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I. KAPTIZA-DIRAC DIFFRACTION WITH A
BEAT-NOTE SUPER LATTICE

The beat-note super lattice (BNSL) is generated by
overlapping two standing waves at slightly different wave-
lengths: the potential V (x) = V1 cos2(k1x)+V2 cos2(k2x)
generates momentum components at integer multiples of
2~k1, 2~k2 and 2~(k1−k2)� 2~k1, 2~k2, via Bragg tran-
sitions [1].

Since we are concerned only with the low momentum
components, we can assume that these are generated by
the effective periodic potential of Eq. (5) in the main
text. As described in [1], in the perturbative regime, i.e.
V1,2 � ~2(k1 + k2)2/8M , the peak-to-peak depth of the
effective sinusoidal potential is given by the approximate
expression:

Ve0 = V1V2
M

~2(k1 + k2)2
.

When the depths V1, V2 becomes larger, the potential
still diffracts wavepackets at integer multiples of the ef-
fective momentum ~k = 2~(k1 − k2), but the perturba-
tive expression above looses validity. In order to clarify
this aspect, here we investigate numerically the depth of
the effective potential comparing the momentum distri-
butions obtained after a KD pulse with the BNSL and
with the effective lattice of a depth given by the above
perturbative expression (see Fig. 1 a,b,c). Clearly the ap-
proximation of the BNSL with the perturbative effective
potential gets worse as we increase the BNSL amplitude.

To identify the range of validity of the perturbative
expression, for each value of the BNSL depth we calcu-
late ψBNSL(k), the wavefunction in momentum space at
the end of the first KD pulse (∆t = 80µs). We also cal-
culate ψeff (k), the wavefunction for the same KD pulse
when the BNSL is replaced by the effective potential.
We identify as “optimal”, the depth V opt

e0 of the effective
potential such that the fidelity |〈ψeff |ψBNSL〉|2 is maxi-
mum. In Fig. (1c) we report the optimal depth of the
effective potential as a function of the BNSL depth, as-
suming V1 = V2, together with the corresponding fidelity.
Comparing the optimal depth with the perturbative ex-
pression and we find that the two curves start to deviate

at V1 ' 50ER and that the fidelity drops below 0.9 for
V1 > 37ER. In the reported measurements the BNSL
depth was set to V1 = V2 ' 90ER, i.e. in a region where
the perturbative expression is no longer valid. In or-
der to confirm that the long wavelength approximation
is still valid, we investigate numerically the population
of the diffracted orders as a function of the length of the
pulse ∆t. In Fig (2) we report the population of the first
three diffracted orders and we compare them with the
square modulus of the Bessel function |Jn(Ve0∆t/2~)|2
with n = 0, 1, 2. We observe a very good agreement, ex-
cept for residual little deviations that are mainly due to
the fact that the KD pulses with a BNSL diffract atoms
also at the large momentum components associated with
the two fundamental optical lattices, i.e. at multiples of
2~k1 and 2~k2.

As explained in the main text, the population of these
components can not be exploited for the purpose of the
KD interferometer, and it grows as the depth of BNSL in-
creases. In Fig. (3) we show examples of the momentum
distribution after a single KD pulse of the BNSL for in-
creasing values of V1 = V2, together with an estimation of
the fraction of atoms diffracted at large momentum com-
ponentsNlost as function of V1. To evaluate the latter, we
consider as “lost” the atoms with momentum |p| > 4~k,
since this is the maximum observable diffracted order ac-
cording to numerical calculation.
For our values of KD lattice depths V1 = V2 = 90ER, the
fraction of lost atoms is of the order of 20%.

II. ANHARMONICITY

Along the direction of the KD lattice the confinement is
provided by a laser beam, hence it can be considered har-
monic around its minimum only for displacements much
smaller than the beam size. As we strengthen the force
applied by the magnetic field gradient, the induced dis-
placement of the potential minimum increases.

The most obvious effect of the anharmonic trapping
potential is that the oscillation period gets to depend
on the energy, thus the spatial recombination after the
half (or full) oscillation is imperfect, causing a decrease
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FIG. 1. In the upper panel we compare the momentum dis-
tribution after a single KD pulse of the BNSL and of the
effective potential with a depth Ve0 = V1V2M/~2(k1 + k2)2

for two different values of V1 = V2: (a) 80 ER, (b) 120 ER.
In (c) we report the numerically calculated “optimal” depths
(blue points) compared with the perturbative depth (blue
line), with the corresponding fidelity (red line, right axis).

