
26 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Bellavista, P., Bujari, A., Foschini, L., Sabbioni, A., Venanzi, R. (2024). A MECApp-aware Lifecycle
Management Approach in 5G Edge-Cloud Deployments [10.1109/icccn61486.2024.10637651].

Published Version:

A MECApp-aware Lifecycle Management Approach in 5G Edge-Cloud Deployments

Published:
DOI: http://doi.org/10.1109/icccn61486.2024.10637651

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/985315 since: 2024-09-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/icccn61486.2024.10637651
https://hdl.handle.net/11585/985315

A MECApp-aware Lifecycle Management
Approach in 5G Edge-Cloud Deployments

Paolo Bellavista, Armir Bujari, Luca Foschini, Andrea Sabbioni, and Riccardo Venanzi
DISI - Dipartimento di Informatica Scienze e Ingegneria, University of Bologna

Viale Risorgimento, 2, 40136 Bologna, Italy
Email: {name.surname}@unibo.it

Abstract—The recent trend pushing towards reliance on edge
computing, virtualization and programmatic 5G network control
has sparked the development of a myriad of open-source resource
management and orchestration projects for improved control and
added flexibility, making up for a rich and complex ecosystem
of frameworks and tools with varying degree of support for
standardized features. In this technological panorama, the ETSI
Multi-Access Edge Computing (MEC) standard proposes a con-
ceptual reference architecture, standardizing edge integration,
interoperability and application management in an extended 5G
edge-core architecture. In this article, we propose an application-
aware orchestration solution for edge-core distributed deploy-
ments, currently lacking support in state-of-the-art frameworks
and tools. The proposal is built on an experimental and dis-
tributed deployment of the OpenAirInterface minimal MEC
platform implementation, and relies on the Kubernetes Operator
pattern, targeting the automatic MECApp lifecycle management.
To validate our approach, we conduct a series of experiments,
reporting key metrics of interest.

Index Terms—Edge, Cloud, MEC, 5G, NGN, RIC, Orchestra-
tion, Kubernetes, Operator

I. INTRODUCTION

Mobile networks have undergone significant transforma-
tions, revolutionizing how we connect, communicate, and
access information. The fifth generation mobile networks (5G)
advocates for a comprehensive redesign of the technology,
integrating traditional networks with modern technologies such
as Network Function Virtualization (NFV), Software Defined
Networking (SDN), Edge/Cloud computing, etc. [1]. In this
context, one key focus is the integration into the 5G archi-
tecture of virtualization and orchestration tools, enhanced to
contemplate advanced Edge/Cloud deployment models, easing
the management of mobile applications within the Cloud
Continuum paradigm [2].

ETSI Multi-Access Edge Computing (MEC), supports edge
computing for IT services, enabling service providers to
seamlessly manage layers of converged compute-network-
storage resources while ensuring unified access for the users
[3]. Moving services from the cloud to the edge reduces
latency, enhances Quality of Service (QoS), and contributes
to alleviating backbone network pressure [4]. Integrating 5G
with the MEC model is crucial for ultra-low latency URLLC
use cases, enabling service proximity and transforming private
5G networks into IT service platforms. A network combining
5G and MEC offers internet features and IT services through

MEC applications (MECApps) deployed on MEC Hosts across
distributed geographical locations. For these reasons, the in-
tegration of 5G with this architectural model has attracted
the interest of the scientific community, leading to various
incremental proposals in recent years [5], [6].

On this front, several all-in-one deployment solutions have
emerged, easing the management and integration of 5G net-
works and the ETSI-MEC model. These solutions have been
proposed with the goal of supporting the deployment and run-
time management of 5G edge resources in a 3GPP-compliant
fashion. Notable efforts from the project Aether, Mosaic5G,
Open Network Automation Platform (ONAP), OAI-Operation
and Maintenance (OAM) project, just to name a few, aim to in-
tegrate virtualized Radio Access Network (RAN) deployments
and various Core Network (CN) functions with edge/cloud
computing services and tools [7]–[10]. OAI-OAM emerges
as a pivotal project for providing orchestration, monitoring,
and maintenance of OAI-RAN and OAI-CN, and it is gaining
significant attention within the research community due to its
pioneering efforts in integrating 5G networks with intelligent
features, including the support for am ETSI compliant MEC
implementation. Although OAI-OAM is still at an early devel-
opment stage when compared to similar other 5G-CN projects,
it represents an interesting playground for practitioners and
researchers as it proposes one of the first concrete attempts at
the integration between 5G networks and ETSI-MEC.

