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Abstract: The growing interest in energy storage devices, both batteries and capacitors, could lead
to the improvement of electrochemical properties such as extended charge/discharge cycles, high
specific capacitance, and power density. Furthermore, the use of easily available raw materials for
the production of carbon electrodes has attracted interest due to the criticality of the resources related
to the current technologies of high-performance capacitors. The present article reviews carbon-based
materials for supercapacitors derived from affordable coal deposits or crop waste with appropriate
characteristics in terms of specific surface area, electrical conductivity, and charge/discharge stability.
In addition, the substitution of organic liquids electrolytes with less dangerous solutions, such as
aqueous electrolytes containing high concentrations of salt, is a valuable strategy for the design of
green devices that is discussed in this review. Finally, the present article reviews the electrochemical
performance of supercapacitors based on carbon electrodes obtained from various natural resources
and their compatibility with safer and cheaper electrolytes.

Keywords: energy storage; supercapacitors; natural resources; biomass; coal; carbon-based electrodes;
aqueous electrolytes

1. Introduction

Currently, more than 70% of the world’s primary energy demand is dominated by fossil
fuels. This scenario is expected to change in the near future with the increasing deployment
of renewable energy sources as an urgent response to climate change [1]. The alternative
energy sources produce energy from sun and wind that typically are not constant [2]. To
ensure the reliability and consistency of renewable energy source output, energy storage
devices (ESDs) are required as buffers for the intermittent sources. Furthermore, the use of
ESDs could power off-grid energy in remote locations [3–5]. Hence, ESDs with high energy
and power densities will be crucial in the future to ensure the integration of renewable
energy sources into existing power systems and boost the potential for applications related
to electric mobility.

ESDs based on batteries and electrochemical supercapacitors (SCs) are in rapid devel-
opment [6–11]. Lithium-ion batteries have not yet been widely used as an efficient storage
technology and still need to overcome some disadvantages, mainly those associated with
safety, cost, and metal availability [8,12–15]. SCs have attracted attention in recent years
mostly because of their high power density and long life cycle. Notably, these characteristics
of SCs allow them to provide interesting hybrid solutions for the automotive sector, where
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they are coupled with batteries. Figure 1 shows a Ragone plot with power and energy
densities for different electrochemical ESDs and fuel cells for the sake of comparison.
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from Elsevier”.

In general, in an electrochemical ESD, the energy storage processes occur at the elec-
trodes either by Faradic or non-Faradic modes. The Faradic processes are controlled by the
kinetics and activation energies of the electrode reactions as well as by the mass transport of
reagents/products, which limit device power density. In addition, the electrode materials
may undergo transformations during cycling, like the modification of the chemical composi-
tion or structure. Furthermore, the electrochemical reactions involved may have a columbic
efficiency lower than 100%. For these reasons, despite the high charge storage capacity,
Faradic electrodes can show reduced lifetimes compared to those involving non-Faradic
processes. The latter occur through the electrostatic storage of charges at the electrode
surfaces. This phenomenon drives energy storage in electrochemical capacitors. It is a
rapid surface phenomenon that is completely reversible and does not yield to any chemi-
cal or structural changes in the electrodes. The fast kinetics and high reversibility of the
electrostatic process enable high SC power density and a theoretically unlimited lifetime.

2. Supercapacitors (SCs)

SCs, also known as “ultracapacitors”, are used in applications requiring rapid energy
storage or high-power delivery [17]. In 1987, they were introduced to the market as small-
sized devices for computers [18]. SCs are categorized into the three classes summarized in
Figure 2 depending on their mechanism of charge storage [19,20]: electrostatic double-layer
capacitors (EDLCs), pseudocapacitors (PC), and hybrid supercapacitors (HSC).
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Figure 2. Classification of SCs displaying the used electrode materials and charge storage mechanism.
Adapted with permission from [21]. Copyright (2021) American Chemical Society.

