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Abstract

BACKGROUND: The use of  zoophytophagous predators in protected crops has been widely

adopted  to  manage  pests  in  Southern  Europe.  We  hypothesized  plant  defence  responses

would be induced by zoophytophagous predators and this induction could affect plant virus

occurrence; the phytophagy of these predators induces plant defences similarly to that of viral

infection.  Therefore, we evaluated whether or not mirid predator activated plant defences

limited the accumulation of Tomato Spotted Wilt Virus (TSWV) in mechanically infected sweet

pepper. 

RESULTS: Our results revealed TSWV accumulation in mirid-punctured plants to be significantly

lower  than  in  intact  plants;  this  is  most  likely  associated  with  the  upregulation of  the  JA

pathway triggered by mirid phytophagy. 

CONCLUSION: Activation of induced defences by mirid predators has been demonstrated for

the first time to limit the accumulation of TSWV in sweet pepper. This novel approach can offer

new control strategies for the management of plant diseases.

Keywords: Nesidiocoris  tenuis,  Macrolophus  pygmaeus,  Tomato  spotted  wilt  virus,  plant
defences, biological control
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1 INTRODUCTION

In Europe, throughout the last ten years, biological control in protected crops has been widely

adopted for pest management.1–3 The case of sweet pepper and tomato in South-eastern Spain

could be a paradigmatic example of how  biological control based on the use of omnivorous

predators  has  environmentally,  socially  and  economically  transformed  an  entire  region  of

more  than  30,000  ha  of  protected  crops.4,5 In  this  short  period  of  time  the  agricultural

paradigm in this zone has evolved from chemical dependency to the implementation of an

integrated  pest  management  program  based  on  the  release  and  conservation  of  natural

enemies; where preventive and sustainable control methods are now prioritized.3,6 

In sweet pepper, (Capsicum annuum),  the release of two generalist predators native to the

Mediterranean  region,  the  predatory  mite  Amblyseius  swirskii (Athias-Henriot)  (Acari:

Phytoseiidae)  together  with  the  minute  pirate  bug  Orius  laevigatus (Fieber)  (Hemiptera:

Anthocoridae) results in highly efficient management of the two key sweet pepper pests; the

western flower thrip,  Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and  the

whitefly,  Bemisia  tabaci (Gennadius)  (Hemiptera:  Aleyrodidae).7–9 Moreover,  recent  studies

with the mirid predators,  Nesidiocoris tenuis  (Reuter) and  Macrolophus pygmaeus  (Rambur)

(Hemiptera: Miridae), sustained even better biological control results in this crop since these

two  are  also  able  to  control  aphid  species.10–12 Similarly  in  tomatoes,  the  cosmopolitan

predatory mirid  N. tenuis enables effective control of  B. tabaci and the tomato borer  Tuta

absoluta (Meyrick)  (Lepidoptera:  Gelechiidae),6,13,14 an  important  invasive  tomato  pest

detected for the first time in Spain in 2007.15 

Zoophytophagy is a special case of omnivory; predators belonging to this group use a mixture

of  both  prey  and  plant  resources  to  complete  development  and  reproduction.16

Zoophytophagous predators can affect herbivore populations directly by preying upon them as

well as indirectly through plant-mediated effects.17–27 Plant responses to herbivory feeding are

known  to  result  in  a  stunning  array  of  structural,  chemical,  and  protein-based  defences

designed to detect invading organisms and stop them before they are able to cause extensive

damage.28–31 Zoophytophagous  predators  have  been  observed  to  induce  both  direct  and

indirect plant defences in sweet pepper and tomato. In sweet pepper, the phytophagy of the

anthocorid  O. laevigatus and the mirids  N. tenuis and M. pygmaeus activated the jasmonate

acid (JA) and salicylic  acid (SA) signalling pathways and triggered the release of  an altered

blend  of  volatiles  (green  leaf  volatiles,  terpenoids  and  methyl  salicylate).  Those  volatiles

repelled B. tabaci and F. occidentalis and at the same time attracted the whitefly parasitoid,
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Encarsia  formosa (Gahan)  (Hymenoptera:  Aphelinidae).  26,27,32 Similar  results  have  been

obtained in tomato with the  mirid predators,  N. tenuis,  M. pygmaeus and  Dicyphus bolivari

