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Abstract: A strongly-coupled sector can feature a supercooled confinement transition in
the early universe. We point out that, when fundamental quanta of the strong sector are
swept into expanding bubbles of the confined phase, the distance between them is large com-
pared to the confinement scale. We suggest a modelling of the subsequent dynamics and find
that the flux linking the fundamental quanta deforms and stretches towards the wall, pro-
ducing an enhanced number of composite states upon string fragmentation. The composite
states are highly boosted in the plasma frame, which leads to additional particle produc-
tion through the subsequent deep inelastic scattering. We study the consequences for the
abundance and energetics of particles in the universe and for bubble-wall Lorentz factors.
This opens several new avenues of investigation, which we begin to explore here, showing
that the composite dark matter relic density is affected by many orders of magnitude.
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1 Introduction

The possible existence of new confining sectors is motivated by most major failures of our
understanding of Nature at a fundamental level. First, the stability of particle Dark Matter
can be elegantly achieved as an accident if it is a composite state of a new strongly-coupled
sector, similarly to proton stability in QCD, see e.g. [1]. The hierarchy problem of the
Fermi scale is solved via dimensional transmutation by new confining gauge theories, whose
currently most appealing incarnation is that of composite Higgs models [2, 3]. Analogous
composite pictures can UV-complete [4–6] twin-Higgs scenarios [7], and so ameliorate also
the little hierarchy problem. A rationale to understand the SM hierarchies of masses and
CKM mixing angles is provided by partial compositeness of the SM fermions [8]. Finally,
new confining sectors play crucial roles in addressing the strong CP problem [9, 10], the
baryon asymmetry [11, 12], etc.

Given their ubiquity, it makes sense to look for predictions of confining sectors that
do not depend on the specific way they address a given SM issue. Cosmology naturally
offers such a playground, in association with the confinement phase transition (PT) in
the early universe. The low-density QCD phase transition would for example be strongly
first-order if the strange or more quarks had smaller masses [13], with associated signals
in gravitational waves [14, 15]. New confining sectors could also well feature a similar PT.
In addition, the confinement transition could be supercooled, a property that for example
arises naturally in 5-dimensional (5D) duals of 4D confining theories [16–18].

Generically, supercooling denotes a PT in which bubble percolation occurs significantly
below the critical temperature. Here we are interested in the case where a cosmological PT
becomes sufficiently delayed so that the radiation energy density becomes subdominant to
the vacuum energy. The universe then experiences a stage of inflation until the PT com-
pletes [19]. This implies a dilution of any pre-existing relic, such as dark matter (DM), the
baryon or other asymmetries, topological defects, and gravitational waves, see e.g. [20–22].

In this paper we point out an effect that, to our knowledge, had been so far missed:
when the fundamental quanta of the strong sector enter the expanding bubbles of the con-
fined phase, their relevant distance can be much larger than the inverse of the confinement
scale, thus realising a situation whose closest known analogues are perhaps QCD jets in
particle colliders or cosmic ray showers. We anticipate that our attempt to model this
phenomenon implies an additional production mechanism of any composite resonance —
string fragmentation followed by deep inelastic scattering — which introduces a mismatch
between the dilution of composite and other relics. This opens new model building and
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phenomenological avenues, which we begin exploring here in a model independent manner
for the case of composite DM. The application of our findings to a specific model, namely
composite dark matter with dilaton mediated interactions, will appear elsewhere [23].

2 Synopsis

Due to the numerous effects which will be discussed in the following sections, it is perhaps
useful for the reader that we summarise the overall picture in a few paragraphs. We begin
in the deconfined phase in which the techniquanta TC of the new strong sector (which we
will call quarks and gluons) are in thermal equilibrium. Their number density normalised
to entropy takes a familiar form

Y eq
TC = 45 ζ(3) gTC

2π4gs
, (2.1)

where gTC (gs) are the degrees of freedom of the quarks and gluons (entropic bath) respec-
tively. Next a period of supercooling occurs, in which the universe finds itself in a late
period of thermal inflation, which is terminated by bubble nucleation. As is known from
previous studies, such a phase will dilute the number density of primordial particles. The
dilution factor is given by

DSC =
(
Tnuc
Tstart

)3 TRH
Tstart

, (2.2)

where Tnuc is the nucleation temperature, Tstart ∝ f is the temperature at which the
thermal inflation started, TRH is the temperature after reheating, and f is the energy scale
of confinement. We assume reheating to occur within one Hubble time, so that TRH ∝ f .
The supercooled number density of quarks and gluons then becomes

Y SC
TC = DSC Y eq

TC ∝
(
Tnuc
f

)3
. (2.3)

For completeness, the details entering eq. (2.3) will be rederived in section 3.
When the fundamental techniquanta are swept into the expanding bubbles, they ex-

perience a confining force. Because f � Tnuc in the supercooled transition, the distance
between them is large compared to the size of the composite states ψ (which we will equiva-
lently call ‘hadrons’). The field lines attached to a quark or gluon then find it energetically
more convenient to form a flux tube oriented towards the bubble wall, rather than directly
to the closest neighbouring techniquantum, which is in general much further than the wall
(see figure 2). The string or flux tube connecting the quark or the gluon and the wall
then fragments, producing a number of hadrons inside the wall. Additionally, because of
charge conservation, techniquanta must be ejected outside the wall to compensate (see fig-
ure 3). The process is conceptually analogous to the production of a pair of QCD partons
at colliders, and we model it as such. The details are explained in section 4. The result is
an increase of the yield of composite particles, compared to the naive estimate following
directly from eq. (2.3), by a string fragmentation factor Kstring,

Y SC+string
ψ = KstringDSC Y eq

TC ∝
(
Tnuc
f

)3
× logs

(
γwpTnuc

f

)
, (2.4)
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where γwp > f/Tnuc � 1 is the Lorentz factor of the bubble wall at the time the quarks
enter.

The Lorentz factor is estimated in section 5. In section 6 we show that our picture can
be relevant already for Tnuc/Tstart . 1. The quarks ejected from the bubbles are treated in
detail in section 7. We find they enter neighbouring bubbles and confine there into hadrons.
Acting as a cosmological catapult, string fragmentation at the wall boundary gives a large
boost factor to the newly formed hadrons, such that their momenta in the plasma frame
can be � f .

The composite states and their decay products can next undergo scatterings with other
particles they encounter, e.g with particles of the preheated ‘soup’ after the bubbles collide.
Since the associated center-of-mass energy can be much larger than f , the resulting deep
inelastic scatterings (DIS) increase the number of hadrons. We explore this in detail in
section 8. The resulting effect on the yield can be encapsulated in a factor KDIS, and reads

Y SC+string+DIS
ψ = KDISDSC Y eq

TC ∝
(
Tnuc
f

)3
γwp

if runaway7−−−−−−→
(
Tnuc
f

)4 MPl
m∗

, (2.5)

where MPl is the Planck mass and m∗ = g∗f is the mass scale of hadrons. The last
proportionality holds in the regime of runaway bubble walls, relevant for composite DM.

Finally the late-time abundance of the long-lived and stable hadrons, if any, evolves
depending on their inelastic cross section in the thermal bath 〈σvrel〉, and on Y SC+string+DIS

ψ

as an initial condition at TRH. We compute it in section 9 by solving the associated
Boltzmann equations.

By combining all the above effects we arrive at an estimate of the final relic abundance
of the composite states. Our findings impact their abundance by several orders of magni-
tude, as can be seen in figure 9 for the concrete case where the relic is identified with DM.
The formalism leading to this estimate can readily be adapted for other purposes. For ex-
ample, if ψ instead decays out-of-equilibrium, it could source the baryon asymmetry. The
estimate of Y SC+string+DIS

ψ would then act as the first necessary step for the determination
of the baryonic yield.

3 Supercooling before confinement

3.1 Strongly coupled CFT

Although striving to remain as model independent as possible in our discussion, we shall
be making a minimal assumption that the confined phase of the strongly coupled theory
can be described as an EFT with a light scalar χ, e.g. a dilaton. The scalar VEV, 〈χ〉,
then parametrizes the local value of the strong scale. It can be thought of as a scalar
condensate of the strong sector, such as a glueball- or pion-like state. The scalar VEV at
the minimum of its zero-temperature potential is identified with 〈χ〉 = f , where f is the
confinement energy scale, while 〈χ〉 = 0 at large enough temperatures. In order to have
strong supercooling, we require the approximate (e.g. conformal) symmetry to be close to
unbroken, thus justifying the lightness of the associated pseudo-Nambu-Goldstone boson
(e.g. the dilaton [24]). That supercooling occurs with a light dilaton is known from a
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number of previous studies [16–18], see [25–33] for studies in a confining sector and [34–43]
for studies of holographic dual 5D warped extra dimension models.

3.2 Thermal history

The vacuum energy before the phase transition is given by

Λ4
vac ≡ cvac f

4, (3.1)

with some model dependent cvac ∼ O(0.01) constant. The radiation density is given by

ρrad = gRπ
2

30 T 4, (3.2)

where gR counts the effective degrees of freedom of the radiation bath. We define gR ≡
gRi (gRf ) in the deconfined (confined) phase. Now consider the case of strong supercooling.
The universe will enter a vacuum-dominated phase at a temperature

Tstart =
(30 cvac
gRi π2

)1/4
f, (3.3)

provided the phase transition has not yet taken place beforehand. The vacuum domination
signals a period of late-time inflation. The phase transition takes place at the nucleation
temperature, Tnuc, when the bubble nucleation rate becomes comparable to the Hubble fac-
tor. Following the phase transition, the dilaton undergoes oscillations and decay, reheating
the universe to a temperature

TRH =
(
gRi
gRf

)1/4

Tstart, (3.4)

At this point the universe is again radiation dominated. We have assumed the decay to
occur much faster than the expansion rate of the universe such that we can neglect a
matter-dominated phase [20].

3.3 Dilution of the degrees of freedom

Now consider some fundamental techniquanta of the strong sector, e.g. techniquarks or
technigluons (for simplicity we always refer to them as quarks and gluons). Prior to the
phase transition the number density of techniquanta follows a thermal distribution for
massless particles

neq
TC = gTC

ζ(3)
π2 T 3, (3.5)

where gTC denotes the degrees of freedom of the quanta under consideration. The entropy
density is given by

s = 2π2gs
45 T 3, (3.6)
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where gs are the total entropic degrees of freedom.1 The number density normalized to
entropy before the phase transition,

Y eq
TC = 45ζ(3) gTC

2π4gs
, (3.7)

remains constant up to the point when the phase transition takes place. The entropy
density then increases during reheating giving

Y SC
TC = DSC Y eq

TC , (3.8)

when we find ourselves back in the radiation-dominated phase. The dilution factor from
the additional expansion during the vacuum-dominated phase can be derived by finding
the increase in entropy between Tnuc and TRH. It reads

DSC ≡
(
Tnuc
Tstart

)3 ( TRH
Tstart

)
' gRi

c
3/4
vacg

1/4
Rf

(
Tnuc
f

)3

. (3.9)

If the quarks and gluons were non-interacting following the phase transition, the yield
today would be given by the above formula. (In the presence of interactions the above
would be taken as an initial condition at TRH for the Boltzmann equations describing
the effects of number changing interactions between reheating and today.) The picture
would then be analogous to that studied, in a theory without confinement, in [20]. The
picture is completely changed, however, for supercooled confining phase transitions, which
we elucidate next.

4 Confinement and string fragmentation

4.1 Where does confinement happen?

Bubble wall profile. The expanding bubble is approximately described by the Klein-
Gordon equation [44]

d2χ

ds2 + 3
s

dχ

ds
+ dV

dχ
= 0, (4.1)

where s2 = t2− r2 is the light-cone coordinate and V is the scalar potential. A sketch of a
typical bubble profile for close-to-conformal potentials is shown in figure 1. The key point
here is that the wall thickness is

Lw .
1

Tnuc
, (4.2)

as shown by numerical computations and analytical estimates, see appendix A for a calcu-
lation in an explicit example.

1In a picture with Nf flavours of quarks in fundamental representations of an SU(N) confining gauge
group, one has gq = 2NfN , gg = 2(N2 − 1), gTC = gg + 3gq/4, gs = gg + 7gq/8.
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〈χ〉

f

sχ∗

∼ 1/Tn

Figure 1. A typical wall profile found in close-to-conformal potentials. After nucleating by tun-
neling to the exit point, χ∗ � f , the field rolls down and undergoes damped oscillations around
the minimum of its potential. The typical wall thickness is Lw ∼ 1/Tnuc.

Confinement time scale. The techniquanta (quarks and gluons) constitute a plasma
with temperature of order Tnuc before entering the bubble. Once they enter the bubbles,
they could in principle either confine in a region close to the bubble wall where 〈χ〉 � f , or
approach as free particles the region where χ has reached its zero-temperature expectation
value 〈χ〉 = f . To determine this, let us define a ‘confinement rate’ and a ‘confinement
length’ as

Γconf = L−1
conf = nTC vTC σconf, (4.3)

where nTC and vTC are, respectively, the number density and the relative Møller velocity
of the techniquanta vTC ≡

[
|v1 − v2|2 − |v1 × v2|2

]1/2 [45], and σconf is a ‘confining cross
section’. We want to compare Lconf with the length of the bubble wall, defined as the
distance over which χ varies from its value at the exit point, 〈χ〉 = χ∗ � f , to 〈χ〉 = f .
Of course we need to perform this comparison in the same Lorentz frame, so we emphasise
our definition of Lw as the bubble-wall length in the bubble-wall frame, and Lp = Lw/γwp
as the bubble-wall length in the frame of the center of the bubble, which coincides with
the plasma frame, and where γwp is the boost factor between the two frames. Let us now
move to the confinement timescale of eq. (4.3). Since we expect confinement to happen ‘as
soon as possible’, we assume the related cross section to be close to the unitarity limit [46],

σconf ∼
4π
T 2
nuc

. (4.4)

Since n2
TCvTC is Lorentz invariant [45, 47], one then has that nTC vTC transforms under

boosts as n−1
TC . The boost to apply in this case is γwp, because by definition the string

forms after confinement, so we can treat the plasma frame as the center-of-mass frame
of the techniquanta. Combining this with the Lorentz invariance of the cross section, we
obtain

Γconf,w = nTC,w vTC,w σconf = nTC, p vTC, p
γwp

σconf ∼
4π Tnuc
γwp

, (4.5)

where in the last equality we have used that the average relative speed and density of the
techniquanta in the plasma frame satisfy, respectively, vTC, p ' 1 and nTC, p ∼ T 3

nuc, because
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they are relativistic. This in turn implies

Lconf, w ∼
γwp
4π Lw. (4.6)

Confinement takes place deep inside the bubble. For the regimes of supercooling
we are interested in, the phase transition is of detonation type and the Lorentz factor γwp
is orders of magnitude larger than unity. Therefore, Lconf, w � Lw such that confinement
does not happen in the outermost bubble region where 〈χ〉 � f . This conclusion is solid
in the sense that it would be strengthened by using a confinement cross section smaller
than what assumed in eq. (4.4), which is at the upper end of what is allowed by unitarity.
The end effect of the above discussion, is that for practical purposes, we can consider the
wall profile to be a step-like function between the deconfined phase, 〈χ〉 = 0, and confined
phase, 〈χ〉 = f . Furthermore, as we shall discuss below, the quarks will not confine directly
in pairs but rather form fluxtubes pointing toward the bubble wall as they penetrate the
〈χ〉 = f region of the bubble.