2.1. Electrostatic Double-Layer Capacitor (EDLC)

EDLCs are symmetrical SCs featuring two electrodes based on non-electroactive mate-
rials. The storage mechanism consists of the accumulation of ions at the electrode/electrolyte
interface (capacitive processes) through the creation of an electrochemical double layer
(EDL) [22,23]. The EDL has been described by different models, including that of Helmholtz
(second half of the 19th century), which simply considers the formation of a layer of ions at
the electrode/electrolyte interface, e.g., the formation of anions if the electrode is positively
charged (Figure 3a) [24,25]. Guy and Chapman’s model (early 20th century) considers the
formation of a diffuse layer due to the thermal agitation where the potential decreases expo-
nentially (Figure 3b) [26,27]. Finally, Stern’s model (1924) combines these two approaches
by forming a compact layer close to the electrode and a diffuse one that extends to the bulk
of the solution and is in the order of the nanometers (Figure 3c) [28].
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the EDL distance in Helmholtz model. Ψ0 and Ψ are the potentials at the electrode surface and
electrode/electrolyte interface, respectively [29].
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The capacitance (double-layer capacity) depends on the number of ions adsorbed on
the electrode and the specific area of the electrode materials for a given potential excursion.
One of the most popular materials for EDLCs is carbon due to its good electric conductivity
and stability. Furthermore, the material texture of carbon, i.e., its specific surface area (SSA)
and pore size distribution, together with the appropriate choice of the electrolyte, greatly
affects the SCs electrochemical performance in terms of capacitance and energy density [20].
A number of EDLCs have shown excellent power densities and good cyclic stability, which
are associated with fast-charge diffusion in the electrolyte, the negligible side reactions of
the different materials, and efficient ion adsorption on the electrode surfaces [22,30].

2.2. Pseudocapacitors (PCs)

PCs electrodes are based mainly on electro-active materials such as metal oxides
(e.g., MnO2, RuO2) [31–33] and conjugated polymers (e.g., polypyrroles, polyanilines, and
polythiophenes) [34–36]. In these systems, the energy storage mechanism is far more
complicated than that of an EDLC, and the charge storage occurs through Faradic charge
transfer processes, which are fast and reversible [37]. Regarding inorganic electrode materi-
als, varying the oxidation state of the metal atoms coupled with the insertion/de-insertion
of ions in the crystal lattice is the main process. In a recent paper [38], surface-amorphized
Co3S4 with a capacity higher than 1000 F g−1 at 0.5 A g−1 in an asymmetric capacitor with
carbon-negative electrodes showed a retention rate about 90% after 10,000 cycles.

In the conjugated polymers, the reversible oxidation and reduction in the π-π* orbitals,
coupled with the so-called “doping/de-doping” of the materials by the ions coming from
the electrode/electrolyte interface, takes place [39]. Even if the charge/discharge process
is not electrostatic like in EDLCs, the electrochemical response under a galvanostatic or
voltametric test is similar to that of EDLCs, and for this reason, they are considered PCs [40].
A charge storage comparison between an EDLC and a PC is depicted in Figure 4.
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Although the capacitance and energy density values that can be increased significantly
by utilizing Faradic processes, PCs deliver lower power densities than EDCLs due to the fact
that Faradic processes are often slower than non-Faradic ones [42]. Furthermore, the charge
storage mechanism, i.e., redox reactions, affects the cycle of PCs because of possible lattice
stress phenomena in the transition metal oxides and overoxidation or depolymerization in
the conjugated polymers [43,44].

2.3. Hybrid Supercapacitors (HSCs)

HSCs, which are a hybrid of EDLCs and PCs electrodes [45,46], have been designed
to obtain SCs with synergistic properties, where the pseudocapacitive electrode makes it
possible to obtain a high energy density, and the capacitive electrode enables high power
densities. Although PCs and HSCs deliver superior specific capacitance than that of
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EDLCs, their potential applications are limited by their lower cycle performance and higher
cost [32].

However, researchers are diligently striving towards developing high-specific-capacitance
and low-cost EDLCs, which involves advanced active materials for electrodes based on
carbon with different structural forms [47]. Also, nanofabrication and coupling with conju-
gated polymers are widening perspectives in the field, which may lead to improvements in
HSC performance [48]. A recent example of an asymmetric HSC was built with a positive
electrode of C-coated NiCo2O4 on a cactus plant-like three-dimensional Ni structure and a
negative electrode based on Fe3S4 grown via chemical vapor deposition (CVD) in dendrite-
like structures that produce a network on the highly porous Ni-Co alloy obtained via H2
bubble-assisted electrodeposition on stainless steel. The assembled devices delivered a
specific capacitance of 150 F g−1 at 1 A g−1 and showed 70% of the initial capacitance after
10,000 charge/discharge cycles Swain, et al. [49].

Other metal sulfides coupled with a carbonaceous electrode have been used for asym-
metric HSCs with aqueous electrolytes, showing a variety of performances: defect-rich
Ni3S4−x delivered about 1400 F g−1 at 0.1 A g−1 without significant capacitance loss after
15,000 cycles [50], whereas Ni-doped SnS2 on carbon cloth delivered 66 F g−1 at 2 A g−1

with a capacity retention of 80% [51].

