1

25
8.

1,
 

20
33

.5
]

14
09

.3
 [1

03
4.

8,
 

17
83

.7
]

−
 2

36
.5

 [−
 8

48
.7

, 
37

5.
7]

32
3.

6 
[2

20
.1

, 4
27

.1
]

0.
88

 [0
.7

3,
 0

.9
5]

0.
72

2

 C
H

F
0.

84
 [0

.7
9,

 0
.8

8]
0.

89
 [0

.8
2,

 0
.9

6]
0.

97
 [0

.9
5,

 0
.9

8]
0.

98
 [0

.9
7,

 0
.9

9]
15

45
.4

 [4
21

.1
, 

26
69

.6
]

14
66

.6
 [3

59
.8

, 
25

73
.4

]
−

 7
8.

7 
[−

 3
09

.9
, 

15
2.

4]
11

3.
1 

[5
5.

1,
 1

71
.1

]
1.

00
 [0

.9
9,

 1
.0

0]
0.

81
1

 C
O

PD
0.

73
 [0

.6
8,

 0
.7

8]
0.

89
 [0

.8
7,

 0
.9

1]
0.

96
 [0

.9
5,

 0
.9

7]
0.

99
 [0

.9
9,

 0
.9

9]
10

04
.8

 [8
29

.2
, 

11
80

.4
]

82
5.

2 
[6

64
.4

, 9
86

.1
]
−

 1
79

.6
 [−

 4
20

.7
, 

61
.6

]
17

9.
6 

[1
16

.3
, 2

42
.8

]
0.

80
 [0

.5
3,

 0
.9

2]
0.

77
6



Page 15 of 26Micó‑Amigo et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:78 	

H
A 

he
al

th
y 

ad
ul

ts
; P

D
 P

ar
ki

ns
on

’s 
di

se
as

e;
 M

S 
m

ul
tip

le
 s

cl
er

os
is

; C
O

PD
 c

hr
on

ic
 o

bs
tr

uc
tiv

e 
pu

lm
on

ar
y 

di
se

as
e;

 C
H

F 
co

ng
es

tiv
e 

he
ar

t f
ai

lu
re

; P
FF

 p
ro

xi
m

al
 fe

m
or

al
 fr

ac
tu

re
; C

I c
on

fid
en

ce
 in

te
rv

al
s, 

Lo
A 

lim
its

 o
f a

gr
ee

m
en

t, 
IC

C 
in

tr
a 

cl
as

s 
co

rr
el

at
io

n

Ta
bl

e 
3 

(c
on

tin
ue

d)

Co
ho

rt
G

ai
t s

eq
ue

nc
e 

de
te

ct
io

n
G

ai
t s

eq
ue

nc
e 

to
ta

l d
ur

at
io

n
Pe

rf
or

m
an

ce
 

in
de

x
Se

ns
iti

vi
ty

Po
si

tiv
e 

pr
ed

ic
tiv

e 
va

lu
e

A
cc

ur
ac

y
Sp

ec
ifi

ci
ty

IN
D

IP
 m

ea
n 

an
d 

CI
 [s

]
Si

ng
le

 w
ea

ra
bl

e 
de

vi
ce

 m
ea

n 
an

d 
CI

 [s
]

Bi
as

 a
nd

 L
oA

 [s
]

A
bs

ol
ut

e 
er

ro
r 

[s
]

IC
C 

(2
,1

)

 M
S

0.
83

 [0
.7

7,
 0

.9
0]

0.
83

 [0
.7

3,
 0

.9
3]

0.
96

 [0
.9

3,
 0

.9
8]

0.
97

 [0
.9

4,
 1

.0
0]

11
19

.5
 [7

36
.9

, 
15

02
.2

]
12

23
.3

 [7
94

.0
, 

16
52

.5
]

10
3.

8 
[−

 1
10

0.
0,

 
13

07
.5

]
24

6.
9 

[−
 3

6.
2,

 
53

0.
0]

0.
72

 [0
.4

1,
 0

.8
9]

0.
69

3

 P
D

0.
76

 [0
.6

5,
 0

.8
7]

0.
87

 [0
.7

6,
 0

.9
8]

0.
96

 [0
.9

5,
 0

.9
7]

0.
99

 [0
.9

8,
 1

.0
0]

11
21

.8
 [6

26
.5

, 
16

17
.1

]
10

00
.4

 [5
14

.3
, 

14
86

.5
]

−
 1

21
.4

 [−
 5

79
.4

, 
33

6.
5]

19
2.

3 
[1

07
.3

, 2
77

.3
]

0.
97

 [0
.9

2,
 0

.9
9]

0.
72

6

 P
FF

0.
60

 [0
.4

5,
 0

.7
5]

0.
89

 [0
.7

7,
 1

.0
1]

0.
94

 [0
.9

1,
 0

.9
7]

0.
99

 [0
.9

9,
 1

.0
0]

95
4.

4 
[5

99
.5

, 
13

09
.4

]
69

7.
3 

[4
39

.9
, 9

54
.8

]
−

 2
57

.1
 [−

 8
23

.6
, 

30
9.

4]
27

2.
4 

[1
20

.9
, 4

23
.9

]
0.

78
 [0

.4
7,

 0
.9

2]
0.

68
7



Page 16 of 26Micó‑Amigo et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:78 

of 8.88  s (std: 5.97  s) and slow walking speed values 
(0.28 ± 0.09 m/s).

Stride length estimation
Performance measures and ranking
Table 6 shows an overall overestimation of stride length 
by the wearable device with respect to the INDIP. The 
absolute error between the wearable device and the 
INDIP outcomes ranged from 0.15 to 0.33  m across all 
algorithms.