The ballistic approximation is valid. Equation (4.6), together with the large wall-
Lorentz-factors encountered in this study, implies that we can safely neglect the interactions
between neighbouring techniquanta during the time when they cross the bubble wall. This
is the so-called ballistic regime, see e.g. [48], which will be useful for deriving the friction
pressure in section 5.

4.2 Fluxtubes attach to the wall following supercooling

A hierarchy of scale. Upon entering the region 〈χ〉 = f of expanding bubbles, the
techniquanta experience a confinement potential much stronger than in the region close to
the wall. This can be easily understood by taking the long-distance potential of the Cornell
form [49–58]

ETC = cTC f
2 dc, (4.7)

where dc is the techniquanta seperation in their ‘center of interaction frame’ (or equiva-
lently ‘string center of mass frame’),2 and cTC is an adimensional constant,3 cqq̄ ' 10 in
QCD [58]. A crucial point regarding the string energy in this context, besides the fact it
grows proportionally to χ2, is that the inter-quanta distance is large compared to the natu-
ral confinement scale, i.e. dc � f−1, due to the supercooling. Indeed the distance between
quanta outside the wall, in the plasma and wall frames respectively, scales as dp ∼ T−1

nuc
and dw ∼ γ−1/3

wp T−1
nuc. Since γwp � (f/Tnuc)3 (see section 5) and dc ≥ dw (because dc = dp

outside the wall, and because the quarks and gluons cannot be accelerated upon entering
so dw is Lorentz contracted with respect to dp), one ends up with dc � f−1. What happens
then to the techniquanta and to the fields connecting them?

2Lattice simulations find that the QCD potential at dc & fm saturates to a constant, a behavior which
is interpreted in terms of pair creation of quarks from the vacuum, see e.g. the recent [59]. Therefore this
realises an outcome that, for our purposes, coincides with having ETC ∝ dc to larger distances. Lattice
simulations with quarks only as external sources [60], so without sea quarks (‘quenched’), find that the
linear regime of the QCD Cornell potential extends up to the maximal distances probed, namely dc ' 3 fm
in the results reported in [60].

3cTC does not hide any ‘coupling dimension’, indeed in units where ~ 6= 1, [f ] = (energy/distance)1
2 .
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Figure 2. Quarks entering the bubble as seen in the frame
of the bubble wall, together with the associated field lines
and quantities defined in the text. The rest energy of the
string is minimized if the fluxtubes in the region χ = f point
to the bubble wall, rather than if they point to the closest
color charge.

Figure 3. The string inside the
wall breaks, producing hadrons (sec-
tion 4.4), and a quark is ejected from
the wall (section 4.6).

Flux tubes minimize their energy. In a picture without hierarchy of scales, the fields
would compress in fluxtubes connecting different charges, ‘isolated’ in pairs or groups to
form color-singlets. Here, we argue that the fluxtubes have another option, which is ener-
getically preferable: that of orienting themselves towards the direction of minimal energy,
i.e. as perpendicular as possible to the bubble-wall,4 and to keep a ‘looser’ connection in
the outer region where χ � f . Indeed, a straight-line connection between techniquanta
would result in a much longer portion of fluxtubes in the region 〈χ〉 = f , with respect to
our picture of fluxtubes perpendicular to the wall. Via eq. (4.7), this would in turn imply
a much higher cost in energy, disfavoring that option. We stress that, in our picture, the
fluxtubes are still connecting techniquanta in such a way to form an overall color singlet,
just these fluxtubes minimise their length in the region χ = f , and partly live in a region
χ ' χ∗ � f . This picture is visualised in figure 2. Note the nearest neighbour quark from
the plasma may also be located outside the bubble.

Condensed matter analogy. An interesting analogue to the picture above is the vortex
string of magnetic flux in the Landau-Ginzburg model of superconductivity. To match
onto confinement dynamics a dual superconductor is pictured, in which the external colour-
electric field — rather than the magnetic field — is expelled by the Meissner effect [61]. Here
the bubble of confining phase corresponds to the superconductor from which the colour-
electric field is expelled. Quarks entering the bubble then map onto magnetic monopoles
being fired into a regular superconductor.

4We wish to express our gratitude to Benedict von Harling, Oleksii Matsedonskyi, and Philip Soerensen,
for discussions which lead us to develop the picture we employ in this paper.
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4.3 String energy and boost factors

To possibly be quantitative on the implications of the picture we just outlined, we first need
to determine the string energy and the Lorentz boosts among the frames of the plasma,
wall and center-of-mass of the string.

String end-points. Let us define as TCi the quark or gluon that constitutes an endpoint,
inside the bubble, of a fluxtube pointing towards the wall, and F the end-point of the
fluxtube on the wall. The energy of the incoming techniquantum in the wall frame is
Ei,w = 3γwpTnuc, where for simplicity we have averaged over their angle with respect to the
wall. We assume F to be at rest or almost, and to carry some O(1) fraction of the inertia
of the string. Hence the respective four-momenta are

pi,w =

 3 γwpTnuc√
9 γ2

wpT
2
nuc −m2

i

 , pF,w =
(
mf

εf

)
, ε� 1, mi ' mf = qf, q ≤ 1

2 . (4.8)

String center-of-mass. Then we define the center-of-mass of the string as the one of
TCi and F, and find

ECM = |pF,w + pi,w| '
√

3 γwp Tnuc f , (4.9)

where the second expression is valid up to relative orders (γwpf/Tnuc)−1 � 1. By employing
a Lorentz boost between the wall and center-of-mass frames, and imposing ~pi,c = −~pF,c,
we find

γwc '
√

3 γwp
Tnuc
f

. (4.10)

On the right-hand side of the equations above we have omitted a factor of
√

2(q − ε),
in (4.9), and of 1/

√
2(q − ε), in (4.10), because for simplicity we take these to be ≈ 1 from

now on (as per the benchmark q = 1/2, ε = 0). Finally we determine the boost between
the center-of-mass frame of the string and the plasma frame as

γcp '
γwp
2γwc

= 1
2

√
γwp
3

f

Tnuc
, (4.11)

which is valid up to a relative order (γwpf/Tnuc)−1 � 1.

4.4 Hadrons from string fragmentation: multiplicity and energy

The fluxtubes connecting a quark or gluon to the wall will fragment and form hadrons,
singlet under the new confining gauge group. We would now like to determine:

• The number of hadrons formed per fluxtube.

• The momenta of said hadrons.
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Figure 4. Left: average hadron multiplicity per single QCD scattering e−e+ → qq̄. Right:
root square mean of the hadron energy per single QCD scattering e−e+ → qq̄, where Ēhadr =
ECM/〈Nhadr〉 is the average hadron energy per scattering. Dots in both plots are extracted via
MadAnalysis v1.8.34 [63] by simulations with MadGraph v2.7.0 [64] plus Pythia v8.2 [65], the line
in the left-hand plot displays eq. (4.14). Results are expressed as a function of the center-of-mass
energy of the scattering in GeV, to export them to our cosmological picture we simply substitute
GeV ' 4πfπ by m∗ = g∗f , and use ECM =

√
3 γwp Tnuc f .

Collider analogy. We start by noticing that the process of formation of a fluxtube, in
our picture, is analogous to two color charges in an overall-singlet state, TCi andF, moving
apart with a certain energy ECM, where ECM =

√
3 γwp Tnuc f in the modelling of section 4.3.

This physical process appears entirely analogous to what would happen in a collider that
produces a pair of techniquanta of the new confining force, starting from an initial singlet
state. In light of this observation, we then decide to model the process by analogy with
a very well-studied process observed in Nature, that of QCD-quark pair production at
electron-positron colliders, where the analogy lies also in the fact that the initial state
electron-positron pairs is in a color singlet state. Needless to say, a BSM confining sector
needs not behave as QCD in terms of number and momenta of hadrons produced per
scattering, see e.g. [62]. However, QCD constitutes a well studied and tested theory, so
that we find it reasonable to use it as our benchmark. Moreover, we anticipate from
section 8 that our final result for the cosmological abundance of hadrons, in the assumption
of efficient-enough interactions between them and the SM, will only depend on the initial
available energy ECM. This suggests that, within that assumption, our final findings hold for
confining sectors that distribute this energy over a number of hadrons different from QCD.

Numerical simulations. We use Pythia v8.2 [65] interfaced to MadGraph v2.7.0 [64]
to simulate the process e−e+ → qq̄ for different center-of-mass energies, and MadAnalysis
v1.8.34 [63] to extract from these simulations both the total number of hadrons produced
per scattering and their energy distribution. We thus recover known QCD results and
display them in figure 4. We translate them to our picture by replacing the units of a
GeV' 4πfπ used by Pythia, with the generic mass of a composite state m∗ = g∗f , where
1 ≤ g∗ ≤ 4π is some strong effective coupling. These results can be summarised as follows:

• The number of hadrons produced per fluxtube grows logarithmically in ECM.
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• The distribution of hadron energies is such that its root square mean coincides, to a
percent level accuracy, with the average energy per hadron

Ēhadr = ECM

〈Nhadr〉
. (4.12)

This will support, in section 8.3, our simplifying assumption that all hadrons pro-
duced by the string fragmentation carry an energy of order Ēhadr.

Results from the literature. The multiplicity of QCD hadrons from various scattering
processes has been the object of experimental and theoretical investigation, since the late
1960s [66]. We now leverage such studies both to check the results of our simulation and
to obtain analytical control over them. Collider studies have typically focused on the
multiplicity of charged QCD resonances per scattering, 〈nch〉. In particular, works such
as [67, 68] have carried out the exercise of collecting the most significant measurements of
〈nch〉 and ‘filling’ the missing phase space — not covered by detectors — with the output
of MC programs, thus obtaining a full-phase-space quantity. We take as our starting point
the result provided in [68] from pp collisions, which reads

〈nch〉(ECM) = a+ b log ECM

m∗
+ c log2 ECM

m∗
+ d log3 ECM

m∗
, (4.13)

with (a, b, c, d) = (0.95, 0.37, 0.43, 0.04). Here, as already explained, we substituted the
normalisation of a GeV with m∗ = g∗f .

Our modelling. To obtain the total number of hadrons from e+e− collisions we proceed
as follows. First, most hadrons coming out from hard scatterings consist in the lightest
ones, i.e. the pions. Second, the total number of pions produced is very well approximated
by 3〈nch〉/2, because of isospin conservation. By the first argument, this coincides with
very good approximation to the total number of hadrons produced. Third, the multiplicity
of composite states from e+e− collisions has been found to roughly match the one from pp

collisions, upon increasing the e+e− energy by a factor of 2, see e.g. section 2.2 in [69].5 We
then model the total number of composite states produced, per string fragmentation, as

N string
ψ (ECM) ' 3

2〈nch〉(2ECM) exp(−3m∗/ECM) + 1 , (4.14)

where we have multiplied by an exponential and added one to smoothen N string
ψ (ECM) to

1 as ECM → m∗, because this physical regime was not taken into account in [68]. In the
left-hand panel of figure 4 one sees that eq. (4.14) reproduces the results of our Pythia
simulation for ECM smaller than a few TeV rather well. This was to be expected since
eq. (4.13) was determined in [68] from fits to data up to that energy. It is not the purpose
of this paper to improve on this fit, as stated above, we simply use the above results as a
check of our Pythia simulation.

5This is qualitatively understood by the fact that, in purely leptonic initial states, there is more energy
available to produced hadrons, while in the case with protons in the initial state much energy is carried
over by the initial hadron remnant.
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4.5 Enhancement of number density from string fragmentation

Production of composite states. Prior to (p)reheating, we then have a yield of com-
posite states given by the yield of strings, which can be estimated from eq. (3.8), multiplied
by the number of composite states per string

Kstring =


3
4gqN

string
ψ

(ECM)+gg(Nstring
ψ

(ECM)−1)
gTC

heavy composite state,
N string
ψ (ECM) light composite state ,

(4.15)

where N string
ψ (ECM) is given by eq. (4.14) and ECM =

√
3 γwp Tnuc f in eq. (4.9). We have

distinguished the cases where the composite state of interest is heavier or lighter than the
glueballs (e.g. the analogous of a proton or a pion in QCD). In the former case, the −1
we added to the factor multiplying gg accounts for the fact that, if the final composite
states produced by string fragmentation do not undergo other additional interactions, then
glueballs decay to the light composite states and do not contribute to the final yield of any
heavy composite state of quarks. The yield of composite states ψ then reads

Y SC+string
ψ = Y eq

TC D
SC Kstring ∝

(
Tnuc
f

)3
× logs

(
γwpTnuc

f

)
. (4.16)

The appearance of Y eq
TC in eq. (4.16) accounts for string formation from both quarks and

gluons. Hence, not only is the number of ψ’s enhanced by the string fragmentation, relative
to the case with no confinement, but also by the possibility of gluons to form strings. Kstring

and Y SC+string
ψ are plotted in figure 8.

Hadrons are highly boosted in the plasma frame. The hadrons formed after string
fragmentation schematically consist of two equally abundant groups. Hadrons in the first
group, which for later convenience we call ‘Population A’, move towards the bubble wall
with an average energy

EA,p ' 2γcp
ECM

N string
ψ (ECM)

' γwpf

N string
ψ (ECM)

, (4.17)

where we have boosted the energy per hadron of eq. (4.12) to the plasma frame with the
γcp of eq. (4.11), and also used eqs. (4.9) and (4.15). We conclude from eq. (4.17) that the
newly formed hadrons have large momenta in the plasma frame. The formation of a gluon
string between the incoming techniquanta and the wall acts as a cosmological catapult
which propels the string fragments in the direction the wall is moving. Hadrons in the
second group move, in the wall frame, towards the bubble wall center, and their energy in
the plasma frame is negligible compared to (4.17). Note that if only one hadron is produced
on average per every string, then it would roughly be at rest in the center-of-mass frame
of the string, with an energy (mass) of order ECM. In the plasma frame, its energy would
then read Ep ' γcpECM ' γwpf/2. As we will see in section 8, the impact of this hadron
on the final yield would then be captured by our expressions.

Following this first stage of string fragmentation, the composite states, and/or their
decay products, can undergo further interactions with remnant particles of the bath, pre-
heated or reheated plasma, and among themselves. Such interactions may change the ulti-
mate yield of the relic composite states. Before taking these additional effects into account
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in section 8, in the next sections we complete the modelling we proposed above, by describ-
ing the behaviour of the ejected quarks and deriving the Lorentz factor of the wall, γwp.

4.6 Ejected quarks and gluons and their energy budget

So far we dealt with what happens inside the bubble wall. The process we described
apparently does not conserve color charge: we started with a physical quark or gluon with
a net color charge entering the bubble, and we ended up with a system of hadrons which
is color neutral. Where has the color charge gone?

The necessity of ejecting a quark or gluon. To understand this, it is convenient
to recall the physical modelling behind the process of string fragmentation that converts
the initial fluxtube into hadrons, see e.g. the original Lund paper [70]. When the fluxtube
length, in its center-of-mass frame, becomes of order f−1, the string breaks at several
points via the nucleation of quark-antiquark pairs from the vacuum. Now consider, in our
cosmological picture, the quark-antiquark pair nucleated closest to the bubble wall. One
of the two — say the antiquark — forms a hadron inside the wall. The only thing that
can happen to the quark is for it to be ejected from the wall, because of the lack of charge
partners inside the wall. This process, somehow reminiscent of black hole evaporation, thus
allows for charge to be conserved. The momentum of the ejected quark, in the wall frame,
has to be some order-one fraction of the confinement scale f , because that is the only energy
scale in the process. For definiteness, in the following we will take this fraction to be a half.
This picture is visualized in figure 3, and it is analogous if TCi is a gluon instead of a quark.