However, the current version of the OAI 5G-MEC platform
has limitations that make it unsuitable for managing real
deployments in dynamic settings. The current deployment
model imposes coupling constraints on network functions,
reducing core network flexibility and hindering component
scaling and migration. Additionally, the lack of automation for
edge application deploymentand the absence of mechanisms
for the runtime relocation of applications between MEC host
instances, limits the experimentation to static (edge) applica-
tion scenarios. These limitations underscore the urgent need
for a flexible service orchestration mechanism, allowing for
the dynamic management of MECApps.

To this end, we propose a hierarchical layered orchestration
solution that enables a MECApp-aware lifecycle management,
moving the original and traditional OAI-OAM static deploy-
ment model towards a more dynamic and managed one. Our
approach advocates for a hierarchical orchestration framework,

which relies on the Kubernetes Operator pattern [11], for mon-
itoring and automating all the operations needed to distribute
the application along the possible edges (MEC platforms) of
the network according to operators’ configurable policies. To
validate the approach, we conduct a series of experiments in
real distributed 5G-MEC deployment, dynamically triggering
the deployment and removal of MECApps, and discussing the
resulting performance trend.

The article is structured as follows: Sec.II provides back-
ground information on the platform being examined, empha-
sizing its shortcomings in managing resources during edge-
core deployment scenarios. Section III outlines the proposed
solution, which includes distributed deployment, a MEC Or-
chestrator, and a mobility management feature. Section IV
presents test results comparing the performance of MECApp’s
mobility operations on two different clusters. Finally, Sec.V
concludes the article.

II. BACKGROUND AND MOTIVATION

There is a vast body of literature related to ETSI-MEC, NFV
and orchestration, advocating for solutions to specific technical
problems emerging at different layers of the technological
stack [12]. To the best of our knowledge, there is a lack of
studies devoted to the actual implementation and field evalu-
ation of ETSI MEC deployments for the automatic MECApp
configuration and management. In this section, we briefly
survey the targeted software ecosystem, stating the desirables
for a software stack targeting the seamless management of
applications in edge-cloud deployments.

OAI-OAM offers a solution that integrates the classic 5G
architecture with an edge application platform based on the
ETSI-MEC standard. The technological stack of OAI-OAM is
depicted in Fig.1 and it is composed of the following main
components:

• OAI-RAN & OAI-CN: implementing the functional
components of the 5G RAN and Core Network with the
possibility of using a RAN simulator instead of physical
radio cells.

• FlexRIC: implementing a Radio Intelligent Controller
(RIC) compliant with the O-RAN specification. xApps
could be developed thanks to the availability of a dedi-
cated SDK; a default xApp (RNIS) is available and used
to receive radio signal quality metrics, publishing them
for use by OAI-RNIS.

• OAI-CM: enabling the monitoring (and in the future,
controlling) the 5G Core Network. Currently, it is only
possible to monitor the events exposed by OAI-CN’s
AMF and SMF.

• OAI-MEP: Minimal working example of a MEC Plat-
form, hosting MECApps, designed following the guide-
lines of the MEC standard. On the management side, the
support is currently limited to MECApp discovery and
registration via the Mp1 interface.

• OAI-RNIS: Implementation of a MEC service that ex-
poses metrics collected by RNIS xApp and events cap-
tured by OAI-CM to the operator.