3. Carbon Materials for Supercapacitors

A variety of carbon materials with different morphologies and structures have been
used as EDLC electrodes, including activated carbon (AC) obtained from mineral resources
or biomasses, carbon nanotubes (CNTs), and graphene, thanks to their large SSA, high
porosity, good electronic conductivity, and chemical stability, as well as their wide range
of operating temperatures [52]. A comparison of carbon materials for ECDLs is shown in
Table 1.

Table 1. Characteristics of carbon materials used as EDLC electrodes. Adapted from Ref. [53].

Material Carbon Nanotubes Graphene Activated Carbon
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Conductivity High High Structure dependent 
Volumetric capacitance Low Moderate High 

Cost High Moderate Low 

Other synthetic strategies involve the emulsion-assisted production of polymer 
nanoparticles that, after calcination under N2 atmosphere, release carbon spheres 200–300 
nm in diameter with a single cavity inside and a SSA of about 300 m2 g−1 [54]. 

The large SSA of carbon is generally responsible for the high specific capacity of the 
electrode. Large SSAs can reach 2500 m2 g−1 and deliver specific capacitance from 100 to 
250 F g−1 depending on the electrolyte [55], and, in turn, the pore size distribution 
significantly affects the EDLC charge/discharge rate. According to the International Union 
of Pure and Applied Chemistry (IUPAC), the porosity classifications for macropores, 
mesopores, and micropores are as follows [56]: 
- Macropores with a diameter greater than 50 nm; 
- Mesopores with a diameter between 2 and 50 nm; 
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Conductivity High High Structure dependent
Volumetric capacitance Low Moderate High

Cost High Moderate Low

Other synthetic strategies involve the emulsion-assisted production of polymer nanopar-
ticles that, after calcination under N2 atmosphere, release carbon spheres 200–300 nm in
diameter with a single cavity inside and a SSA of about 300 m2 g−1 [54].

The large SSA of carbon is generally responsible for the high specific capacity of
the electrode. Large SSAs can reach 2500 m2 g−1 and deliver specific capacitance from
100 to 250 F g−1 depending on the electrolyte [55], and, in turn, the pore size distribu-
tion significantly affects the EDLC charge/discharge rate. According to the International
Union of Pure and Applied Chemistry (IUPAC), the porosity classifications for macropores,
mesopores, and micropores are as follows [56]:

- Macropores with a diameter greater than 50 nm;
- Mesopores with a diameter between 2 and 50 nm;
- Micropores with a diameter of less than 2 nm.

It is worth noting that the IUPAC outlines two subcategories of micropores: supermi-
cropores, with diameters between 0.7 nm and 2 nm, and ultramicropores, with diameter
less than 0.7 nm [56].
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3.1. Activated Carbon (AC)

AC is a promising material for SC electrodes because of its relatively low cost, high
conductivity, good thermal stability, and corrosion resistance. Several synthesis routes are
for the preparation of activated carbons with high a SSA and a porosity that is suitable for
EDLC electrodes have been reported in the literature [57]. It should be emphasized that
these characteristics are influenced by the precursor used and the synthesis and activation
process [58,59]. Furthermore, activated carbon production processes (carbonization and
activation) are generally simple and involve cheap and abundant precursors [60]. The
activation process consists of oxidation via physical or chemical processes that allow for the
creation of a random network of pores (macropores, mesopores, or micropores). Usually,
physical activation is carried out through the carbonization of materials (for biomass or
hard coal see below) at temperatures ranging from 900 ◦C to 1100 ◦C under oxidizing
conditions. Such a temperature range induces the sublimation of the lower molecular
weight fraction and structural rearrangement, whereas the oxidation of carbon results in
the creation and/or enlargement of the pores.

Chemical activation proceeds in the presence of chemical agents (e.g., H3PO4, ZnCl2,
KOH, etc.) through the dehydration, carbonization, and structural reorganization of the
precursor, inducing the development of micropores and mesopores and the functionaliza-
tion of their surfaces [61]. By carefully controlling the activation parameters, it is possible
to reach a specific surface area of 3000 m2·g−1 [52]. A schematic showing the development
of the porosity network can be seen in Figure 5.
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ACs can be easily produced and, consequently, have been commercially available
for a long time for many others applications, including air purification, water treatment,
energy storage, etc. Indeed, the global market for AC is growing, and it is expected to be
worth up to USD 7 billion by 2028 [63]. From a business point of view, the use of AC is of
interest because related low-cost and abundant precursors such as biomass are considered
renewable resources; thus, in terms of sustainability, AC production is of great importance.