(Lindberg)  [= D.  maroccanus (Wagner)],  yet  the specific  responses  were attributed to each

predator species in these cases. Thus, while plants punctured by N. tenuis  repel B. tabaci and

T. absoluta, the phytophagy of M. pygmaeus and D. bolivari did not repel B. tabaci and even

attracts  T.  absoluta.  In  contrast,  the  feeding  activity  of  these  three  mirids  results  in  an

attraction of E. formosa.18,20–24 Furthermore, the feeding behaviour of these zoophytophagous

predators has been verified to induce direct defences through the activation of the JA pathway

with an increase in protease inhibitor activity.20,23,24 Plants previously induced by mirids have

been found to reduce the establishment and performance of important pests such as B. tabaci,

F.  occidentalis and  the  two-spotted  spider  mite, Tetranychus  urticae (Koch)  (Acari:

Tetranychidae) in sweet pepper,19,26 along with T. urticae in tomato.18,20,24

Regardless of the above mentioned studies, more investigations are needed to  expand our

understanding  of  plant  mediated  effects  on  pest  and  disease  management  induced  by

zoophytophagous  predators.  Interestingly,  an  important  facet  of  research,  previously  not

addressed  but  already  hypothesized,  is  the  evaluation  of  plant  mediated  effects  of

zoophytophagous predators on viral and microbial infection.18,33 Recently, beneficial microbes

have  been  observed  to modulate  the performance  of  zoophytophagous  predators.34,35 The

colonization of tomato plants by the endophytic fungi  Fusarium solani strain K reduces the

capability of N. tenuis to induce necrotic rings on tomato stems and leaves. The upregulation

of ethylene and JA pathways induced by  F. solani give protection to tomato from  N. tenuis

feeding.34 An  interaction  between  the  pepino  mosaic  virus  (PepMV)  and  the  mirid  M.

pygmaeus has  been  also  found.  The  severity  of  crop  damage  caused  by  M. pygmaeus is

significantly enhanced when tomato plants are infected with PepMV.36 This interaction was

attributed to the antagonistic effects of  SA-mediated responses on JA-mediated responses,

since PepMV infection induces the SA defence pathway37 meanwhile  M. pygmaeus mainly

activates  the  JA  pathway.20, 22 Additionally,  tomato  plants  with  high  expression  of  methyl

jasmonate  are  less  likely  to  be  infected  with  the  Tomato  yellow  leaf  curl  virus (TYLCV).38

Therefore, we hypothesized that possible interaction can occur between induced defences by

zoophytophagous predator influence the incidence of plant viruses. 

In this research, we focused on evaluating whether plant defences triggered separately by N.

tenuis or  M. pygmaeus affect the multiplication of the  Tomato Spotted Wilt Virus (TSWV) in

sweet pepper. TSWV is one of the most harmful plant viral pathogens, ranking second in the

list of the most important plant viruses worldwide.39,40 It is transmitted in a persistent manner
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by several thrips species; with  F. occidentalis being its main vector. Eradication or control of

TSWV  has  become  even  more  difficult  by  the  emergence  of  resistant  TSWV  isolates  in

pepper.41 Herein, we evaluated the effect of plant defence activation on TSWV multiplication

by quantifying TSWV RNA accumulation. Plant defence activation was confirmed by analyzing

gene expression of  defence pathways.  The implications of  these results  to  improve TSWV

disease management in pepper are discussed.