Fig. 1. OAI-OAM technological stack [10]

While the platform offers comparatively less support for
3GPP standardized features than similar initiatives, it repre-
sents an interesting playground for researchers and practi-
tioners as it proposes one of the first attempts at concrete
integration between 5G networks and a standardized MEC
solution. Without loss of generality, OAI-OAM currently limits
its support to a manual MEC application deployment. While
the framework does provide some basic hooks for edge appli-
cation management, e.g., the Mp1 ETSI-MEC interface, this
capability alone does not suffice and confines the platform
usage to illustrative and educational purposes. Moreover, the
current deployment model poses several coupling constraints
between the various network functions, limiting the support
to purely static use-cases with a fixed deployment chosen a-
priori. We argue that dynamicity is essential for edge appli-
cation scenarios, hence there is a need for a new architecture
that leverages flexible and elastic service orchestration mecha-
nisms. Addressing the limitations, we introduce dedicated sup-
port for MECApp application management, leveraging existing
signaling interfaces for application lifecycle management. Our
proposal relies on a hierarchical orchestrator based on the
Kubernetes Operator pattern and is comprised of a cloud
orchestrator and a MEC one.

These loosely coupled operators coordinate to enact the
migration of the applications/services from/to core/edge ac-
cording to operators’ pre-configured policies. Supporting inter-
cluster application migration, paramount is the capability to
preserve service continuity, hence the user’ established session.
In this direction, we discuss several potential solutions with
varying degrees of support.

III. A LAYERED ORCHESTRATION APPROACH FOR
MECAPP LIFECYCLE MANAGEMENT

In this section, we present the extension to OAI-OAM,
adding support for application management in edge-core de-
ployments. Firstly, we start discussing a general deployment
topology and component distribution. Next, we discuss the
layered orchestration framework and the required minimal
integration with the OAI platform currently supported.

Fig. 2. OAI-OAM distributed deployment consisting of two MEC sites and the core network one. On the left-hand side is depicted a shopfloor environment
(factory) with a cluster hosting MECApps serving low-latency, high-bandwidth and best-effort industrial applications. On the right-hand side is the CoreCloud
deployment, hosting the 5G SBA and application services. The two sites are connected to each other via a site-to-site VPN.

A. Distributed Edge-Core 5G-MEC Deployment

The target distribution model comprises various MEC plat-
forms (edges) alongside a cloud component responsible for
hosting the 5G Service Based Architecture (5G-SBA). The
cloud component is tasked, among other things, with the
management and resource distribution among the edges. A
simplified model is depicted in Fig. 2, serving as a re-
search playground to assess intelligent resource management,
with particular emphasis on QoS/QoE-aware management in
mixed-criticality environments. On the left-hand side of Fig.
2 is depicted a factory (shopfloor) environment servicing
heterogeneous (control) applications with different QoS spec-
ifications. In this setting, applications with stringent QoS
requirements in terms of latency shall be serviced locally -
MECApp installed in the local edge site shown in green -
without incurring any additional delays required to traverse
the public telco. domain. Conversely, best-effort applications
can be deployed on the cloud side shown on the right-hand
side.

On a practical note, the testbed comprises two different
Kubernetes clusters, a more capable cluster running a vanilla
Kubernetes (K8s), hereafter referred to as CoreCloud cluster,
on which both the 5G-SBA and an instance of the MEC
Platform are hosted, and another one, the EdgeCloud, deployed
using a lightweight Kubernetes distribution (K3s), hosting
another instance of MEC Platform. Having the MEC platform
installed on the CoreCloud cluster is for economic purposes
to assess potential cross-edge migration scenarios.

The 5G RAN, VPP-UPF(s), and the UE are colocated and
installed on a bare metal machine hosted at the EdgeCloud
but not subject to its dynamics. The 5G User Plane Function
(UPF) would benefit from the flexibility that an orchestration
tool like Kubernetes provides, however, its integration as
a Kubernetes CNI is outside the scope of this work. The
testbed is composed of five nodes: two high-end servers

comprising the CoreCloud; two commodity nodes comprising
the EdgeCloud, and a commodity PC hosting the UE, RAN,
and two UPF instances (later on). Currently, the UE and RAN
components are simulated, while the UPF is a software-based
instance running in user-space, making use of acceleration
techniques to achieve comparable performance to hardware-
based switches.

