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Binarization Methods for Motor-Imagery
Brain–Computer Interface Classification

Michael Hersche, Luca Benini, and Abbas Rahimi

Abstract—Successful motor-imagery brain–computer interface
(MI-BCI) algorithms either extract a large number of hand-
crafted features and train a classifier, or combine feature extrac-
tion and classification within deep convolutional neural networks
(CNNs). Both approaches typically result in a set of real-valued
weights, that pose challenges when targeting real-time execution
on tightly resource-constrained devices. We propose methods for
each of these approaches that allow transforming real-valued
weights to binary numbers for efficient inference. Our first
method, based on sparse bipolar random projection, projects
a large number of real-valued Riemannian covariance features
to a binary space, where a linear SVM classifier can be learned
with binary weights too. By tuning the dimension of the binary
embedding, we achieve almost the same accuracy in 4-class MI
(≤1.27% lower) compared to models with float16 weights, yet
delivering a more compact model with simpler operations to
execute. Second, we propose to use memory-augmented neural
networks (MANNs) for MI-BCI such that the augmented memory
is binarized. Our method replaces the fully connected layer of
CNNs with a binary augmented memory using bipolar random
projection, or learned projection. Our experimental results on
EEGNet, an already compact CNN for MI-BCI, show that it
can be compressed by 1.28× at iso-accuracy using the random
projection. On the other hand, using the learned projection
provides 3.89% higher accuracy but increases the memory size
by 28.10×.

Index Terms—EEG, binary embedding, sparse random pro-
jection, SVM, binarized memory-augmented neural networks.

I. INTRODUCTION

BRAIN–COMPUTER interfaces (BCIs) enable a commu-

nication channel between a user and an external device

through intentional modulation of brain signals, e.g., motor

imagery (MI) of movement of a part of the body [1]. A BCI

aims at recognizing human intentions from the analysis of spa-

tiotemporal neural activity, typically recorded non-invasively

by a number of electroencephalogram (EEG) electrodes. Such

information can enable controlling games [2], [3], driving a

wheelchair [4], and even motor rehabilitation after stroke [5].

Accurate EEG decoding of MI is a challenging task due to

inter- and intra-subject variabilities [6], [7]. Most approaches

train a personalized model per subject to deal with the high

variability of EEG signals between subjects [8], [9], [10], [11].

Traditional approaches use well-known filter bank common

spatial patterns (FBCSP) [10], or Riemannian covariance fea-

tures [11] followed by an SVM or LDA classifier. Among
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them, multi-spectral and temporal unsupervised Riemannian

features with a linear SVM classifier [9] achieve the highest

average classification accuracy (75.47%) among nine subjects

on the 4-class BCI competition IV-2a dataset [12].

Recently, convolutional neural networks (CNNs) have

gained increasing attention in the MI-BCI field, reducing the

data pre-processing steps and eliminating the procedure of

hand-crafting features. One of the first successful CNN in

MI classification was FBCSP-inspired Shallow ConvNet [8].

The recent TPCT network [13] achieves the state-of-the-art

(SoA) accuracy of 88.87% on the 4-class MI BCI Competition

IV-2a dataset. However, it requires a large number of 7.78 M

trainable weights and 1.73 G multiply-accumulate (MAC) op-

erations in inference. In contrast, more compact models such

as EEGNet [14] provide a good trade-off between the number

of trainable parameters, complexity, and accuracy.

Both feature-based and CNN-based approaches inherently

extract a large number of real-valued features that significantly

increase the number of weights and complexity of a classifier.

Such a high memory footprint and computational complexity

prohibit the deployment of the model on a resource-limited

device, e.g., a microcontroller, for real-time, near-sensor clas-

sification at the edge.

One viable option is to transform those features to binary

space with distance-preserving methods such as random pro-

jection [15]. Interestingly, the weights in the matrix of random

projection do not need to be stored (i.e., can be rematerialized
by a random function on the fly), or can be realized by

emerging memristor [16], [17], [18], [19], [20] and optical [21]

devices. A readout function layer can then effectively analyze

the projected features for various classification tasks, e.g., in

EEG [22], [23], electrocardiography (ECG) signals [24], [25],

and electrocorticography (ECoG) [26]. On the other hand, for

the CNN-based approaches in MI-BCIs, quantization methods

to 8-bit fixed-point weights and activations are developed [27],

but having a CNN model with full, or partial, binary weights

is still missing in MI-BCIs.