2 MATERIAL AND METHODS

2.1 Plants, insects, and virus isolate

Sweet  pepper  plants  [Capsicum  annuum (Solanaceae)]  cv (‘Salmerón’)  (California  rojo,

Mascarell semillas S.L, Valencia, Spain) were used in the experiments herein described. Two

weeks  after  germination  the  seedlings  were  transplanted  to  plastic  pots  (8  ×  8  ×  8  cm)

containing a mixture of soil with peat moss and were maintained undisturbed at 25 ± 2°C, with

constant relative humidity of 65% ± 5%, and a photoperiod of 14:10 h (light: dark). Plants were

irrigated twice a week. Pesticide-free sweet pepper plants were used for the experiments at 6

weeks of age (approximately 20 cm high). Fourth instar nymphs of N. tenuis and M. pygmaeus

were provided directly by Koppert Biological Systems, S.L. (Águilas, Spain). Tomato spotted wilt

virus, TSWV PVR isolate (TSWV-PVR), from the IVIA plant virus collection was used.42 The virus

was  maintained  in  Nicotiana  benthamiana Domin  (Solanales:  Solanaceae).  Preliminary

research showed that the sweet pepper cultivar used in our experiments can be successfully

infected with TSWV-PVR when mechanically inoculated.

2.2 Biological assays

Three  treatments  were  assayed:  i)  N.  tenuis-punctured  plants,  ii)  M. pygmaeus-punctured

plants and iii) intact plants (control plants free of arthropod contact). Mirid-punctured plants

were obtained by individually exposing sweet pepper plants to either 20  N. tenuis or 20  M.

pygmaeus fourth instar nymphs in a 30 x 30 x 30 cm plastic cage (BugDorm-1 insect tents;

MegaView Science Co.,  Ltd, Taichung, Taiwan).  Nymphs were selected instead of adults to

avoid defence induction by adult oviposition.21 All nymphs were removed twenty-four hours

after placing them on the plants. Ten replicates per treatment were considered. Each replicate

consisted of a plastic cage 60 x 60 x 60 cm (BugDorm-2; MegaView Science Co., Ltd, Taichung,

Taiwan), inside which 4 pepper plants of the corresponding treatment were introduced. A total

of 40 plants were used per treatment. Cages were maintained in a climate chamber at the

same environmental conditions as described above (Fig. 1).
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Once the experimental design was assembled, six pepper plants per treatment were removed

to quantify the transcriptional response of the genes involved in defence responses. The apical

region of the sweet pepper plants (the first 5 cm of the plant formed by the apical stem and

young leaves) were cut and then ground in liquid nitrogen for RNA extraction. Next, the leaves

of all  remaining pepper plants for all  three treatments (34 plants in each treatment) were

mechanically  inoculated  with  TSWV-PVR  (Fig.  1).  Inoculation  was  performed  by  rubbing  a

dilution of the following leaf extract inoculation solution (1:20, w:v) onto pepper leaves with a

cotton  bud  and  celite  (diatomaceous  earth).43 The  inoculation  solution  was  obtained  by

grinding 250 mg of TSWV infected N. benthamiana leaves in a mortar in a mixture containing 5

ml  0.05  M  phosphate  buffer,  pH  7.2;  0.2%  2-mercaptoethanol;  1%  polyvinylpyrrolidone

(average molecular weight 10.000).43

One plant per replicate and treatment was removed at  7, 14 and 21 days after inoculation

(dpi), respectively, to quantify virus accumulation (n=10). As above, the apical region of each

plant was excised and immediately immersed in liquid nitrogen for subsequent RNA extraction

(Fig.  1).  The  remaining  four  plants  per  treatment  were  used  to  visually  detect  the  virus

symptoms.

In addition, a negative control treatment for the virus inoculation was also performed (mock

inoculation).  For  this,  ten  plastic  cages  were  also  arranged  with  the  same  conditions  as

described  above.  Four  intact  pepper  plants  were  placed  inside  each  cage.  Samples  were

collected at 7, 14, and 21 days post inoculation (dpi) to check and verify the absence of any

contamination. 