Energy of the ejected quark or gluon. One then has one ejected quark (at least) or
gluon per fluxtube, thus per quark or gluon that initially entered. Therefore, the number
of techniquanta outside the bubble wall does not diminish upon expansion of the bubble.
This population of ejected techniquanta is energetically as important as that of hadrons
inside the bubble. Indeed the energy of an ejected quark or gluon (or quark pair), in the
plasma frame, reads

Eej,p ' γwpf. (4.18)

This is of the same order as the total energy in the hadrons from the fragmentation of a
single string,

Etot
A,p =

N string
ψ (ECM)

2 EA,p ' γwp
f

2 , (4.19)

obtained by multiplying EA,p of eq. (4.17) times half of the total number of hadrons pro-
duced per string (i.e. we included only the energetic ones). The population of ejected
techniquanta cannot therefore be neglected in the description of the following evolution of
this cosmological system.

5 Bubble wall velocities

The wall boost in the plasma frame, γwp, affects many key properties of our scenario, from
the ejection of techniquanta to the number and energy of the hadrons produced by string
fragmentation. It is the purpose of this section to study the possible values it can take over
the PT.
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Final results. As bubbles are nucleated and start to expand, γwp starts growing as well.
If nothing slows down the bubble-wall acceleration, then γwp keeps growing until its value
at the time of bubble-wall collision, γrunawaywp . Sources of friction that could prevent this
runaway regime are given by the equivalent, in this scenario, of the so-called leading order
(LO) and next-to-leading order (NLO) contributions of [71] and [72] respectively. We find
it convenient to report right away our final result for the maximal possible value of γwp,

γmax
wp ' Min

[
1.7 10

β/H

(0.01
cvac

)1
2 Tnuc

f

MPl

f
, 1.0× 10−3 cvac

0.01
80
gTC

(
f

Tnuc

)3]
, (5.1)

where the first entry is associated to γrunawaywp , and the second to the boost as limited by the
LO pressure, γLOwp . γLOwp is always smaller than γNLOwp in the parameter space of our interest,
so that γNLOwp does not enter eq. (5.1). We learn that in the regime of very strong super-
cooling and/or of very large confinement scale f , which will be the most relevant one for
the DM abundance, bubble walls run away. The behaviour of γwp is illustrated in figure 5.

The impact on GW. The behaviour of γwp also has important consequences for the
gravitational wave signal from the phase transition [73, 74]. If γmax

wp = γrunawaywp then the
vacuum energy is converted into kinetic energy of the bubble walls [75]. The gravitational
wave (GW) spectrum sourced by scalar field gradient is traditionally computed in the
envelope approximation [76–78]. However, the latest lattice results [79, 80] suggest an en-
hancement of the GW spectrum at low frequency due to the free propagation of remnants of
bubble walls after the collision, the IR slope ∝ k3 becoming close to ∝ k1. This confirms the
predictions from the analytical bulk flow model [81, 82]. Note that the IR-enhancement
is stronger for thick-walled bubbles [79], which is the case relevant for nearly-conformal
potential leading to strong supercooling, and thus for the PT considered here. (Instead,
for thin-walled bubbles, after collision the scalar field can be trapped back in the false
vacuum [11, 44, 83]. Instead of propagating freely, the shells of energy-momentum tensor
remain close to the collision point and dissipate via multiple bounces of the walls.) Irrespec-
tively of whether the IR slope at f . β is ∝ k3 or ∝ k1, at much lower frequency, f . H, the
slope must converge to k3 due to causality [84–86]. Oscillations of the condensate following
the PT can provide an additional source of GW [87]. However, instead of β−1 the time
scale is set by the inverse scalar mass ∼ f−1 and the signal is Planck-suppressed ∝ β/f [88].

If instead, γmax
wp = γNLOwp , the vacuum energy is converted into thermal and kinetic

energy of the particles in the plasma already prior to the bubble wall collision. The contri-
bution from sound waves or turbulence [73, 74], however, in supercooled transitions is not
yet clearly understood. Indeed, current hydrodynamical simulations, which aim to capture
the contribution of the bulk motion of the plasma to the gravitational wave signal, do
not yet extend into the regime in which the energy density in radiation is subdominant to
the vacuum [89]. And analytical studies of shock-waves in the relativistic limit have just
started [90]. In any case, we expect supercooled transitions to provide promising avenue
for detection in future GW observatories.

We now proceed to a detailed derivation of eq. (5.1).
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Figure 5. The Lorentz factor of the wall at bubble percolation for various values of f and amounts
of supercooling, assuming β/H = 10. For extreme supercooling (on the left side of the plot) γwp

is in the runaway regime. In this regime, larger f or smaller Tnuc leads to a smaller distance over
which the bubble can accelerate. The former because of the smaller Hubble horizon and the latter
due to the larger bubble size at nucleation. Therefore γwp decreases for more supercooling.

Linear growth. The energy gained upon formation of a bubble of radius R is Ebubble =
4
3πR

3∆Vvac, where ∆Vvac is the difference between the vacuum energy density outside and
inside the bubble. The energy lost upon formation of a bubble of radius R is Ewall '
4πR2γwpσw, where σw is the surface energy density of the wall (surface tension) in the
wall frame. If a bubble nucleates and expands, its energy Ebubble is transferred to the wall
energy Ewall. As soon as a nucleated bubble contains the region χ ' f , neither ∆Vvac nor
σw change upon bubble expansion. Indeed both are a function of the bubble wall profile,
which does not change in that regime (also see figure 1). We thus recover the well-known
property that γwp grows linearly in R,

γwp = R

R0
∼ TnucR , (5.2)

where R0 is a normalisation of the order of the minimal radius needed for a bubble to
nucleate, and where in the second relation we have used R0 & Lw ∼ T−1

nuc because we
assumed the nucleated bubble to contain the region χ ' f . A more precise treatment can
be found, e.g. in the recent [75], which confirms the parametric dependence of eq. (5.2).

At collision time. In a runaway regime, i.e. for small enough retarding pressure on the
bubble walls, γwp at collisions then reads

γrunawaywp ∼ Tnuc β−1 ' 1.7 10
β/H

(0.01
cvac

)1
2 Tnuc
f

MPl

f
, (5.3)

where β−1 is the average radius of bubbles at collision, H ' Λ2
vac/(

√
3MPl), and the value

β/H ' 10 is a benchmark typical of supercooled phase transitions [17, 23, 27, 35, 36, 41, 91],
which we employ from now on.
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The bubbles swallow most of the volume of the universe, and thus most techniquanta,
when their radius is of the order of their average radius at collision β−1. Therefore, in
the regime of runaway bubble walls, the relevant γwp for all the physical processes of our
interest (hadron formation from string fragmentation, quark ejection, etc.) will be some
order one fraction of γrunawaywp . For simplicity, in the runaway regime we will then employ
the simplifying relation γwp = γrunawaywp . This will not only be a good-enough approximation
for our purposes, but it will also allow to clearly grasp the parametric dependence of our
novel findings. Moreover, a more precise treatment, to be consistent, would need to be
accompanied by a more precise solution for γwp than that of eq. (5.2), i.e. we would need
to specify the potential driving the supercooled PT and solve for γwp. As the purpose of
this paper is to point out effects which are independent of details of the specific potential,
we leave a more precise treatment to future work.

5.1 LO pressure

Origin. By LO pressure we mean the pressure from the partial conversion — of the
quark’s momenta before entering the bubbles — into hadron masses [71], plus that from
the ejection of quarks. We use the subscript LO in reference to [71, 72], because this
pressure is of the form PLO ∼ ∆m2T 2, where ∆m is the rest energy of the flux tube
between the incoming techni-quanta and the wall. However, in contrast to [71, 72], here
the pressure arises from non-perturbative effects.

Momentum transfer. The momentum exchanged with the wall, upon hadronization of
a single entering quark plus the associated quark ejection, reads in the wall frame

∆pLO = Ein −
√
E2
in −∆m2

in + Eej ' f , (5.4)

where Ein ' 3 γwpTnuc is the energy of the incoming quark, ∆m2
in is the fraction of that

energy that is converted into ‘inertia’ of the string, and Eej ' f/2 is the energy of the
ejected quark or gluon. In the second equality, we have used ∆m2

in ' E2
CM ' 3 γwp Tnuc f

from eq. (4.9) and γwp � f/Tnuc. Note that ∆pLO is independent of pin.

Pressure. In light of section 4.1, we can safely consider a collision-less approach and
neglect the interactions between neighboring quarks. The associated pressure is given by

PLO =
∑
a

ga

∫
d3pin
(2π)3

1
e|pin|/Tnuc ± 1

∆pLO, (5.5)

where ga is the number of internal degrees of freedom of a given species a of the techni-
quanta. Upon using eq. (5.4), we get

PLO '
ζ(3)
π2 gTC γwp T

3
nucf , (5.6)

where we remind that gTC = gg + 3gq
4 . This result can be understood intuitively from

PLO ∼ nTC,w∆pLO, where γwp enters through nTC,w [71]. Note that, in the absence of
ejected particles, the pressure would have been a half of our result in eq. (5.6).
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Terminal velocity. The resulting upper limit on γwp is obtained by imposing that the
LO pressure equals that of the internal pressure from the difference in vacuum energies,

Pexpand = cvacf
4 , (5.7)

and reads

γLOwp = cvac
π2

ζ(3)
1
gTC

(
f

Tnuc

)3
. (5.8)

We finally remark that PLO grows linearly in γwp, unlike in ‘standard’ PTs where it is
independent of the boost. The reason lies in the fact that the effective mass ∆m2

in grows
with γwp, whereas in ‘standard’ PTs it is constant in γwp. Our results then imply that, in
confining phase transitions, the LO pressure is in principle enough to ensure the bubble
walls do not runaway asymptotically. This is to be contrasted with non-confining PTs,
where the asymptotic runaway is only prevented by the NLO pressure.6

5.2 NLO pressure

Origin. The NLO pressure comes from the techniquanta radiating a soft gluon [72] which
itself forms a string attached to the wall in the broken phase.

Result. We derive it in detail in appendix B. We find, cf. eq. (B.20)

PNLO '
(
ggC2[g] + 3

4gqC2[q]
)8ζ(3)

π

g2
conf
4π εps

log
(
1 + m2

g

k2
∗

)
k∗/mg

γwpT
3
nucmg , (5.9)

where C2[g, q] are the second Casimirs of the representations of gluons and quarks under
the confining group (if SU(N), C2[g] = N , C2[q] = (N2−1)/2N), gconf is the gauge coupling
of the confining group, εps ≤ 1 encodes the suppression from phase-space saturation of the
emitted soft quanta g, important for large coupling gconf, mg is an effective mass of the
soft radiated gluons responsible for this pressure, and k∗ the IR cut-off on the momentum
radiated in the direction parallel to the wall.

Vector boson mass. As we model the masses of our techniquanta as the inertia that
their fluxtube would gain inside the bubble, these masses increase with increasing momen-
tum of the techniquanta, in the wall frame. The NLO pressure is caused by emission of
gluons ‘soft’ with respect to the incoming quanta. Their would-be mass mg upon entering
the wall cannot, therefore, be as large as that of the incoming quanta that emit them,
∆min '

√
3 γwp Tnuc f . At the same time, the effective gluon mass should at least allow

for the formation of one hadron inside the wall, therefore we assume it to be of the order
of the confinement scale, mg ∼ f . The fact that mg does not grow with γwp while ∆min
does, is the reason why unlike in non-confining phase transitions, we find here that PNLO

and PLO have the same scaling in γwp and in the amount of supercooling.
6In our scenario, bubble walls can still run away until collision for some values of the parameters, and

we anticipate they will. Unlike in non-confining PTs, the scaling of our LO pressure with γwp implies they
could not runaway indefinitely if there were no collisions.
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NLO pressure is sub-leading. By making the standard [72] choice k∗ ' mg, and
assuming εpsg2

conf < 1, we then find that PNLO � PLO in the entire parameter space of our
interest. Thus, for simplicity, we do not report the NLO limit on γmax

wp in eq. (5.1).
Recently, ref. [92] performed a resummation of the log-enhanced radiation that leads to

the scaling PNLO ∝ g2
confγ

2
wpT

4
nuc. By using the analogue of that result for confining theories,

we find that PNLO dominates over PLO in some region of parameter space, and therefore that
the values of the parameters for which bubble walls run away slightly change. Still, even
by using that resummed result, we find that the region relevant for DM phenomenology
corresponds to the region where bubble walls run away, so that the difference between
the results of [72] and [92] does not impact the DM abundance. As observed in [93], the
pressure as determined in [92] does not tend to zero when the order parameter of the
transition goes to zero, casting a shadow on that result. Therefore, both for this issue as
well as for the limited impact on the DM abundance that we will discuss later, we content
ourselves with a treatment analogous to [72] in our paper.

Summary and runaway condition. At small supercooling (i.e. not too small Tnuc/f)
the bubble wall velocity reaches an equilibrium value set by the LO pressure. At larger
supercooling bubble walls collide before reaching their terminal LO velocity, and γwp is set
by the runaway value eq. (5.3). By comparing eq. (5.8) with eq. (5.3), we find that bubble
walls run away for

Tnuc
f
. 1.2× 10−4

( 80
gTC

β/H

10
f

PeV

)1
4
(
cvac
0.01

)3
8

(5.10)

The bubble wall Lorentz factor is plotted in figure 5 against the amount of supercooling.

5.3 Ping-pong regime

Condition to enter. For even a single hadron to form inside the bubble, one needs
ECM ≥ mπ, where π is the lightest hadron of the new confining sector (e.g. a pseudo-
goldstone boson). Via eq. (4.9), this implies

γwp & γ
enter
wp = m2

π

3Tnuc f
. (5.11)

Contribution to the pressure. For γwp . γenterwp , which holds at least in the initial
stages of the bubble expansion, the quarks and gluons are reflected and induce a pressure

Prefl ∼ nTC,w ×∆pTC,w ∼ T 3
nucγwp × γwpTnuc ∼ γ2

wpT
4
nuc . (5.12)

This is to be compared with eq. (5.7), Pexpand = cvacf
4, which implies the bubble wall could

in principle be limited by this pressure to γwp ∼ (f/Tnuc)2. Nevertheless, as (f/Tnuc)2 �
γenterwp , this pressure ceases to exist at an earlier stage of the expansion, namely once γwp =
γenterwp . Hence the maximum Lorentz factor remains encapsulated by eq. (5.1).

Ping-pong regime. In some extreme regions of parameter space, however, one could
have γmax

wp < γenterwp , so that all techniquanta in the plasma are reflected at least once before
entering a bubble. We leave a treatment of this ‘ping-pong’ regime to future work.

– 18 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
8

6 Amount of supercooling needed for our picture to be relevant

Intuition about the limit of no supercooling. In the limit of no supercooling, one
does not expect the fluxtubes to attach to the bubble wall, but rather to connect the closest
charges that form a singlet and induce their confinement. In other words, in the limit of
no supercooling one expects the picture of confinement to be the one of ‘standard phase
transitions’. By continuity, there should exist a value of Tnuc, smaller than f , such that
the our picture ceases to be valid, and one instead recovers the more familiar confinement
among closest color charges. We now wish to determine it. In order to do so, we note
that the absence of ejected techniquanta is a necessary condition for the above to hold,
therefore we now phrase the problem in terms of absence of ejected techniquanta.

