Micé-Amigo et al Journal of NeuroEngineering
Journal of NeuroEngineering and Rehabilitation (2023) 20:78

https://doi.org/10.1186/512984-023-01198-5 and Rehabilitation

: o . ®
Assessing real-world gait with digital i

technology? Validation, insights
and recommendations from the Mobilise-D
consortium

M. Encarna Micé-Amigo', Tecla Bonci?, Anisoara Paraschiv-lonescu?, Martin Ullrich*, Cameron Kirk',
Abolfazl Soltani?, Arne Kiiderle*, Eran Gazit®, Francesca Salis®?, Lisa Alcock'”, Kamiar Aminian?,
Clemens Becker®, Stefano Bertuletti®, Philip Brown'?, Ellen Buckley?, Aima Cantu'', Anne-Elie Carsin
Marco Caruso’, Brian Caulfield'>'6, Andrea Cereatti’, Lorenzo Chiari'”"'8, Ilaria D'Ascanio'’, Bjoern Eskofier?,
Sara Fernstad'!, Marcel Froehlich'®, Judith Garcia-Aymerich'>'3'#, Clint Hansen?°, Jeffrey M. Hausdorff>?!%2,
Hugo Hiden'', Emily Hume??, Alison Keogh'>'®, Felix Kluge*?*, Sarah Koch'>'3'# Walter Maetzler?,
Dimitrios Megaritis?, Arne Mueller’*, Martijn Niessen?®, Luca Palmerini'”"'® Lars Schwickert®, Kirsty Scott?,
Basil Sharrack?®, Henrik Sillén?’, David Singleton''°, Beatrix Vereijken?®, loannis Vogiatzis?®, Alison J. Yarnal
Lynn Rochester'”'°, Claudia Mazza?, Silvia Del Din'"" and for the Mobilise-D consortium

12,13,14
!

|1,7,1O
U

Abstract

Background Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected
with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to com-
paratively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait
sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates.

Methods Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal
femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were moni-
tored for 2.5 hin the real-world, using a single wearable device worn on the lower back. A reference system combin-
ing inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single
wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD
and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and
relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were
investigated.

Results We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a sin-
gle best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity >0.73, posi-
tive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results,
with sensitivity >0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best
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identified SL algorithm showed lower performances than other DMOs (absolute error<0.21 m). Lower performances
across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture).

Algorithms’ performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced per-

formance of the CAD and SL algorithms.

Conclusions Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed
that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g,,
slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms’

performances.
Trial registration ISRCTN — 12246987.

Keywords Real-world gait, Algorithms, DMOs, Validation, Wearable sensor, Walking, Cadence, SL, Digital health,
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Introduction

The adverse consequences of physical mobility loss and
the importance of preserving mobility to ensure healthy
ageing are undeniable [1, 2]. For this reason, a variety of
behavioural, nutritional, and pharmacological interven-
tions aim to improve mobility in general, and more spe-
cifically target the preservation of an individual’s ability
to walk independently and safely both within and outside
their homes [3—6]. Evaluating the effectiveness of inter-
ventions by quantifying an improved gait pattern, how-
ever, remains a challenge when relying on traditional
tools such as patient-reported outcomes or supervised
gait tests in clinic or lab, as these typically lack ecological
validity [7].

Therefore, there is a need for the development of accu-
rate, reliable, and sensitive tools for the quantification of
gait and mobility in real-life [8, 9]. Digital health technol-
ogy, including body-worn or wearable devices, offers a
way forward by providing digital outcomes to remotely
measure and monitor gait [10, 11], a fundamental com-
ponent of mobility [12, 13]. Nonetheless, due to several
persisting challenges in this field, current tools and tech-
niques are still in their infancy. These challenges need
to be addressed before digital mobility outcomes can be
confidently adopted in clinical trials and as part of stand-
ard healthcare, including a variety of technical, clinical,
and regulatory aspects [9, 14].

Exciting technical advances in algorithms and data
processing techniques have led to the deployment of
a plethora of algorithms to extract digital mobility out-
comes from gait data recorded using inertial measure-
ment units embedded within wearable devices [15-17].
Even so, significant ongoing challenges exist, in particular
establishing the technical validity of these algorithms. A
thorough validation process must account for complex
factors that simultaneously arise from multiple sources
influencing digital mobility outcome measures, includ-
ing disease characteristics, patient specific habits, and

the context in which walking is recorded (i.e. indoors,
outdoors, public vs. private domain) [18-20]. All these
factors concur to potentially limit the generalizability of
validation data recorded during traditional gait protocols
such as those administered within a controlled clinical
or laboratory setting in which participants are asked to
walk along a straight path or just a few daily life activities
are simulated [21, 22]. Only recently, ad-hoc wearable
devices have been developed, which finally allow mov-
ing the validation to more complex and realistic real-life
scenarios [19, 23]. However, published validation studies
generally only target a subset of specific digital mobility
outcomes as calculated from one or a reduced number of
algorithms and/or include only a few cohorts, hence pro-
viding partial information about generalizability of the
results [22, 24].

The aim of this paper is to identify, compare and rank
the most promising algorithms that quantitatively char-
acterize gait with digital mobility outcomes from con-
tinuous real-life monitoring in a diverse group of patients
who present with different mobility challenges. Here we
focus on detection of gait sequences (i.e., identified walk-
ing bouts), individual steps, and estimation of cadence
and stride length from a single wearable device posi-
tioned on the lower back, an ergonomically easy-to-use
position near the centre of mass, which is well accepted
by participants [25, 26]. To establish generalizability,
we independently compare algorithms in six cohorts:
healthy older adults, Parkinson’s disease, multiple scle-
rosis, proximal femoral fracture, chronic obstructive pul-
monary disease and congestive heart failure. Specifically,
we aim to:

(a) Identify, compare and rank the best performing
(i.e., most accurate and reliable) algorithms for each
cohort;

(b) Describe the performance of the identified best
algorithms;
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(c) Analyse the influence of walking speed and walking
bout duration on the algorithm performance;

(d) Provide recommendations to implement and select
algorithms for real-world gait analysis tailored to
different patient cohorts.

Methods

Participants

A convenience sample of 108 participants were recruited
to represent five disease cohorts (chronic obstructive
pulmonary disease, Parkinson’s disease, multiple scle-
rosis, proximal femoral fracture, and congestive heart
failure), as well as healthy older adults, encompass-
ing a broad range of mobility levels. Participants were
recruited in five sites: The Newcastle upon Tyne Hospi-
tals NHS Foundation Trust, UK and Sheffield Teaching
Hospitals NHS Foundation Trust, UK (ethics approval
granted by London — Bloomsbury Research Ethics com-
mittee, 19/LO/1507); Tel Aviv Sourasky Medical Center,
Israel (ethics approval granted by the Helsinki Commit-
tee, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,
0551-19TLV), Robert Bosch Foundation for Medical
Research, Germany (ethics approval granted by the ethi-
cal committee of the medical faculty of The University of
Ttibingen, 647/2019B0O2), University of Kiel, Germany
(ethics approval granted by the ethical committee of the
medical faculty of Kiel University, D438/18). All partici-
pants gave written informed consent to take part in the
study. Inclusion and exclusion criteria and details about
the technical validation study experimental protocol are
described in [19].

Experimental protocol

Participants were monitored for 2.5 h as they went
about their usual activities in their habitual environment
(home/work/community/outdoor). To ensure diversity
of walking activity, participants were also asked to per-
form some specific tasks: outdoor walking; walking up
and down a slope and stairs; and moving from one room
to another. Participants wore a single McRoberts Dyna-
port MM+ wearable device (sampling frequency 100 Hz,
triaxial acceleration range:+8 g/resolution: 1 mg, tri-
axial gyroscope range:+2000 degrees per second (dps)/
resolution: 70 mdps), secured to the lower back with an
elasticated belt and Velcro fastening. A reference system
was used to establish the accuracy of algorithms and was
comprised of a multicomponent system of INertial mod-
ules, DIstance Sensors and Pressure insoles (INDIP) [19,
23, 27]. The INDIP system and the associated algorithms
to estimate digital mobility outcomes have been validated
in previous studies in healthy and pathological cohorts
(e.g., hemiparetic, Parkinsons disease, Huntington’s
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disease and mild cognitive impairment) and in this study
participants [23, 28—32]. The INDIP and the single wear-
able device on the lower back were synchronized using
timestamps referred to a common clock [19].