2.3 Quantification of TSWV infection by RT-qPCR 

Total RNAs from 0.1 g of fresh leaf tissue from TSWV-infected and non-infected sweet pepper

plants  were  extracted  using  TRIzol  (Invitrogen,  CA,  USA)  as  described  above.  RNA

concentrations  were  measured  in  duplicate  with  the  UV-Vis  spectrophotometer  nanodrop

1000  (Thermo  Scientific,  Waltham,  MA,  USA)  and  adjusted  to  approximately  10  ng/µl  to

normalize  the  different  extractions.  Aliquots  were  stored  at  -80°C  until  use.  RT-qPCR was

carried out using the LightCycler® 480 System (Roche Molecular Systems, Inc., Switzerland),

using  25  μL  of  a  reaction  mix  that  contained  12.5  μL  LightCycler®480  Probe  Master  Mix

(ROCHE), 4.38 μL of RNase-free water, 15 units (U) RT Multiscribe Reverse Transcriptase (Life

Technologies, Rockville, MD, USA), 2 U of RNase inhibitor (Applied Biosystems, Foster City, CA,

USA), 5 μM of primers 1M-F and 1M-R, 0.25 μM TaqMan®MGB probe and 5 μL of total RNA
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(∼10 ng μL−1). The Thermo cycling conditions consisted of reverse transcription at 48°C for 30

min, incubation at 95°C for 10 min, 45 cycles of 95°C for 15 s and 60°C for 1 min.44 

2.4 Plant gene expression 

In a previous work, we showed how sweet pepper plants cv Lipari were activated defensively

when exposed to adults of both N. tenuis and M. pygmaeus.26 In this work, unlike the previous

work,  the  cultivar  Salmeron  and  fourth  instar  nymphs  of  both  mirid  species,  were  used.

Therefore,  to  confirm  that  sweet  pepper  plants  used  in  this  experiment  were  defensively

activated, plant gene expression analysis  were performed. The relative expression of three

marker  genes,  commonly  used  as  indicators  of  JA,  SA  and  ABA-related  defences,  was

estimated:26 (i)  PIN2 (wound-induced proteinase inhibitor II precursor) a marker gene for JA,

(ii)  PR1  (basic  PR-1 protein  precursor)  a  marker  gene for  salicylic  acid  (SA),  and (iii)  ASR1

(abscisic acid stress ripening protein 1) a marker gene for ABA signalling pathway. Total RNA

(1.5  µg)  was  extracted using  TRIzol  (Invitrogen,  CA,  USA)  according  to  the manufacturer’s

instructions.23,26 The RNA was treated with a Turbo DNA-free DNase kit (Applied Biosystems)

according to the manufacturer’s protocol to eliminate any traces of genomic DNA. cDNA was

later synthesized using a prime script™ RT reagent kit  (perfect real time) (TAKARA Bio, CA,

USA). Real-time PCR amplifications were performed with Maxima SYBR Green qPCR Master

Mix (Thermo Fisher Scientific, MA, USA). PCR reactions were run in duplicate, in accordance

with manufacturer recommendations. Quantitative PCR was carried out using the LightCycler®

480  System  (Roche  Molecular  Systems,  Inc.,  Switzerland),  under  standard  amplification

conditions.26 EF1 (elongation factor-1) was used as a standard control gene for normalization. 

2.5 Statistical analysis

The relative expression of  defence genes was analysed using one-way analysis  of  variance

(ANOVA),  followed by  a  comparison  of  means  (Tukey’s  test)  at  𝛼 <  0.05.  Data  from RNA

quantification of TSWV isolates were log (concentration +1) transformed prior to analysis using

ANOVA to differentiate between treatments for each of the three post inoculation days (7, 14

and 21 dpi), followed by comparison of means (Tukey’s test) at 𝛼 < 0.05.

3 RESULTS 

3.1 Plant defence by mirids restrict TSWV infection
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TSWV titer increased with time in intact sweet pepper plants; it reached a maximum at 21 dpi.

However, it remained low and almost constant with time in both N. tenuis- and M. pygmaeus-

punctured plants (Fig. 2). No significant differences for TSWV titer were found at day 7 nor day

14  post  inoculation  (F2-29 =  1.018;  P =  0.3748  and  F2-29 =  1.788;  P  =  0.1865,  respectively).

However,  at  21  dpi  TSWV  titer  was  significantly  higher  in  intact  sweet  pepper  plants  as

opposed to that in plants punctured with both mirids (F2-29 =36.25; P < 0.0001). At day 21 intact

sweet pepper plants presented chlorotic flecking on the leaves, while these symptoms were

not observed in either of the two mirid phytophagy exposure treatments (Fig.  3).  No virus

contamination was detected in the negative control plants.