In order to deploy OAI-OAM within our Kubernetes Clus-
ters, it is necessary to specify the configuration of the various
components through appropriate Kubernetes manifests. To this
end, we need to transform the traditional Docker Compose
configurations into Kubernetes manifests. Each manifest con-
tains the definition of two Kubernetes objects: a Deployment,
and a Service. The first manages and defines the Pods on
which the containerized component will run, while the other
describes the services that the component exposes to clients
outside the cluster. For the sake of conciseness, we do not list
all the steps and the network configurations needed to correctly
setup the cluster.

B. MECApp Orchestrator and MECApps Management

To implement the MECApp lifecycle management we need
to develop a specific component capable of automating: the
distribution, the deployment, the deletion, the configuration,
and the migration of MEC applications. Our proposal aims
to implement a smart and seamless lifecycle management of
services and applications across cloud and edge sites. Our
approach relies on the Kubernetes Operator pattern and is
composed of two components (Fig. 3): (i) the Cloud Operator
which maintains a global view of the state of available
resources and services deployed, and (ii) the MEC Opera-
tor(s) which implement local, specialized management of the
deployed services.

Starting from the bottom of Fig. 3, one finds the MEC
Operator (MECOp) which represents the first layer of ab-

straction, implementing the orchestration logic for a specific
service or application hosted at the edge (MEC). The rationale
behind adopting an application-specific orchestration flow is
to cater to the applications’ specific needs in terms of scal-
ing, fault tolerance, data dependencies, etc. As an example
attesting to this practice, the authors in [13] make use of
the Operator pattern to scale massively parallel deep learning
workloads across clusters, which is a very difficult task to
achieve via the native Kubernetes scheduler. Other notable
use cases, commonly adopting this orchestration pattern, fall
within the class of stateful applications, whose scaling or fault
recovery procedure, requires specific considerations on state
management.

The MEC operator implements a control loop, which pe-
riodically checks the etcd database as a unique source of
truth for the desired cluster state. Whenever the MECOp
detects a deviation between the observed state and the retrieved
desired state, it executes the custom management logic for
state reconciliation. In order to simplify the management
for the Cloud Operator(s), MEC Operator exposes a set
of specific APIs providing support for operations like Cre-
ate, Observe/Read, Update, and Delete (CRUD) for service
management, implementing primitives for service creation,
observability of structure/service state, update, and deletion
from the edge site(s). CRUD operations directly modify
service definitions stored on local MEC etcd deployments,
successively triggering the COp (later) to enact an adaptation
process, i.e., MECApp migration. As an example, metrics of
interest are the applications’ mean response time, memory
consumption, maximum latency perceived etc. In particular,
during the Observe phase, each specialized MECOp captures
metrics evaluating the operational state of the application and
the environment. If the application state is not compliant with
the desired Service Level Objectives (SLOs), specified in the
service configuration, the MECop marks the status of the
deployment as degraded.

The Cloud Operator (COp) implements the second layer
of abstraction and orchestration logic. It exposes a set of
customized APIs, allowing end-users to define, submit, and
delegate the management of a generic type of MEC service.
The COp retrieves service definitions and enacts a control
loop that embodies the logic for service lifecycle management,
starting with a deployment phase on a specific MEC site
fulfilling the requirements. When a new service description is
submitted to an observed repository, i.e., Github, a dedicated
CI/CD pipeline enacts the deployment process by submitting
a configuration file describing the characteristics and require-
ments of the service

The definition of the new service is stored in the etcd
registry, from which the COp fetches new configurations
and potential changes to them. Upon retrieving the service
definition and the actual infrastructure state - of the controlled
cloud and edge resources via the C(R)UD interfaces - the
COp decides the most advantageous location for hosting it.
If the deployment cannot be enacted, such as faults or the
required resources for service deployment are not available,

Fig. 3. Hierarchical Core-Edge Operator Functional Diagram

the COp defers the plan and periodically polls for the new
status until the service requirements are satisfied. Otherwise,
if the deployment in one of the edges is successful, the COp
will at first update the status of the resource in etcd, marking
the resource as deployed, and enacts an infinite loop that
periodically polls the state of the deployed resource through
the MOps APIs. In the evidence of sudden unavailability of
the service or degraded performance, the COps will start an
adaptation procedure, initiating the migration of the service
from the original MEC site to another suitable one.