In this paper, we extend our work in [28] by proposing

methods to binarize classification models for feature-based and
CNN-based MI-BCI classification approaches, summarized in

Fig. 1. For the first approach presented in [28], we propose

to embed multi-spectral, real-valued Riemannian covariance

features effectively to d-dimensional binary Hamming space

using bipolar sparse random projections. In the binary space, a

linear SVM is trained and binarized such that classification is

solely based on computationally efficient Hamming distance

calculations. We extend [28] by a second approach, where we

propose to apply the concept of memory-augmented neural

networks (MANNs) [29], [30], [31] for the CNN-based MI-
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Fig. 2. Main results of this work: Average classification accuracy (%)
vs. memory footprint on BCI Competition IV-2a. Our proposed binarized
classifiers (bold labels) are Pareto optimal, connected with the green line.

BCI classifiers for the first time. Inspired by [31], we replace

the fully connected layer of the EEGNet with an augmented

memory whose weights are binary. Such MI-MANN architec-

ture flexibly covers a wide range of classification accuracies

based on the available memory: using a bipolar random

projection compresses the EEGNet at the same accuracy, while

using a learned projection expands the EEGNet and provides

higher accuracy.

We compare the memory footprint and accuracy of our

methods on the 4-class MI-dataset of the BCI competition IV-

2a, summarized in Fig 2. Our binarization methods achieve

Pareto-optimality with the following main results:

• Randomly projecting multi-spectral Riemannian features

to binary Hamming space at the same dimension as the

original features, and training a binarized SVM, yields

7.92% higher classification accuracy compared to plain

binarized SVM without random projection. Increasing the

binary dimension to d=100 000 improves the accuracy

to 73.55%, which is only 1.27% lower than the original

SVM in float16, but requires a 1.51× smaller memory

footprint.

• Random projections enable the binarization of the aug-

mented memory in MI-MANN (RP) at the same accuracy

as EEGNet (72.32%) with a 1.28× smaller memory

footprint. Thanks to the capability of MI-MANN to train
the feature extractor (i.e., EEGNet) to generate binary

vectors, the dimension of the binary Hamming space

could be reduced to d=256. Additionally, allowing the

projection in MI-MANN (LP) to be trainable, too, yields

76.21% accuracy but increases the memory footprint by

27.28×, compared to EEGNet. Further reducing the di-

mension of learned projection to d=128 achieves 75.40%,

which is 1.81% more accurate and 1.29× smaller than

Shallow ConvNet.

We have organized the remainder of this article as follows.

We introduce the BCI Competition IV-2a dataset and related

work for MI classification of both feature-based and CNN-

based approaches in Section II. Section III describes the pro-

posed binarization of the classification of large multi-spectral

Riemannian features using sparse bipolar random projection

and binarized SVM. Then, in Section IV, we present MI-

MANN, which binarizes features in EEGNet using learned

or random projections and a binary augmented memory. In

Section V, we evaluate both feature-based and CNN-based

approaches and the proposed binarized versions on the BCI

Competition IV-2a according to classification accuracy, mem-

ory footprint for storing model parameters, and computational

complexity in inference. Section VI concludes the paper.

II. BACKGROUND

A. BCI Competition IV-2a dataset

The BCI Competition IV-2a dataset [12] consists of EEG

data from nine different subjects with four different MI tasks,

namely the imagination of the movement of the left hand,

right hand, both feet, and tongue. Two sessions were recorded

on two different days. For each subject, a session consists of

72 trials per class, yielding 288 trials in total. One session

is used for training and the other for testing exclusively. The

signal was recorded with 22 EEG electrodes, bandpass filtered

between 0.5 Hz and 100 Hz, and sampled with 250 Hz. In

addition to the 22 EEG channels, three electrooculography

(EOG) channels give information about the eye movement.

An expert marked trials containing artifacts based on the EOG

signal. This way, 9.41% of the trials were excluded from the

dataset. The number of trials per class remains approximately

balanced.
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B. Feature-based MI-BCI Classification

MI is still one of the most challenging paradigms to connect

the brain with an external device. The main challenge in MI is

the high variance in data between different recording sessions

and different subjects; thus, most classification approaches

train a separate model per subject. Due to the limited amount

of training data per subject, traditional MI-BCIs rely on

hand-crafted feature extractors and relatively simple, linear

classifiers. EEG signals are typically pre-processed using

tunable spectral and spatial filters followed by log-energy

feature extraction, with filter bank common spatial pattern

(FBCSP) [10] being the winner of the BCI Competition IV-2a

and achieving an accuracy of 67%. The multi-spectral features

are usually classified using a support vector machine (SVM), a

linear discriminant analysis (LDA), or a regularized LDA [7].

An alternative approach is to directly manipulate spatial

EEG covariance matrices using the dedicated Riemannian

geometry [32], [11]. Analogous to the FBCSP approach, the

EEG signal can be divided into multiple frequency bands,

where band-specific Riemannian features are calculated [9].