3.2 Phytophagy of mirids alters JA pathway

Both N. tenuis and M. pygmaeus were found to influence the upregulation of JA pathways in

the apical part of exposed sweet pepper plants when compared to intact plants. The relative

expression of the corresponding defence genes,  PIN2 (JA pathway), significantly increased in

mirid-punctured plants (F2-17  = 7.251;  P = 0.0063; Fig. 4a) compared to intact plants. Only  N.

tenuis was able to upregulate the gene PR1 (SA pathway) (F2-17 = 7.440; P = 0.0057; Fig. 4b). In

contrast, the  ASR1 gene (ABA pathway) was not significantly upregulated in mirid-punctured

plants when compared to intact sweet pepper plants (F2-17 = 1.190; P = 0.3313; Fig. 4c).

4 DISCUSSION 

Two predators used extensively in biological control programs have been found, for the first

time, to limit the accumulation of one of the most important widespread plant viruses. The RT-

qPCR revealed that three weeks after the mechanical inoculation of TSWV, the number of RNA

copies in mirids-punctured plants were significantly lower in comparison to intact plants.

The production of a number of plant hormones are directly related to the process of virus

infection; especially the JA and SA pathways.45 Some components of these pathways function

as necessary signalling molecules that modulate responses to different stimuli.31,47,48 Exogenous

treatments with methyl jasmonate (MeJA) or JA have been shown to reduce incidence of viral

infection. For example, tomato plants treated with MeJA were less infected with TYLCV.37 The

accumulation  of  Cucumber  mosaic  virus  (CMV)  in  Momordica  charantia L.  (Cucurbitales:

Cucurbitacea) was significantly suppressed when plants received an exogenous application of

JA.49 On the other hand, the infection process of CMV in M. charantia was almost unaffected

by the exogenous application of SA, hence revealing how JA, not SA, inhibited virus infection. 49

The activation of  the JA pathway is  precisely what the phytophagy of  the mirids in sweet
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pepper plants stimulates,  which could be the explanation for the minor infection by TSWV

shown in our  experiments.  Nevertheless,  SA also plays an important role in plant defence

against certain plant viruses. SA exogenous treatments have been reported to reduce the coat

protein levels of Tobacco Mosaic Virus (TMV) and Potato Virus X (PVX) during their interactions

with  N. benthamiana plants.46 Both MeJA and Methyl salicylate (MeSA) are required for the

systemic resistance response of N. benthamiana plants against TMV.50 The foliar application of

MeJA at  early  stages  of  TMV infection followed by  a later  application of  SA activated the

strongest systemic defence response and upregulated the expression of defence related genes

against TMV.50 This is also consistent with another study which showed plant resistance to a

broad spectrum of RNA viruses could be improved with the application of JA and SA. 47 Future

identification of the roles of hormones in plant-virus interactions, how these hormones may

interact with other biotic stressors, and cross talk among hormone pathways is still needed to

fully understand the mechanisms by which plants resist infection. 

Sweet pepper plants defensively activated by mirids became less attractive to F. occidentalis;26

the TSWV vector. Interestingly,  TSWV infected plants are more attractive to the vector,  F.

occidentalis, than healthy plants; indeed thrips themselves develop faster on TSWV infected

plants.48 How mirid induced plant responses influence these TSWV-thrips interactions is not

known, hence further research is needed to evaluate how mirid plant puncturing can limit viral

infection  of  TSWV  transmitted  by  thrips.  However,  not  only  the  mutualistic  interactions

occurring between mirids and plants but also the interactions between vectors and viruses can

affect the final response of the plant.48 Additionally, environmental conditions, the presence of

alternative food on the plant (pollen and nectar) and the presence of prey are crucial factors to

be considered for further evaluation of plant mediated effects by mirids and its impact on the

accumulation of TSWV in sweet pepper plants. 