Rate of detachment of F. We propose and analyse some effects that could lead to
fluxtubes detaching from the bubble walls without ejecting particles. To take place, these
effects need to happen before the end-point of the fluxtube on the wall, F, ceases to exist,
i.e. when the string breaking inside the bubble has already taken place and a quark is
ejected. So we start by computing the rate ΓdetF of detachment of F, the point where the
fluxtubes is attached to the wall, from the wall itself. To estimate it, we again borrow the
modelling of the classic paper on string fragmentation [70].

The distances between the several points of breaking of a given string (that connects
in our case TCi andF) are space-like. In the frame of each point of breaking, that breaking
is itself the first to happen, a time of order N/f after the string formation (we adopt the
scaling for strong sector gauge groups SU(N) [94, 95]). This time therefore also applies
to the outermost breaking point in our picture, i.e. that closest to the wall, whose frame
approximately coincides with the wall frame. We remind the reader that the outermost
breaking is the one that nucleates the quark or gluon that is eventually ejected. The rate we
need can therefore be estimated as the inverse of the nucleation time of the outermost pair,

ΓdetF,w = τ−1
detF,w ' f/N . (6.1)

We now enumerate and model effects that could lead to fluxtubes detaching from the
bubble walls without ejecting techniquanta, and compare their time scales with eq. (6.1).

1. Flux lines overlap. The faster a bubble-wall, the denser and thus the closer together
in the wall frame are the quarks and gluons entering it. Eventually, they could get
closer than the typical transverse size of a fluxtube dtr ' f−1 [96]. When that
happens, the fluxtubes between different color charges have a non-negligible overlap.
We expect that in this situation it will not be clearly preferable energetically for these
strings to attach directly to the wall. Thus there would be no ejected techniquanta.
This situation is of course realised also in the case of small supercooling f/Tnuc, in
addition to and independently of the case of fast bubble-walls.
We then obtain a rate of ‘string breaking by fluxtube overlap’, Γoverlap, as follows.
We define an effective associated cross section as the area of a circle on the wall,
centered on any F and with radius dtr,

Aoverlap = πd2
tr ' πf−2 . (6.2)

– 19 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
8

The associated rate then reads

Γoverlap = Aoverlapv nTC,w '
γwpζ(3)gTC

π

T 3
nuc
f2 , (6.3)

where nTC,w = γwpnTC,p is the density of techniquanta in the wall frame, gTC =
gg + 3gq/4, and we have used that they are relativistic v = 1. The condition of no
ejected techniquanta then reads

Γoverlap > ΓdetF,w ⇒ γwp &
2.6
gTCN

(
f

Tnuc

)3
. (6.4)

2. The entire fluxtube connecting real color charges, so including its portion in the
region χ ' χ∗ � f (see figure 2), could enter the region χ = f before its portions in
the region χ = f break and form hadrons, and eject particles. We see two ways this
could happen.

2.1 Attractive interaction between neighboring flux lines. The pointsF are
not static, because they move by the force exerted by the part of the string which
is outside the wall, in the layer where 〈χ〉 ' χ∗. Defining yF as the transverse
distance, on the wall, between two F points connected by a fluxtube, one has

d2yF
dt2

= F

mF
∼ −dEqq̄/dy

f
' −cqq̄

χ∗2

f
∼ −cqq̄

T 2
nuc
f

, (6.5)

where, consistently with our previous treatments, we have assigned to F an
inertia mF ∼ f . If yF goes to zero in a time shorter than the breaking time
τdetF,w ∼ Nf−1, then the two fluxtubes connect and become fully contained in
the region χ = f before they break and form hadrons, and thus there are no
ejected techniquanta. To determine this condition, we assume initially static
points F, and thus we only need the initial distance between them yF(t = 0) '
(γwpnTC,p)−1/3. We then obtain

yF(t = τdetF,w) ' (γwpnTC,p)−1/3 − cqq̄
T 2
nuc
f

τ2
detF,w

2 . (6.6)

The resulting condition for no ejected quarks reads

yF(t = τdetF,w) < 0⇒ γwp &
6.6× 10−2

gTCN6

(
10
cqq̄

)3 (
f

Tnuc

)9
. (6.7)

2.2 Limit of no distortion of the flux lines. When the string portion in the
region χ ' χ∗ � f has a small enough length dF, the possibility that it is
pulled inside the region χ = f could be energetically more convenient than the
one of our picture, where it stays outside and instead energy goes in increasing
the length of the strings that are perpendicular to the wall. The energy price,
for the string portion in the region χ ' χ∗ � f to enter the region χ = f , reads
in the wall frame

∆Epull-in,w ' cqq̄(f2 − χ∗2)dF ' cqq̄f2dF , (6.8)
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where we stress that the length of the string portion dF is transverse to the
bubble-wall velocity and therefore is not Lorentz contracted in the process of
being pulled into the bubble. In the wall frame, it reads dF ' (γwpnTC,p)−1/3

The transition between χ ' χ∗ � f and χ = f is exponentially fast in the
proper coordinate s (see appendix A), and happens over an interval (a distance,
in the wall frame) Lf ∼ f−1. The energy price of eq. (6.8) should therefore be
compared with the one to stretch two strings, inside the wall, by an amount Lf:

∆Estretch,w ' 2cqq̄f2Lf/γwc ∼ 2cqq̄f
(

f

3 γwpTnuc

)1/2
, (6.9)

where we have used that the string length in the expression for Eqq̄, eq. (4.7), has
to be evaluated in the string center-of-mass frame, and that γwc '

√
3 γwpTnuc/f

from eq. (4.10). Therefore, it is energetically more convenient to pull the flux-
tube inside the region χ ' f , and so to have no ejected quarks, if

∆Epull-in < ∆Estretch ⇒ γwp . 0.035 g2
TC

(
f Lf

)6 (Tnuc
f

)3
. (6.10)

Contrary to the previous two possibilities to have no ejected quarks, eqs. (6.4)
and (6.7), the possibility in eq. (6.10) imposes an upper limit on γwp. We
anticipate that, in the regimes of supercooling interesting for our work Tnuc/f �
1, eq. (6.10) cannot be satisfied consistently with γwp > 1, so that it is not
relevant for our work.

Summary of required supercooling. In the regime where Tnuc & f , we expect that
neither ejection of techniquanta nor string fragmentation should take place, and that the
standard picture of quarks and gluons confining with their neighbors should be recovered
(which we dub the ‘standard phase transition’). More precisely, if any of eqs. (6.4), (6.7)
and (6.10) hold, we depart from our picture in at least one regard. By demanding none of
these inequalities hold, we expect the new effects of our study, namely flux line attached to
the wall, string fragmentation, quark ejection and deep inelastic scattering, to take place.
In the non-runaway regime, we require

cvac .
0.32
N

and (6.11)

Tnuc
f
. Min

[
0.19

( 5
N

)(0.01
cvac

)1/6
(

10
cqq̄

)1/2

,
0.12
fLf

(
cvac
0.01

)1/6 ( 90
gTC

)1/2 ]
,
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Figure 6. Blue Region: the incoming techniquanta confine with their neighbours as in the
standard picture of phase transitions that are not supercooled. Olive Region: all three inequal-
ities, (6.4), (6.7), (6.10), are violated and the new effects pointed out in this study, i.e. string
fragmentation, ejection of techniquanta and deep inelastic scattering, should be taken into account.
Orange Region: at least one but not all of the inequalities above hold, therefore there are no ejected
techniquanta. The dynamics taking place in this region remains to be investigated. Purple Region:
quarks are too weakly energetic to enter the bubbles, see. 5.3. Left of solid line: eq. (6.10) is violated
and it is energetically favourable for the flux lines to be distorted. Left of dotted line: eq. (6.7) is
violated we can neglect the attractive interactions between neighboring flux lines. Left of dashed
lines: eq. (6.4) is violated and we can neglect the overlap of neighbouring flux lines. The two plots
only differ through their horizontal axis, see section 3.2 for the definitions of cvac and Tstart, and
appendix A for that of Tc. To avoid the unphysical values γwp < 1, we have added 1 to eq. (5.1).

for our picture to hold. In the runaway regime, we instead require

Tnuc
f

. Min
[
6.1× 10−5

(
β/H

10

)1/4 ( cvac
0.01

)1/8 ( 90
gTC

)1/4 ( 5
N

)1/4 ( f

10 TeV

)1/4
,

6.4× 10−3
(
β/H

10

)1/10 ( cvac
0.01

)1/20
(

10
cqq̄

)3/10 ( 90
gTC

)1/10 ( 5
N

)3/5 ( f

10 TeV

)1/10
,

1.2× 106

(fLf )3

( 10
β/H

)1/2 (0.01
cvac

)1/4 ( 90
gTC

)(10 TeV
f

)1/2 ]
. (6.12)

for our picture to hold. Here we have used γwp in eq. (5.1). The conditions are visually
summarised in figure 6.

In light of this figure, we conclude that some new effects pointed out in our study are
also relevant in confining phase transitions where Tnuc ∼ Tstart ∼ Tc (see appendix A for
the definition of the critical temperature Tc), e.g. [97–103], provided cvac is small enough.
A possible impact on the QCD phase transition, e.g. [104–113], remains to be investigated.

Averaged quantities only. We conclude this section by also stressing that all the con-
ditions above refer to averaged quantities, and therefore do not take into account the leaks
from tails of distributions. These leaks could for example imply that there are a few strings
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that hadronise without ejecting particles, even if all conditions eqs. (6.4), (6.7) and (6.10)
are violated. As these strings constitute a small minority of the total ones, these effects
have a negligible impact on the phenomenology we discuss. They could however be impor-
tant in studying other situations of supercooled confinement. Though certainly interesting,
the exploration of these effects goes beyond the scope of this paper.

7 Ejected quarks and gluons

7.1 Density of ejected techniquanta

In the wall frame, since we have one ejected quark or gluon per each incoming one, we find

nej,w = nTC,w(rej) = γwp(rej)nTC,p , (7.1)

where nTC,p = gTCζ(3)T 3
nuc/π

2 is the density of the diluted bath in the plasma frame.
The density of ejected techniquanta then depends on the time passed since bubble wall
nucleation, or equivalently on the bubble radius at the time of ejection rej, via γwp(r) (see
section 5). In the plasma frame, and at a given distance D from the center of the bubble,
we then have7

nej,p(D) = 2γ2
wp(rej)

(
rej
D

)2
nTC,p , (7.2)

where we have included the surface dilution from the expansion between the radius at
which a given quark has been ejected, rej, and the radius D where we are evaluating nej,p.

Radial dependence. It is convenient to express nej,p as a function of the radial distance
x from the bubble wall in the plasma frame, where for definiteness x = 0 denotes the
position of the wall and x = Lej,p the position of the techniquanta ejected first (which
constitute the outermost layer). In order to do so, we determine the relation between the
position x of a quark and the radius rej(x) when it has been ejected. We assume that the
bare mass of the quarks is small enough such that they move at the speed of light, like the
gluons. The wall at x = 0, instead, moves at a speed vwall ' 1 − 1/(2γ2

wp) (we have used
the relativistic limit γwp � 1), dependent on its radius. The coordinate x of a given layer
of ejected particles can then be found by integrating the difference between the world line
of an ejected particle and that of the wall,

x =
∫ tD

tej
dt(1− vwall) '

∫ tD

tej

1
2γ2

wp(t)
' 1

2T 2
nuc

( 1
tej
− 1
tD

)
, (7.3)

where we defined tD and tej as the times when the bubble radius is respectively D and
rej, and we used γwp(t) ' Tnuct, cf. eq. (5.2), valid up to relative orders 1/γ2

wp � 1. It is
convenient to rewrite eq. (7.3) as

rej(x) ' D

1 + 2T 2
nucDx

. (7.4)

7The factor 2 arises when we boost the quark current (γwp nTC,p, γwp ~β nTC,p), with ~β = ~er, from the
wall to the plasma frame.
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We finally obtain

nej,p(x) =
2 γ2

wp(x)(
1 + 2T 2

nucDx
)2nTC,p '

2T 2
nucD

2(
1 + 2T 2

nucDx
)4nTC,p , (7.5)

where the last equality is valid as long as the bubbles run away, i.e. as long as eq. (5.2)
γwp ' Tnuc r holds.

Thickness of the layer of ejected techniquanta. Our result eq. (7.5) implies that
the highest density, of ejected techniquanta, is located in the shell within a distance of the
bubble wall

Leff
ej,p '

1
2T 2

nucD
. (7.6)

The density of ejected quarks nej,p(x) extends to x = Lej,p, i.e. to the outermost ejected
layer, that we now show to be much larger than Leff

ej,p. Indeed, Lej,p can be related to the
time tfirst of ejection of the first techniquanta (corresponding to γwp ' mπ/Tnuc, eq. (5.11)).
Using ti � tfirst and tfirst ∼ mπ/T

2
nuc, we find

Lej,p '
1

tfirst 2T 2
nuc
∼ 1
f
, (7.7)

where for simplicity we have assumed mπ ' f as in QCD. As long as Lej,p � Leff
ej,p, as it

holds for our estimate eq. (7.7), the value of Lej,p does not affect any of the results of this
paper.8 The density profile of eq. (7.5) is shown in figure 7.

Sanity check. As a check of our result eq. (7.5), we verify that one has one ejected quark
or gluon per each one that entered the bubble. Indeed, we compute

4πD2
∫ Lej,p

0
dxnej,p(x) = 4

3πD
3nTC,p , (7.8)

where we have assumed D � f/T 2
nuc, i.e. we have placed ourselves deep in the regime

where hadrons can form inside bubbles (see eq. (5.11)). Equation (7.8) guarantees that the
number of ejected techniquanta in the layer of thickness Lej,p is equal to the total number
of techniquanta that entered the bubble up to radius D.

Interactions between ejected quarks. Let us finally comment why, we think, interac-
tions among the ejected techniquanta cannot much alter their density. The density of the
particles in the incoming bath does not change out of their own interactions. In the wall
frame, both the density and the relative momentum of the ejected techniquanta are of the
same order of those of the particles in the incoming bath. Therefore, we analogously expect
that the density of the ejected techniquanta would also not change after ejection. Since what
will matter for the following treatment is the energy in the ejected techniquanta, rather
than how this energy is spread among the various degrees of freedom, we content ourselves
with this qualitative understanding and leave a more precise treatment to future work.

8One could easily envisage situations in which mπ differs sizeably from f , e.g. because pions are much
lighter or because of a possible dependence of the mass of the lightest resonances on the number of colours
N . The exploration of if and how this possibility would affect our results (for example the conclusion that
Lej,p � Leff

ej,p), while certainly interesting, goes beyond the purposes of this paper.
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Figure 7. The density of the ejected quarks in front of the bubble wall as a function of the distance
x in front of the bubble wall, eq. (7.5), for an example parameter point. Here we have used the
relation γwp ' DTnuc. The distance to the outermost techniquanta Lej,p ≈ 1/f is also shown.

7.2 Scatterings of ejected quarks and gluons before reaching other bubbles

Before possibly reaching other expanding bubble-walls and their ejected techniquanta,
ejected quarks and gluons could undergo scatterings with particles from the supercooled
bath at temperature Tnuc, and with techniquanta ejected from other bubbles. In this section
we study the effects of these scatterings.