Pre-selection of algorithms for further validation

and ranking

In this paper we focused on key metrics of real-world
walking that form the basis from which a variety of digital
mobility outcomes, including walking speed, can then be
quantified. These are: gait sequence detection, foot initial
contact detection, cadence and stride length estimation.
For each metric, we identified published algorithms from
laboratory-based or semi-structured protocols [8, 33].
This yielded 14 for gait sequence detection, 21 for initial
contact detection, 23 for cadence and 18 for stride length
estimation. For each digital mobility outcome, a shortlist
of up to four most promising algorithms was selected
based on initial testing in pre-existing data from older
adults and pathological cohorts, including Parkinson’s
disease [28, 34—36], multiple sclerosis [37, 38], stroke &
chorea [28, 39]. Algorithms’ selection was based on the
ranking methodology proposed in Bonci et al. [24]. The
final subset of optimized algorithms (including detailed
descriptions of implementation) are summarized in
Table 1 and briefly outlined below.

Gait sequence detection (GSD) This metric identifies
sections of the raw signal which correspond to walking/
gait. Three algorithms were selected: GSD, [40], GSDy
[16] and GSD( [41].

Initial contact detection (ICD) This metric detects the
foot initial contact within each gait sequence. Four algo-
rithms were selected: ICD, [16, 41, 42], ICDy [44], ICD.
[16, 41, 42] and ICDy, [45].

Cadence estimation (CAD) This metric identifies
strides as a cyclic pattern from which cadence [number of
steps within a minute (min)] is estimated in each walking
bout [17]. Three algorithms were selected: CAD, [41, 42,
44], CADg [16, 46] and CAD,. [17, 45]. Cadence (steps/
min) was derived from identified strides as follows:

Cadence; = StrideFrequency; * 2, 1)

where i = 1,...,n are the different walking bouts and
Stride Frequency is evaluated as:

STRIDE,
TP (8 srRripEd) )

n_STRIDE;

Stride Frequency; =

’

(2)
where i=1,...,n are the different walking bouts,
n_STRIDE; is the number of strides (including right and
left steps) in the relevant i — walking bout, STRIDEd), is
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the duration [seconds] of the k — stride in the relevant i—
walking bout

Stride length estimation (SL) This metric quantifies
stride length, evaluated as the distance between two
non-consecutive initial contacts. Four algorithms were
selected based either on biomechanical or machine-
learning models: SL, [47, 48], SLy [47, 48], SL. [49, 50]
and SL, [17, 51].

Data and statistical analyses for validation and ranking

of algorithms.

All calculations and statistical analysis were performed
using Matlab® R2021a (Mathworks, Natick, MA).

Performance measures to describe and establish algorithm
validity
To ensure objective comparison between systems (INDIP
and wearable device), walking bouts detected by the
INDIP were given as a standardized input to all algo-
rithms except for gait sequence detection where the full
wearable device recording was given as input. A walk-
ing bout was defined as a walking sequence containing at
least two consecutive strides of both feet (e.g., R-L-R—
L-R-L or L-R-L-R-L-R, with R/L being the right/left
foot contact with the ground) [18]. Criteria for inclusion
of a stride were: (a) duration of 0.2-3 s, and (b) a mini-
mum length of 0.15 m. A resting period/break of 3 s or
more identified consecutive walking bouts [18], thus each
walking bout could include resting periods/breaks <3 s.
Each metric was determined by the algorithms imple-
mented on the single wearable device and by the INDIP.
Algorithm validation was established independently
for each cohort by comparing digital mobility outcomes
obtained from the selected algorithms applied to the
wearable device with those from the INDIP using the
following set of performance measures to describe and
establish validity:

TP + TN
Accuracy = 3)
TN + TP + EN + FP
S itivit i 4
ensitivity = ———
WS TP EN )
Specificit N 5
ificity = ———
pecificity = o5 (5)
. - P
Positive Predictive Value = —— 6)
TP + FP

where TP=True Positive events, TN=True Negative
events, FP: False Positive events, FN: False Negative
events.
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+ Intra class correlation coefficient (ICC, ;) [52] was
calculated to assess the association between the digi-
tal mobility outcomes of the two systems using all
walking bouts collected from each cohort separately.
Based on ICC estimates, values less than 0.5, between
0.5 and 0.75, between 0.75 and 0.9, and greater than
0.9 were deemed to be indicative of poor, moderate,
good, and excellent agreement, respectively [53].

+ Absolute agreement was assessed by quantifying (i)
absolute error, (ii) bias, and (iii) Limits of Agreement
[54] between the wearable device and reference sys-
tem digital mobility outcomes calculated for each
walking bout.

+ Relative errors between the wearable device and
INDIP digital mobility outcomes were determined
for each walking bout.

Mean and 95% confidence intervals of all digital mobil-
ity outcomes were evaluated at a cohort level (i.e., quan-
tified using all walking bouts across all participants
belonging to that specific cohort). Subsets of relevant
measures were then used for the different digital mobility
outcomes and evaluated as detailed below.

For gait sequence detection algorithms, each window
of 0.1 s from the complete 2.5-h recording was classi-
fied (see Fig. 1) as either true positive, false positive, true
negative or false negative and accuracy, sensitivity, speci-
ficity, positive predictive value were calculated. These
measures were evaluated for each 2.5-h assessment. In
addition, absolute errors and ICC, ;) for the total accu-
mulated duration of all gait sequences identified in a
2.5-h recording was assessed and compared between the
two systems, for each participant.

In the case of initial contact detection, we defined each
initial contact event within a walking bout as a true posi-
tive, false positive and false negative by comparing the
initial contact events detected by the wearable device to
the events detected by the INDIP within a tolerance win-
dow of 0.5 s (centred around the event identified by the
INDIP, see Fig. 2), representative of a step duration [55].
This approach has been previously used and was adopted
to take into account the potential mismatch on the event
time between the INDIP and the wearable device [56]. To
assess initial contact detection, true negative events were
not evaluated, since true negative would correspond to
all non-initial contact events identified as such by both
systems.

For initial contact detection, we utilised the following
measures: sensitivity, positive predictive values, absolute
errors (which were estimated for each true positive ini-
tial contact (see Fig. 2)) and relative error (estimated by
dividing all absolute errors, within a walking bout, by the
average step duration estimated by the INDIP [55]).
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Il Window of 0.1 seconds
identified as FP

Bl Window of 0.1 seconds
identified as FN

I B Window of 0.1 seconds

il Il 0 OBEE @ EEEEEEE R 8482 BE
Gait Se
il I | [ I N

identified as TP

[] Window of 0.1 seconds identified as non-gait

B Window of 0.1 seconds
identified as TN

[ Window of 0.1 seconds identified as gait

Fig. 1 Example of identification of False Positive (FP), False Negative (FN), True Positive (TP) and True Negative (TN) for the Gait Sequence Detection
(GSD) algorithms, of each window (0.1 s). Events classified from the comparison of each individual window between the INDIP reference system
(RS) and the single wearable device (WD) for the detection of gait sequences. Each window of the WD and RS outputs are depicted as a rectangle,
where white rectangles represent windows of non-gait sequences, and grey rectangles denote windows of a detected gait sequence