The mean relative errors ranged from 25.3 to 34.1% 
for SLA, and similarly from 27.4 to 35.8% for SLB. These 
were larger for SLC (ranging from 29.0 to 34.5%) and for 
SLD (40.4 to 47.7%). The ICC(2,1) for SLA were the largest, 

ranging from 0.28 to 0.70, followed by SLB with a range 
from 0.20 to 0.66. The ICC(2,1) for SLC were below 0.5, 
and below 0.15 for SLD.

Overall, SLA presented the highest performance 
indexes for all cohorts excluding multiple sclerosis, with 
the following values: healthy older adults (0.582), conges-
tive heart failure (0.663), chronic obstructive pulmonary 
disease (0.381), Parkinson’s disease (0.607), and proximal 
femoral fracture (0.465). In the multiple sclerosis cohort, 
SLB had the highest performance index (0.487).

Effect of walking speed and bout duration
Critical errors in the stride length estimate were observed 
for the slowest bouts, with values decreasing below 20% 

Table 4  Initial contact detection (ICD) performance measures. Sensitivity, positive predictive value, absolute and relative errors, and 
overall performance index for the ICD algorithms. Values are expressed as mean and 95% confidence intervals (CI) for each cohort. In 
italic face: recommended algorithms. Underlined performance index indicates top-ranked algorithm for the specific cohort of that row

HA healthy adults; PD Parkinson’s disease; MS multiple sclerosis; COPD chronic obstructive pulmonary disease; CHF congestive heart failure; PFF proximal femoral 
fracture; LoA limits of agreement

Cohort Initial contact detection

Sensitivity Positive predictive value Absolute error [s] Relative error [%] Performance 
index

ICDA

 HA 0.80 [0.79, 0.81] 0.91 [0.90, 0.92] 0.06 [0.05, 0.06] 8.0 [7.7, 8.3] 0.804
 CHF 0.79 [0.77, 0.80] 0.89 [0.88, 0.91] 0.07 [0.06, 0.07] 10.9 [10.1, 11.8] 0.771
 COPD 0.81 [0.81, 0.82] 0.93 [0.92, 0.94] 0.07 [0.06, 0.07] 9.1 [8.8, 9.3] 0.790
 MS 0.80 [0.79, 0.82] 0.92 [0.91, 0.93] 0.06 [0.06, 0.06] 8.4 [8.1, 8.7] 0.805
 PD 0.79 [0.77, 0.80] 0.90 [0.89, 0.91] 0.06 [0.06, 0.06] 8.3 [7.9, 8.6] 0.798
 PFF 0.80 [0.78, 0.81] 0.89 [0.88, 0.90] 0.05 [0.05, 0.06] 7.6 [7.3, 7.9] 0.818

ICDB

 HA 0.80 [0.79, 0.81] 0.86 [0.85, 0.87] 0.13 [0.13, 0.13] 18.0 [17.8, 18.3] 0.641

 CHF 0.80 [0.78, 0.81] 0.88 [0.86, 0.90] 0.13 [0.13, 0.14] 19.9 [19.3, 20.4] 0.641

 COPD 0.78 [0.77, 0.79] 0.85 [0.84, 0.86] 0.15 [0.15, 0.15] 21.2 [20.9, 21.5] 0.590

 MS 0.75 [0.73, 0.77] 0.81 [0.79, 0.83] 0.14 [0.14, 0.15] 19.8 [19.3, 20.4] 0.595

 PD 0.80 [0.78, 0.81] 0.86 [0.84, 0.88] 0.14 [0.14, 0.14] 19.2 [18.9, 19.6] 0.620

 PFF 0.80 [0.79, 0.82] 0.86 [0.85, 0.88] 0.13 [0.13, 0.13] 17.9 [17.5, 18.2] 0.641

ICDC

 HA 0.82 [0.81, 0.83] 0.86 [0.85, 0.88] 0.06 [0.06, 0.07] 8.9 [8.6, 9.2] 0.795

 CHF 0.81 [0.80, 0.82] 0.87 [0.85, 0.88] 0.07 [0.07, 0.08] 11.1 [10.2, 11.9] 0.771

 COPD 0.83 [0.82, 0.83] 0.90 [0.89, 0.91] 0.07 [0.07, 0.07] 9.7 [9.4, 9.9] 0.786

 MS 0.82 [0.81, 0.84] 0.89 [0.87, 0.90] 0.07 [0.06, 0.07] 9.2 [8.8, 9.6] 0.783

 PD 0.80 [0.78, 0.81] 0.84 [0.82, 0.86] 0.07 [0.07, 0.07] 9.4 [9.0, 9.8] 0.766

 PFF 0.80 [0.79, 0.82] 0.81 [0.79, 0.82] 0.07 [0.07, 0.07] 9.6 [9.2, 10.0] 0.759

ICDD

 HA 0.78 [0.77, 0.79] 0.88 [0.87, 0.89] 0.10 [0.10, 0.10] 14.1 [13.8, 14.5] 0.705

 CHF 0.79 [0.78, 0.81] 0.92 [0.91, 0.93] 0.09 [0.09, 0.10] 13.8 [13.4, 14.3] 0.735

 COPD 0.76 [0.75, 0.77] 0.89 [0.88, 0.90] 0.11 [0.11, 0.12] 15.9 [15.5, 16.3] 0.680

 MS 0.78 [0.77, 0.80] 0.89 [0.88, 0.91] 0.10 [0.10, 0.11] 14.4 [13.9, 15.0] 0.706

 PD 0.76 [0.75, 0.78] 0.86 [0.84, 0.87] 0.11 [0.11, 0.11] 15.4 [15.0, 15.8] 0.674

 PFF 0.80 [0.78, 0.81] 0.86 [0.85, 0.88] 0.10 [0.09, 0.10] 13.6 [13.1, 14.1] 0.706
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only for walking speed > 0.5 m/s and below 10% only for 
0.6 m/s (Fig. 3c). Highest errors were also still associated 
with shortest and slowest bouts (Fig. 4c); specifically, the 
shortest bouts (≤ 10 s) had a mean error of 32.6%, while 
the longest ones (> 60 s) 9.3%. Overall, errors higher than 
50% were observed in about 17% of the total number of 
walking bouts. These bouts were short (13.03 ± 10.53 s), 
with slow walking speed (0.36 ± 0.13  m/s) and short 
stride length values (0.45 ± 0.17 m).