The abstractions implemented by this hierarchical orches-
tration framework simplify the management of applications
across edge-cloud sites, enabling control plane interactions via
intuitive ReST interfaces, which can easily be integrated and
used by a higher-level business logic. This decoupling among
the core and edge orchestrators, and their respective states,
allows the MEC Operator to account for the specificities of
each hosting environment, such as the availability of resources
and technologies installed. Also, by separating the global
and local states, our solution trades off strong consistency to
achieve higher reliability and partition tolerance. This means
that in the event of a failure, MOps and services hosted on
MEC sites can continue to operate while awaiting reconnection
to the cloud site.

C. Preserving Service Continuity

The feature is particularly relevant when latency-critical
applications are serviced via 5G. To this end, several solutions
are available, ranging from network-centric approaches, requir-
ing no involvement from the UE, to solutions where the UE
contributes to the mobility management scheme [14]. Other so-
lutions in this spectrum include UE-centric approaches, where
the UE relies solely on a DNS for (new)service discovery.

Contributing to extend the mobility management support in
OAI, we make a leap forward by introducing a feature allowing
for the dynamic reconfiguration of the data plane (UPF). The
process involves the modification of the impacted (established)
PDU session, and a reconfiguration step involving the UPF

and RAN with the end goal of routing packets to the ap-
propriate MEC platform. Currently, neither the OAI-Policy
Control Function (OAI-PCF) nor the OAI-SMF have built-
in functionalities that allow the modification of pre-existing
PDU sessions; the VPP-UPF, however, provides the necessary
hooks. To implement this feature, we introduce a specific
ReST endpoint to OAI-SMF to expose the reconfiguration
service, adding a new SMF procedure implementing the re-
configuration logic enacted and triggered by the SMF via an
explicit solicitation by the COp.

In the current implementation, the reconfiguration process
enacted by the OAI-SMF makes the necessary adjustments
to the SMF context, triggering the UPF (re)configuration via
the N4 reference point. This message is succeded by another
one sent via the N2 reference point, signaling the RAN to
adopt a new path for routing the data packets. The approach,
although not fully compliant with 3GPP (see below), works
thanks to the availability of two UPF instances, each attached
to a different interface.

It is noteworthy to point out, that the actual implementation
of the reconfiguration process is not fully 3GPP compliant,
short-circuiting some signaling that has to occur in the 5G-
SBA for a correct propagation of the reconfiguration informa-
tion, e.g., the process should also keep the AMF component,
currently circumvented, informed on the enacted changes. The
current solution, however, is a step toward a fully compliant
solution, allowing practitioners to assess inter-cluster 5G-
native MECApp migration mechanisms.

IV. VALIDATION AND EXPERIMENTAL ANALYSIS

In this section, we assess and validate our proposal in the
extended edge-core deployment model. The study represents
the first step of a wider research objective, targeting the
runtime stateful MECApp migration, involving also cross-
domain cooperation [15].

A. Experimental Setup

The testbed employed for the experimentation is the one
depicted in Fig. 2 and described in Sec.III-A. Adding to
its description: the COp is deployed on the CoreCloud site
and the MECOp is deployed in each MEC platform. In the
first experiment, we are interested in validating the COp-
MECOp interaction loop, triggering the dynamic deployment
and deletion of a MECApp (COp) measuring the time required
to complete parts of the process. In the second experiment,
we demonstrate a dynamic scenario where the orchestration
layer initiates a runtime MECApp migration in response to a
violation of SLO specification.