«® by e®

I

I
False Positive

False Negative True Positive

Absolute Error

«® P
|
— = = Initial Contact WD
— |nitial Contact RS
«a® IC - RS: Initial Contact from

reference system classified as a
false negative

|
|
|
I
i IC — WD: Initial Contact from
wearable device classified as a
I false positive
- IC — WD: Initial Contact from

| » wearable device classified as a
True Positive False Positive true positive

IC - RS: Initial Contact from
, reference system

Absolute Error: temporal
difference between IC - RS

Tolerance window 0.5 s Tolerance window 0.5 s

IC-RS Absolute Error
l llc-wo IC-RS | | IC— WD |c—wo| ||c-Rsl IC- WD
4 —> < > B Tlme

and IC — WD identified as a

true positive
Tolerance window 0.5 s

Fig. 2 Example of performance analysis for initial contact detection (ICD) algorithms. The figure shows Initial contacts events identified by the
reference system (IC-RS, depicted in black solid line) and initial contacts events identified by the single wearable device (IC-WD, depicted in orange
dotted line). False Negatives, False Positive and True Positive events are defined with respect to the selected temporal tolerance window of 0.5 s (in
grey) centred around the IC-RS. a Shows the identification of False Negative events (i.e, initial contact identified by the reference system but not
identified by the single wearable device within the tolerance window) and False Positive events (i.e., initial contact wrongly identified by the single
wearable device because although identified, it is outside the tolerance window). b Shows the identification of True Positives events (i.e,, initial
contact events correctly identified by the single wearable device) and example of other cases for identification of False Positive events (i.e, initial
contact wrongly identified by the single wearable device). Note that the initial contact event, identified by the single wearable device, nearest to
the true event (identified by the INDIP) will be considered a True Positive, and the rest of the identified events, False Positives. The figure also shows

in blue how absolute errors are calculated only from True Positive events

For cadence and stride length algorithms, the measures
used were: relative errors, absolute errors and ICCj ;).

Ranking algorithms using performance measures

A simplified version of the ranking methodology
described in Bonci et al. [24] was applied to compare
algorithm performance using a decision matrix. This

was based on the weighted combination of performance
measures described above assessing agreement between
the single wearable device and the INDIP system (classi-
fied as benefit or cost). Performance measures considered
as benefits were: accuracy, sensitivity, specificity, positive
predictive value and ICC, ;) [52]. Performance measures
considered as costs were absolute and relative errors.
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Each measure was weighted based on its relative impor-
tance to the algorithm’s validity assessment (see Bonci
et al. [24] and Additional file 1 for further detail regard-
ing the specific performance measures and assigned
weights for gait sequence detection, initial contact
detection, cadence and stride length algorithms). This
information was combined to determine a performance
index (0=worst, 1 =best), calculated as a weighted mean
of the selected benefit and/or cost analysis, which was
subsequently used to compare and rank the algorithm
performances, and thus, to select the top performing
algorithms for each cohort independently.

Influence of walking speed and walking duration

on the algorithms’ performance

The performance of initial contact detection, cadence
and stride length top-selected algorithms was then
assessed considering the impact that walking bout walk-
ing speed values (calculated as the average stride speed
by the INDIP system) and walking bout durations had
on the relative error of each digital mobility outcome
(i.e., step duration, cadence and stride length). Specifi-
cally, median relative errors for each digital mobility out-
come were quantified evaluating all the walking bouts

Table 2 Demographic and clinical characteristics of the participants

(2023) 20:78
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characterized by specific walking speed and walking bout
duration ranges; including errors observed in consecu-
tive walking speed windows of 0.05 m/s [57] and in con-
secutive walking bout duration windows of 2 s. For each
digital mobility outcome, the resulting median errors
were then employed in a best-fit approach to deter-
mine their association between the relative errors and
walking speed or walking bout duration, respectively.
In the best-fit approach, median error values were also
weighted according to the relevant number of observa-
tions in a given window with respect to the total number
of observations.

Results
Participant clinical and demographic characteristics per
cohort are presented in Table 2.

The cohorts covered a wide range of mobility levels:
the walking speed measured by the INDIP system during
the 2.5-h assessment ranged from an average of 0.54 m/s
(proximal femoral fracture) to 0.72 m/s (congestive
heart failure), with a minimum measured walking speed
of 0.10 m/s (in Parkinson’s disease) and a maximum of
1.63 m/s (in healthy older adults) (Table 2).

Characteristic (unit of measure) or [range] HA (n=20) CHF (n=12) COPD(n=17) MS(n=20) PD (n=20) PFF (n=19)
Number of walking bouts included in the 1343 416 1031 795 681 684
analyses (n)
Age (years) 71.7+58 69.1+11 69.4+9.1 48.7+9.7 69.8+7.2 80.0+£85
Height (cm) 1.66+0.10 1.74+0.10 1.69+0.07 1.71+0.13 1.73+£0.07 1.69+0.08
Weight (kg) 751+118 845+1638 73.7+142 8404229 7824144 684+16.0
Gender: % females [females n, males n] 45% [9, 11] 33% [4, 8] 47% (8, 9] 45% [9, 11] 20% [4, 16] 58%[8,11]
WS during the 2.5-h assessment (mean and 0.59[0.12,1.63] 0.72[0.14,1.46] 060[0.11,1.36] 0.58[0.15,1.60] 0.60[0.10, 1.44] 0.54[0.14, 1.29]
[range]) (m/s)
Walking Aid use: % of users [n] 5% [1] 25% (3] 6% [1] 25% [5] 30% [6] 68% [13]
MoCA [0-30] 277426 271429 246+34 26.7+3.1 246+40 241442
LLFDI[0-100] 735341422 672942135  59.07+7.96 573441066  60.26+1251 5259+16.61
Hoehn & Yahr stage (n) H&Y I: 4

H&Y I1: 11

H&Y I1I: 5
MDS-UPDRS Il [0-132] 284+136
EDSS [0-6] 35+17
SPPB [0-12] 6.2+39
CAT Score [0-40] 16.6+89
FEVT (litres) 16+06
6MWT distance (m) 3707+1156  357.6+885
KCCQ-12 Score [0-100] 80.5+20.2

Values are presented as mean + standard deviation, unless otherwise stated

CAT chronic obstructive pulmonary disease (COPD) Assessment Test; EDSS Expanded Disability Status Scale; FEV1 Forced Expiratory Volume in 1 Second; KCCQ-12
Kansas City Cardiomyopathy Questionnaire-12; LLFDI Late Life Function and Disability Instrument; MDS-UPDRS Ill Movement Disorder Society Unified Parkinson’s
Disease Rating Scale Part lll; MoCA Montreal Cognitive Assessment; SPPB Short Physical Performance Battery; 6MWT 6 Minute Walking Test; HA healthy adults; PD
Parkinson’s disease; MS multiple sclerosis; COPD chronic obstructive pulmonary disease; CHF congestive heart failure; PFF proximal femoral fracture
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Nine participants (8%: three with chronic heart failure,
two with multiple sclerosis, one with Parkinson’s dis-
ease and three proximal femoral fracture participants)
were excluded from subsequent analysis due to data
unavailability.

Gait sequence detection

Performance measures and ranking

We report in Table 3 the gait sequence detection algo-
rithms main peformance measures (All performance
measures areconsidered for the evaluation of the perfor-
mance index are shown in the Additional file 1: Table).

Across all cohorts, performance measures for the three
gait sequence detection algorithms were good to excel-
lent (sensitivity ranged between 0.60 and 0.92, specificity
between 0.95 and 0.99, accuracy between 0.94 and 0.97
and positive predictive value between 0.74 and 0.91 [41]
(Table 3, Additional file 1: Table). The lowest sensitivity
was observed for the most impaired cohort (proximal
femoral fracture) for all algorithms.

The absolute error between the wearable device and the
INDIP for the total accumulated duration of the detected
gait sequences ranged from 71.9 to 358.5 s across the
three algorithms which was approximately from 7 to 32%
of the total duration estimated by the INDIP. Overall,
except for the proximal femoral fracture cohort, GSD,
and GSDjy overestimated the total gait sequence duration,
whereas GSD¢ underestimated it. The ICC,,, ranged
from 0.68 to 1.00, with the lowest ICC, ;) found for the
multiple sclerosis cohort, in line with the largest disa-
greement, based on the largest limits of agreement [54],
among all cohorts and the three algorithms.