3.2. Carbon Nanotubes (CNTs)

CNTs have been reported to have special features of interest for EDLC electrodes. The
development of high-power SCs has been driven by their high electrical conductivity and
accessible pore network, along with their good thermal and mechanical stability [52]. CNTs
are classified as single-walled nanotubes (SWCNTs) and multiwalled nanotubes (MWCNTs)
based on the number of graphite-like layers rolled into the cylinder, which, in turn, affects
the electrical and mechanical characteristics of the resulting materials [52,64]. The main
methods for CNTs synthesis are laser ablation, arc-discharge, and CVD, all of which are
experimentally complex and require expensive equipment. In addition, it seems difficult to
achieve high purity and good bulky yields [57].
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3.3. Graphene

Graphene consists of a two-dimensional single-layer of hexagonal rings of sp2 carbon
atoms. This carbon arrangement potentially provides an accessible surface area that is
much wider than that of any other carbon material used in EDLCs [52,65]. Graphene can be
produced via CVD; chemical [66], electrochemical [67], or plasma exfoliation from natural
graphite; and mechanical cleavage from natural graphite [68]. In one study, a graphene
ribbon aerogel monolith with high mass loading (11 g cm−2) exhibited a capacitance density
of about 150 F g−1 at 1 A g−1 and about 100% capacitance retention after 10,000 cycles [69].

However, despite their great potential, carbon materials based on graphene or CNTs
are still far from being commonly used in industrial sectors, mainly because of their high
production costs.

3.4. Activated Biochar-Based SCs

This section of the present article focuses on the use of biomass as a sustainable and
renewable precursor for the production of ACs. The fabrication process of biomass-derived
AC has been demonstrated by the carbonization and activation of a huge variety of raw
materials [70]. During carbonization, biochar is produced as a result of the precursor being
subjected to heat treatment in the absence of oxygen. The development of AC surface
area and porosity is achieved through physical or chemical activation using oxidizing
gases (e.g., O2, steam, etc.) or other oxidizing agents (e.g., KOH, NaOH, ZnCl2, H3PO4),
respectively [71–73]. In contrast to physical activation, which partially gasifies the char to
CO2 in order to enhance the pores, chemical activation involves dehydrating chemicals
to prevent the development of tar and boost the carbon yield [74]. Chemical activation is
sometimes carried out in one step after pyrolysis and sometimes produces AC with a higher
carbon yield, larger SSA, and more developed microporosity than physical activation [75].

Using low-cost biomass such as biowaste (e.g., agriculture by-products or food in-
dustry waste) to derive ACS for SC electrodes could not only pave the way to solve waste
management problems [76,77] but also generate revenue for farmers in the context of
circular economy because it changes a waste product in a secondary raw material into a
high-value product that could be used to produce SCs [78].

In recent years, interest in producing activated carbon from biomass has steadily
grown [78–83]. Various sources of biowaste, including waste from plants, animals, and
vegetables, have been listed in the literature as raw materials that could be used to produce
ACs for use as electrode materials in SCs [78,84–89]. Figure 6 shows some of those biowaste
products, specifically the following: olive seeds, lotus calyx, rice husk, mangosteen peel,
chrysopogon zizanioides, lemon peel, eggs shells, and idesia polycarpa fruit oil residue.

For instance, Yang et al. developed a porous carbon with a SSA of 1471.4 m2 g−1 from
corncob that provided an EDLC that could deliver an energy density of 20.15 Wh kg−1 in
6 M KOH electrolyte [90]. By following the same procedure, Mitravinda et al. investigated
EDLCs based on corn silk-derived AC; the EDLCs showed a promising energy density
of ~32.28 Wh kg−1 and a power density of 870.68 W kg−1 [91]. This was made possible
by the AC’s mesoporous fiber-like morphology and texture, which helped to diffuse
electrolytes into and out of the pores during the charge/discharge processes. In another
study, Yin et al. used coconut fibers to develop three-dimensional hierarchical porous
carbon [92] with a high SSA of 2898 m2 g−1 and pore volume of 1.59 cm3 g−1 to allow for
an EDLC with 6 M KOH to reach an energy density of 53 Wh kg−1 and an impressive
power density of 8200 W kg−1. Moreover, Qin et al. synthesized pine nutshell-derived AC
using physical activation [92], obtaining an interconnected porous structure with different
pore size distributions (micro-, meso-, and macropores). This material was used as an
electrode in an EDLC with 6 M KOH electrolyte, releasing 98% of the initial capacity after
10,000 cycles [92]. Bridget et al. reported the use of lignin residue from biodigestion plants
as a precursor for preparing AC [93]. The lignin-derived carbon contained mesopores and
micropores showing a high SSA of 1879 m2 g−1. A SC with this lignin-derived carbon
electrode exhibited a specific energy and specific power density of up to 10 Wh kg−1 and