Current control strategies for TSWV include elimination of infected plants, use of clean stock

material, exclusion of thrips with greenhouse screens or air locks, and introduction of natural

enemies.49–51 As these control strategies are only partially successful, additional measures are

needed to limit virus spread. Until recently,  resistance to TSWV was obtained through the

introgression  of  the  two  main  resistance  genes,  Sw5 and  Tsw,  in  tomato  and  pepper,

respectively.  However,  the  emergence  of  resistant  TSWV isolates  (as  the one  used  in  our

experiment )43 has limited the durability of this strategy.52,53 Therefore, breeding for durable

TSWV resistance in plants is still a challenge upon which our results could provide new insight

into plant viruses resistance. Probably, the activation of JA signalling pathway through genetic

and chemical manipulation might improve plant defence against plant viruses.  
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The possible implementation of strategies based on the above mentioned hypothesis has been

verified in young plants; the size which is similar to those habitually transplanted from the

nursery.  Previously,  nursery  inoculation  with  mirids  was  proposed  since  the  activation  of

defence responses reduces the infestation of important pests such as the whitefly, B. tabaci in

sweet  pepper  and tomato plants23,26 along with  the two-spotted spider  mite, T.  urticae  in

tomato plants.18 Our results support this strategy since the plants would also be protected

from diseases such as the TSWV. In this sense, sweet pepper plants can be kept defensively

activated (upregulated JA pathway) up to 14 days after a single 24 h exposure to mirids. 26 The

same time period of defence activation was obtained also in  M. pygmaeus-infested tomato

plants.20 In zones where transplanting occurs at the end of summer there is great insect vector

pressure, thus protecting young plants from viral infection is crucial. Therefore, these results

promote the use of biological control which could limit viral incidence at the beginning of the

cultivation period. Further research must clarify the duration of defence activation under field

conditions when a part of high vector pressure, the plant is subjected to multiple infestations

which could work synergistically or antagonistically with each other to activate or block the

metabolic pathways responsible for defences.54

Herein included is a new perspective which had not been previously considered in the use of

biological control programs with zoophytophagous predators; the ability of  N. tenuis and M.

pygmaeus to influence the reduction of TSWV infection incidence. New research lines should

explore defence response activation against other diseases such as those caused by fungi and

bacteria  along  with  how  pathogenic  microbes  may  modulate  mirid  performance.34,35 In

conclusion, our results provide insights for future studies that can further strengthen pest and

disease management programs based on these plant-predator-virus interactions.
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Figure captions

Figure 1.

Time line presenting pepper defence activation by either  N. tenuis or  M. pygmaeus fourth

instar  nymphs,  gene  expression  analysis,  TSWV inoculation on  mirid-punctured  plants  and

intact plants, and TSWV quantification using RT-qPCR at 7, 14 and 21 days post inoculation

(dpi). 

Figure 2. 

Quantification of  Tomato spotted wilt virus by real time quantitative RT-PCR at 7, 14 and 21

days post inoculation (dpi) in sweet pepper plants with three treatments: I) intact plants, II)

punctured by  N. tenuis,  and III)  punctured by  M. pygmaeus.  Bars correspond to the mean

TSWV  RNA  titer  (Log  of  the  number  of  TSWV  RNA  molecules)  from  ten  plants  (n  =  10).

Standard  errors  are  represented  by  vertical  segments.  Bars  with  different  letters  are

significantly different (ANOVA with Tukey’s multiple comparison test; P < 0.05).

Figure 3.

Symptoms of TSWV in sweet pepper leaves at 21 days post inoculation (dpi), (a) intact plants,

(b) N. tenuis-punctured plants and (c) M. pygmaeus-punctured plants. 

Figure 4.

Relative expression of defensive genes  PIN1 (Jasmonic acid pathway) (a),  PR1 (Salicylic acid

pathway) (b) and  ASR1 (Abscisic acid pathway) (c), in the apical part of sweet pepper plants

previously punctured by either N. tenuis  or M. pygmaeus fourth instar nymphs, and in intact

plants. Data are presented as the mean of six independent analyses of transcript expression

relative  to  a  housekeeping  gene  ±  SE  (n  =  6).  Bars  with  different  letters  are  significantly

different (ANOVA with Tukey’s multiple comparison test; P < 0.05).
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Figure 2.
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Figure 4.
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