Algorithm GSD, presented the overall best perfor-
mance index for healthy older adults (0.819), congestive
heart failure (0.853), chronic obstructive pulmonary dis-
ease (0.822), multiple sclerosis (0.735) and Parkinson’s
disease (0.852) cohorts (see Additional file 1). Algorithm
GSDy presented the highest performance indexes for
the proximal femoral fracture cohort (0.771) and similar
good performances for multiple sclerosis (0.655) and Par-
kinson’s disease (0.726).

Initial contact detection
Performance measures and ranking
Table 4 presents performance measures of initial contact
detection algorithms, which were very similar for the
four algorithms. Across algorithms and cohorts, sensitiv-
ity ranged from 0.76 to 0.83 and positive predictive val-
ues from 0.81 to 0.93, whilst relative errors ranged from
7.6 to 21.2%.

Algorithm ICD, presented the highest overall per-
formance index across all cohorts: healthy older
adults (0.804), congestive heart failure (0.771), chronic
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obstructive pulmonary disease (0.790), multiple sclerosis
(0.805), Parkinson’s disease (0.798) and proximal femoral
fracture (0.818) reflecting the lowest absolute and relative
errors, highest sensitivity, and positive predictive values.

Effect of walking speed and bout duration

Relative errors for step duration, as extracted from
the initial contacts, decreased with walking speed
(R*=0.86), with errors lower than 10% reached for walk-
ing speeds>0.25 m/s (Fig. 3a) [58]. Any value of walking
bout duration showed median errors lower than 10%, but
an overall error decrease was observed when the walk-
ing bout duration increased (R*=0.70, Fig. 4a). Overall,
higher errors (>50%) were observed only in the 0.9% of
the detected walking bouts; these bouts were character-
ised by a short duration (8.37 +4.71 s) and slow walking
speed (0.44+0.24 m/s).

Cadence estimation

Performance measures and ranking

Performance measures of the cadence algorithms are
presented in Table 5, reflecting a slight (4.6—7.2 steps/
min) overestimation of cadence by the wearable device
with respect to INDIP for all the cohorts with algorithms
CADg and CAD(. (except for proximal femoral fracture
with CAD¢, in which case there is a misestimation).
The absolute error ranged from 5.2 to 9.3 steps/min, the
relative error between 6.6% to 11.8% and ICC, ;) ranged
from 0.44 to 0.82 across the three algorithms.

The highest absolute and relative errors, and the low-
est ICC(, ;) were found for the proximal femoral frac-
ture cohort. CAD had the highest performance index
for healthy older adults (0.653), congestive heart failure
(0.720), chronic obstructive pulmonary disease (0.693),
multiple sclerosis (0.644), Parkinson’s disease (0.653).
CADy presented the best performances for proximal
femoral fracture (0.584) showing the lowest absolute
error (7.2 steps/min), closest largest limits of agreement
(— 10.1 to 24.2 steps/min), lowest relative error (8.5%)
and highest ICC, ;) (0.66). Overall good performances
were also found for CADjy for multiple sclerosis and Par-
kinson’s disease.

Effect of walking speed and bout duration

For both CADy and CAD¢, as walking speed increased,
the relative error decreased (Fig. 3b), with speeds above
0.3 m/s resulting in an error below a 10% threshold [58].
Generally, the highest errors were observed for the short-
est and slowest bouts (Fig. 4b). The walking bouts with
higher errors [>50%, n=25 (0.8%)] had a mean duration
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Table 4 Initial contact detection (ICD) performance measures. Sensitivity, positive predictive value, absolute and relative errors, and
overall performance index for the ICD algorithms. Values are expressed as mean and 95% confidence intervals (Cl) for each cohort. In
italic face: recommended algorithms. Underlined performance index indicates top-ranked algorithm for the specific cohort of that row

Cohort Initial contact detection
Sensitivity Positive predictive value Absolute error [s] Relative error [%] Performance
index
ICD,
HA 0.80[0.79,0.81] 0.91[0.90, 0.92] 0.06 [0.05, 0.06] 8.0[7.7,8.3] 0.804
CHF 0.79[0.77,0.80] 0.89[0.88,0.91] 0.07 [0.06, 0.07] 10.9[10.1,11.8] 0.771
COPD 0.81[0.81,0.82] 0.93[0.92,0.94] 0.07 [0.06, 0.07] 9.1[8.8,9.3] 0.790
MS 0.80[0.79, 0.82] 0.92[0.91, 0.93] 0.06 [0.06, 0.06] 8.4[8.1,8.7] 0.805
PD 0.79[0.77,0.80] 0.90[0.89, 0.91] 0.06 [0.06, 0.06] 8.3[7.9, 8.6] 0.798
PFF 0.80[0.78,0.81] 0.89[0.88, 0.90] 0.05[0.05, 0.06] 7.6[7.3,7.9] 0.818
ICDg
HA 0.80[0.79,0.81] 0.86 [0.85,0.87] 0.1310.13,0.13] 18.0[17.8,18.3] 0.641
CHF 0.80[0.78,0.81] 0.88 [0.86, 0.90] 0.13[0.13,0.14] 19.9[19.3,204] 0.641
COPD 0.78[0.77,0.79] 0.85[0.84, 0.86] 0.15[0.15,0.15] 21.2[20.9,21.5] 0.590
MS 0.7510.73,0.77] 811[0.79,0.83] 0.1410.14,0.15] 19.8[19.3,204] 0.595
PD 0.80[0.78,0.81] 0.86 [0.84, 0.88] 0.14[0.14,0.14] 19.2[189,19.6] 0.620
PFF 0.80[0.79,0.82] 0.86 [0.85, 0.88] 0.13[0.13,0.13] 9[17.5,18.2] 0.641
ICD¢
HA 0.82[0.81,0.83] 0.86 [0.85, 0.88] 0.06 [0.06, 0.07] 91[86,9.2] 0.795
CHF 0.81[0.80,0.82] 0.87[0.85,0.88] 0.07 [0.07, 0.08] 11.1[10.2,11.9] 0.771
COPD 0.83[0.82,0.83] 0.90[0.89,0.91] 0.07[0.07,0.07] 7194,99] 0.786
MS 0.82[0.81,0.84] 0.89[0.87,0.90] 0.07 [0.06, 0.07] 2[88,9.6] 0.783
PD 0.80[0.78,0.81] 0.84[0.82,0.86] 0.07[0.07,0.07] 41[9.0,9.8] 0.766
PFF 0.80[0.79,0.82] 811[0.79,0.82] 0.07 [0.07,0.07] 6[9.2,10.0] 0.759
ICD,
HA 0.78[0.77,0.79] 0.88[0.87,0.89] 0.10[0.10,0.10] 14.1 [13.8,14.5] 0.705
CHF 0.7910.78,0.81] 0.92[0.91,0.93] 0.09 [0.09, 0.10] 13.8[134,14.3] 0.735
COPD 0.76 [0.75,0.77] 0.89[0.88,0.90] 1[0.11,0.12] 159[15.5,16.3] 0.680
MS 0.78 [0.77,0.80] 0.8910.88,0.91] 0. 10[010,011] 14.4[13.9,15.0] 0.706
PD 0.76 [0.75,0.78] 0.86 [0.84,0.87] 1[0.11,0.11] 154[15.0,15.8] 0674
PFF 0.80[0.78,0.81] 0.86 [0.85, 0.88] 0.10[0.09, 0.10] 6[13.1,14.1] 0.706

HA healthy adults; PD Parkinson'’s disease; MS multiple sclerosis; COPD chronic obstructive pulmonary disease; CHF congestive heart failure; PFF proximal femoral

fracture; LoA limits of agreement

of 8.88 s (std: 5.97 s) and slow walking speed values
(0.28 +£0.09 m/s).