A linear SVM on more than 32k Riemannian features, lead-

ing to overall 1.751M trainable parameters, has achieved a

high classification accuracy of 75.47% [9] on the 4-class

MI-BCI competition IV-2a dataset. Reducing the number of

Riemannian features to 11k yields slightly lower classification

accuracy of 74.82%; however, it reduces both compute and

memory requirements by 3×.

C. CNN-based MI-BCI Classification

In convolutional neural networks (CNNs), the feature ex-

tractor and classifier can be combined and trained simultane-

ously. While being successful in image classification, CNNs

are gaining attention in MI-BCIs as well [7]. Schirrmeister

et al. [8] provide an elaborate study on CNN architectures

for MI-BCI, where the small Shallow ConvNet achieves an

accuracy of 73.59% on the 4-class dataset. Shallow ConvNet

is inspired by the classic spectral and spatial filtering with

log-energy features and requires 47 324 parameters.

CNN++ [33] could further improve the accuracy to 81.1%

by proposing a much deeper network, which results in a

larger model with 221 k parameters. However, CNN++ uses

not only the 22 EEG channels but also the 3 EOG channels for

classification, which was not allowed in the BCI Competition

IV-2a. TPCT [13] is the current SoA network, achieving

an accuracy of 88.87%. It spatially arranges frequency band

features of every EEG channel on an image according to their

electrode positions and classifies them with a VGG-like CNN.

TPCT is currently not only the most accurate CNN on the BCI

Competition IV-2a, but also the largest with 7.78 M trainable

parameters. The large model sizes of CNN++ or TPCT prevent

their deployment on portable, resource-constrained embedded

devices.

On the contrary, EEGNet [14] is a much smaller network

requiring only 1716 trainable parameters. It features a similar

structure like the Shallow ConvNet. However, it uses spatial

separable convolutions and more pooling layers, which reduces

the number of weights of the convolutional layer and the size

of the fully connected layer. EEGNet enables not only the

classification of MI, but also of P300 event-related potential,

feedback error-related negativity, and movement-related corti-

cal potential. Its flexibility and small size, however, comes at

the cost of significantly lower accuracy, e.g., 67% for 4-class

MI. In [34], EEGNet was modified by changing the pooling

layers and expanding the network to 2036 trainable parameters

for achieving 72% accuracy.
The small model size of EEGNet allows its deployment on

a tightly resource-constrained embedded device, which would

not be possible with larger models like CNN++ or TPCT.

In [35], EEGNet was applied to the large Physionet Motor

Movement/Imagery Dataset [36], achieving SoA accuracy. The

model was ported to an ARM Cortex-M7 using CUBE.AI,

i.e., the X-CUBE-AI expansion package of STM32CubeMX.

In Q-EEGNet [27], all weights and activations are quantized

to 8-bit fixed-point using quantization-aware training, which

achieved 70.8% on 4-class MI. On a parallel ultra-low power

(PULP) System-on-Chip [37], the quantization as well as

other hardware-aware optimizations allowed for a 252× more

energy-efficient inference of EEGNet compared to the imple-

mentation on an ARM Cortex-M7.
This work exclusively studies the last classification layer’s

quantization in both feature-based Riemannian and CNN-

based EEGNet approaches, summarized in Fig. 1. In both

cases, we use random (or learned) projections to map the

real-valued features to the binary space. Fixed multi-scale

Riemannian features are projected to 100 000-d Hamming

space, where a linear SVM can be trained and binarized,

too. Moreover, the last layer of EEGNet is binarized with a

random or learned projection, and augmented with a binary

memory. We train the EEGNet feature extractor to generate

compressed binary representations, which reduces the required

binary space to d=256.

III. BINARIZING RIEMANNIAN FEATURES WITH SPARSE

BIPOLAR RANDOM PROJECTIONS

This section presents the first main contribution of the paper,

which is to binarize multi-spectral Riemannian features with

sparse bipolar random projections, and classify them with a

binarized SVM, shown in Fig. 3.

A. Riemannian Covariance Features
We use a recent approach [32], which extracts features from

EEG by directly manipulating spatial EEG covariance matrices

using the dedicated Riemannian geometry. First, we estimate

the covariance matrix C := C(i) of a trial i from the multi-

channel EEG signal X := X(i) ∈ R
nch×ns with nch channels

and ns samples:

C =
1

ns − 1
(XXT + αInch

), (1)

where Inch
is the nch × nch identity matrix and α a regular-

ization constant ensuring positive definiteness of the estimated

covariance matrices set to 0.1. The Riemannian kernel f
calculates nR = nch(nch + 1)/2 output features based on

the input covariance matrix C:

K : Rnch×nch → R
nR , (2)
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Fig. 3. Overall architecture for binarized learning and classification of EEG signals with feature-based classification, modified from [28]. The EEG signal
X of one temporal window with ns samples and nch channels is processed at the time. Every EEG channel is divided into nb frequency bands (b1 − bnb )
using second order Butterworth band pass filters. A Riemannian covariance kernel computes spatial energy features which are concatenated and binarized
using sparse random projection. Binary features E are classified with a binarized SVM.

and is defined as

K(C) = vect
(

logm
(
C

−1/2
ref CC

−1/2
ref

))
, (3)

where logm(.) is the matrix logarithm and vect(.) the �2-norm

preserving half vectorization of a matrix [11]. The computation

of the matrix logarithm involves the eigenvalue decomposition

(EVD), the logarithm computation on the eigenvalues, and

the back transformation. The EVD can be efficiently divided

into a Housholder transformation [38] for tridiagonalization

and an iterative QR-decomposition using an implicit Wilkin-

son shift [39]. The reference covariance matrix Cref is the

geometric mean over all covariance matrices in the training

set [40]. The Riemannian kernel does not need labeled data

and is therefore unsupervised. The multiplication of the co-

variance matrix C with C
−1/2
ref on both sides is interpreted as

spatial whitening of C.
In analogy to frequency band common spatial pattern

(FBCSP), the set of Riemannian features is extended to multi-

spectral features by using multiple Riemannian kernels on

different frequency bands of the multi-channel EEG signal.

The signal is divided into multiple frequency bands using

a filter bank. A separate Riemannian kernel is used with

Cref computed solely on the corresponding frequency band.

A recent work [9] with high classification accuracy suggests

using nb=43 overlapping frequency bands within the 4–40 Hz

band with bandwidths varying between 2–32 Hz.
We apply the multi-spectral Riemannian feature extractor on

the BCI Competition IV-2a by extracting EEG recording from

3.5 s (ns=875), starting at 0.5 s after the MI cue according

to the timing scheme of the competition. We use all 22

EEG channels, which yields nR=253 features per frequency

band and a total of nR ·nb=10 879 multi-spectral Riemannian

features.

B. Sparse Bipolar Random Projection
An embedding is a representation for which the computation

of distances directly gives an estimate of the distances in their

initial representation [15]. The building of such representa-

tions is provided by binary locality-sensitive hashing (LSH)

functions, which ensure that similar elements are statistically

likely to be embedded into the same value [24]. Once mapped

to the binary Hamming space, the similarity is computed with

the Hamming distance.

Here, we use random projections to embed real-valued

feature vectors to the binary d-dimensional Hamming space

B
d := {0, 1}d. Random projections are usually used for

dimensionality reduction in the Euclidean space [41]. The

Johnson-Lindenstrauss lemma [42] ensures distances between

two points in the projected space to be preserved if the

output dimension is suitably high. Such projections deal with

embeddings between Euclidean spaces. However, here the data

is projected to a high-dimensional Hamming space. Recently,

it has been shown [15] that random projections can indeed

project data to a high-dimensional Hamming space while pre-

serving the distance between points with success in monitoring

arterial blood pressure via ECG signals [24], [25].

Random projection to binary space is defined as

E = H(Rf), (4)

where H(.) is the component-wise Heavyside step function

H(z[i]) =

{
1 if z[i] ≥ 0

0 if z[i] < 0,
(5)

and R ∈ R
d×nf the projection matrix [15]. Usually, the

components ri,j in R are drawn from an i.i.d. Gaussian

normal distribution (ri,j ∼ N (0, 1)). However, the Gaussian

projection matrix can be replaced by a much simpler one such

as the sparse bipolar random matrix [43]:

ri,j =

⎧⎪⎨
⎪⎩
+1 with probability 1−s

2

0 with probability s

−1 with probability 1−s
2 ,

(6)

where s ∈ [0, 1] is the sparsity, i.e., the number of zero

elements divided by the total number of elements. Achliop-

tas [43] has shown that by using a sparsity of s = 1/3
this projection comes without any sacrifice in the quality

of embedding compared to the plain Gaussian projection. In
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this application, the use of a bipolar instead of a Gaussian

projection matrix yielded no loss in accuracy; furthermore,

we could use projection matrices with a sparsity of s = 9/10
without losing performance. The use of projection matrices,

which are both bipolar and sparse, reduces the computational

complexity of projection: the bipolarity limits the dot product

to a sequence of additions and subtractions, while the sparsity

reduces the number of operations. Random entries of the

projection matrix do not need to be stored permanently,

but can be efficiently regenerated during operation with a

random number generator. This process is also known as

rematerialization that is repeatable and requires an arbitrary

seed, which requires negligible 32-bit storage. Thus, the use

of random projections is not increasing the memory footprint

for storing a model on an embedded device [44].