Discussion
This is the first study presenting a comprehensive com-
parative assessment of a broad range of algorithms 
applied to a single wearable device, for estimating key 
digital mobility outcomes pertaining to gait (i.e., gait 
sequences, individual steps, cadence and stride length) 
in heterogeneous diseases and using data from the real 
world. In this work, we have described algorithms’ per-
formances, selected the best algorithm for each digital 
mobility outcome and cohort, analysed the influence of 
walking speed and walking bout duration on their perfor-
mance, and provided recommendations for their selec-
tion and implementation for real-world gait analysis.

Gait sequence detection
When comparing all gait sequence detection algorithms, 
concurrent validity was high, reflected by ICC(2,1) values 
and performance measures above 0.7, matching previous 
work [16, 41, 59]. Accuracy, specificity, and positive pre-
dictive values were very high for all gait sequence detec-
tion algorithms. Our results were comparable to previous 
work on a different population (post-stroke survivors) 

which reported similar sensitivity (0.92) and positive pre-
dictive value (0.84) of gait sequence detection algorithms 
implemented on data obtained from bilateral wearable 
devices on the feet [16]. The excellent results for specific-
ity are similar or even higher than those reported previ-
ously in the literature 0.96 in Parkinson’s disease [59] and 
0.93 in stroke survivors [16]. This is encouraging, as gait 
analysis relies on high specificity, which corresponds to a 
correct identification of gait sequences (high number of 
true positive events) while avoiding the misidentification 
of gait sequences (low number of false positive events). 
Avoiding incorrect identification of gait-sequences (as 
also reflected by positive predictive values) is preferable, 
to avoid the extraction of digital mobility outcomes from 
activities which are not directly representative of gait, 
such as shuffling or transitions [59].

When considering differences between algorithms, 
GSDA and GSDB tended to overestimate the total walk-
ing time (total gait sequence duration). This could poten-
tially relate to different signal characteristics between the 
compared systems (low-back signals recorded with the 
wearable device may be different from feet signals [55] 
recorded with the INDIP). Slow gait, curved paths and 
short walking bouts with insufficient steady-pace phases 
for the spectral analysis could have also influenced the 
results, as the characteristics of the signals are more vari-
able and the periods are less uniform than in steady-pace 
gait undertaken at faster speeds along straight paths [41].

Based on our findings collectively, we recommend 
using GSDB on cohorts with slower gait speeds and sub-
stantial gait impairments (e.g., proximal femoral frac-
ture). This may be because this algorithm is based on the 

Fig. 3  Effect of walking speed on the relative errors in a step duration, b CAD and c step length estimations. The empty shaded circles (n) represent 
the relative error for each walking bout when the selected algorithms are used (ICDA for all cohorts in blue; CADB for the congestive heart failure 
(CHF), chronic obstructive pulmonary disease (COPD), healthy adults (HA), multiple sclerosis (MS) and Parkinson’s disease (PD) cohorts in red; CADC 
for the proximal femoral fracture (PFF) cohort in blue; SLA for CHF, COPD, HA, PFF and PD in blue; and SLB for MS in red). The filled circles indicate 
the median relative errors quantified in consecutive walking speed (ws) windows of 0.05 m/s. The sizes of the filled circles have been calculated 
as the ratio between the number of empty shaded circles in a given walking speed window and the total number of empty shaded circles (i.e., all 
observations). The obtained exponential curves (represented in blue and red continuous lines) and equations are the result of a best-fit approach 
used to determine the association between walking speed and the calculated median errors; R2 values are also shown. The horizontal black 
dash-dotted lines visually indicate the relative error thresholds of 10 and 20%
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Fig. 4  Effect of walking bout duration on the relative errors ( ε ) in a step duration, b cadence, and c step length estimations. For each parameter 
and the selected algorithms (ICDA for all cohorts; CADB for the congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), 
healthy adults (HA), multiple sclerosis (MS) and Parkinson’s disease (PD) cohorts; CADC for the proximal femoral fracture (PFF) cohort; SLA for CHF, 
COPD, HA, PFF and PD; and SLB for MS), the individual filled circles (n) represent the relative error for each WB, colour coded according to the 
walking speed measured for that specific bout. The empty grey circles indicate the median relative errors quantified in subsequent separate walking 
bout duration (wbd) windows of 2 s. Grey intensity represents the weight associated to the relevant observation, calculated as the ratio between 
the number of points in a given walking bout duration window and the total number of points, in the best-fit approach; a darker grey represents 
a larger weight. The black continuous lines and equations are the result of a best-fit approach used to determine the association between walking 
bout duration and the median errors; R2 values are also shown. The horizontal black dash-dotted lines visually indicate the relative error thresholds 
of 10% and 20%. For a clear visualization of the results, 95% of the walking bout duration have been reported
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acceleration norm (overall accelerometry signal rather 
than a specific axis/direction (e.g., vertical), hence it is 
more robust to sensor misalignments that are common 
in unsupervised real-life settings [41]. Moreover, the use 
of adaptive thresholds, that are derived from the features 
of a subject’s data and applied to the amplitude of accel-
eration norm and to step duration for detection of steps 
belonging to gait sequences, allows increased robustness 
of the algorithm to irregular and unstable gait patterns. 
GSDA algorithm may be more suitable for cohorts with 
a faster gait speed and regular gait pattern (e.g., healthy 
older adults). This algorithm is based on a convolutional 
transformation (based on a gait cycle) of a single axis sig-
nal [40], potentially justifying its suitability to conditions 
characterised by more stable and regular gait patterns.