Stride length estimation

Performance measures and ranking

Table 6 shows an overall overestimation of stride length
by the wearable device with respect to the INDIP. The
absolute error between the wearable device and the
INDIP outcomes ranged from 0.15 to 0.33 m across all
algorithms.

The mean relative errors ranged from 25.3 to 34.1%
for SL,, and similarly from 27.4 to 35.8% for SL;. These
were larger for SL. (ranging from 29.0 to 34.5%) and for
SLp, (40.4 to 47.7%). The ICC, ;) for SL, were the largest,

ranging from 0.28 to 0.70, followed by SLy with a range
from 0.20 to 0.66. The ICC, ;) for SL. were below 0.5,
and below 0.15 for SLp,.

Overall, SL, presented the highest performance
indexes for all cohorts excluding multiple sclerosis, with
the following values: healthy older adults (0.582), conges-
tive heart failure (0.663), chronic obstructive pulmonary
disease (0.381), Parkinson’s disease (0.607), and proximal
femoral fracture (0.465). In the multiple sclerosis cohort,
SL; had the highest performance index (0.487).

Effect of walking speed and bout duration
Critical errors in the stride length estimate were observed
for the slowest bouts, with values decreasing below 20%
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Fig. 3 Effect of walking speed on the relative errors in a step duration, b CAD and ¢ step length estimations. The empty shaded circles (n) represent
the relative error for each walking bout when the selected algorithms are used (ICD, for all cohorts in blue; CAD; for the congestive heart failure
(CHF), chronic obstructive pulmonary disease (COPD), healthy adults (HA), multiple sclerosis (MS) and Parkinson’s disease (PD) cohorts in red; CAD
for the proximal femoral fracture (PFF) cohort in blue; SL, for CHF, COPD, HA, PFF and PD in blue; and SLg for MS in red). The filled circles indicate

the median relative errors quantified in consecutive walking speed (ws) windows of 0.05 m/s. The sizes of the filled circles have been calculated

as the ratio between the number of empty shaded circles in a given walking speed window and the total number of empty shaded circles (i.e, all
observations). The obtained exponential curves (represented in blue and red continuous lines) and equations are the result of a best-fit approach
used to determine the association between walking speed and the calculated median errors; R? values are also shown. The horizontal black
dash-dotted lines visually indicate the relative error thresholds of 10 and 20%

only for walking speed>0.5 m/s and below 10% only for
0.6 m/s (Fig. 3c). Highest errors were also still associated
with shortest and slowest bouts (Fig. 4c); specifically, the
shortest bouts (<10 s) had a mean error of 32.6%, while
the longest ones (> 60 s) 9.3%. Overall, errors higher than
50% were observed in about 17% of the total number of
walking bouts. These bouts were short (13.03+10.53 s),
with slow walking speed (0.36+0.13 m/s) and short
stride length values (0.45+0.17 m).

Discussion

This is the first study presenting a comprehensive com-
parative assessment of a broad range of algorithms
applied to a single wearable device, for estimating key
digital mobility outcomes pertaining to gait (i.e., gait
sequences, individual steps, cadence and stride length)
in heterogeneous diseases and using data from the real
world. In this work, we have described algorithms’ per-
formances, selected the best algorithm for each digital
mobility outcome and cohort, analysed the influence of
walking speed and walking bout duration on their perfor-
mance, and provided recommendations for their selec-
tion and implementation for real-world gait analysis.

Gait sequence detection

When comparing all gait sequence detection algorithms,
concurrent validity was high, reflected by ICC, ;, values
and performance measures above 0.7, matching previous
work [16, 41, 59]. Accuracy, specificity, and positive pre-
dictive values were very high for all gait sequence detec-
tion algorithms. Our results were comparable to previous
work on a different population (post-stroke survivors)

which reported similar sensitivity (0.92) and positive pre-
dictive value (0.84) of gait sequence detection algorithms
implemented on data obtained from bilateral wearable
devices on the feet [16]. The excellent results for specific-
ity are similar or even higher than those reported previ-
ously in the literature 0.96 in Parkinson’s disease [59] and
0.93 in stroke survivors [16]. This is encouraging, as gait
analysis relies on high specificity, which corresponds to a
correct identification of gait sequences (high number of
true positive events) while avoiding the misidentification
of gait sequences (low number of false positive events).
Avoiding incorrect identification of gait-sequences (as
also reflected by positive predictive values) is preferable,
to avoid the extraction of digital mobility outcomes from
activities which are not directly representative of gait,
such as shuffling or transitions [59].

When considering differences between algorithms,
GSD, and GSDjy tended to overestimate the total walk-
ing time (total gait sequence duration). This could poten-
tially relate to different signal characteristics between the
compared systems (low-back signals recorded with the
wearable device may be different from feet signals [55]
recorded with the INDIP). Slow gait, curved paths and
short walking bouts with insufficient steady-pace phases
for the spectral analysis could have also influenced the
results, as the characteristics of the signals are more vari-
able and the periods are less uniform than in steady-pace
gait undertaken at faster speeds along straight paths [41].

Based on our findings collectively, we recommend
using GSDy on cohorts with slower gait speeds and sub-
stantial gait impairments (e.g., proximal femoral frac-
ture). This may be because this algorithm is based on the
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COPD, HA, PFF and PD; and SLg for MS), the individual filled circles (n) represent the relative error for each WB, colour coded according to the
walking speed measured for that specific bout. The empty grey circles indicate the median relative errors quantified in subsequent separate walking
bout duration (wbd) windows of 2 s. Grey intensity represents the weight associated to the relevant observation, calculated as the ratio between
the number of points in a given walking bout duration window and the total number of points, in the best-fit approach; a darker grey represents
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Table 5 Cadence (CAD) estimation performance measures. Cadence obtained from the INDIP and the single wearable device, bias,
limits of agreement (LoA) and intra class correlation (ICC(2,1)) for comparison between systems, and overall performance index for the
CAD algorithms. In italic and boldface recommended algorithms. Underlined performance index indicates top-ranked algorithm for
the specific cohort of that row

Cohort Cadence
INDIP mean Single wearable Bias and LoA [steps/  Absolute Relative error [%] ICC (2, 1) Performance
and Cl [steps/ device mean and Cl min] error [steps/ index
min] [steps/min] min]
CAD,
HA 86.0(85.1,87.0] 856 (844,86.8] —041[-270,262] 6179,9. 3] 10.5[9.6,11.5] 0.651[061,069] 0.538
CHF 2[89.8,925] 89.8[88.2,91.5] =1 4[ 30.7,28.0] 3[8.2,103] 106[95 11.8] 0.63[057,068] 0517
COPD 846 [83 7,854]  86.3[85.2,87.3] 7[-=175,20.8] [6 2,7. 2] 31[7.6,9.0] 0.72[0.68,0.75] 0.644
MS 84.6[83.1,86.1]  85.7[83.9,87.5] 1[—228,250] 2[7.3,9.2] 1089,11.3] 0.711[0.65,0.75] 0594
PD 84.8[834,86.1] 87.0[854,88.6] 2 [—24.9,294] [8 1,101 11.8[104,13.2] 0.62 [0.56,067]  0.520
PFF 8501[834,865] 816[799 834] —33[-306,239] 9[7.7,100]  1041[9.1,11.7] 0.60[0.54,067]  0.529
CADg
HA 86.0[85.1,87.0]  89.8[88.9,90.6] 3.71[-16.3,23.8] 7.11066,7.7] 9.1[83,9.9] 0.691[065,0.72]  0.585
CHF 91.2[89.8,925] 946[935,958] 35[-140,21.0] 6.415.8,70] 7.7[6.9,85] 0.79[0.76,082] 0.654
COPD 84.6[83.7,854]  89.1[88.3,899] 45[-104,194] 6.2 [5.7,6.6] 791[7.2,86] 0.71[0.67,0.74]  0.660
MS 84.6(83.1,86.1]  885[87.1,89.9] 3.9([-152,23.0] 7.0[6.2,7.8] 90[7.810.2] 0.72[0.66,0.76]  0.633
PD 84.8[83.4,86.1] 89.5[884,90.7] 4.8[-14.3,23.8] 7.2[6.5,8.0] 9.7[85,108] 0.69[0.63,0.73] 0580
PFF  85.0[83.4,86.5] 86.2[85.0,87.5] 1.3[-20.9, 23.5] 7.2[6.3,8.1] 8.5[7.5,9.5] 0.66 [0.60,0.71] 0.584
CAD
HA 86.0[85.1,87.0] 87.4[86.5, 88.3] 1.4[—184,21.2] 6.4[5.9,69] 8.1[7.3,8.8] 0.74[0.70,0.76] 0.653
CHF  91.2[89.8,92.5] 92.2[90.9, 93.5] 1.0[—16.9, 19.0] 58[5.1,6.4] 6.6[5.9,7.3] 0.82[0.79,0.84] 0.720
COPD 84.6[83.7,85.4] 86.6[85.8,87.4] 2.0[—12.9,17.0] 5.2[4.8,5.6] 6.6[6.0,7.2] 0.77[0.73,0.79] 0.693
MS 84.6[83.1,86.1] 85.3[83.9,86.8] 0.7 [- 18.8,20.3] 6.7[5.9,7.5] 8.2[7.2,9.2] 0.75[0.70,0.79] 0.644
PD 84.8[83.4,86.11 87.1[85.9,88.4] 2.3[-16.2,20.9] 6.4[5.7,7.1] 8.2[7.2,9.2] 0.76[0.71,0.79] 0.653
PFF 85.0[83.4,86.5] 82.0[80.7,83.3] —29[-315,25.6] 8.3[7.0,9.5] 9.1[7.9,104] 04410.35,0.51] 0460