C. Binarized SVM

This section describes how a linear SVM is binarized

to do binary inference solely based on Hamming distance

computations in projected d-dimensional space. We use the

fact that there exists a one-to-one mapping between the

cosine similarity and the normalized Hamming distance of two

bipolar vectors:

< a,b >

||a||2||b||2 =
1

d

d∑
i=1

a[i] · b[i] (7)

=
1

d

(
d+

d∑
i=1

(a[i] · b[i]− 1)

)
(8)

=
1

d

(
d+

d∑
i=1

2
(−1a[i] �=b[i]

))
(9)

= 1− 2dh(a,b), (10)

where < ., . > is the inner product, ||.||2 the �2 norm, and

dh(.) the normalized Hamming distance. As a consequence,

we use binary and bipolar representations interchangeably,

e.g., training a model on bipolar vectors and execute inference

on binary vectors using the Hamming distance.

When neglecting some scaling factors, the decision function

of the original linear SVM without bias relies on cosine

similarity and is defined as

ŷ = argmax
i=1,...,ncl

< wi, f >, (11)

where wi ∈ R
d is the learned support vectors of class i with

unit norm. For training the linear SVM—still in full float32

precision—on binary features, we map all elements in E ∈ B
d

to bipolar values {−1, 1}. The learned support vectors are then

binarized using the component-wise Heavyside step function:

Wi = H(wi) i = 1, ..., ncl (12)

During inference, the binarized SVM classifies a binary vector

E by searching for the binary support vector with smallest

Hamming distance to E:

ŷ = argmin
i=1,...,ncl

dh(Wi, E). (13)

Key
Memory

X(1), ...,X(nm)

Value
Memory

E(1), ..., E(nm)

Q : {−1,+1}d a : Rn

EEGNet
Controller

X : Rnch×ns EEGNet
Controller

σ

y(1), ..., y(nm)

ŷ

Y : Rn×m

Fig. 4. MI-MANN architecture. Key and value memory are filled with
processed samples X(1), ...,X(nm) and values y(1), ..., y(nm) from the
support-set. Query X is processed by the EEGNet controller, the attention
function σ, and classified with matrix-vector product.

IV. MI-MANN: LEARNING COMPACT BINARY

REPRESENTATIONS WITH MEMORY-AUGMENTED NEURAL

NETWORKS

One main challenge traditional neural networks face is the

inability to recognize new classes without complete retrain-

ing [30]. Retraining on samples of a new, unseen class often

yields to large performance degradation in recognizing the

“old” classes, also known as catastrophic forgetting [45]. To

address this challenge, memory-augmented neural networks

(MANNs) add an external memory, which can easily be

updated or extended without retraining the entire model [29],

[30]. MANNs have been proven to be particularly useful

in few-shot learning problems, such as the Omniglot task

containing a large number of 1623 characters with only 20

samples per character [46].

Such high numbers of classes are not encountered in MI-

BCIs; however, augmenting an MI-BCI model with an external

memory allows to update/extend the model, e.g.,

• Adding a new MI class without retraining the whole

model.

• Calibrating the model at the beginning of a new session
to mitigate high inter-session variance in EEG.

• Calibrating the model on a new, unseen subject due to

high inter-subject variance.

In a nutshell, this novel architecture could quickly store new

information in the external memory, and adapt to a changing

environment typical of BCIs.

Classification in MANNs requires mostly �2-distance com-

putation between a query vector and all entries in the external

memory, where the complexity grows with the size of the

memory. Efforts have been invested in simplifying the com-

putation by using alternative distance metrics such as �1 or

�∞ [30]. More recently, a MANN has been proposed which

is trained to generate high-dimensional bipolar (or binary)

vectors by construction [31].

Here, we present MI-MANN, a binarized MANN for MI-

classification, which augments EEGNet with a projection layer

for binarization of the features and an external binary memory.

To best of our knowledge, this is the first application of

MANNs in the MI-BCI context.
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Fig. 5. EEGNet controller. Convolutional layers of EEGNet [14] are extended with a projection layer.

A. MI-MANN

Fig. 4 depicts the proposed architecture of MI-MANN,

consisting of an EEGNet controller, a key memory, a value

memory, as well as an attention function σ. Here, we de-

scribe the entire functionality using bipolar vectors and cosine

similarities as it is used in training. In inference, however,

all binary blocks (key memory, value memory, attention) are

implemented with binary vectors using Hamming distance

according to the distance mapping described in Section III-C.

The EEGNet controller is responsible for extracting d distinc-

tive bipolar features from the input signal X. In a first step, we

assume that the EEGNet controller has already been trained;

the training procedure will be explained in Section IV-C.