World 2023, 4 438

6.9 kW kg−1, respectively. Durability tests revealed that the device could maintain 84.5% of
its capacitance after 15,000 charge/discharge cycles [93]. Table 2 shows the electrochemical
performance of some investigated biowaste-derived carbon electrodes and SCs using
aqueous electrolytes.
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Table 2. Characteristics of biowaste-derived carbon-based electrodes and the related EDLCs with
aqueous electrolytes.

Biowaste SSA
(m2 g−1)

Specific
Capacitance

(F/g)

Electrolyte
for the

Assembled
Device

Energy
Density

(Wh kg−1)

Power
Density

(kW kg−1)

Cyclic
Stability

(%)
Ref.

Lotus calyx 798 223
(1 A/g) 1 M Na2SO4 17.5 0.8 95.5

(10,000) [94]

Stem pith of
helianthus annuus 1900.2 403.6

(0.5 A/g) 6 M KOH 5.8 17.3 94.5
(10,000) [95]

Mangosteen peel 2623 357
(1 A/g) 1 M Li2SO4 17.28 0.401 80

(10,000) [96]

Lemon peel 744.78 152.14
(1 mV/s) 0.5 M H2SO4 4.67 8.113 95.5

(10,000) [97]

Idesia polycarpa
fruit oil residue 1537.1 350.4

(1 A/g) 6 M KOH 6.4 0.1 95.4
(10,000) [98]

Camellia oleifera
shell 1750 259

(1 A/g) 1 M H2SO4 8.61 0.477 94
(20,000) [99]

Syzygium cumini - 253
(0.5 A/g) 6 M KOH 27.22 0.2 96.5

(5000) [100]

Chrysopogon
zizanioides - 294

(0.5 A/g) 6 M KOH 16.72 0.2 91.8
(5000) [100]

Baobab fruit shells 2700.65 332
(1 A/g) 6 M KOH 17.7 166.4 93

(10,000) [101]
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Table 2. Cont.

Biowaste SSA
(m2 g−1)

Specific
Capacitance

(F/g)

Electrolyte
for the

Assembled
Device

Energy
Density

(Wh kg−1)

Power
Density

(kW kg−1)

Cyclic
Stability

(%)
Ref.

Waste wolfberry
fruits 1423 365

(0.2 A/g) 1 M Li2SO4 23.2 0.225 96.4
(10,000) [102]

Camellia pollen 810 300
(1 A/g) 6 M KOH 14.3 - 84.5

(20,000) [103]

Rice husk 1183 163.1
(0.2 A/g) 6 M KOH 5.1 0.049 85

(6000) [104]

Corn Husk 1370 127
(1 A/g) 6 M KOH 4.4 0.248 90

(5000) [105]

Olive Seed 1700 224
(0.25 A/g)

1 M H2SO4/
1 M Na2SO4

3–5 20–30 91
(12,500) [106]

Lignin residue of
biodigester 1879 114

(0.5 A/g) 2.5 M KNO3 10 6.9 84.5
(15,000) [93]

3.5. Coal-Derived AC-Based SCs

Coal is a low-cost carbon-rich material that exists in large natural reserves. In 2020,
global coal reserves were estimated to be 1074 billion tons [107]. Restrictions regarding
CO2 emissions should reduce the use of coal as a fuel and encourage the adoption of other,
renewable energy sources with added value due to their applicability to fast-developing
zero-emission vehicles [108]. There are five different varieties of coal: peat, lignite, subbitu-
minous, bituminous, and anthracite, all of which are classified according to their carbon
content. Peat is a soft, crumbly, dark brown substance formed by the decomposition of
dead and partially decaying organic matter on the ground in oxygen-poor conditions. Peat
contains the least amount of carbon (less than 60%). Lignite, also known as brown coal,
has a brown color and preserves the fibrous aspect of the original wood. Its carbon content
varies between 65 and 70%. Subbituminous coal, also known as black lignite, is a dark
brown or gray-black coal; its carbon content ranges between 70 and 76%. Anthracite is
the most high-quality coal because it contains nearly 95% carbon and has a low moisture
content [109]. Figure 7 depicts the typical structures of different coal classes and their
degree of coalification.