HA healthy adults; PD Parkinson's disease; MS multiple sclerosis; COPD chronic obstructive pulmonary disease; CHF congestive heart failure; PFF proximal femoral

fracture; Cl confidence intervals, LoA limits of agreement, /CC intra class correlation

acceleration norm (overall accelerometry signal rather
than a specific axis/direction (e.g., vertical), hence it is
more robust to sensor misalignments that are common
in unsupervised real-life settings [41]. Moreover, the use
of adaptive thresholds, that are derived from the features
of a subject’s data and applied to the amplitude of accel-
eration norm and to step duration for detection of steps
belonging to gait sequences, allows increased robustness
of the algorithm to irregular and unstable gait patterns.
GSD,, algorithm may be more suitable for cohorts with
a faster gait speed and regular gait pattern (e.g., healthy
older adults). This algorithm is based on a convolutional
transformation (based on a gait cycle) of a single axis sig-
nal [40], potentially justifying its suitability to conditions
characterised by more stable and regular gait patterns.

Initial contact detection

Overall, all algorithms investigated for initial contact
detection presented excellent sensitivity and positive pre-
dictive values (all above 0.81) and relative errors below

21% in diverse cohorts of patients. These errors are in line
with previous work, although slightly higher than those
assessed in laboratory or controlled and supervised envi-
ronments, ranging between 4 and 13% [28, 39, 55]. Posi-
tive predictive values resulted were larger than sensitivity
(although sensitivity values were>0.75). This could be
due to a lower number of false positive events (wrongly
identified initial contact events) with respect to true posi-
tive events; slightly lower sensitivity measures reflect a
higher number of missed initial contact events. Similar to
gait sequence detection, higher positive predictive values
(higher numbers of correctly identified initial contacts)
are preferable, as gait assessment based on incorrectly
identified events could lead to invalid digital mobility
outcome extraction and misleading clinical interpreta-
tion. Low relative errors (<11%), found for ICD, and
ICD¢, for step duration across all cohorts based on simi-
lar approaches are very encouraging and concurs with
previous work which reported errors between 4 and 13%
from data collected in laboratory conditions [39, 60].
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Table 6 Stride length (SL) estimation performance measures. Stride length obtained from the INDIP and the single wearable device,
bias, limits of agreement (LoA) and intra class correlation (ICC(2,1)) for comparison between systems, and overall performance index
for the SL algorithms. In boldface: recommended algorithms. Underlined performance index indicates top-ranked algorithm for

the specific cohort of that row

Cohort Stride length
INDIP meanand  Single wearable Bias and LoA [m] Absolute error Relative error ICC(2,1) Performance
Cl[m] device mean and [m] [%] index
Cl[m]
SLa
HA 0.81[0.79,0.831 0.93[0.91,0.94] 0.12[— 0.24,0.48]0.15[0.14,0.17]  25.9[23.2, 28.6] 0.58[0.53,0.63] 0.582
CHF 0.93[0.90,0.95] 1.00[0.98,1.02] 0.07 [— 0.34,0.49]0.16 [0.15,0.18]  25.3[22.4, 28.1] 0.70[0.65, 0.74] 0.663
COPD 0.85[0.83, 0.87] 1.03[1.02, 1.05] 0.18[— 0.20,0.57]0.21[0.19,0.22] 31.2[28.0, 34.3] 0.28[0.21,0.36] 0.381
MS 0.82[0.79,0.85] 1.02 [0.99, 1.04] 0.19[-0.22,0.61] 0.21 [0.19,0.24] 34.1[29.3,38.8] 041[0.32,0.50] 0462
PD 0.82[0.79,0.85] 0.93[0.90, 0.95] 0.11[—0.31,0.52]0.17[0.15,0.18]  26.5[23.0, 30.0] 0.60 [0.54, 0.66] 0.607
PFF 0.75[0.73,0.78] 0.86[0.84,0.871 0.10[— 0.32,0.52]0.17[0.15,0.19]  29.3[25.2,33.4] 0.36 [0.26, 0.46] 0.465
SLg
HA 0.81[0.79,0.83] 0.97[0.95, 0.98] 0.16 [-0.20,0.52] 0.18[0.17,0.19] 29.6[26.7,32.5] 052[047,0.57] 0546
CHF 0.93[0.90,0.95] 1.04 [1.02, 1.07] 0.12 [~ 0.30,0.53] 0.17 [0.16, 0.19] 274 [24.2,30.5] 0.66[0.61,0.71] 0.604
COPD 0.851[0.83,0.87] 1.08 [1.06, 1.09] 0.23 [-0.16,0.62] 0.24 [0.23,0.25] 35.8[325,39.1] 0.20[0.12,0.27] 0345
MS (*SLg) 0.82[0.79,0.85]  0.99[0.96,1.01] 0.16 [— 0.24,0.57]0.19[0.17,0.21]  31.2[26.7,35.7] 0.47[0.38, 0.55] 0.487
PD 0.82[0.79,0.85] 0.97 [0.94,0.99] 0.15[-0.27,0.56] 0.19[0.17,0.20] 29.7 [25.9,334] 0.55[048,062] 0537
PFF 0.7510.73,0.78] 0.89[0.88,0.91] 0.14 [-0.28,0.56] 0.18[0.16, 0.20] 32.2[27.8,36.6] 0.31[0.20,0.40] 0448
SLe
HA 0.811[0.79,0.83] 0.91[0.90, 0.92] 0.10 [~ 0.31,0.50] 0.17 [0.16,0.18] 29.0[26.2,31.8] 0.421[0.36,0.48] 0.509
CHF 0.93 [0.90, 0.95] 0.98 [0.96, 0.99] 0.05[-047,0.56] 0.21[0.19,0.22] 30.3[26.9,33.8] 046 [0.39,0.52] 0473
COPD 0.851[0.83,0.87] 0.95 [0.94, 0.96] 0.10 [-0.32,0.52] 0.18[0.17,0.19] 269 [24.2, 29.6] 0.26[0.19,0.34] 0420
MS 0.82[0.79,0.85] 0.95[0.94,0.97] 0.13[-0.32,0.58] 0.20[0.18,0.22] 326[27.9,373] 0.22[0.11,032] 0387
PD 0.82[0.79,0.85] 0.91[0.89,0.93] 0.09 [-0.35,0.53] 0.18 [0.17,0.20] 30.5[26.7,344] 045[0.37,0.53] 0.498
PFF 0.7510.73,0.78] 0.85 [0.84, 0.86] 0.09 [-0.36,0.54] 0.21[0.19,0.22] 3451[30.7,384] 0.11[0.00,022] 0328
Slp
HA 0.811[0.79,0.83] 0.88 [0.86, 0.90] 0.07 [- 0.62,0.76] 0.28 [0.26, 0.30] 419[38.2,45.5] 0.14[0.06,0.21] 0.250
CHF 0.93 [0.90, 0.95] 0.90 [0.88,0.93] —0.03 [-0.84,0.79] 0.33 [0.30, 0.35] 42.3[38.1,46.6] 0.10[0.01,0.19]  0.205
COPD 0.851[0.83,0.87] 0.93 [0.91, 0.96] 0.08 [- 0.63,0.80] 0.29[0.27,0.31] 404 [36.9,43.9] 0.03 [-0.05,0.11] 0.200
MS 0.82[0.79,0.85] 0.92 [0.89, 0.96] 0.10 [- 0.59, 0.78] 0.28 [0.25, 0.30] 41.3[352,474] 0.15[0.04,0.26] 0.250
PD 0.82[0.79,0.85] 0.85[0.82,0.88] 0.03 [-0.73,0.79] 0.30 [0.28, 0.33] 44.9[39.3,50.5] 0.10[0.00,0.20] 0.225
PFF 0.751[0.73,0.78] 0.85[0.81,0.88] 0.09 [-0.67,0.85] 0.30[0.27,0.33] 47.7142.0,53.5] —0.04[-0.14,0.07]0.172