Our MANN system has two memories: the key memory

and the value memory. At training time, a subset of the

training set is chosen to be the so-called support-set. Each

example
(
X(i), y(i)

)
in the support-set is then pre-processed

and stored in the two components of the memory: the input

X(i) is passed through the EEGNet controller, obtaining a

vector with bipolar components E which is stored into the

key memory; simultaneously, the label y(i) is one-hot encoded

(remember that MI is a classification task) and stored into the

value memory. In MANNs, the number of classes is referred to

as ways and the training examples to shots. An m-way/n-shot

classifier is provided with m · n samples X(1),X(2), ...X(mn)

and values y(1), ..., y(mn) from the support-set.

A query X is encoded into Q using the EEGNet controller

and passed through the attention function σ. The attention

function computes the cosine similarity between the encoded

vector Q and all entries in the key memory:

αi := α(Q,Ei) =
< Q,Ei >

||Q||2||Ei||2 i ∈ {1, 2, ...,mn}, (14)

followed by a soft absolute (softabs) sharpening function [31]

yielding the attention vector a. Softabs is similar to softmax

but relaxes the optimization constraint by obeying the atten-

tion conditions provided by high-dimensional computing; it

forces the controller to generate orthogonal vectors instead of

anticorrelating vectors for different classes [31]. The attention

vector a is finally multiplied with the one-hot encoded training

labels. The estimated MI class is the argmax of ŷ.

We terminate this section with a simple classification exam-

ple of a 2-way/2-shot classifier. The label support-set contains

the examples of y(1) = 0, y(2) = 1 ,y(3) = 1, and y(4) = 0,

which are one-hot encoded and written into the value memory:

Y =

⎛
⎜⎜⎝
1 0
0 1
0 1
1 0

⎞
⎟⎟⎠. (15)

Similarly, the encoded feature vectors E(1), E(2), E(3), and

E(4) are written into the key memory. For classifying an

attention vector, e.g., a = (0.2, 0.3, 0.4, 0.1), we compute

ŷ = aY = (0.3, 0.7). The estimated MI class would be ŷ = 1.

B. EEGNet Controller for Generating Bipolar Features with
Random or Learned Projections

We propose to generate bipolar features using an EEGNet

controller (see Fig 5), which resembles the convolutional lay-

ers of EEGNet, without the fully connected classification layer,

and a projection layer. We first extract EEG recording from

4.5 s (ns=1125), starting 0.5 s before the cue. The temporal

convolution block filters the EEG data in the time domain,

before the channels are combined with spatial filters in the

depthwise convolution. The ELU activation after the separable

convolution makes the generation of bipolar feature values

hard. Therefore, we introduce a projection layer to dimension

d with a sharpened tanh(10x) activation. The steep activation

function ensures almost bipolar output features. We use the

tanh activation in training for backpropagating the gradients,

as it keeps the controller differentiable. In inference, the

activation is replaced by the sign function in the bipolar case,

or the Heaviside step function in the binary case.

We distinguish between random and learned projections.

The random projection is initialized with bipolar, dense values

at the beginning of training and fixed from thereon. Best train-

ing results were achieved when scaling all entries according

to the maximum value of Xavier’s uniform initialization [47].

This scaling factor can be efficiently embedded into the batch

norm layer to save compute efforts. The values of the random

projection matrix can be generated on the fly with a random

number generator; therefore, it does not require additional

memory for storage. In contrast, the learned projection is im-

plemented as a trainable, fully connected layer without a bias.

The learned projection significantly adds model parameters,
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which need to be stored on the device. However, it also adds

the capability to learn more distinctive representations.

C. Training the EEGNet Controller

This section describes the training procedure of the EEGNet

controller, which is dominated by teaching the controller how

to learn from a few examples. The training alternately updates

either the key-value memory or the controller weights. We

exclusively use samples
(
X(i), y(i)

)
from the training set.

In the beginning, the controller weights are initialized

randomly with uniform distribution. In an initialization

step, we randomly choose a support-set of mn samples

X(1),X(2), ...,X(mn), pass them through the (random) con-

troller, and store the feature vectors E(1), E(2), ..., E(mn)

into the key memory. At this stage, the key memory is not

guaranteed to be bipolar yet; the bipolarization will follow

in the last stage of the training. The corresponding labels

y(1), y(2), ..., y(mn) are one-hot encoded and stored into the

value memory.

After the initialization phase, the controller and key-value

memory are updated iteratively, where one training epoch is

defined as follows:

1) Update the controller. We first pick a random set of

batch size k samples and pass them through the network,

resulting in the estimated probability distribution of

all samples ŷ(1), ŷ(2), ..., ŷ(k). Next, the binary cross-

entropy (BCE) loss is computed and backpropagated

through the network. The controller weights are finally

updated using Adam’s optimizer. In this stage, the key-

value memory remains fixed.