Ejected techniquanta are energetic. As soon as a bubble occupies an order one
fraction of its volume at collision, the total energy in ejected particles is much larger than
that in the supercooled bath outside the bubble. Indeed, we have seen that for each quark
or gluon in the supercooled bath that enters a bubble, there is at least an ejected one, and
that the energy ejected per each incoming particle is much larger than the energy per each
particle in the bath, Eej,p ' γwpf � Tnuc, eq. (4.18). Assuming the degrees of freedom
in quarks and gluons are not an extremely small fraction of those in the diluted medium,
then the diluted medium outside the bubbles does not have enough energy to act as a bath
for the ejected particles. This implies that most ejected particles keep most of their energy
upon passing through the supercooled bath.

Energy transfer between ejected techniquanta and diluted bath. By reversing
the logic above, the ejected particles can deposit in the supercooled bath an energy much
larger than its initial one. Pushing this to the extreme, the ejected techniquanta could make
the bath move away from the bubble wall, thus making our treatment so far valid only in the
first stages of bubble expansion. In order to assess this, we estimate the rate of transferred
energy between ejected techniquanta and particles from the bath outside the bubbles,

Γej-bath = nej

∫ ∆Emax

∆Emin
d∆E dσv

d∆E ∆E ' nej
∫ tIR

−s
dt
dσ

dt

√
−t , (7.9)
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where nej is the density of ejected techniquanta, ∆E is the energy transferred per single
scattering, and where in the second equality we have taken the limit of relativistic parti-
cles v ' 1 and small energy transfer per single scattering ∆E, so that the Mandaelstam
variable t can be expressed as t ' −∆E2. The quantity dσ/dt depends on the specific
model under consideration, in particular it depends both on whether the ejected particle
is a quark or a gluon, and on the identity of the scatterer in the bath outside the bubbles.
For definiteness, we model it as the cross section for fermion-fermion scattering mediated
by a light vector with some effective coupling

√
4παeff,

dσ

dt
= 4πα2

eff
t2

. (7.10)

We then obtain
Γej-bath = nej

8πα2
eff√
−tIR

. (7.11)

Γej-bath is of course not Lorentz invariant, it depends on the frame via the density of ejected
techniquanta nej determined in section 7.1.

Impact on diluted bath. The average energy transferred to a particle in the diluted
bath at position D, when this particle goes across the layer of ejected techniquanta (so
before it reaches the wall and initiates the processes described in section 4), then reads

Qej-bath ≡
∫ Lej,p

0
dxΓej-bath,p(x) , (7.12)

where we remind that the spatial coordinate x is the distance between a given layer of
ejected techniquanta and the wall at x = 0. Upon use of eqs. (7.11) and (7.5), we can then
evaluate the average energy transferred to an incoming particle from the diluted bath,
eq. (7.12), as

Qej-bath '
8πα2

eff
3

DnTC,p√
−tIR

. (7.13)

Note that the product DnTC,p is Lorentz-invariant, so that Qej-bath is indeed a Lorentz-
invariant quantity. To learn whether particles from the diluted bath are prevented from
entering the wall, because of the interaction with the ejected techniquanta, we compare
the energy they exchange with them upon passing their layer with their initial energy in
the wall frame,9 Ei,w ' 3 γwpTnuc,

Qej-bath
Ei,w

' 8ζ(3)
9π α2

eff gTC
TnucD

γwp

Tnuc√
−tIR

. (7.14)

The novel physical picture we described in sections 4 and 7 is valid as long as
Qej-bath/Ei,w � 1. As seen in section 5, γwp initially grows linearly with the bubble
radius, γwp ' TnucD, until the retarding pressure possibly becomes effective. It will turn
out in section 9 that the runaway regime of linear growth is the one relevant for the phe-
nomenology we will discuss. In that regime, the condition Qej-bath/Ei,w � 1 translates into
Tnuc/

√
−tIR � 1.

9Had we chosen another frame, we would have had to include the wall velocity in the condition.
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IR cut-off. The quantity −tIR is the IR cutoff of the scattering, −tIR ≡ m2
V , with

mV some effective mass of the mediator responsible for the interactions that exchange
momentum. In the absence of mass scales, which is the case for example for the SM
photon and for the gluons, the effective mass mV is equal to the plasma mass of these
particles in the thermal bath. If the only bath was the diluted one, one would have
m2
V,therm ∼ αeff nTC,p/〈ETC,p〉 ∼ T 2

nuc (see e.g. [114]). However, the process of our interest
here happens in the much denser bath of ejected techniquanta, nej,p � nTC,p, so that we
indeed expect m2

V,therm � T 2
nuc, so that Qej-bath/Ei,w � 1 and our picture so far is valid.

More precisely, the screening mass for non-equilibrium systems scales as [115] (f(p) is the
non-equilibrium phase space distribution of the particles in the system)

m2
V,therm ' gTCαeff

∫
f(p)
|p|
∼ nej,p
〈Eej,p〉

∼ γwp
f/Tnuc

T 2
nuc � T 2

nuc , (7.15)

where we have used 〈Eej,p〉 ∼ γwpf and nej,p ∼ (D/Lej,p)nTC,p ∼ D2T 5
nuc ∼ γwp(D)2T 3

nuc.
Equations (7.14) and (7.15) teach us that, in the regions of parameter space where γwp �
f/Tnuc, the energy received by each particle in the diluted bath, from scatterings with
the ejected techniquanta, is much smaller than their energy in the wall frame Ei,w '
3 γwpTnuc.10 Since Ei,w was the crucial input quantity for our treatment in section 4, the
picture that emerged there is not affected by these scatterings.

Energy transferred to techniquanta ejected from other bubbles. Finally, before
ejected techniquanta can possibly enter another expanding bubble, they also have to pass
through the layer of the techniquanta ejected from that other bubble. To investigate this,
one can use the result derived above, eq. (7.13), with the specification that now D is the
maximal radius reached on average by expanding bubbles, because the shells of ejected
quarks and gluons meet just before the bubble walls do. We then find that the average
energy transferred is much smaller than the energy of an ejected techniquanta in the plasma
frame ' γwpf ,

Qej-ej
γwpf

' 8ζ(3)
3π α2

eff gTC
Tnuc
f

TnucD

γwp

Tnuc√
−tIR

� 1 . (7.18)

10One could be worried that in the outer shell of size Lej,p ∼ 1/f , the thermal mass mV,therm is much
smaller than its value in the densest region in x ' 0, explicited in eq. (7.15), such that Qej-bath

Ei,w
becomes

larger than 1. We can check that it is not the case by including the x-dependence of mV,therm, eq. (7.15),
in the integral in eq. (7.12)

Qej-bath, p =
∫ Lej,p

0
dx nej, p

8πα2
eff√

nej,p/〈Eej,p〉
, (7.16)

where nej,p is defined in eq. (7.5), Lej,p ∼ 1/f in eq. (7.7), D ∼ γwp/Tnuc in eq. (5.2), and Eej,p ∼ 〈Eej,p〉 ∼
γwpf . We compute the integral in eq. (7.16) and obtain

Qej-bath

Ei,w
'


8
√

2ζ(3)
9 α2

eff

√
gTC

f/Tnuc
γwp

� 1, if γwp & f/Tnuc

8
√

2ζ(3)
3 α2

eff

√
gTC

γwp
f/Tnuc

� 1, if γwp . f/Tnuc,
(7.17)

This confirms that the energy of incoming particles, Ei,w ' 3γwpTnuc, is not affected by the shell of
ejected quarks.
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Hence, for the purpose of determining the average energy of ejected quarks when they enter
another bubble, one can safely ignore the interactions between the two shells.

7.3 Ejected techniquanta enter other bubbles (and their pressure on them)

Ejected techniquanta are squeezed. In the plasma frame, all ejected techniquarks
are contained within a shell of length given by eq. (7.7) Lej,p ∼ 1/f , and most of them
lie within a length given by eq. (7.6) Leff

ej,p ∼ 1/(T 2
nucD) � 1/f . In the frame of the wall

of the bubble they are about to enter, these lengths are further shrunk, so that ejected
techniquarks are closer to each other than 1/f by several orders of magnitude. Therefore
we expect no phenomenon of string fragmentation when they enter other bubbles. So each
ejected particle, upon entering another bubble, forms a hadron with one or more of its
neighbours. This also implies there is no further ejection of other techniquanta. Each of
these hadrons carries an energy equal to that of the techniquanta that formed it, of order
γwpf in the plasma frame.

Contribution to the retarding pressure. This conversion of ejected techniquanta into
hadrons results in another source of pressure on the bubble walls, that acts for the relatively
short time during which the bubble wall swallows the layer of ejected techniquanta. In the
frame of the bubble wall that they are entering, the energy of each ejected quark or gluon
reads Eej,w2 ' 2γ2

wpf . We then proceed analogously to what done in section 5.1, and
compute

∆pejLO = Eej,w2 −
√
E2
ej,w2 −∆m2

in '
f

4 γ2
wp
, (7.19)

P ej
LO ' nej,w2 ∆pejLO '

ζ(3)
π2 gTC γwpT

3
nucf , (7.20)

where we have used gTC = gg + 3gq/4, ∆m2
in ' f2, nej,w2 ' 2γwpnej,p and, for simplicity,

the peak value nej,p ' 2 γ2
wpnTC,p of eq. (7.5). The population of techniquanta ejected from

other bubbles thus exert, on a given bubble wall, a pressure comparable to that exerted by
the techniquanta incoming from the bath at LO, cf. eq. (5.6). Therefore, the pressure from
ejected techniquanta does not alter the picture described so far — a fortiori — because it
is exerted only just before bubble walls collide and not throughout their entire expansion.

7.4 Ejected techniquanta heat the diluted SM bath

In section 7.2 we found that the scatterings between ejected techniquanta and the diluted
bath do not quantitatively change the picture of string fragmentation described in section 4.
These scatterings may however affect the properties of the particles, in the diluted bath,
that do not confine. These particles include all the SM ones that are not charged under
the new confining group, so that for simplicity we denote them as ‘SM’. By a derivation
analogous to the one that lead us to eq. (7.13), we find that the average energy they
exchange with the ejected quarks reads

Qej-SM '
8πα2

SM

3
DnTC,p√
−tIR

∼ α2
SM gTC

(
γwp

f/Tnuc

)1
2
f , (7.21)
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where we have used TnucD ' γwp and −tIR ∼ T 3
nucγwp/f , cf. eq. (7.15). We have denoted

by αSM an effective coupling between SM particles and the techniquanta, which is model-
dependent.

Now assume the techniquarks carry SM charges, e.g. as expected in composite Higgs
models. Then, in the wall frame, the fractional change of energy is of course similar to that
derived in eq. (7.14) for the incoming techniquanta. However the incoming techniquanta
next undergo string fragmentation, and eq. (7.14) does not affect that energy balance for
γwp � f/Tnuc. In other words, string fragmentation renders this energy transfer irrelevant
for the techniquanta, while the SM particles neutral under the confining group just proceed
undisturbed so they keep track of it. In particular, Qej-SM, is much larger than the latter
energy in the plasma frame ∼ Tnuc, and may even be slightly larger than the confinement
scale f .11

This need not be the case, however, as the new techniquanta may be very weakly
interacting with the SM. As they cannot interact too weakly, otherwise our assumption of
instantaneous reheating would not hold, for simplicity we ignore this case in what follows
and we assume that some techniquarks carry SM charges.

8 Deep inelastic scattering in the early universe

The physical picture described so far results in a universe that, before (p)reheating from
bubble wall collisions, contains three populations of particles.

• Population A. Arises from hadronisation following string fragmentation. It consists
of N string

ψ /2 hadrons per quark or gluon in the initial bath, each on average with
energy

EA '
γwpf

N string
ψ (ECM)

, (8.1)

in the plasma frame, and of roughly the same number of hadrons with much smaller
energy. (The latter can be thought as coming from the half of the string closer to
the center of the bubble wall.) The physics resulting in this population is described
in section 4, see eq. (4.17) for EA and eq. (4.14) for N string

ψ (ECM =
√

3 γwp Tnuc f).

• Population B. Comes from the hadronisation of the ejected techniquanta. This
population consists in ∼ one hadron per quark or gluon in the initial bath, each with
energy

EB ' γwpf . (8.2)

So this population carries an energy of the same order of that of population A. Its
physics is described in section 7, the energy EB is that of the initial quark or gluon,
eq. (4.18).

11As already anticipated, in the regime of interest for DM phenomenology we will find that bubble walls
run away, so that γmax

wp is (much) smaller than ∼ 10−3(f/Tnuc)3, see eq. (5.1). Note also that, for eq. (7.21)
only, gTC = 3gq/4, i.e. the gluon contribution to heating the SM is negligible because they cannot carry SM
charge.
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• Population C. Consists of the particles that do not feel the confinement force,
that we denote ‘SM’ for simplicity, each with a model-dependent energy given by
eq. (7.21), and whose total energy is much smaller than that in populations A and B.

The direction of motion of all these populations points, on average, out of the centers of
bubble nucleation.

Hadrons from both populations A and B have large enough energies, in the plasma
frame, that showers of the new confining sector are induced when they (or their decay
products) scatter with the other particles in the universe and/or among themselves. These
deep inelastic scatterings (DIS):

• Increase the number density of composite states.

• Decrease the momentum of each of these states with respect to the initial one |~pψ|.

Hence, such effects need to be taken into account to find the yield of any long-lived hadron.
The evolution of our physical system would require solving Boltzmann equations for

the creation and dynamics of populations A, B and C in a universe in which preheating is
occurring, and of the interactions of populations A, B and C among themselves and with
the preheated particles produced from bubble wall collisions. While certainly interesting,
such a refined treatment goes beyond the purpose of this paper. In this section, we aim
rather at a simplified yet physical treatment, in order to obtain an order-of-magnitude
prediction for the yield of long-lived hadrons.

8.1 Scatterings before (p)reheating

We begin by considering the interactions among populations A, B and C.

Number densities of scatterers. Let us define LX , with X = A,B,C, the effective
thickness of the shells containing populations A, B, and C respectively. For example, LB,p =
Leff
ej,p of eq. (7.6). We know that population A(B) consists on average of N string

ψ /2 hadrons
(one hadron) per each quark or gluon in the initial diluted bath, and that population C
is the initial diluted SM population. By conservation of the number of particles, we then
obtain the number densities

nA '
Kstring

2 × D

3LA
nTC, nB '

D

3LB
nTC, nC '

D

3LC
nSM, (8.3)

where D is the average radius of a bubble at collision and we have used LX � D.

Energy transferred between scatterers. We now determine the average momentum,
transferred to a particle from population X, upon going across a shell of population Y . In
order to do so, we use our result eq. (7.11) for the rate of transferred energy and compute

QY→X ' ΓY→XLY ' nYLY
8πα2

X-Y√
−tIR

' 8ζ(3)
3π α2

X-YgY
Tnuc√
−tIR

γwpTnuc , (8.4)

where αX-Y is the effective interaction strength of the scatterings of interest, gY the number
of degrees of freedom in density of population Y (where we include a factor of N string

ψ /2
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for Y = A), and we have used the relation TnucD = γwp valid in the runaway regime. We
conclude that:

• Populations A and B. The energies of the hadrons of population A and B in the
plasma frame, respectively γwpf/N

string
ψ and γwpf , are both much larger than the

energy they can exchange with any of the other baths among A,B,C, by a factor
that scales parametrically as f/Tnuc or larger (because for all populations we have
−tIR ∼ n/〈E〉 > T 2

nuc, see the discussion in section 7.2). Therefore these elastic
scatterings are not effective in reducing the energy of the hadrons of either population
A or population B.