Stride length obtained from the INDIP and the single wearable device, bias, limits of agreement (LoA) and intra class correlation (ICC, ;)) for comparison between
systems, and overall performance index for the SL algorithms. In italicface: recommended algorithms

HA healthy adults; PD Parkinson'’s disease; MS multiple sclerosis; COPD chronic obstructive pulmonary disease; CHF congestive heart failure; PFF proximal femoral
fracture; Cl confidence intervals, LoA limits of agreement, ICC intra class correlation

Accurate detection of steps is critical for estimation of
a plethora of digital mobility outcomes like cadence, step
symmetry, gait variability, etc., which might have relevant
clinical value (e.g., for the differentiation of stages of neu-
rodegenerative diseases [60]). In addition, step detection
can be used to refine the identification of gait sequences
], and thus, the definition of a walking bout, which
highlights the importance of using a robust algorithm
with high sensitivity and positive predictive value.

[41

For all cohorts,

we recommend the use of the ICD,
for the identification of initial contact events, given the
lowest absolute and relative errors (both in mean and
standard deviation of step duration and initial contact
time event) and best performance indexes. ICD, is
an optimized implementation of the algorithm based
on continuous wavelet transform and peak detection
originally presented in [42], and is frequently used and
reported in the literature for heel-strike or initial time

contact event detection [39, 61]. This algorithm has
been previously validated under different conditions,
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producing similar results in algorithm performance [44]
even if tested under less challenging conditions (such as
supervised lab/clinical settings). To increase robustness
to the variety of impaired gait patterns, ICD, applies
additional detrending and filtering before the continu-
ous wavelet transform, then it detects the step-related
peaks as maxima between zero-crossings (instead of
using a predefined threshold for peak amplitude).

Cadence estimation

The excellent performances of cadence algorithms,
reflected by low relative errors of < 12%, were in line with
[17, 41, 45], or lower than previous results reported in the
literature (13—14%) [16]. As based upon [53], moderate to
excellent ICC, ;) (>0.70) were found in all cohorts except
proximal femoral fracture, for the CADy and CAD algo-
rithms. These results confirm the robustness of cadence
estimation in all cohorts. Proximal femoral fracture data
showed the lowest ICC, ;, values but good performances
for the other metrics. This may be partially explained by
the high asymmetry and the slow speed that characterize
the proximal femoral fracture cohort (all proximal femo-
ral fracture patients walked at a speed of<1.29 m/s) [62].
This and the use of walking aids may have impacted the
wearable device signal quality (amplitude and shape) and
hence challenged the processing techniques on which the
algorithms are based (i.e., wavelet transformations for
CAD, and CADj [41, 42], and zero-crossings for CAD
[45)).

The recommended algorithm for cadence estimation
is dependent upon the mobility function of the cohort.
Overall, CAD performances were excellent across all
cohorts, especially for groups with higher gait speeds.
CADyg was more robust in the proximal femoral fracture
cohort as reflected by the performance index. Therefore,
we suggest the implementation of CADy in cohorts with
compromised gait speed and symmetry (e.g., severe or
advanced neurological diseases) for which a zero-cross-
ing approach may not be so suitable.

It is worth mentioning that the methodology for ini-
tial contact events/step detection, used by initial contact
detection and cadence algorithms, includes two main
stages. The first is related to the processing of the wear-
able device acceleration signal in order to remove noise,
artefacts and to enhance the step-related features (e.g.,
zero-phase low-pass filtering, detrending). Then, on
the processed acceleration signal, the initial contacts/
steps are detected using peak detection or zero-crossing
approaches. The combination of the various techniques
for these two stages allowed us to implement optimized
versions of state-of-the art algorithms.

Although initial contact detection and cadence algo-
rithms are based on similar approaches, our results are in
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line with previous findings showing that the use of a peak
detection approach may be more suitable for identifica-
tion of events (initial contact detection), whereas zero-
crossing techniques result in more accurate identification
of cyclic events and step segmentation, required for the
cadence estimation. All in all, as observed by Panebianco
et al. [61], this underlines that each principle is better
tailored to each digital mobility outcome; i.e., a wave-
let transformation with peak detection is better suited
for initial contact detection, whereas the zero-crossing
approach seems better suited for the cadence.

Stride length estimation

The performances of the stride length metrics are lower
with respect to the other metrics presented in this work
(e.g. cadence, initial contact detection), as reflected
by relatively high absolute and relative errors, and low
ICCy,;). This could be due to the nature of the lower-back
accelerometry signals recorded in real-world conditions,
from which the stride length is calculated. Particularly,
the estimation of the position of the centre of mass (by
double integration of the acceleration) and the inverted
pendulum models on which stride length algorithms are
based, assumes straight walking trajectories. Moreover
these methodological principles do not consider turns
or non-straight walking trajectories (i.e. veering). All of
these deviations from a purely symmetrical and straight
walking pattern are frequently found in real-world
recordings [36].

Among the four algorithms, our recommendation is
to use SL, in all cohorts, given the lowest absolute, rela-
tive error and highest ICC,,), as summarized by the
performance indexes. It must be noted that SL; was the
best performer for the multiple sclerosis cohort, which is
based on the same algorithm principle as SL,, but using
a different correction factor implemented to estimate
stride length [48]. All in all, SL, showed good perfor-
mance and similar to SLg also for multiple sclerosis.

In general stride length algorithms tended to overesti-
mate stride length between 0.07 and 0.16 m, this could
be due to the correction factors that are implemented in
both SL, and SLg [17]. Overall, the results highlight the
better suitability of biomechanically-based algorithms,
rather than those based solely upon machine-learning
approaches. This is in line with the results observed on
a previous study which implemented the same algo-
rithms, trained on the same pre-available datasets [17].
This could be due to the fact that the biomechanically-
based algorithms are less dependent on the intensity and
morphology of the acceleration signals, and are highly
influenced by the gait speed and irregularity of the gait
patterns [17], which highlights a potential limitation
in the generalization of the machine-learning based
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models when applied to external datasets. Future and
novel machine-learning/deep-learning based models
based on bigger datasets might produce better results.