Initial contact detection
Overall, all algorithms investigated for initial contact 
detection presented excellent sensitivity and positive pre-
dictive values (all above 0.81) and relative errors below 

21% in diverse cohorts of patients. These errors are in line 
with previous work, although slightly higher than those 
assessed in laboratory or controlled and supervised envi-
ronments, ranging between 4 and 13% [28, 39, 55]. Posi-
tive predictive values resulted were larger than sensitivity 
(although sensitivity values were > 0.75). This could be 
due to a lower number of false positive events (wrongly 
identified initial contact events) with respect to true posi-
tive events; slightly lower sensitivity measures reflect a 
higher number of missed initial contact events. Similar to 
gait sequence detection, higher positive predictive values 
(higher numbers of correctly identified initial contacts) 
are preferable, as gait assessment based on incorrectly 
identified events could lead to invalid digital mobility 
outcome extraction and misleading clinical interpreta-
tion. Low relative errors (< 11%), found for ICDA and 
ICDC, for step duration across all cohorts based on simi-
lar approaches are very encouraging and concurs with 
previous work which reported errors between 4 and 13% 
from data collected in laboratory conditions [39, 60].

Table 5  Cadence (CAD) estimation performance measures. Cadence obtained from the INDIP and the single wearable device, bias, 
limits of agreement (LoA) and intra class correlation (ICC(2,1)) for comparison between systems, and overall performance index for the 
CAD algorithms. In italic and boldface recommended algorithms. Underlined performance index  indicates top-ranked algorithm for 
the specific cohort of that row

HA healthy adults; PD Parkinson’s disease; MS multiple sclerosis; COPD chronic obstructive pulmonary disease; CHF congestive heart failure; PFF proximal femoral 
fracture; CI confidence intervals, LoA limits of agreement, ICC intra class correlation

Cohort Cadence

INDIP mean 
and CI [steps/
min]

Single wearable 
device mean and CI 
[steps/min]

Bias and LoA [steps/
min]

Absolute 
error [steps/
min]