• Population C. On the contrary, QA,B→C can be of the same order of the energy of
each particle in population C, eq. (7.21), which therefore are significantly slowed down
by these interactions. Importantly for our treatment, this does not alter the fact that
population C was energetically subdominant with respect to populations A and B.

No significant DIS between populations A, B and C. Finally, we determine
whether any of the scatterings among particles in populations A,B,C could result in signifi-
cant hadron production, via deep inelastic scattering. A single scattering event potentially
results in a shower of the new confining sector if the exchanged momentum is larger than
the confinement scale, t2 > f2. This condition is allowed by kinematics, because the center-
of-mass energy of the scatterings between any of the populations above is much larger than
f . A significant amount of DIS happens if the DIS scattering rate ΓDIS

Y→X of a particle from
population X, upon going across a shell of population Y , is much larger than the inverse
of the length of the shell Y . We then compute

ΓDIS
Y→XLY ' nYσX-Yv LY '

4ζ(3)
3π α2

X-YgY
γwp

(f/Tnuc)2 , (8.5)

where again we have used the runaway relation TnucD = γwp and, for definiteness, we have
assumed the scattering cross section has the form of eq. (7.10). Therefore, no significant
DIS happens in the regions where γwp � (f/Tnuc)2. This condition will turn out to be
always satisfied in the parameter space of our interest, so we can ignore the DIS among
populations A, B and C in what follows.

8.2 Scatterings with the (p)reheated bath

By preheating, we intend the stage between the time when bubble walls collide and start
to produce particles (e.g. from the resulting profile of the condensate), and the reheating
time when these particles have thermalised into a bath. We now discuss the scatterings of
populations A and B with the particles produced at preheating, that we have assumed to
be efficient. The contribution of population C to the final yield of hadrons is subdominant
with respect to the one of populations A and B because, as seen in sections 7.4 and 8.1,
the total energy in population C is much smaller than that in populations A and B.
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Energy of the (p)reheated bath. The preheated particles are produced with energies,
in the plasma frame, of the order of the mass of the scalar condensate,12

〈Eprh〉 ' mχ < f . (8.6)

Their total energy scales as
Etot
prh ∼ f4V , (8.7)

with V the volume of a large enough region of the universe. For comparison, the total
energy in populations A and B scales as

Etot
A,B ∼ γwpfT 3

nucV , (8.8)

which is much smaller than f4V because γwp � (f/Tnuc)3, eq. (5.1). So the preheated
particles can act as a thermal bath for all the other populations A, B and C, because the
energy of A, B, and C is subdominant in the energy budget of the universe.

Inelastic versus elastic scattering. Scatterings of hadrons (or their decay products)
with the preheated bath will, therefore, eventually slow down and thermalise populations
A and B. However, these scatterings can also exchange energies much larger than f , thus
inducing deep inelastic scatterings. Indeed their center-of-mass energy squared reads

sA,B ' 2mχEA,B , (8.9)

where EA ' γwpf/N
string
ψ (ECM) and EB ' γwpf . Eq. (8.9) is the result of our simplifying

assumption to neglect masses and to average to zero scattering angles with particles in a
bath: define pE = E(1, Ê), pprh = mχ(1, m̂), then s = (pE + pprh)2 ' 2Emχ(1− Ê · m̂) '
2Emχ. We now determine if those center of mass energies are entirely available for particle
production via DIS, or if instead they are reduced by several low-momentum-exchange
interactions. In order to do so, we evaluate the rate of energy loss of a particle from
population A or B, Γloss

A,B, as the ratio between the rate of energy it exchanges with the
preheated bath, that we evaluate analogously to eq. (7.11), and its initial energy EA,B. We
then compare this quantity with the rate for a deep inelastic scattering to happen with the
full energy available s1/2

A,B,

Γloss
A,B

ΓDIS
A,B
' nprh8πα2

eff/(EA,B
√
−tIR)

nprh4πα2
eff/sA,B

' mχ√
−tIR

∼ 1
√
cvac

m2
χ

f2 . (8.10)

In the last equality, we have again used the screening mass for non-equilibrium systems [115]

− tIR ∼
nprh
〈Eprh〉

∼ cvac
f4

m2
χ

, (8.11)

12In the picture we have in mind, non-perturbative effects such as Bose enhancement or parametric
resonance (see e.g. [116]) are not relevant: the first because the SM particles are interacting, thus they
exchange momentum and do not occupy the same phase space cells; the second because the variation of
their masses from the dilaton’s oscillations is smaller than their mass at the minimum. Note that, unlike
what occurs in many inflationary scenarios, we expect only a small hierarchy TRH . 〈Eprh〉.
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where we have used that by conservation of energy nprh ∼ ρRH/〈Eprh〉, and where we have
expressed the energy density of the reheated bath ρRH using the results of section 3.2.

We conclude that, if (
mχ

f

)2
� c1/2

vac , (8.12)

the full center-of-mass energies sA,B are available for deep inelastic scattering, i.e.
populations A and B do not lose a significant amount of their energy via interactions
with the preheated bath. For simplicity, in what follows we assume this model-dependent
property to hold.

8.3 Enhancement of hadron abundance via DIS

The picture: a cascade of DIS. The number of composite states arising from a hard
scattering depends on how the strings fragment, so on the same physics that set the abun-
dance of the composite states when the techniquanta cross the bubble walls, discussed in
section 4.4. Each scattering, depending on its center-of-mass energy, produces a number
N string
ψ of hadrons ψ, that we model in the same was as in eq. (4.14). Given the large

initial energies sA,B, the daughter hadrons typically still have enough energy to themselves
induce further deep inelastic scatterings with the particles in the preheated bath, and hence
additional hadron production. Analogously, SM particles produced in such DIS typically
have large enough energies to also initiate showers of the new confining force with their
subsequent scatterings. This process iterates until the average energy of scatterings drops
below the confinement scale.

Number of hadrons produced per scattering. For reasons given in section 4.4,
together with simplicity, we assume that the available energy

√
s at each scattering splits

equally among all the outcoming particles. We then write the average of this number as

NDIS(s) = N string
ψ (

√
s/2) , (8.13)

where the factor of 2 in the argument of N string
ψ arises because eq. (4.14), which defines

N string
ψ , assumes that

√
s is the center of mass energy of the scattering of two particles

neutral under the new confining force. If a hadron is included among the two scatterers,
then QCD studies find that the final number of hadrons can be obtained by just halving
the energy in the center of mass frame [69], also see footnote 5.13

Energies of produced hadrons. Explicitly, we assume E′com =
√
s/NDIS, where E′com

is the energy of any outgoing particle (SM and/or composite) in the center-of-mass frame
of the scattering. To iterate to many scatterings, we write E′com in the plasma frame as

13Note that if a hadron instead decays to two SM particles before it scatters, which is model-dependent,
then

√
s/2 is again the good argument for the function N string

ψ , because then one has two particles each
with half the initial energy, but both neutral under the new confining force. In this case, however, eq. (8.13)
becomes NDIS(s) = 2N string

ψ (
√
s/2). When iterating the treatment to many scatterings, we find that this

extra factor of 2 does not impact the final abundance of hadrons, which can be understood by thinking
that the same initial energy is spread faster to zero.
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E′ = γ′E′com(1− v̂′ · v̂), where γ′ and v̂′ are the associated Lorentz boost and its direction,
and v̂ is the direction of motion of the outgoing particle in the center-of-mass frame of the
scattering. By averaging v̂′ · v̂ to zero for simplicity, we obtain

E′ = γ′E′com . (8.14)

We then determine γ′ by observing that the energy of each particle, in the center-of-mass
frame of the scattering, is both Ecom =

√
s/2 and Ecom = γ′Eprh(1 + v̂′ · Êcom), where Eprh

is the energy in the plasma frame of the particles in the preheated bath. By averaging
v̂′ · Êcom to zero for simplicity, we obtain the Lorentz boost

γ′ '
√
s

2〈Eprh〉
. (8.15)

Using eq. (8.9) for s we finally obtain

E′A,B '
1

NDIS
EA,B . (8.16)

(If we did not average over angles, we would have obtained E′A,B = (EA,B/N
DIS)(1 − v̂′ ·

v̂)(1 − Ê · m̂)/(1 + v̂′ · Êcom)). So, after a hard scattering the energy of each outgoing
particle in the plasma frame is roughly the initial energy divided by a factor NDIS. The
subsequent s is then reduced by the same factor, ensuring a convergence of NDIS(s) to unity,
via eq. (4.14), after only a few iterations. This also teaches us that the average energy of
the particles, produced this way, quickly decreases to values lower than about m∗.

Number of hadrons produced by a chain of DIS. Let us now estimate the yield of
final hadrons by following the above arguments. Assuming interactions are fast enough,
also those following the first one happen with preheated particles of the same average
energy 〈Eprh〉. Now define the number of states (both composite and not) Nk produced at
the kth interaction. This can be expressed as

Nk(s) ' NDIS
(

s

Nk−1 ×Nk−2 × · · · ×N1

)
, (8.17)

where we remind the reader that the function NDIS is obtained from eqs. (4.13) and (8.13).
Starting from a single resonance produced from the fragmentation of strings between quanta
inside the bubble, after this chain of scattering processes one obtains a total number of
resonances given by the product ∏kNk(s). We find numerically that this product can be
expressed as

KDIS
A,B '

sA,B
m2
∗
. (8.18)

In other words, the iterative process we described converts the initial available energy into
the rest mass of hadrons m∗. Since our aim here is not to achieve a more precise treatment,
we refrain from refining the assumption that the momenta are distributed evenly among the
particles coming out of a scattering process. In the same spirit of building a physically-clear
picture without drowning in model-dependent details, we do not cover here the possibility
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that every scattering produces, in addition to the composite states, a comparable or larger
amount of SM particles. (That would result in NDIS > N string

ψ and in a faster degrowth of
the available scattering energy to m∗ at each step.) In addition to simplicity, this can be
justified by observing that, in the limit of large number of degrees of freedom in the dark
sector, our assumption that they carry SM charges will make their production dominant
with respect to the one of SM particles.

Additional comments. We conclude our derivations with two comments concerning its
validity.

• If the full center-of-mass energies are not available for DIS, i.e. if eq. (8.12) does
not hold, then one could use the same result KDIS

A,B of eq. (8.18), upon substituting
sA,B = 2EA,Bmχ with the largest energy for which Γloss

A,B � ΓDIS
A,B, that can be derived

via eq. (8.10).

• We have ignored the production of heavy particles from the collisions of bubble
walls [36, 117–119]. This is justified as it has been shown that it only occurs when the
minima of the potential are nearly degenerate and seperated by a sizable barrier [120,
121], which is not the case for the close-to-conformal potentials we have in mind.
Hence we expect only particles lighter than the scalar condensate to be produced
during reheating following the wall collision.

8.4 DIS summary

The yield of hadrons, resulting from the processes of deep inelastic scattering described
above, receives contributions from:

• Population A. That is, the hadrons produced from string fragmentation as described
in section 4. Their contribution reads

Y SC+string+DIS
A ' 1

2K
DIS
A N string

ψ (ECM)DSCY eq
TC '

γwpfmχ

m2
∗

DSCY eq
TC , (8.19)

where we have used KDIS
A = sA/m

2
∗, cf. eq. (8.18), with sA ' 2mχEA '

2mχγwpf/N
string
ψ (ECM), cf. eqs. (8.9) and (8.1). Note that the above expression

captures also the regime where each string fragmentation produces on average one
hadron, because the energy of that single hadron is roughly γwpf/2, see the related
discussion in section 4.5.

• Population B. That is, the hadrons produced out of the techniquanta ejected from
the bubbles, described in section 7. Their contribution reads

Y SC+string+DIS
B ' KDIS

B DSCY eq
TC ' 2 γwpfmχ

m2
∗

DSCY eq
TC , (8.20)

where we have used KDIS
B = sB/m

2
∗, cf. eq. (8.18), with sB ' 2mχEB ' 2mχγwpf , cf.

eqs. (8.9) and (8.2).

– 35 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
8

Thus, the combined contribution to the total hadron yield is given by

Y SC+string+DIS ' KDISDSC Y eq
TC ' 3 γwp f mχ

m2
∗

DSC Y eq
TC , (8.21)

where we have defined
KDIS = 1

2K
DIS
A N string

ψ (ECM) +KDIS
B . (8.22)

Note finally that, in the regime of runaway bubble-walls, one obtains the parametric
scaling Y SC+string+DIS ∝ (Tnuc/f)3γwp. Which is much larger than the simple supercooling
dilution, ∼ (Tnuc/f)3, in the regions of parameter space where our analysis holds, namely
for γwp > f/Tnuc.

9 Supercooled composite dark matter

9.1 Initial condition for thermal evolution

Finally, all unstable resonances decay either to SM or to the long-lived or stable hadrons,
which we take to form DM. To obtain the yield of any such hadron i at the onset of
reheating, one should use the expression

Y SC+string+DIS
i = BRiK

DISDSCY eq
TC , (9.1)

where KDIS, DSC and Yeq
TC are defined, respectively, in eqs. (8.22), (3.9) and (3.7). BRi

is a pseudo-branching ratio, of the energy available to the confining techniquanta, into ψi
particles. Estimates of BRi for the cases where ψi is a meson and a baryon are given in
appendix C, which show a broad range of underlying-model dependent values are possible,
albeit with a large uncertainty. For example, in a QCD-like theory where ψi is a baryon
with mass ∼ 4πf and the pions have mass ∼ f , one obtains values BRi ∼ 10−6, while
larger values BRi are obtained for baryon-pion mass rations closer to one, or if ψi is a
meson. Hence, we will take BRi to be a free parameter.

For completeness, the supercooling plus string and supercooling yields read

Y SC+string
i = BRiK

stringDSCY eq
TC , (9.2)

Y SC
i = BRiD

SC
3
4gq

gTC
Y eq
TC , (9.3)

where Kstring is defined in eq. (4.15). We have included a factor 3
4gq/gTC in Y SC

i to account
for the fact that, in the case of no string fragmentation nor DIS, gluons do not contribute
to the final abundance of heavy composite states of quarks. It would be absent if one was
interested in light composite states of quarks. The yield of the various contributions is
shown in figure 8.

It will turn out that the measured DM abundance is achieved in the regime of runaway
bubble walls. In that regime, the resulting expression for the DM yield has a simple
parametric form that eventually results in the DM abundance being independent of the DM
mass, if it is to match onto observation YDM ' 0.43 eV/mDM [122], which we find convenient
to report here. By using eqs. (3.7), (3.9), (5.3), and (8.21), with gRf = gSM = 106.75, we find

Y SC+string+DIS
i,runaway ' 0.43 eV

m∗
× BRi

10−6
gTC
120

(0.01
cvac

)5
4 mχ/f

0.2
4π
g∗

(
Tnuc/f

10−5.7

)4
. (9.4)
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Figure 8. Left: the yields following supercooling eq. (9.3), string fragmentation eq. (9.2) and
deep inelastic scattering eq. (9.1). The yield matching the observed relic abundance of DM for
mDM = 4π f is also shown. The dashed lines show the effect of varying γwp by an order of magnitude
in either direction around eq. (5.1). This illustrates the sensitivity of the yield to our determination
of γwp. Right: ratios of the same yields. The peak corresponds to the maximum γwp.