The protocol used in the present study covered a
comprehensive range of real-world scenarios. As such,
results showed higher errors than those reported in pre-
vious studies: almost double with respect to [28] where
results were evaluated from sensors on the shanks, and
similar to [17] showing root mean square error between
0.04 and 0.18 m, where data was collected in the labo-
ratory. This could potentially be due to the additional
challenges involved in real-world and uncontrolled gait
assessments presented in the current study, and the use
of different data, i.e., based on a wearable device and on
a different reference system for comparison. Moreover, to
ensure a fair comparison of the algorithms, the walking
bout (input) on which the algorithms were applied was
defined and “imposed” by the reference system (INDIP).
This could have potentially led to higher errors stemming
from applying the algorithms to a wearable device signal
with reduced amplitude and noisier characteristics with
respect to the signal identified by the INDIP (sensors
on the feet), especially for short and slow walking bout.
All in all, our results highlight that future studies should
focus on the development and optimization of stride
length algorithms for increasing robustness of stride
length estimation in order for this to be a useful (i.e., sen-
sitive to change) digital mobility outcome that could be
used in clinical interventional studies.

Effect of walking speed and walking bout duration

on algorithms’ performances

Generally, the performances of all algorithms signifi-
cantly worsened for walking speeds below 0.5 m/s, which
is considered as a threshold between slow and medium
speed walkers [2], confirming what is well established in
the literature [17, 63, 64]. This may be explained by the
fact that the signals recorded with the wearable device in
slow walkers are characterized by a compromised ampli-
tude, non-uniform gait cycles [64, 65], and variable and
irregular gait patterns [17]. Likewise, the lowest perfor-
mances observed within proximal femoral fracture, may
be explained by the lower speed and irregular gait pat-
terns of this cohort [62]. Accordingly, the choice of algo-
rithms for digital mobility outcome extraction should
consider its sensitivity to gait speed, given its proven con-
founding effect on gait analysis [66], and the population
of interest.

Walking bout duration also significantly affected the
performances of the cadence algorithms, with an over-
all significant reduction of the relative error observed for
longer walking bouts when estimating both step duration
and cadence. This trend was also likely magnified by the
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fact that the shortest bouts were also the slowest ones
and confirms similar previous results [34]. This could
also be due to the fact that the impact of breaks (start and
stop) and/or mis-detected strides in short walking bouts
may be much larger than in longer walking bouts when
quantifying algorithms’ performances.

Individual relative errors for stride length were higher
for short walking bouts (e.g., < 10 s), although the median
error did not seem to be significantly affected by bout
length. digital mobility outcomes estimated from short
walking bouts, which have been reported as the major-
ity (about 50%) in real-world conditions [21, 67], should
have special consideration as, in agreement with previ-
ous work, these walking bouts were observed to be the
slowest [67], and therefore more sensitive to higher error
estimation.

General discussion

When considering the optimal location of the sensor, the
signals recorded at the lower back are less robust than at
other locations, such as the foot or shank, for the iden-
tification of initial contact events [61], although still
more accurate than wrist data [68]. However, the lower
back is among the most clinically favourable location for
a single device, given its cost (one device), its location
near to the centre of mass (which represents the over-
all human motion pattern), ergonomic conditions when
worn attached to a belt or affixed to the skin, and its clini-
cal value for fall risk, trunk stability and balance control,
among others [21, 60, 69].

An advantage of real-world gait monitoring is the pos-
sibility of capturing a large number of diverse walking
bouts and truly unsupervised gait performance in an
ecologically valid environment [20]. However, the pres-
ence of contextual factors in a real-world context, which
were not accounted for in this study, may have signifi-
cantly influenced the performance of the algorithms. In
particular, the presence of turns, the deviation from a
straight path or other gait tasks (e.g., slope, presence of
stairs or/and obstacles, crowdedness of space, visibility
of trajectory), and the usage of various walking aids may
have altered the gait pattern of the participant [20] and
may partially explain the larger errors observed for stride
length.

When comparing the performance between spatial and
temporal digital mobility outcomes, the results indicate
that the temporal characteristics (initial contact events,
step duration, cadence) of gait, analysed with the pro-
posed algorithms were more robust and valid than the
spatial ones. This may be due to the fact that lower-back
signals are better tailored to estimate particular events
in the signal (i.e., initial contact events) and to assess its
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periodicity (i.e., cadence estimation) than to estimate dis-
placements. These aspects should be considered when
using the proposed algorithms, especially when inter-
preting findings for clinical applications and assessing
minimal detectable changes in pathological gait. Moreo-
ver, it should be noted that given the biomechanical rela-
tionship between temporal and spatial features of gait,
the identification of temporal estimates may directly
impact on spatial calculations [48].

Limitations

The results presented here are derived from real-world
data comparing outcomes from a single wearable device
to a reference system, INDIP, that has been thoroughly
characterized and validated in a laboratory context,
against a stereophotogrammetric system [23]. We did
not include validation of DMOs derived from the single
wearable device against a laboratory-based reference sys-
tem as the focus of this study was on real-world gait. It
must be noted that a complete algorithm ranking meth-
odology should not only consider the overall findings for
each cohort (as in this study) but should also consider the
performance of algorithms on stratified subgroups (e.g.,
based on gait speed: slow-medium-fast walkers). This can
be done by assigning a higher weight to the slow walkers’
results, given that their corresponding signals are more
challenging and yield higher errors, as observed in this
study. In addition, the percentage of walking bouts, as
well as participants, in which the algorithm successfully
provided digital mobility outcomes estimates should be
considered to scale the overall performance of algorithms
[24]. Thus, a simplified, although comprehensive, imple-
mentation of the ranking methodology could be seen as a
limitation of this study. Nonetheless, the purpose of this
was to provide an overall recommendation on the algo-
rithm that performed best for each digital mobility out-
come assessed in challenging real-world environments
[20]. We are aware that, using a 2.5-h window of activity
in the real world for the validation purposes, we may not
have captured change and higher variability in mobility
that are due to fatigue or the cyclic nature of activity. We
also suggest that the inclusion of laboratory assessments
for the implementation of the ranking methodology
could be relevant. Indeed, even if collected under con-
trolled or semi-structured conditions, data from short
and slow walking bouts, that are typical in lab-based
settings, may add variability and challenge algorithm
performance [19]. In addition, the effect of walking aid
use on results has not been assessed in this study. Thus,
future work assessing this aspect could be clinically rel-
evant, given the potential impact that walking aids (and
the variety of types of walking aids) have on the quality of
the wearable device signals and reference data [17], and
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as a consequence, on the assessment of the algorithm’s
performance.

Conclusions

This work was aimed at providing recommendations
to implement and select algorithms for real-world
gait analysis using lower-back worn sensors in patient
cohorts with mobility impairments. We achieved
this by comprehensively assessing and ranking algo-
rithms’ performances, and we evaluated the effect
of walking speed and walking bout duration on those
performances.

The results highlighted good to excellent perfor-
mances of the top algorithms in all cohorts. Particularly,
algorithms for cadence and initial contact event detec-
tion were the most robust for all cohorts. Performances
on gait sequence detection showed good performance
measures, particularly when assessing sensitivity
(>0.70), positive predictive value (>0.80), accuracy
(>0.95) and specificity (>0.97). However, stride length
estimation was the most challenging digital mobil-
ity outcome to estimate (with absolute error <0.21 m).
Relative errors for step duration and cadence generally
decreased for longer walking bouts. Lower gait speeds
(below 0.5 m/s) negatively influenced step duration,
cadence and stride length estimates. We identified two
top-performer algorithms for gait sequence detection
[16] and cadence [45, 46], and a single best performer
for initial contact detection [16] and stride length [47,
48]. The proximal femoral fracture cohort was the most
challenging for algorithm performance.

In conclusion, the identified algorithms allow a
robust estimation of digital mobility outcomes and gait
characterization, with potential for improvement iden-
tified for stride length. Throughout this study we made
recommendations for algorithm selection and imple-
mentation. Thus, our findings can be used to support
future choices of the most suitable algorithms for real-
world gait analysis, depending on type of cohort and
research question. Finally, these results may inform
future design of novel and more efficient gait analysis
algorithms.

Abbreviations

CAD Cadence estimation
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