2) Update the key-value memory. After adjusting the

controller, the key-value memory is entirely re-written

with new samples, which were not used in the training

of the controller.

After every epoch, the training data is shuffled such that the

samples for training the controller and updating the key-value

memory change. During inference, the activation function of

the projection layer (tanh) is replaced by the sign or Heaviside

function to generate bipolar or binary vectors. Similarly, the

key-memory is bipolarized or binarized.

Fig. 6 shows the accuracy and loss on training (80%) and

validation (20%) data of the training set of subject 7 of the

BCI Competition IV-2a dataset. The network is trained for

20 000 epochs using a batch size of 64 and learning rate 1e-

3. Even though the model achieves a training accuracy of

almost 100% after ≈1000 epochs, it still improves on the

validation data when continuing with training. We see a high

variance in classification accuracy and loss on the validation

data; therefore, the learning rate is reduced to 1e-4 for the last

1000 epochs.

V. EXPERIMENTAL RESULTS

In this section, we assess the proposed methods on the

4-class MI dataset from the BCI competition IV-2a. In all

experiments, we train a separate model (feature extractor and

classifier) per subject on the training set; the test set is neither

touched for training nor for validating model hyperparameters.
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Fig. 6. Accuracy and loss on training data of subject 7 of BCI Competition IV-
2a dataset. The binary MI-MANN with learned projection (d=256) is trained
with learning rate 1e-3 for 19 000 epochs, and with 1e-4 for the last 1000
epochs.

CNN-based models are trained on an Nvidia GTX 1080 Ti

GPU using PyTorch (version 1.4.0).
We measure the classification accuracy as the ratio be-

tween correct classified trials over the total number of trials.

Moreover, we compare the memory footprint of the models

for storing the learned parameters. Finally, we assess the

computational complexity in inference of the CNN-based clas-

sifier by counting the number of multiply-accumulate (MAC)

operations.

A. MI Classification on Binarized Riemannian Features
We first consider the Riemannian features and its binariza-

tion. An �2-regularized linear SVM performed best on the

4-class dataset with multi-spectral Riemannian features [9]

and serves as a baseline classifier. An LDA with automatic

shrinkage, commonly used in EEG classification [48], is used

as a second baseline. The Riemannian columns of Table I

compare the classification accuracy for float16 precision linear

SVM and LDA with different binary classifiers. The linear

SVM achieves 74.82% average classification accuracy; slightly

lower results are observed with LDA at 72.10% accuracy.
In a first step, the baseline classifier and features are

binarized in their original space applying the Heavyside step

function directly on features and support vectors. This results

in a significant loss of 13.34% in accuracy for binarized SVM

and 9.27% for binarized LDA, relative to their correspond-

ing float16 classifier. However, this performance loss due to

binarized classification can be recovered when applying our

proposed method using sparse bipolar random projection to

binary Hamming space and binarized SVM. We observed just

a minor accuracy degradation between our RP+SVM approach

and an SVM at FP16 precision (73.55% vs. 74.82%), which

is largely compensated for by the memory saving.

B. MI Classification in Binarized MI-MANN

Next, we discuss the classification accuracy of the bi-

narized 8-shot/4-way MI-MANN, shown in Table I in the
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TABLE I
CLASSIFICATION ACCURACY (%) ON 4-CLASS MI DATASET OF BCI COMPETITION IV-2A USING RIEMANNIAN AND CNN-BASED APPROACHES.

Riemannian CNN

SVM LDA SVM LDA SVM EEGNet MI-MANN MI-MANN MI-MANN

float16 float16 binarized binarized binarized float16 binarized binarized binarized

Projection - - - - sparse RP - - RP LP
d 10 879 10 879 10 879 10 879 100 000 272 272 256 256

S1 91.81 88.26 78.65 78.29 90.46 84.36 75.40 81.47 82.24
S2 51.59 58.66 45.58 44.88 53.96 54.06 45.32 57.68 64.66
S3 83.52 82.78 68.13 71.79 79.16 87.91 85.81 90.82 93.19
S4 73.25 53.51 57.89 56.58 71.49 63.16 54.06 60.28 60.83
S5 63.41 59.42 42.03 40.94 65.18 67.39 52.26 62.92 74.57
S6 59.07 57.21 47.91 50.23 56.98 54.88 49.24 52.01 57.34
S7 86.64 89.53 71.12 73.29 82.42 88.09 79.11 86.34 88.56
S8 81.55 81.92 71.59 75.65 79.63 76.75 79.11 82.12 83.41
S9 82.58 77.65 70.45 73.86 82.65 74.24 71.83 77.14 81.08

Avg. 74.82 72.10 61.48 62.83 73.55 72.32 65.79 72.31 76.21
Std. 12.37 13.10 12.01 13.09 11.17 11.86 13.78 12.66 11.32
p-value∗ - 0.260 0.008 0.008 0.214 - 0.015 0.594 0.038

∗Significance of a Wilcoxon signed-rank test with respect to baseline classifier, which is linear SVM in float16 precision for Riemannian
and EEGNet for CNN-based.