9.2 Thermal contribution

To complete our discussion, we must still determine the effects on the yield of any DM
interactions with the thermal bath after supercooling, DIS, and reheating. The importance
of thermal effects following reheating was already pointed out in [20] (therein dubbed the
subthermal contribution). Following the phase transition and particle production through
DIS, the SM bath and the DM have returned to kinetic equilibrium. The scattering energy
is now insufficient to break the resonances, but these may still annihilate into SM particles
or be produced in the inverse process. Thus, just after the reheating, the DM abundance
evolves according to the well known Boltzmann equation [123]

dYDM

dx
= −

√
8π2gSM

45
MplmDM 〈σvrel〉

x2

(
Y 2

DM − Y
eq 2

DM

)
, (9.5)

where we use x ≡ mDM/T as the time variable, and Mpl is the reduced Planck mass. For
simplicity we only consider velocity independent cross sections here. As an intitial condi-
tion we take the relic abundance at the reheat temperature, YDM(TRH) = Y SC+string+DIS

DM ,
estimated following string fragmentation and DIS enhancement in eq. (8.21). For our plots
we solve the Boltzmann equation numerically. If the cross section and reheating tempera-
tures are sufficiently large the system will be driven back into equilibrium. The relic density
is then largely set by freezeout dymanics, albeit with somewhat different initial conditions.
On the other hand, if the cross section and reheat temperatures are small enough, the
relic density is set by dilution, string fragmentation and DIS, with only negligible thermal
corrections following reheating. Using the dilution mechanism of the PT, of course, we
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Figure 9. Solid lines: supercooling Tnuc/f and DM mass mDM required to obtain the observed DM
abundance. The parameters chosen imply a reheating temperature TRH ' 0.13 f , see section 3.2.
All lines include the thermal contribution discussed in section 9.2. The line with initial condition
Y SC+string+DIS
i of eq. (9.1) corresponds to the yellow contour. For comparison, we show in green

(blue) the contour that one would obtain by skipping directly from the supercooling (supercooling
plus string fragmentation) step to the thermal corrections, respectively eqs. (9.3) and (9.2). All
contours converge at some mDM where thermal effects following reheating become dominant, of the
order of mDM ≈ 100 TeV because we fixed 〈σvrel〉 = 4π/m2

DM. Below this mass, the relic density
is necessarily suppressed compared to the observed DM density, due to efficient DM annihilation
after reheating. In the purple region 3 γwp Tnuc . f the quarks are reflected by the first wall they
encounter, but may enter the bubbles in following stages of their evolution, and the DM abundance
lines ignore possible modifications arising from this ‘ping-pong’ effect. They also ignore that, for
values of γwp only slightly larger than f/Tnuc and depending on other model-dependent parameters,
the energetics of our treatment may be more complicated, see eqs. (7.14) and (7.15). The dashed
gray line delimits the area Tnuc < O(100) MeV where the supercooled phase transition could happen
because of QCD dynamics. The dashed light blue line indicates the regimes where bubble walls run
away, cf. eq. (5.10). The dashed purple line indicates the regime where γwp < (f/Tnuc)2, and the
fact it lies above the horizontal part of the DIS line confirms that our treatment has been consistent
when ignoring the DIS of eq. (8.5).

can avoid the usual unitarity constraint on the maximum thermal relic DM mass [46] (see
e.g. [124, 125] for recent appraisals).

9.3 Dark matter relic abundance

We now combine all our results together and determine the amount of supercooling required
to match the observed relic abundance YDM ' 0.43 eV/mDM. Examples are shown in figure 9
for some representative choices of the parameters. From these figures we can draw a number
of conclusions.
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i) If we assume 〈σvrel〉 ∝ 1/m2
DM, thermal effects will necessarily dominate if the DM

is light enough. This occurs because TRH cannot realistically be arbitrarily sup-
pressed below f , for sensible choices of gRi and gRf . This regime corresponds to
the point in which the contours turn vertical in figure 9. At which value of mDM

this occurs depends on the precise choice for 〈σvrel〉. For definiteness, in figure 9 we
choose 〈σvrel〉 = 4π/m2

DM as typical of baryon scatterings in a strongly coupled sector.
Thermal effects can of course be further suppressed if we depart from the efficient
reheating assumption made here [20].

ii) String fragmentation and DIS lead to large corrections to the composite DM relic
density, compared to the naive supercooling dilution. This implies a mismatch be-
tween the relic abundances of primordial elementary and composite relics alluded to
before. Whether the composite or elementary relic would have the greater abundance
depends on the details of confinement (for elementary relics BRi = 1). If the com-
posite relic is say, a light meson which is produced abundantly, the multiplicative
DIS process can be highly efficient in populating these states following the PT. This
implies we require much more supercooling to match onto the observed DM relic
abundance. On the other hand, if the composite relic is some heavy state, perhaps a
baryon, it could be produced in a highly suppressed rate both in string fragmentation
and DIS. In this latter case, the required amount of supercooling to match onto the
DM relic density is also reduced. The two cases are illustrated with two different
assumptions for the branching ratios in figure 9.14

iii) In some cases, we find Tnuc . 100MeV, as delineated in figure 9. Thus QCD effects
could assist in completing the PT [20, 37, 127, 128]. On the other hand, if QCD effects
help the transition to occur, they can also suppress the eventual gravitational wave
signature [91] (simply because the QCD effects increase the tunneling probability
and thus will act to shorten the timescale of the PT). The details will depend on the
physics entering the effective potential of the scalar χ and need to be studied in a
model dependent way.

Together with the gravitational wave signal from the PT, there may also be model
dependent collider, direct, and indirect detection signatures associated with the DM from
the strongly coupled sector. We will investigate these further, together with their interplay
with the novel string fragmentation and DIS effect, in a concrete realisation of such a
confining sector in a companion paper [23].

14We checked that the DIS line is unaffected if we use the treatment of the NLO pressure of [92], instead
of the one of [72] that we have employed in this paper, cf. section 5.2 and appendix B. On the other hand,
the run-away wall dashed line, and hence the string fragmentation line, could be affected by this choice.
For simplicity as well as in light of the criticism of [92] appeared in [93, 126], we employed the results
of [72] in this paper.
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10 Discussion and outlook

The possible existence of a new confining sector of Nature is motivated by several in-
dependent problems of the Standard Model of particle physics and by cosmology. This
encourages the identification of predictions of confining sectors, that are independent of
the specific problem they solve. One such prediction is the possibility that the finite
temperature phase transition in the early universe, between the deconfined and confined
phase, is supercooled. This possibility has received a lot of attention in recent years, see
e.g. [20, 27–31, 37, 75, 91, 128].

In this paper, we have pointed out and modelled a novel dynamical picture taking place
in every supercooled confining phase transition, that (to our knowledge) had been missed
in the literature. This novel picture stems from the observation that, when fundamental
techniquanta of the confining sector are swept into expanding bubbles of the new confining
phase, the distance between them is large with respect to the confinement scale. There-
fore the energy of the fluxtubes connecting techniquanta is so large that string breaking
produces many hadrons per fluxtube, with large momenta in the plasma (CMB) frame, in
a sense analogously to QCD hadrons produced in electron-positron collisions at colliders.
These hadrons and their decay products subsequently undergo scatterings with other par-
ticles in the universe, with center-of-mass energies much larger than both the confinement
scale and the temperature that the universe reaches after reheating. The dynamics just
described is partly pictured in figures 2 and 3.

The processes of string fragmentation and ‘deep inelastic scatterings in the sky’, syn-
thetised above, have a plethora of implications. A key quantity to study them is the
pressure on the bubble walls induced by this novel dynamics, which we have determined in
section 5, see eq. (5.1) and figure 5 for the resulting bubble-wall velocities. An interesting
aspect of our findings is that the so-called ‘leading-order’ pressure is proportional to the
boost factor of the bubble wall, unlike in the case of non-confining supercooled PTs [71, 72].

We then quantified the values of supercooling below which one recovers the ‘standard
phase transition’, where confinement happens between nearest charges. By relying on the
modelling we proposed in section 6 we found, interestingly, that the PT does not proceed
in the ‘standard’ way already for minor supercooling, i.e. if bubbles are nucleated and
expand just after vacuum energy starts to dominate. Our proposed dynamics should not
only be employed in the large supercooling region, but also in the minor supercooling one
depending on the value of another model-dependent parameter, see figure 6. The regimes
in between these regions (one being the ‘ping-pong’ regime of section 5.3) will be studied
in future work, to not charge this paper with too much content.

Next, we have focussed on the implications of our dynamical picture for the abundance
of long-lived or stable particles that are composite states of the new confining sector. They
are summarised in the Synopsis, section 2, and a quantitatively accurate expression of
the final yield of a given composite particle is given in eq. (9.4), for concreteness in the
regime where bubble walls run away. Compared to the simple dilution of relics induced
by supercooling of non-confinement transitions, these processes enhance their abundance
by parametrically large factors. Therefore they have to be taken into account whenever a
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property of the universe, e.g. the DM and/or the baryon abundance, depends on the final
yield of hadrons. As an example, their dramatic impact on the abundance of supercooled
composite DM can be seen in figure 9.

Concerning DM in particular, this study constitutes a novel production mechanism
of DM with mass beyond the unitarity bound [46]. It would be interesting and timely
to study its experimental signals, given the new wave of telescopes that is starting to
take data of high-energy neutrinos and gamma rays (e.g. KM3NeT, LHAASO, CTA) and
given their potential in testing heavy DM, e.g. see [129]. One such study will appear in a
forthcoming publication [23].

During the course of carrying out this study we have made a number of simplifications,
for the purpose of obtaining a general and clear enough picture of the physics involved.
For example, the various populations of particles created by this novel dynamics, such as
the ejected techniquanta and the hadrons that follow the bubble walls, could be better
described by Boltzmann equations, by the use of simulations etc., rather than with our
simple treatment that focused on their average properties.

Finally, this dynamics opens broader and exciting avenues of investigation, that we
think deserve exploration. For example, it would be interesting to study its interplay
with recent interesting ideas regarding phase transitions [11, 16, 17, 30, 32, 36, 120, 130–
134], or its impact on the production of gravitational waves in supercooled confining phase
transitions. As for the latter, our study of the bubble wall Lorentz factor in section 5
constitutes a necessary first step.
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A Wall profile of the expanding bubbles

The light-dilaton potential. In this section we suppose that confinement occurs from
the condensation of a nearly-conformal strongly-interacting sector, when an approximate
scale-invariance gets spontaneously broken. If the source of explicit breaking is small, the
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Figure 10. Left: light-dilaton potential with temperature corrections in eq. (A.9). Right: zoom on
the thermal barrier. The tunneling point χ∗, in the case where the friction term in the Euclidean
equation of motion is neglected, is also shown.

spontaneous breaking of scale invariance generates a pseudo Nambu-Goldstone boson, the
dilaton which we parameterize as [135]

χ(x) = fe
σ(x)
f , (A.1)

where f is the confining scale and where σ(x) transforms non-linearly σ(x)→ σ(λx)+log λ
under the scale transformation x→ λx. Its potential is given by [27]

V T=0
χ (χ) = cχ g

2
χ χ

4
[
1− 1

1 + γε/4

(
χ

f

)γε]
, (A.2)

with
γε ' −

1
4

m2
χ

cχ g2
χ f

2 < 1, (A.3)

where mχ is the dilaton mass, and cχ is a constant of order 1, which we fix to cχ = 1. The
dilaton coupling constant gχ is chosen to reproduce the glueball normalization

gχ '
4π
N
, (A.4)

with N being the rank of the confining gauge group. The validity of the EFT relies on the
smallness of the parameter |γε| � 1 (here taken negative) which controls the size of the
explicit breaking of scale invariance, and thus of the dilaton mass.

Note that in the limit where |γε| � 1, the dilaton potential at zero-temperature reduces
to the Coleman-Weinberg potential [136], i.e.

V T=0
χ (χ) |γε|�1= −γε cχ g2

χ χ
4 log

(
χ

f

)
. (A.5)
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Thermal corrections. To model thermal effects, we follow [17, 27], and consider the
finite-temperature corrections generated by the particles charged under the confining force
(the CFT bosons)

VT (χ, T ) =
∑

i∈CFT bosons

nT 4

2π2 JB

(
m2
i

T 2

)
, with mi ' gχ χ. (A.6)

The total number of CFT bosons n is fixed to15

∑
CFT bosons

n = 45N2

4 ≡ g̃g, (A.7)

in order to recover the free energy of N = 4 SU(N) large N super-YM dual to an AdS-
Schwarzschild space-time [16]

VT (0, T ) ' −bN2 T 4, with b = π2

8 . (A.8)

By writing eq. (A.8), we have neglected the contribution from the fermions present in the
plasma. For simplicity, we suppose that the dilaton degree of freedom χ still exists in the
deconfined phase, such that the total potential for the dilaton is

Vtot(χ, T ) = Vχ(χ) + VT (χ, T ), (A.9)

where Vχ(χ) and VT (χ, T ) are given by eq. (A.2) and eq. (A.6). We plot the potential
in figure 10. The supercooling stage starts when the energy density becomes vacuum-
dominated

π2

30gRiT
4
start ' cvacf

4 =⇒ Tstart '
(30cvac
gRiπ2

)1/4
f, (A.10)

with cvac = m2
σ

16f2 and gRi = gSM + gTC where (see eq. (A.7))

gTC = gq + g̃g '
45N2

4 . (A.11)

Space-like region: the bounce profile. We solve the tunneling temperature by solving
the equation

Γ(Tnuc) ' H(Tnuc)4. (A.12)

with [137, 138]

Γ(Tnuc) = R−4
0

(
S4
2π

)2
exp (−S4) , (A.13)

15The effective number of gluons in the deconfined phase 45N2/4 being different from 2(N2 − 1) is
a property valid at thermal equilibrium. It results from the peculiar strongly-coupled dynamics of the
CFT. However, due to the large wall Lorentz factor, the CFT gas entering the wall can be considered as
collisionless, cf. section 4.1. This is why in the main text we consider the number of gluons entering the
wall as gg = 2(N2 − 1).
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where R0 ∼ 1/Tnuc is the bubble radius at nucleation and S4 is the O4-bounce action

S4 = 2π2
∫
dr r3

[1
2φ
′(r)2 + V (φ(r))

]
, (A.14)

which we compute from solving the Euclidean equation of motion (d = 4)

φ′′(s) + d− 1
s

φ′(s) = dV

dφ
, (A.15)

with boundary conditions

φ′(0) = 0, and lim
r→∞

φ(r) = 0. (A.16)

s =
√
~r2 + t2E =

√
~r2 − t2 is the space-like light-cone coordinate and tE = i t is the Eu-

clidean time.
We plot the bounce profile in the left-hand panel of figure 11 for given parameters

relevant for the study. The value at the center of the bubble — the tunneling point χ∗ —
can be estimated analytically by energy conservation between χ = χ∗ and the false vacuum
in χ = 0 if we neglect the friction term in the equation of motion in eq. (A.15),

Vtot(χ∗) ' Vtot(0), → χ∗
f
' 1
√

2 log1/4(f/χ∗)
T

Tc
. (A.17)

Here (coincidence numeric) Tc is the critical temperature, defined when the two minima of
the free energy are equal

cvacf
4 + VT (f, Tc)− VT (0, Tc) ≡ 0, (A.18)

Note that for confining phase transition with mi(f) & f , the quantity VT (f, Tc) in
eq. (A.18) vanishes16 and Tc is related to the temperature at which supercooling starts
Tstart in eq. (A.10) through

Tc ' 31/4
(
gRi
gTC

)1/4
Tstart. (A.20)

gRi is the total number of relativistic d.o.f in the symmetric phase while gTC only counts
those which are involved in the phase transition (gTC < gRi). In the scenario studied in
this appendix, upon assuming gRi ' gTC with gTC given in eq. (A.11), we get

Tc =
(
m2
χ f

2

16 bN2

)1/4

=
(
|γε| cχ g2

χ

4 bN2

)1/4

f. (A.21)

The tunneling point χ∗ in absence of friction is shown in figure 10, while the tunneling
point from numerically solving the bounce equation is visible in figure 11. Plugging the
numbers chosen for making the plots, we find χ∗/f ' 6.0 × 10−6 for the analytical value
and χ∗/f ' 1.6 × 10−4 for the numerical value. This difference was expected since the
analytical estimate neglects the friction term in eq. (A.15).