B. Preliminary Results

To trigger the dynamic deployment and deletion of a
MECApp, we setup a namespace mecapp on both clusters
where the various MEC applications can be hosted. The
dynamic deployment or removal of a MECApp, is triggered
by the creation/deletion of a service definition configuration
fetched by the COp. The creation process is composed of the

deployment phase of a target MECApp and its registration to
the OAI-MEC platform registry to make the service available
to be consumed. On the other hand, the deletion process is
composed of the deregistration of a MECApp from the registry
and the total removal of the service from the node.

Figure 4 shows the breakdown of the runtimes for the
creation and deletion processes on the K8s cluster and K3s
cluster. The chart shows a pure quantitative result because
the type and the size of the MECApp clearly influence the
outcome. Herein, the image download and service instantiation
times have been aggregated in MECApp Deployment time.
This time could be additionally reduced by having edge sites
rely on a local or distributed file system (repository) for
image download [16]. Also, we experimentally found out
that additional performance improvements can be achieved by
writing the Operators’ tasks in GO native language instead
of Ansible as in the current implementation. In this way, the
operators’ tasks, especially the deployment and removal one,
would perform up to four times faster [17]. Additionally, it
is important to note, that the timing of both phases is also
influenced by the COp polling interval, querying the etcd
databased, currently set to 1 second. On this front, we are
working on an event-driven abstraction layer, to allow for
timely notifications on deployment/configuration changes.

Fig. 4. MECApp creation and deletion times averaged over 50 runs of the
experiment.

In the second experiment, we show the migration technique
in action, triggered as a consequence of a rule (QoS) violation.
In this scenario, we use a simple MECApp which echoes
back a UE sent a message. This scenario aims to mimic an
industrial control loop logic which should be completed within
a predetermined time; data freshness is paramount and UDP is
used at the transport layer. In this context, the UE represents
an industrial machine equipped with a sensor and an actuator,
sending operational data in the uplink, and receiving process
control information from the edge application in the downlink.
For simplicity, the roundtrip time is measured at the UE and

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

La
te

n
cy

 (
m

s)

Seconds from Start

End Latency
Generated traffic start

Threshold
Start-End Migration

Fig. 5. Perceived latency. A sudden increase of RTT is perceived starting
at time t=10s, degrading MECApp performance, and triggering the COp to
initiate the migration process from the CoreCloud to the EdgeCloud MEP
site.

announced out-of-bound to a MEC platform service, consulted
by the COp. To obtain the RTT metric, one could also rely
on the N4 QoS reports, but this integration is left as a future
work. The MECApp is initially installed in the CoreCloud,
right-hand cluster depicted in Fig. 2, having a baseline RTT
of 15ms. The QoS specification of the MECApp requires
the entire control loop to be completed within 15ms and not
exceed the acceptable service threshold of 20ms.

Figure 5 shows the RTT evolution as reported by the UE.
Until time t=10s the RTT is acceptable with small fluctuations
attributed to cross traffic on the public (shared) link connecting
the two sites. At time t=10s, we generate synthetic cross
traffic at the ingress interface of the MEC platform at the
CoreCloud deployment, contributing to a steady increase of
the perceived RTT on the UE side. The COp eventually
observes the persistent QoS violation, and at time t=15s,
triggers the migration process of the MECApp - from the
MEC platform at the CoreCloud site to the EdgeCloud -
enacting also the data plane reconfiguration (SMF). Once the
service migration procedure is completed, from time t=19s the
MECApp becomes fully operational, servicing the UE within
the acceptable QoS bounds.

ACKNOWLEDGMENTS

This work is partially supported by the European Union -
NextGenerationEU - National Recovery and Resilience Plan
(Piano Nazionale di Ripresa e Resilienza, PNRR) - Project:
“SoBigData.it - Strengthening the Italian RI for Social Mining
and Big Data Analytics” - Prot. IR0000013. The authors thank
Elisa Drudi for the initial support of the project activities.