FIG. 2. Numerical atomic fractional populations in the first
three momentum components as a function of the length of
the pulse for the BNSL with V1 = V2 = 90ER used in the ex-
periment. The solid lines represent the theoretical prediction
represented by |Jn(Ve0∆t/2~)|2, with Ve0 = 30ER.

of the inteference signal. In addition, the anharmonic-
ity changes substantially the momentum distribution ob-
tained at the interferometer output, as observed in nu-
merical simulations where the trapping harmonic poten-
tial is deformed by a quartic anharmonic term [2]. As

FIG. 3. (a) Momentum distribution after a single KD pulse
of the BNSL for different values of V1 = V2, i.e. 90 ER (used
in the experiment), 150 ER, and 200 ER. Both small and
large momentum components are displayed, in order to show
how the diffraction pattern changes as function of V1. (b)
Fraction of atoms Nlost diffracted at momenta larger than
the fourth-order component, as a function of V1.

discussed in the main text, in presence of the harmonic
potential the interferometric phase depends only on the
position of the relative position of the trap minimum
and the KD lattice, because the phase acquired by each
wavepacket during half oscillation is zero. This is no
longer the case for an anharmonic potential, where the
phase acquired by each wavepacket during half oscillation
is not zero and is not the same for all wavepackets.

Similarly to [2], we have run numerical simulations to
compare the outcome of the interferometer in a harmonic
potential and in a Gaussian potential, approximately cor-
responding to the intensity profile of the laser beam,
V (x) = −Vg exp(−2x2/w2) where w = 100µm and the
potential depth Vg is adjusted to match the measured
frequency of the small-amplitude oscillations.

First, we calculate the overlap between the 0−th and
the n−th diffraction orders after half oscillation, i.e. after
half-period of the small amplitude oscillations. Fig. 4
clearly shows that, for the above Gaussian potential, the
overlap drops for |n| ≥ 3. Conversely, the overlap is
nearly perfect when the atoms populate only |n| < 2
diffraction orders, like in our experiment, and it is unity
at all orders for the harmonic potential, as expected.
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FIG. 4. Overlap |〈ψ0(T/2)|ψn(T/2)〉| of the wavepackets with
initial momentum p0 = 0 and p0 = n~k, at time t = T/2, i.e.
after half period of small-amplitude oscillations: we compare
the case of the harmonic oscillator with the Gaussian poten-
tial.

We extract the phase shift by fitting the numerically
calculated momentum distributions with a sum of 5
Gaussian peaks:

f(k) =

2∑
n=−2

p0 J
2
n(p1) exp[−(k − n)2/2p22]

with pi, i = 0, 1, 2 being free fit parameters. In Fig.(5) we
compare the phase shifts φf obtained from fit, actually
sinφf = p1/2β, for the case of the harmonic potential
and of the above Gaussian potential. Clearly the devia-
tion is small for the values of external forces and the KD
pulse area used in the experiment (solid lines). We no-
tice that the external forces, quantified with the current
of the magnetic field gradient as in the main text, here
correspond to a maximum displacement of ∼ 2µm much
smaller than the beam waist. On the other hand, when
the KD pulse area is doubled β = 2.82, more diffrac-
tion orders are populated and the deviation of the Gaus-
sian potential becomes much more visible (orange dashed
line). Finally we notice that the slope around zero is
' 1.2 rad/A for all curves, consistent with the measured
value (1.18± 0.09) rad/A.

In conclusion, while the anharmonicity of the potential
changes the interferometric phase and thus the momen-
tum distribution at the interferometer output, the nu-
merical simulations show that, quantitatively, this effect
is nearly negligible for the weak external forces and the
KD pulse area of our experiment.
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FIG. 5. Phase shifts obtained from fitting the numerically
calculated momentum distributions, for the Gaussian and the
harmonic potential with the same small-oscillations frequen-
cies: solid lines refer to β = 1.41, close to experimental value,
dashed lines to β = 2.82.
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