16We recall that the thermal functions in eq. (A.6) verify the property limx→∞ JB/F(x) = 0. From using
eq. (A.10), we observe that

4.0 mi(f)
f

( 0.1
cvac

)1/4 (gRi

80

)1/4
� 1 =⇒ mi(f)/Tstart � 1. (A.19)

The connection between Tc and Tstart in eq. (A.20) applies for all phase transitions satisfying eq. (A.19).
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Figure 11. Left: bounce profile at nucleation. It interpolates between the false vacuum 〈χ〉 = 0
outside the bubble and the release point 〈χ〉∗ at the center of the bubble. Right: evolution of the
scalar field after tunneling. First, the scalar field rolls along the shallow part of the nearly-conformal
potential and then realized oscillations with period ∼ f−1 with a damping time . T−1

nuc � f−1.
Taking into account the decay of the scalar field would reduce the damping time after the first
oscillation. The full bubble wall profile can be obtained after connecting the two figures through
the two black circles.

Time-like region: rolling and damped oscillations. As soon as the bubble expands,
the scalar field starts to roll toward the true vacuum 〈χ〉 = f and realize damped oscilla-
tions. The field dynamic is captured by the Klein-Gordon equation for an inhomogeneous
field

�φ− ∂V

∂φ
= 0. (A.22)

We first use the SO(3) symmetry to reduce the 3 Cartesian coordinates to the radial r
coordinate

∂2φ

∂r2 + 2
r

∂φ

∂r
− ∂2φ

∂t2
− ∂V

∂φ
= 0. (A.23)

We used the Minkowski metric since we can neglect the universe expansion during the time
of bubble propagation. We then use the SO(3, 1) symmetry which reduces r and t to the
time-like light-cone coordinate s =

√
t2 − r2 only [44]

∂2φ

∂s2 + 3
s

∂φ

∂s
+ ∂V

∂φ
= 0. (A.24)

Note the opposite sign in front of the potential V between the space-like (or Euclidean)
equation of motion in eq. (A.15) and the time-like (or Minkowskian) equation of motion in
eq. (A.24). Here the damping is purely geometrical, reminiscent of the SO(3, 1) symmetry
and we do not consider the damping due to the dilaton decay or due to the interaction
with the plasma (see e.g. [139]). In right panel of figure 11, we display the scalar field
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profile obtained after integration of the time-like equation in eq. (A.24), using the initial
condition χ(s = 0) = χ∗ given by the bounce solution in eq. (A.15).

The full bubble wall profile. The full bubble wall profile is obtained after matching
the profile in the space-like region, left panel of figure 11, with the profile in the time-like
region, right panel of figure 11. One can see that the first confining scale, that the incoming
techniquanta are subject to upon entering the wall, is the exit scale

χ∗ & Tnuc . (A.25)

Our explicit computation also shows that the length of the section of the bubble wall where
〈χ〉 = χ∗, in the wall frame, satisfies

Lw . T
−1
nuc , (A.26)

as we assumed in eq. (4.2) in the main text. Then, 〈χ〉 transits to its zero-temperature
value f over a length, in the wall frame, of order f−1.

B NLO pressure on the bubble walls

Transition splitting. In section 5.1, we have presented the retarding pressure due to
the change in inertia of the system incoming-quark + gluon-flux-attached-to-the-wall when
entering inside the confined phase, as well as the retarding pressure due to the ejected
quark. In this section we introduce a possible correction which arises in presence of a finite
gauge coupling constant. The correction term, which is called NLO pressure, arises from
the possibility for the incoming particle to radiate a soft boson which gets a mass in the
broken phase [72]

PNLO =
∑
a

νa

∫
d3pa
(2π)3 fa(pa)

pa, z
pa, 0

×
∑
bc

∫
dPa→bc × (pza, s − pzb, h − pzc, h), (B.1)

where h, s stands for the ‘Higgs’ and the symmetric phases. pa and pb are the momenta
of the incoming particle before and after the splitting while pc is the momentum of the
radiated boson,17 see figure 12. We summed over all the species a likely to participate in the
process, νa being their number of degrees of freedom. The differential splitting probability
is given by ∫

dPa→bc ≡
∫

d3pc
(2π)32p0

c

d3pb
(2π)32p0

b

〈φ|T |pc, pb〉 〈pc, pb|T |φ〉 , (B.2)

with the transition element

〈pc, pb|T |pa〉 =
∫
d4x 〈pc, pb|Hint|pa〉 , (B.3)

= (2π)3 δ(2)(~pa,⊥ − ~pb,⊥ − ~pc,⊥) δ(Ea − Eb − Ec)M, (B.4)
17Note that our notation for ‘a’, ‘b’ and ‘c’ is different from [72] where the roles of ‘b’ and ‘c’ are

interchanged.
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Figure 12. NLO contribution to the retarding pressure: while entering inside the bubble wall, an
incoming particle ‘a’ radiates a vector boson ‘c’ which gets a mass in the confined phase.

where
M≡

∫
dz χ∗c(z)χ∗b(z)V (z)χa(z). (B.5)

We obtain [72]

PNLO =
∑
a,bc

νa

∫
d3pa

(2π)32Ea
fa(pa)

d3pc
(2π)32Ec

d3pb
(2π)32Eb

[1± fc][1± fb] (pza, s − pzb, h − pzc, h)

× (2π)3 δ(2)(~pa,⊥ − ~pb,⊥ − ~pc,⊥) δ(Ea − Eb − Ec) |M|2. (B.6)

Now we assume pza ' Ea, pzb ' Eb ' Ea and pzc ' Ec −
m2
c(z) + k2

⊥
2Ec

where k⊥ is the
transverse momentum of the emitted boson, from which we get

pza, s − pzb, h − pzc, h '
m2
c(z) + k2

⊥
2Ec

, (B.7)

and

PNLO =
∑
a, bc

νa

∫
d3pa

(2π)3(2Ea)2 fa(pa)
d2k⊥
(2π)2

dEc
(2π)2Ec

[1± fc][1± fb]
m2
c(z) + k2

⊥
2Ec

|M|2. (B.8)

WKB approximation. Next, we make use of the WKB approximation,

χc(z) ' exp
(
i

∫ z

0
pzc(z′)dz′

)
' eiEcz exp

(
− i

2Ec

∫ z

0
(m2

c(z′) + k2
⊥) dz′

)
, (B.9)

which allows to write the product of wave functions in terms of a phase-dependent quantity
A,

χa(z)χ∗b(z)χ∗c(z) = exp
(

i

2Ea

∫ z

0
A(z′) dz′

)
, (B.10)

with
−A = m2

a −
m2
b + k2

⊥
1− x − m2

c + k2
⊥

x
' k2

⊥ +m2
c

x
. (B.11)
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We have introduced the variable x ≡ Ec/Ea and assumed x � 1 in the last equality. We
can now split the integral over z across the wall in eq. (B.5) into a contribution from the
broken phase and a contribution from the symmetric phase. We assume that the vertices
V and WKB phases A on each side of the wall are z-independent and we denote them by
(Vh, Ah) and (Vs, As), such that we obtain

M' Vs
∫ 0

−∞
dz exp

[
iz
As
2Ea

]
+ Vh

∫ ∞
0

dz exp
[
iz
Ah
2Ea

]
= 2iEa

(
Vh
Ah
− Vs
As

)
. (B.12)

Radiation of a soft transverse boson. It can be shown [72] that the most important
process contributing to the pressure at large Ea is likely to be X(pa)→ VT (pc) X(pb) where
VT is a transverse vector boson. The corresponding vertex function is phase-independent,
Vh = Vs, and equal to

|V 2| = 4 g2C2[R] 1
x2 k

2
⊥, (B.13)

where g is the gauge coupling constant and C2[R] is the second casimir of the representation
R of the incoming particle with respect to the gauge group. Therefore, eq. (B.12) becomes

|M|2 ' 16 g2C2[R] (Ea)2 m4
V

k2
⊥ (k2

⊥ +m2
V )2 . (B.14)

where we have replaced mV ≡ mc. The k⊥ integral becomes

∫
d2k⊥
(2π)2

1
k2
⊥(k2

⊥ +m2
V ) =

log
(

1 + m2
V

k2
∗

)
4πm2

V

, (B.15)

where k∗ is the IR cut-off on k⊥. It is expected to be of order of the vector mass k∗ ∼ mV .

Final NLO pressure. Finally, injecting the last two equations into eq. (B.8) yields

PNLO =
∑
a, bc

νa

∫
d3pa
(2π)3 fa(pa)

dEc
(2π)E2

c

[1± fc][1± fb] g2C2[R]m2
V

log
(

1 + m2
V

k2
∗

)
4π . (B.16)

The Pauli blocking or Bose enhancing factor 1 ± fb is of order 1, while 1 ± fc sums to 1
when considering both absorption and emission processes. Hence, the result simplifies to

PNLO =
∑
a

νa baC2[R] 8ζ(3)
π

g2

4π εps
log

(
1 + m2

V

k2
∗

)
k∗/mV

γwpT
3
nucmV , (B.17)

where ba = 1 (3/4) for bosons (fermions) and α ≡ g2/4π. The Lorentz factor γwp between
the wall and the plasma comes from d3pa. We have introduced εps ≤ 1 to encode the
suppression from phase-space saturation of the emitted soft techni-gluon,which is important
for large coupling g, and which we justify in the next paragraph.
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Phase-space saturation. At order g4, the emitted gauge boson can interact among
each other. These processes are weighted by g2 f(k) with respect to NLO case studied in
the last section. The occupancy function f(k) can be estimated to be of order

f(k) ∼ n

∆k ∼
g2 γwp T

3
nuc

m3
V

, (B.18)

where ∆k ∼ m3
V is the available phase space and n ∼ P1→2/(pza − pzb − pzc) with (pza −

pzb − pzc) ∼ mV . Hence, we can not consider the individual transition splitting processes as
independent from each other as soon as

γwp &
m3
V

g4T 3
nuc

. (B.19)

At such large γwp, we expect the NLO pressure to change behavior. See [72] for more
details and particularly about some hints of PNLO going from ∝ γwp to γ4/7

wp . For simplicity,
we just encode this effect into the coefficient εps ≤ 1 in eq. (B.17).

Case of a SU(N) confining sector. In the scenario we are interested, the deconfined
phase contains gq techni-quark and gg techni-gluons, and the NLO pressure would be
induced by the possibility for these techni-quanta, to radiate a soft techni-gluon acquiring
a mass mV = mg in the confined phase. Hence, eq. (B.17) becomes

PNLO '
(
ggC2[g] + 3

4gqC2[q]
)8ζ(3)

π

g2
conf
4π εps

log
(
1 + m2

g

k2
∗

)
k∗/mg

γwpT
3
nucmg . (B.20)

where gconf is the gauge coupling of the confining group, and where C2[g] = N , C2[q] =
(N2−1)/2N if the confining gauge group is SU(N). Note that in the parameter space which
we consider (cvac = 0.01, gTC = 78) the LO pressure in eq. (5.8) prevents the condition in
eq. (B.19) to be satisfied such that we expect εps to be close to unity.

C Example estimates of the string to DM branching ratio

In section 4.2, we have discussed that, after supercooling, the quarks enter inside the
confined phase, with a typical seperation ∼ T−1

nuc, much larger than the confining scale f ,
such that a highly energetic fluxtube forms. We have shown that this string, which is
unstable under quark-anti-quark pair nucleation, breaks into Kstring pieces. The dynamics
of strings is then also relevant in the processes of deep inelastic scatterings of section 8.
In this section, we estimate the branching ratio of a string to a given hadron i, introduced
in eq. (9.1), in two different cases. First, when i is a light meson, in which case we expect
the yield of i to be independent of its mass and given by a combinatoric factor implying
the number of flavors. Second, when i is a heavy baryon in which case one expects the
yield to be Boltzmann suppressed.
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Light meson — combinatorics. In the limit of large string energy, ECM � f , one
expects the fragmentation of the string to be democratic with respect to the different
bound-states if they are light enough. In that case, the string-to-i branching ratio is given
by a combinatoric factor depending on the number of flavors Nf and the number of quark
constituents (either 2 for meson and NTC for baryons). In the particular case of a light
meson q1q̄2, one obtains

Br(string→i) =
{

1/N2
f , if q1 = q2,

2/N2
f , if q1 6= q2.

(C.1)

Heavy baryon — Boltzmann suppression. For this example a useful model for us
will be the thermal one [140–143], which was able to fit LEP data of particle yields up to a
10% error [144], even with an initial state far from thermal equilibrium. In this model, the
yield of heavy mesonic or baryonic resonances is suppressed by a Boltzmann factor [140–
143], in which the strong scale plays the usual role of temperature. The yield of heavy
resonances can be modelled by

〈Ni〉 ∼ Ai
(2Ji + 1)

Exp [Mi/Bi]
, (C.2)

where Mi and Ji are the mass and spin of the state i respectively. Here Ai is an overall
normalisation, which will depend on whether the particle is a pseudoscalar meson, vector
meson, or baryon etc. In QCD it was found to differ by . 10 between vector mesons,
tensor mesons, and baryons [143]. For these particles Bi was found to be a common factor
between the groups, Bi ≡ B ∼ 150MeV [143]. Note the pseudoscalar mesons in QCD,
however, which are lighter, follow a softer spectrum.

Following the above discussion, we shall construct a toy model for the baryonic particle
yield from our string fragmentation. In order to retain some simplicity in our model we
will consider all particles to share a common Bi = m∗ = g∗f . In our toy model we consider
SU(Nc) theories, with techniquarks in the fundamental representation, in which baryons
will contain Nc quarks. Mesons on the other hand will contain a quark-antiquark pair
independent of Nc. In order to take into account the reduced probability of creating a
baryon as opposed to a meson it is therefore suitable to include an additional suppression
in the prefactor Ai for baryons [145]

pBi =


1

1 + 2Nc−1/Nc
, if i is a baryon,

1, if i is a meson.
(C.3)

Other than this we take a common Ai = pBiA. Applying energy conservation, we thus find
the average number of the composite state i produced per string breaking to be

〈Ni〉 '
pBi(2Ji + 1)
Exp [Mi/mπ]

(∑
k

pBj(2Jk + 1)
Exp [Mk/mπ]

Mk

mπ

)−1

〈Nψ〉 ≡ BRi 〈Nψ〉, (C.4)

where the sum runs over all the states in the spectrum, and we remind that π denotes the
lightest composite state(s). In this case it is clearly possible to have a highly suppressed
BRi, e.g. BRi ' 10−6 for mi = m∗ ' 4πf , mπ ' f , Nc = 10, Nπ = 3.
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