Relative error [%] ICC (2, 1) Performance 
index

CADA

 HA 86.0 [85.1, 87.0] 85.6 [84.4, 86.8] − 0.4 [− 27.0, 26.2] 8.6 [7.9, 9.3] 10.5 [9.6, 11.5] 0.65 [0.61, 0.69] 0.538

 CHF 91.2 [89.8, 92.5] 89.8 [88.2, 91.5] − 1.4 [− 30.7, 28.0] 9.3 [8.2, 10.3] 10.6 [9.5, 11.8] 0.63 [0.57, 0.68] 0.517

 COPD 84.6 [83.7, 85.4] 86.3 [85.2, 87.3] 1.7 [− 17.5, 20.8] 6.7 [6.2, 7.2] 8.3 [7.6, 9.0] 0.72 [0.68, 0.75] 0.644

 MS 84.6 [83.1, 86.1] 85.7 [83.9, 87.5] 1.1 [− 22.8, 25.0] 8.2 [7.3, 9.2] 10.1 [8.9, 11.3] 0.71 [0.65, 0.75] 0.594

 PD 84.8 [83.4, 86.1] 87.0 [85.4, 88.6] 2.2 [− 24.9, 29.4] 9.1 [8.1, 10.1] 11.8 [10.4, 13.2] 0.62 [0.56, 0.67] 0.520

 PFF 85.0 [83.4, 86.5] 81.6 [79.9, 83.4] − 3.3 [− 30.6, 23.9] 8.9 [7.7, 10.0] 10.4 [9.1, 11.7] 0.60 [0.54, 0.67] 0.529

CADB

 HA 86.0 [85.1, 87.0] 89.8 [88.9, 90.6] 3.7 [− 16.3, 23.8] 7.1 [6.6, 7.7] 9.1 [8.3, 9.9] 0.69 [0.65, 0.72] 0.585

 CHF 91.2 [89.8, 92.5] 94.6 [93.5, 95.8] 3.5 [− 14.0, 21.0] 6.4 [5.8, 7.0] 7.7 [6.9, 8.5] 0.79 [0.76, 0.82] 0.654

 COPD 84.6 [83.7, 85.4] 89.1 [88.3, 89.9] 4.5 [− 10.4, 19.4] 6.2 [5.7, 6.6] 7.9 [7.2, 8.6] 0.71 [0.67, 0.74] 0.660

 MS 84.6 [83.1, 86.1] 88.5 [87.1, 89.9] 3.9 [− 15.2, 23.0] 7.0 [6.2, 7.8] 9.0 [7.8, 10.2] 0.72 [0.66, 0.76] 0.633

 PD 84.8 [83.4, 86.1] 89.5 [88.4, 90.7] 4.8 [− 14.3, 23.8] 7.2 [6.5, 8.0] 9.7 [8.5, 10.8] 0.69 [0.63, 0.73] 0.580

 PFF 85.0 [83.4, 86.5] 86.2 [85.0, 87.5] 1.3 [− 20.9, 23.5] 7.2 [6.3, 8.1] 8.5 [7.5, 9.5] 0.66 [0.60, 0.71] 0.584
CADC

 HA 86.0 [85.1, 87.0] 87.4 [86.5, 88.3] 1.4 [− 18.4, 21.2] 6.4 [5.9, 6.9] 8.1 [7.3, 8.8] 0.74 [0.70, 0.76] 0.653
 CHF 91.2 [89.8, 92.5] 92.2 [90.9, 93.5] 1.0 [− 16.9, 19.0] 5.8 [5.1, 6.4] 6.6 [5.9, 7.3] 0.82 [0.79, 0.84] 0.720
 COPD 84.6 [83.7, 85.4] 86.6 [85.8, 87.4] 2.0 [− 12.9, 17.0] 5.2 [4.8, 5.6] 6.6 [6.0, 7.2] 0.77 [0.73, 0.79] 0.693
 MS 84.6 [83.1, 86.1] 85.3 [83.9, 86.8] 0.7 [− 18.8, 20.3] 6.7 [5.9, 7.5] 8.2 [7.2, 9.2] 0.75 [0.70, 0.79] 0.644
 PD 84.8 [83.4, 86.1] 87.1 [85.9, 88.4] 2.3 [− 16.2, 20.9] 6.4 [5.7, 7.1] 8.2 [7.2, 9.2] 0.76 [0.71, 0.79] 0.653
 PFF 85.0 [83.4, 86.5] 82.0 [80.7, 83.3] − 2.9 [− 31.5, 25.6] 8.3 [7.0, 9.5] 9.1 [7.9, 10.4] 0.44 [0.35, 0.51] 0.460
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Accurate detection of steps is critical for estimation of 
a plethora of digital mobility outcomes like cadence, step 
symmetry, gait variability, etc., which might have relevant 
clinical value (e.g., for the differentiation of stages of neu-
rodegenerative diseases [60]). In addition, step detection 
can be used to refine the identification of gait sequences 
[41], and thus, the definition of a walking bout, which 
highlights the importance of using a robust algorithm 
with high sensitivity and positive predictive value.

For all cohorts, we recommend the use of the ICDA 
for the identification of initial contact events, given the 
lowest absolute and relative errors (both in mean and 
standard deviation of step duration and initial contact 
time event) and best performance indexes. ICDA is 
an optimized implementation of the algorithm based 
on continuous wavelet transform and peak detection 
originally presented in [42], and is frequently used and 
reported in the literature for heel-strike or initial time 
contact event detection [39, 61]. This algorithm has 
been previously validated under different conditions, 

Table 6  Stride length (SL) estimation performance measures. Stride length obtained from the INDIP and the single wearable device, 
bias, limits of agreement (LoA) and intra class correlation (ICC(2,1)) for comparison between systems, and overall performance index 
for the SL algorithms. In boldface: recommended algorithms.  Underlined performance index  indicates top-ranked algorithm for 
the specific cohort of that row

Stride length obtained from the INDIP and the single wearable device, bias, limits of agreement (LoA) and intra class correlation (ICC(2,1)) for comparison between 
systems, and overall performance index for the SL algorithms. In italicface: recommended algorithms

HA healthy adults; PD Parkinson’s disease; MS multiple sclerosis; COPD chronic obstructive pulmonary disease; CHF congestive heart failure; PFF proximal femoral 
fracture; CI confidence intervals, LoA limits of agreement, ICC intra class correlation

Cohort Stride length

INDIP mean and 
CI [m]

Single wearable 
device mean and 
CI [m]

Bias and LoA [m] Absolute error 
[m]

Relative error 
[%]

ICC (2,1) Performance 
index

SLA

 HA 0.81 [0.79, 0.83] 0.93 [0.91, 0.94] 0.12 [− 0.24, 0.48] 0.15 [0.14, 0.17] 25.9 [23.2, 28.6] 0.58 [0.53, 0.63] 0.582
 CHF 0.93 [0.90, 0.95] 1.00 [0.98, 1.02] 0.07 [− 0.34, 0.49] 0.16 [0.15, 0.18] 25.3 [22.4, 28.1] 0.70 [0.65, 0.74] 0.663
 COPD 0.85 [0.83, 0.87] 1.03 [1.02, 1.05] 0.18 [− 0.20, 0.57] 0.21 [0.19, 0.22] 31.2 [28.0, 34.3] 0.28 [0.21, 0.36] 0.381
 MS 0.82 [0.79, 0.85] 1.02 [0.99, 1.04] 0.19 [− 0.22, 0.61] 0.21 [0.19, 0.24] 34.1 [29.3, 38.8] 0.41 [0.32, 0.50] 0.462

 PD 0.82 [0.79, 0.85] 0.93 [0.90, 0.95] 0.11 [− 0.31, 0.52] 0.17 [0.15, 0.18] 26.5 [23.0, 30.0] 0.60 [0.54, 0.66] 0.607
 PFF 0.75 [0.73, 0.78] 0.86 [0.84, 0.87] 0.10 [− 0.32, 0.52] 0.17 [0.15, 0.19] 29.3 [25.2, 33.4] 0.36 [0.26, 0.46] 0.465

SLB

 HA 0.81 [0.79, 0.83] 0.97 [0.95, 0.98] 0.16 [− 0.20, 0.52] 0.18 [0.17, 0.19] 29.6 [26.7, 32.5] 0.52 [0.47, 0.57] 0.546

 CHF 0.93 [0.90, 0.95] 1.04 [1.02, 1.07] 0.12 [− 0.30, 0.53] 0.17 [0.16, 0.19] 27.4 [24.2, 30.5] 0.66 [0.61, 0.71] 0.604

 COPD 0.85 [0.83, 0.87] 1.08 [1.06, 1.09] 0.23 [− 0.16, 0.62] 0.24 [0.23, 0.25] 35.8 [32.5, 39.1] 0.20 [0.12, 0.27] 0.345

 MS (*SLB) 0.82 [0.79, 0.85] 0.99 [0.96, 1.01] 0.16 [− 0.24, 0.57] 0.19 [0.17, 0.21] 31.2 [26.7, 35.7] 0.47 [0.38, 0.55] 0.487
 PD 0.82 [0.79, 0.85] 0.97 [0.94, 0.99] 0.15 [− 0.27, 0.56] 0.19 [0.17, 0.20] 29.7 [25.9, 33.4] 0.55 [0.48, 0.62] 0.537