V. CONCLUSION AND FUTURE DIRECTIONS

Herein we presented a possible extension to the OAI-OAM
platform which offloads component/application management
to Kubernetes. The solution relies on the Kubernetes Op-
erator pattern, implementing an application-aware lifecycle
management across 5G edge-core deployments. The proposal

was assessed and validated in a real deployment environment,
consisting of a core and edge cloud, demonstrating the solu-
tions’ ability to enact the migration of application components
from/to the edge/core and across edges. Supporting time-
critical applications is a future work we aim to pursue. To
this end, as future research direction, we plan to enhance the
orchestration layer along these two main directions: (i) add
support for an event-driven notification layer and (ii) deeper
integration with CN-RAN signaling mechanisms implement-
ing a minimal analytics function feeding the COp.

REFERENCES

[1] F. Spinelli and V. Mancuso, “Toward Enabled Industrial Verticals in 5G:
A Survey on MEC-Based Approaches to Provisioning and Flexibility,”
IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 596–630,
2021.

[2] L. Bittencourt et al., “The internet of things, fog and cloud continuum:
Integration and challenges,” Internet of Things, vol. 3-4, pp. 134–155,
2018.

[3] ETSI, “Multi-access Edge Computing (MEC); Framework and
Reference Architecture,” European Telecommunications Standards
Institute, Technical Specification (TS), 2024, ver. 3.2.1.
[Online]. Available: https://www.etsi.org/deliver/etsi gs/MEC/001 099/
003/03.02.01 60/gs MEC003v030201p.pdf

[4] ——, “Multi-access Edge Computing (MEC); Use Cases and
Requirements,” European Telecommunications Standards Institute,
Technical Specification (TS), 2024, ver. 3.2.1. [Online]. Avail-
able: https://www.etsi.org/deliver/etsi gs/MEC/001 099/002/03.02.01
60/gs MEC002v030201p.pdf

[5] A. Noferi, G. Nardini, G. Stea, and A. Virdis, “Rapid prototyping and
performance evaluation of ETSI MEC-based applications,” Simulation
Modelling Practice and Theory, vol. 123, p. 102700, 2023.

[6] F. Asquini, A. Bujari, D. Munaretto, C. E. Palazzi, and D. Ron-
zani, “An ETSI NFV Implementation for Automatic Deployment and
Configuration of a Virtualized Mobile Core Network,” in Proc. of
IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 2021, pp. 357–362.

[7] Open Networking Foundation. (2024) Aether Private 5G Project.
[Online]. Available: https://docs.aetherproject.org/master/intro.html

[8] EURECOM. (2024) Mosaic5G Data-driven Service Delivery Platform.
[Online]. Available: https://gitlab.eurecom.fr/mosaic5g

[9] ONAP Linux Foundation. (2024) Open Network Automation Platform
(ONAP). [Online]. Available: https://docs.onap.org/en/kohn/platform/
overview/index.html

[10] Open Air Interface. (2024) OAI Operations and Maintenance
Group. [Online]. Available: https://openairinterface.org/projects/
oam-project-group

[11] J. Dobies and J. Wood, Kubernetes operators: Automating the Container
Orchestration Platform. O’Reilly Media, 2020.

[12] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, and M. Guizani,
“Multi-access edge computing: A survey,” IEEE Access, vol. 8, pp.
197 017–197 046, 2020.

[13] A. Kanso et al., “Designing a Kubernetes Operator for Machine Learning
Applications,” ser. WoC ’21. Association for Computing Machinery,
2021.

[14] “IP Mobility Support for IPv4,” RFC 3344, 2002. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3344

[15] ETSI, “Multi-access Edge Computing (MEC); Federation
enablement APIs ,” European Telecommunications Standards
Institute, Technical Specification (TS), 2024, ver. 3.2.1.
[Online]. Available: https://www.etsi.org/deliver/etsi gs/MEC/001 099/
040/03.02.01 60/gs MEC040v030201p.pdf

[16] R. A. Addad, D. L. Cadette Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“Towards a Fast Service Migration in 5G,” in Proc. of IEEE Conference
on Standards for Communications and Networking, 2018, pp. 1–6.

[17] J. Geerling. (2021) Fast vs Easy: Benchmarking Ansible Operators
for Kubernetes. [Online]. Available: https://www.redhat.com/en/blog/
fast-vs-easy-benchmarking-ansible-operators-for-kubernetes