Similar to biomass-derived AC production, coal derivatives with a large SSA can be
obtained by physical activation in the presence of air, O2, steam, CO2, etc., or by chemical
activation using KOH, ZnCl2, NaOH, H3PO4, etc. In recent years, many researchers have
investigated different coal-based ACs and their performance as SC electrode materials.
Zhao et al. [110] used chemical activation by KOH to prepare AC from “hypercoal” with
a high surface area of 2540 m2 g−1; Zhao et al. reported a capacitance of 46.0 F g−1.
Shi et al. [111] assembled a high-performance SC with a specific electrode capacitance of
280 F g−1 and energy density of 38.9 Wh kg−1 at 0.5 A g−1 using an AC produced from
anthracite. Zhu et al. [112] prepared high-performance coal derivatives via KOH activation,
and the optimized sample had a surface area of 2457 m2 g−1 and total pore volume of
1.448 cm3 g−1, which allowed the material to exhibit a specific capacitance of 384 F g−1 in
6 M KOH.

Table 3 summarizes the electrochemical performance of coal-derived AC electrodes,
including specific capacitance and power density values, and EDLCs assembled using
aqueous electrolytes. Overall, the use of carbon derived from natural resources presents a
propitious opportunity to design affordable, cheap, and environmentally friendly SCs.
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Table 3. Electrochemical performance of coal-derived carbon-based electrodes (including specific
surface area and specific capacitance) and EDLCs (including energy density, power density, and
cycling stability) assembled using aqueous electrolytes.

Materials SSA
(m2 g−1)

Specific
Capacitance

(F g−1)

Electrolyte
for the

Assembled
Device

Energy
Density

(Wh kg−1)

Power
Density

(W kg−1)

Cyclic
Stability

(%)
Ref.

Sub-bituminous
coal 1021 227

(0.5 A/g) 6 M KOH 25 12.952 82
(10,000) [113]

Anthracite 3550.7 433
(0.5 A/g) 6 M KOH 38.9 1000 99

(10,000) [111]

Coal 2129 323
(0.5 A/g) 6 M KOH 10 250 93.7

(10,000) [114]

Coal tar pitch 3305 308
(1 A/g) 1 M Na2SO4 21.9 461.6 - [115]

Coal tar pitch 3305 308
(1 A/g) 6 M KOH 8.92 254.9 - [115]

Coal-based green
needle coke 807.69 274.9

(1 A/g) 6 M KOH 20.51 1031.42 98.5
(5000) [116]

Coal tar pitch 2984 320
(0.1 A/g) 6 M KOH 10.6 50.1 94

(10,000) [117]

Anthracite 2947 282
(0.5 A/g) 6 M KOH 9.75 124.65 - [118]

Coal 2168 215
(20 A/g) 6 M KOH 7.64 50 91.9

(5000) [119]

Bituminous coal 3472.41 487
(1 A/g) 6 M KOH 249.6 10.34 96

(10,000) [120]

4. Electrolytes

The formulation of electrolytes greatly affects the specific performance, environmental
impact, and cost of SCs [121]. Several criteria are crucial to consider when choosing an
electrolyte, but the two main criteria are the electrochemical stability window (ESW) and
the ionic conductivity.



World 2023, 4 441

The operating voltage of a SC essentially depends on the electrolyte ESW [17,122].
The conductivity of the electrolyte largely impacts the equivalent series resistance of the
SC [123]. The following relation defines the ionic conductivity:

k = F Σi zi Ci µi

where:

- k is ionic conductivity (S cm−1);
- F is the Faraday constant (C mol−1);
- zi is the charge of the ion;
- Ci is the concentration of the ion i (mol cm−3);
- µi is the mobility of the ion i (cm2·V−1·s−1).

The operating temperature range of the electrolyte is also a criterion to be taken into
account, depending on the intended application of the SC and the related influence on its
performance. Furthermore, cost, safety, and environmental impact should also be taken
into consideration when choosing an electrolyte [17].

Electrolytes can be categorized into three groups—organic, ionic liquids, and aqueous—
each with their own set of advantages and disadvantages (as indicated in Table 4).

Table 4. Comparison of common electrolytes used in supercapacitors [17,124–126].

Electrolyte Examples ESW (V) k (S cm−1); Other Characteristics

Aqueous H2SO4, KOH, Na2SO4, NH4Cl ~1.2 High Cheap, safe, low
environmental impact.

Organic Organic salts (e.g., Et4NBF4) in
Acetonitrile, propylene carbonate ~3–3.5 Moderate

Flammable, toxic, require
low water content

(<5 ppm).
Ionic liquid Imidazolium, pyrrolidinium salts ~4.5 Low Low flammability, costly.