 PFF 0.75 [0.73, 0.78] 0.89 [0.88, 0.91] 0.14 [− 0.28, 0.56] 0.18 [0.16, 0.20] 32.2 [27.8, 36.6] 0.31 [0.20, 0.40] 0.448

SLC

 HA 0.81 [0.79, 0.83] 0.91 [0.90, 0.92] 0.10 [− 0.31, 0.50] 0.17 [0.16, 0.18] 29.0 [26.2, 31.8] 0.42 [0.36, 0.48] 0.509

 CHF 0.93 [0.90, 0.95] 0.98 [0.96, 0.99] 0.05 [− 0.47, 0.56] 0.21 [0.19, 0.22] 30.3 [26.9, 33.8] 0.46 [0.39, 0.52] 0.473

 COPD 0.85 [0.83, 0.87] 0.95 [0.94, 0.96] 0.10 [− 0.32, 0.52] 0.18 [0.17, 0.19] 26.9 [24.2, 29.6] 0.26 [0.19, 0.34] 0.420

 MS 0.82 [0.79, 0.85] 0.95 [0.94, 0.97] 0.13 [− 0.32, 0.58] 0.20 [0.18, 0.22] 32.6 [27.9, 37.3] 0.22 [0.11, 0.32] 0.387

 PD 0.82 [0.79, 0.85] 0.91 [0.89, 0.93] 0.09 [− 0.35, 0.53] 0.18 [0.17, 0.20] 30.5 [26.7, 34.4] 0.45 [0.37, 0.53] 0.498

 PFF 0.75 [0.73, 0.78] 0.85 [0.84, 0.86] 0.09 [− 0.36, 0.54] 0.21 [0.19, 0.22] 34.5 [30.7, 38.4] 0.11 [0.00, 0.22] 0.328

SLD

 HA 0.81 [0.79, 0.83] 0.88 [0.86, 0.90] 0.07 [− 0.62, 0.76] 0.28 [0.26, 0.30] 41.9 [38.2, 45.5] 0.14 [0.06, 0.21] 0.250

 CHF 0.93 [0.90, 0.95] 0.90 [0.88, 0.93] − 0.03 [− 0.84, 0.79] 0.33 [0.30, 0.35] 42.3 [38.1, 46.6] 0.10 [0.01, 0.19] 0.205

 COPD 0.85 [0.83, 0.87] 0.93 [0.91, 0.96] 0.08 [− 0.63, 0.80] 0.29 [0.27, 0.31] 40.4 [36.9, 43.9] 0.03 [− 0.05, 0.11] 0.200

 MS 0.82 [0.79, 0.85] 0.92 [0.89, 0.96] 0.10 [− 0.59, 0.78] 0.28 [0.25, 0.30] 41.3 [35.2, 47.4] 0.15 [0.04, 0.26] 0.250

 PD 0.82 [0.79, 0.85] 0.85 [0.82, 0.88] 0.03 [− 0.73, 0.79] 0.30 [0.28, 0.33] 44.9 [39.3, 50.5] 0.10 [0.00, 0.20] 0.225

 PFF 0.75 [0.73, 0.78] 0.85 [0.81, 0.88] 0.09 [− 0.67, 0.85] 0.30 [0.27, 0.33] 47.7 [42.0, 53.5] − 0.04 [− 0.14, 0.07] 0.172
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producing similar results in algorithm performance [44] 
even if tested under less challenging conditions (such as 
supervised lab/clinical settings). To increase robustness 
to the variety of impaired gait patterns, ICDA applies 
additional detrending and filtering before the continu-
ous wavelet transform, then it detects the step-related 
peaks as maxima between zero-crossings (instead of 
using a predefined threshold for peak amplitude).

Cadence estimation
The excellent performances of cadence algorithms, 
reflected by low relative errors of < 12%, were in line with 
[17, 41, 45], or lower than previous results reported in the 
literature (13–14%) [16]. As based upon [53], moderate to 
excellent ICC(2,1) (> 0.70) were found in all cohorts except 
proximal femoral fracture, for the CADB and CADC algo-
rithms. These results confirm the robustness of cadence 
estimation in all cohorts. Proximal femoral fracture data 
showed the lowest ICC(2,1) values but good performances 
for the other metrics. This may be partially explained by 
the high asymmetry and the slow speed that characterize 
the proximal femoral fracture cohort (all proximal femo-
ral fracture patients walked at a speed of < 1.29 m/s) [62]. 
This and the use of walking aids may have impacted the 
wearable device signal quality (amplitude and shape) and 
hence challenged the processing techniques on which the 
algorithms are based (i.e., wavelet transformations for 
CADA and CADB [41, 42], and zero-crossings for CADC 
[45]).

The recommended algorithm for cadence estimation 
is dependent upon the mobility function of the cohort. 
Overall, CADC performances were excellent across all 
cohorts, especially for groups with higher gait speeds. 
CADB was more robust in the proximal femoral fracture 
cohort as reflected by the performance index. Therefore, 
we suggest the implementation of CADB in cohorts with 
compromised gait speed and symmetry (e.g., severe or 
advanced neurological diseases) for which a zero-cross-
ing approach may not be so suitable.