4.1. Aqueous Electrolytes

Aqueous electrolytes are used in SCs due to their high conductivity, which, for example,
can reach up to 700 mS cm−1. In addition, aqueous electrolytes are cheap and relatively
environmentally friendly. Unlike organic electrolytes, they do not present a risk of explosion
in the case of overheating, and their operating temperature ranges from several degrees
below 0 ◦C to about 80 ◦C depending on the nature and the concentration of salt in the water.

The main disadvantage of aqueous electrolytes is their narrow ESW due to the decom-
position of water that occurs at the thermodynamic potentials of 1.23 V vs. NHE (oxygen
evolution) and 0 V vs. NHE (hydrogen evolution).

However, even with their small ESW, aqueous electrolytes are more promising for
use in SCs, at least in the short-term, because of their lower cost, higher safety, lower
environmental impact, and higher ionic conductivity compared to that of the other elec-
trolytes [127].

4.2. Organic Electrolytes

At present, probably the most commonly used organic solvents in SC electrolyte
solutions are propylene carbonate and acetonitrile. A common salt is tetraethylammonium
tetrafluoroborate (Et4NBF4). Organic electrolytes make it possible to increase the voltage
of a SC up to 2.7 V due to their large ESW. The ionic conductivity of organic electrolytes
is lower than that of aqueous electrolytes. In addition, the radiuses of the solvated ions
in organic electrolytes are larger than those in water. These two aspects explain why
the capacity obtained in organic electrolytes is lower than that obtained in the aqueous
ones [128]. In addition, organic electrolytes are costly; also, in some cases they are toxic and
may pose safety risks due to vapor tension and their low flash point and heat of combustion.
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Even the assembling and recycling process can pose environmental problems due to the
leakage of vapors and liquids.

4.3. Ionic Liquids

Ionic liquids are obtained from salts with a melting point below 100 ◦C and are
generally used as liquid electrolytes at room temperature. Notably, no solvent is added.
The ions of the salt provide conduction because they are not stuck in a crystal lattice
thanks to the large size and asymmetric structure of both the anions and cations. The
first ionic liquid, ethylammonium nitrate (EAN), which has a melting point of 12 ◦C,
was described in 1914 by Walden; however, many consider the research on ionic liq-
uids to have really started in the 1970s [129,130]. Among the most investigated ionic
liquids are 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI), N-
methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI]), 1-butyl-1-
methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI), and others [131,132].
Despite their relatively low ionic conductivity and very high cost, ionic liquids are emerging
as SC electrolytes because of their non-flammability and high electrochemical and thermal
stability [133].

4.4. Water-in-Salt Electrolytes (WiSE)

A remarkable achievement in the development of electrolytic materials has been
recently reported by using high-concentration aqueous solutions, known as Water-in-Salt
Electrolytes (WiSE), where the low content of water enhances the ESW [134]. In WiSE, the
salt content overcomes the solvent both in mass and volume. Because of their very high
salt concentration, WiSEs successfully overcome the water’s thermodynamic limitations,
exhibiting an ESW (about 3.0 V) much larger than what can be achieved with regular
aqueous electrolytes while maintaining their intrinsic advantages, such as safety, low
cost, environmental friendliness, and satisfactory ionic conductivity. Furthermore, WiSEs
enhance the performances of SCs in terms of energy density because they enable higher
cell voltages with respect to conventional aqueous solutions [135] (Figure 8).
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1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI), N-methyl-
N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI]), 1-butyl-1-
methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI), and others 
[131,132]. Despite their relatively low ionic conductivity and very high cost, ionic liquids 
are emerging as SC electrolytes because of their non-flammability and high 
electrochemical and thermal stability [133]. 

4.4. Water-in-Salt Electrolytes (WiSE) 
A remarkable achievement in the development of electrolytic materials has been 

recently reported by using high-concentration aqueous solutions, known as Water-in-Salt 
Electrolytes (WiSE), where the low content of water enhances the ESW [134]. In WiSE, the 
salt content overcomes the solvent both in mass and volume. Because of their very high 
salt concentration, WiSEs successfully overcome the water’s thermodynamic limitations, 
exhibiting an ESW (about 3.0 V) much larger than what can be achieved with regular 
aqueous electrolytes while maintaining their intrinsic advantages, such as safety, low cost, 
environmental friendliness, and satisfactory ionic conductivity. Furthermore, WiSEs 
enhance the performances of SCs in terms of energy density because they enable higher 
cell voltages with respect to conventional aqueous solutions [135] (Figure 8). 

 
Figure 8. Schematic representation of a WiSE, including its advantages and performance benefits in 
SC application. 