It is worth mentioning that the methodology for ini-
tial contact events/step detection, used by initial contact 
detection and cadence algorithms, includes two main 
stages. The first is related to the processing of the wear-
able device acceleration signal in order to remove noise, 
artefacts and to enhance the step-related features (e.g., 
zero-phase low-pass filtering, detrending). Then, on 
the processed acceleration signal, the initial contacts/
steps are detected using peak detection or zero-crossing 
approaches. The combination of the various techniques 
for these two stages allowed us to implement optimized 
versions of state-of-the art algorithms.

Although initial contact detection and cadence algo-
rithms are based on similar approaches, our results are in 

line with previous findings showing that the use of a peak 
detection approach may be more suitable for identifica-
tion of events (initial contact detection), whereas zero-
crossing techniques result in more accurate identification 
of cyclic events and step segmentation, required for the 
cadence estimation. All in all, as observed by Panebianco 
et  al. [61], this underlines that each principle is better 
tailored to each digital mobility outcome; i.e., a wave-
let transformation with peak detection is better suited 
for initial contact detection, whereas the zero-crossing 
approach seems better suited for the cadence.

Stride length estimation
The performances of the stride length metrics are lower 
with respect to the other metrics presented in this work 
(e.g. cadence, initial contact detection), as reflected 
by relatively high absolute and relative errors, and low 
ICC(2,1). This could be due to the nature of the lower-back 
accelerometry signals recorded in real-world conditions, 
from which the stride length is calculated. Particularly, 
the estimation of the position of the centre of mass (by 
double integration of the acceleration) and the inverted 
pendulum models on which stride length algorithms are 
based, assumes straight walking trajectories. Moreover 
these methodological principles do not consider turns 
or non-straight walking trajectories (i.e. veering). All of 
these deviations from a purely symmetrical and straight 
walking pattern are frequently found in real-world 
recordings [36].

Among the four algorithms, our recommendation is 
to use SLA in all cohorts, given the lowest absolute, rela-
tive error and highest ICC(2,1), as summarized by the 
performance indexes. It must be noted that SLB was the 
best performer for the multiple sclerosis cohort, which is 
based on the same algorithm principle as SLA, but using 
a different correction factor implemented to estimate 
stride length [48]. All in all, SLA showed good perfor-
mance and similar to SLB also for multiple sclerosis.

In general stride length algorithms tended to overesti-
mate stride length between 0.07 and 0.16  m, this could 
be due to the correction factors that are implemented in 
both SLA and SLB [17]. Overall, the results highlight the 
better suitability of biomechanically-based algorithms, 
rather than those based solely upon machine-learning 
approaches. This is in line with the results observed on 
a previous study which implemented the same algo-
rithms, trained on the same pre-available datasets [17]. 
This could be due to the fact that the biomechanically-
based algorithms are less dependent on the intensity and 
morphology of the acceleration signals, and are highly 
influenced by the gait speed and irregularity of the gait 
patterns [17], which highlights a potential limitation 
in the generalization of the machine-learning based 
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models when applied to external datasets. Future and 
novel machine-learning/deep-learning based models 
based on bigger datasets might produce better results.

The protocol used in the present study covered a 
comprehensive range of real-world scenarios. As such, 
results showed higher errors than those reported in pre-
vious studies: almost double with respect to [28] where 
results were evaluated from sensors on the shanks, and 
similar to [17] showing root mean square error between 
0.04 and 0.18  m, where data was collected in the labo-
ratory. This could potentially be due to the additional 
challenges involved in real-world and uncontrolled gait 
assessments presented in the current study, and the use 
of different data, i.e., based on a wearable device and on 
a different reference system for comparison. Moreover, to 
ensure a fair comparison of the algorithms, the walking 
bout (input) on which the algorithms were applied was 
defined and “imposed” by the reference system (INDIP). 
This could have potentially led to higher errors stemming 
from applying the algorithms to a wearable device signal 
with reduced amplitude and noisier characteristics with 
respect to the signal identified by the INDIP (sensors 
on the feet), especially for short and slow walking bout. 
All in all, our results highlight that future studies should 
focus on the development and optimization of stride 
length algorithms for increasing robustness of stride 
length estimation in order for this to be a useful (i.e., sen-
sitive to change) digital mobility outcome that could be 
used in clinical interventional studies.

Effect of walking speed and walking bout duration 
on algorithms’ performances
Generally, the performances of all algorithms signifi-
cantly worsened for walking speeds below 0.5 m/s, which 
is considered as a threshold between slow and medium 
speed walkers [2], confirming what is well established in 
the literature [17, 63, 64]. This may be explained by the 
fact that the signals recorded with the wearable device in 
slow walkers are characterized by a compromised ampli-
tude, non-uniform gait cycles [64, 65], and variable and 
irregular gait patterns [17]. Likewise, the lowest perfor-
mances observed within proximal femoral fracture, may 
be explained by the lower speed and irregular gait pat-
terns of this cohort [62]. Accordingly, the choice of algo-
rithms for digital mobility outcome extraction should 
consider its sensitivity to gait speed, given its proven con-
founding effect on gait analysis [66], and the population 
of interest.

Walking bout duration also significantly affected the 
performances of the cadence algorithms, with an over-
all significant reduction of the relative error observed for 
longer walking bouts when estimating both step duration 
and cadence. This trend was also likely magnified by the 

fact that the shortest bouts were also the slowest ones 
and confirms similar previous results [34]. This could 
also be due to the fact that the impact of breaks (start and 
stop) and/or mis-detected strides in short walking bouts 
may be much larger than in longer walking bouts when 
quantifying algorithms’ performances.

Individual relative errors for stride length were higher 
for short walking bouts (e.g., < 10 s), although the median 
error did not seem to be significantly affected by bout 
length. digital mobility outcomes estimated from short 
walking bouts, which have been reported as the major-
ity (about 50%) in real-world conditions [21, 67], should 
have special consideration as, in agreement with previ-
ous work, these walking bouts were observed to be the 
slowest [67], and therefore more sensitive to higher error 
estimation.

General discussion
When considering the optimal location of the sensor, the 
signals recorded at the lower back are less robust than at 
other locations, such as the foot or shank, for the iden-
tification of initial contact events [61], although still 
more accurate than wrist data [68]. However, the lower 
back is among the most clinically favourable location for 
a single device, given its cost (one device), its location 
near to the centre of mass (which represents the over-
all human motion pattern), ergonomic conditions when 
worn attached to a belt or affixed to the skin, and its clini-
cal value for fall risk, trunk stability and balance control, 
among others [21, 60, 69].

An advantage of real-world gait monitoring is the pos-
sibility of capturing a large number of diverse walking 
bouts and truly unsupervised gait performance in an 
ecologically valid environment [20]. However, the pres-
ence of contextual factors in a real-world context, which 
were not accounted for in this study, may have signifi-
cantly influenced the performance of the algorithms. In 
particular, the presence of turns, the deviation from a 
straight path or other gait tasks (e.g., slope, presence of 
stairs or/and obstacles, crowdedness of space, visibility 
of trajectory), and the usage of various walking aids may 
have altered the gait pattern of the participant [20] and 
may partially explain the larger errors observed for stride 
length.

When comparing the performance between spatial and 
temporal digital mobility outcomes, the results indicate 
that the temporal characteristics (initial contact events, 
step duration, cadence) of gait,  analysed with the pro-
posed algorithms were more robust and valid than the 
spatial ones. This may be due to the fact that lower-back 
signals are better tailored to estimate particular events 
in the signal (i.e., initial contact events) and to assess its 
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periodicity (i.e., cadence estimation) than to estimate dis-
placements. These aspects should be considered when 
using the proposed algorithms, especially when inter-
preting findings for clinical applications and assessing 
minimal detectable changes in pathological gait. Moreo-
ver, it should be noted that given the biomechanical rela-
tionship between temporal and spatial features of gait, 
the identification of temporal estimates may directly 
impact on spatial calculations [48].

Limitations
The results presented here are derived from real-world 
data comparing outcomes from a single wearable device 
to a reference system, INDIP, that has been thoroughly 
characterized and validated in a laboratory context, 
against a stereophotogrammetric system [23]. We did 
not include validation of DMOs derived from the single 
wearable device against a laboratory-based reference sys-
tem as the focus of this study was on real-world gait. It 
must be noted that a complete algorithm ranking meth-
odology should not only consider the overall findings for 
each cohort (as in this study) but should also consider the 
performance of algorithms on stratified subgroups (e.g., 
based on gait speed: slow-medium-fast walkers). This can 
be done by assigning a higher weight to the slow walkers’ 
results, given that their corresponding signals are more 
challenging and yield higher errors, as observed in this 
study. In addition, the percentage of walking bouts, as 
well as participants, in which the algorithm successfully 
provided digital mobility outcomes estimates should be 
considered to scale the overall performance of algorithms 
[24]. Thus, a simplified, although comprehensive, imple-
mentation of the ranking methodology could be seen as a 
limitation of this study. Nonetheless, the purpose of this 
was to provide an overall recommendation on the algo-
rithm that performed best for each digital mobility out-
come assessed in challenging real-world environments 
[20]. We are aware that, using a 2.5-h window of activity 
in the real world for the validation purposes, we may not 
have captured change and higher variability in mobility 
that are due to fatigue or the cyclic nature of activity. We 
also suggest that the inclusion of laboratory assessments 
for the implementation of the ranking methodology 
could be relevant. Indeed, even if collected under con-
trolled or semi-structured conditions, data from short 
and slow walking bouts, that are typical in lab-based 
settings, may add variability and challenge algorithm 
performance [19]. In addition, the effect of walking aid 
use on results has not been assessed in this study. Thus, 
future work assessing this aspect could be clinically rel-
evant, given the potential impact that walking aids (and 
the variety of types of walking aids) have on the quality of 
the wearable device signals and reference data [17], and 

as a consequence, on the assessment of the algorithm’s 
performance.

Conclusions
This work was aimed at providing recommendations 
to implement and select algorithms for real-world 
gait analysis using lower-back worn sensors in patient 
cohorts with mobility impairments. We achieved 
this by comprehensively assessing and ranking algo-
rithms’ performances, and we evaluated the effect 
of walking speed and walking bout duration on those 
performances.

The results highlighted good to excellent perfor-
mances of the top algorithms in all cohorts. Particularly, 
algorithms for cadence and initial contact event detec-
tion were the most robust for all cohorts. Performances 
on gait sequence detection showed good performance 
measures, particularly when assessing sensitivity 
(> 0.70), positive predictive value (> 0.80), accuracy 
(> 0.95) and specificity (> 0.97). However, stride length 
estimation was the most challenging digital mobil-
ity outcome to estimate (with absolute error < 0.21 m). 
Relative errors for step duration and cadence generally 
decreased for longer walking bouts. Lower gait speeds 
(below 0.5  m/s) negatively influenced step duration, 
cadence and stride length estimates. We identified two 
top-performer algorithms for gait sequence detection 
[16] and cadence [45, 46], and a single best performer 
for initial contact detection [16] and stride length [47, 
48]. The proximal femoral fracture cohort was the most 
challenging for algorithm performance.

In conclusion, the identified algorithms allow a 
robust estimation of digital mobility outcomes and gait 
characterization, with potential for improvement iden-
tified for stride length. Throughout this study we made 
recommendations for algorithm selection and imple-
mentation. Thus, our findings can be used to support 
future choices of the most suitable algorithms for real-
world gait analysis, depending on type of cohort and 
research question. Finally, these results may inform 
future design of novel and more efficient gait analysis 
algorithms.
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