Figure 8. Schematic representation of a WiSE, including its advantages and performance benefits in
SC application.
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The growing interest in WiSEs for ESDs started in 2015, when, for the first time,
Suo et al. revealed a WiSE based on a water and lithium bis(trifluoromethane)-sulfonimide
(LiTFSI) with a concentration of 21 mol kg−1, ionic conductivity of 10 mS cm−1, and the
capacity to achieve an ESW of 3 V [134]. Until now, fluorinated imide-based salts, notably
LiTFSI, are still the most investigated WiSEs for ESDs, including both Li-ion batteries
and SCs [136–140]. Despite the tremendous advancements in imide-based WiSE systems,
there are some drawbacks related to high costs and negative environmental impacts due
to the fluorinated salt, as identified by Lukatskaya et al. for LiTFSI [141]. Moreover, the
Li salt quantity required for WiSE has led to concerns associated with Li reserves in the
earth’s crust, which are less geographically distributed compared with Na and K reserves.
However, binary salts, such as eutectic combinations of Li and K acetate, have been
proposed as an alternative to reduce the Li content in ESDs. A mixture of 32 mol kg−1 K
acetate and 8 mol kg−1 lithium acetate WiSE has been shown to display an ESW of 2.7 V and
ionic conductivity 5.3 mS cm−1 [141]. Furthermore, EDLCs enable the use of lithium-free
WiSE, and potassium acetate-based WiSEs coupled with AC electrodes have been exploited
to produce a SC with a very good cycle life at an operational voltage of 2 V [142].

WiSEs based on percholate salts have also shown excellent properties for EDLCs;
however, this type of WiSE could not be regarded as completely green due to the strong
oxidizing characteristics of perchlorate anions making it potentially explosive [143].

Unfortunately, superconcentrated acetate solutions are intrinsically alkaline because
of acetate anions’ hydrolysis reaction, but mild neutral electrolytes based on a low-cost
Na perchlorate WiSE can achieve an ionic conductivity of 64.2 mS cm−1 and an ESW of
2.8 V, enabling EDLCs with an operating voltage of 2.3 V [136]. Recently, a study was
conducted to investigate a safer and less corrosive circumneutral WiSE prepared from a
superconcentrated aqueous solution of ammonium acetate that shows a pH in the range
7–8 and an ionic conductivity that is comparable to or higher than that of typical organic
electrolytes [144]. Molecular dynamic simulations gave an atomic-level view of the system;
the solution’s structural changes at high concentrations, induced by intense interactions
with both ions and/or molecules of water accompanying the hydrogen bonding formation,
causes an increase in pH and a decrease in ion mobility. Furthermore, molecular dynamic
simulation revealed that, moving from conventional solutions to concentrated solutions,
the mixture moves from an “ion in water” to an “ionic-liquid-like” behavior [144]. The
26.4 mol kg−1 WiSE of ammonium acetate exhibited an ESW of 2.22 V at Al foil, 2.9 V at
glassy carbon, and a remarkable value of 3.4 V at Ti grid. Then, a SC was assembled using
this WiSE and AC electrodes prepared from Argan shell. The device showed excellent
specific capacitance, low resistance, a cell voltage of 1.2 V, and operative temperatures
ranging from −10 ◦C to +80 ◦C [144]. The combination of WiSEs and AC electrodes derived
from natural resources can pave the way for a new generation of sustainable SCs that are
intrinsically safe and have performances comparable to that those derived from organic
solutions.

5. Summary

The present review discussed novel electrode materials, alternative electrolytes, and
the storage mechanisms governing SCs, particularly regarding the use of AC electrodes
obtained from widely available and low-cost raw materials. The compatibility of these
electrodes with aqueous electrolytes and related advantages have been highlighted in
terms of safety and electrochemical performance. The characteristics of AC obtained from
abundant natural resources regarding structural and textural proprieties, interconnected
porous structure, and micro- and mesopore size distribution have been discussed with
respect to related electrochemical properties. Such characteristics make these materials
compatible with aqueous electrolytes with high salt concentrations. These solutions, known
as WiSEs, show an ESW up to 3 V, paving the way for the development of aqueous SCs
with high cell voltages and high energy densities. Some WiSEs based on low-cost salts
such as K acetate, Na perchlorate, and ammonium acetate are comparable to LiTFSI-based
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WiSEs. These low-cost WiSE systems show performances that are comparable to or even
superior than LiTFSI-based WiSEs, helping to reduce costs, preserve the environment, and,
as a result, showing promise for deployment on a commercial level.
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