CNN columns. Original EEGNet in float16 precision serves

as a baseline, achieving an accuracy of 72.32%. In a first

experiment, we assess the accuracy of MI-MANN without

using a projection layer in the EEGNet controller. For doing

so, the activation in the separable convolution block is changed

from ELU to tanh. Akin to the previous experiment, where

Riemannian features were binarized without using random

projections, we observe a significantly lower classification

accuracy of 65.79%. This drop in accuracy is mitigated by the

introduction of bipolar random projections, where we achieve

almost the same accuracy of 72.31% as full precision EEGNet

at binary dimension d=256. When relaxing the constraints in

the EEGNet controller and allowing learned projections, the

accuracy can even be increased to 76.21%, which is 3.89%

and 1.39% more accurate than full precision EEGNet and

Riemannian with SVM, respectively.

C. Memory footprint

Fig. 7 compares the performance of all classifiers, consid-

ering not only the classification accuracy but also the memory

footprint required to store learned parameters of the whole

model. Here, we include another binarized classifier [44]

which uses random projections on Riemannian features as

well, but encodes the projected binary vectors per frequency

band using holographic superposition (RP+AM binarized).

The binary vectors are classified using an associative memory

(AM). Moreover, we consider reasonable sized CNNs, which

are deployable on a typical low-power microcontroller featur-

ing a few MB of Flash memory, such as Shallow ConvNet [8]

with 47 324 float16 parameters and Q-EEGNet [27] with 2036

int8 parameters. However, Fig 7 does neither include TPCT

with 88.87% accuracy due to its high memory footprint of

15.56 MB, nor CNN++ because it violates the rules of the BCI

Competition IV-2a. A more detailed listing of all CNN-based

classifiers is available in Table II.

First, we consider the binarization of the Riemannian fea-

tures. The output dimension of the random projection is

varied between d=5k–100k, which has a direct impact on the

required memory footprint. Generally, the accuracy of the bi-

narized classifier improves significantly in higher dimensions,

especially when using the proposed binarized SVM readout.

When fixing the dimension to the number of Riemannian

features (i.e., d=10 879 or memory footprint of 27.71 kB),

the simple SVM binarized achieves lower accuracy compared

to both RP methods. This supports the necessity of RP

when doing binarized classification. At memory footprint of

72.27 kB (d=100k), Riemannian+RP+SVM binarized achieves

73.55% accuracy, which is 1.27% lower than float16 SVM,

but it requires 1.51× lower memory footprint. Compared to

Shallow ConvNet with 73.59% accuracy and 94.65 kB memory

footprint, RP+SVM binarized reduces the memory footprint by

1.31× at the same accuracy.

Next, the dimension of the random projections in the

binarized MI-MANN is varied from d=128–512. We find

the optimal dimension to be d=256, which is closest to the

number of features in EEGNet (272). The binarized MI-MANN

requires 4.10 kB memory footprint at d=256, which is 1.28×
lower than EEGNet in float16 precision at the same accuracy.

Q-EEGNet requires the lowest memory footprint of 2.55 kB,

but also achieves with 70.8% a lower accuracy than both

EEGNet in float16 and binarized MI-MANN at d=256.

Similar trends are observed when allowing the projection

to the binary space to be trained (MI-MANN (LP) binarized).

Also here, the highest accuracy of 76.21% is achieved at

d=256. The use of learned projections adds a significant

amount of memory: it increases the memory footprint by 13.9–

54.0× for d=128–512, compared to the original EEGNet in

float16 precision. However, at the lowest dimension d=128, the

binarized memory-augmented network achieves an accuracy

of 75.4% at 73.22 kB memory footprint, which is a reduction
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Fig. 7. Average classification accuracy (%) vs. memory footprint on 4-class MI of BCI Competition IV-2a. Pareto-optimal classifiers are connected with a
green, solid line.

of the memory footprint by 1.29× and 1.48× compared to

Shallow ConvNet and Riemannian+SVM float16, respectively.
To sum up, our proposed binarization methods are able to

reduce the memory footprint on both the feature-based and

CNN-based classifiers while maintaining similar accuracy. As

a result, all binarized classifiers achieve Pareto optimality,

shown by the green, solid line in Fig. 7.

D. Complexity of Inference
This section discusses the complexity of classifiers during

inference by counting the number of MAC operations for

computing one classification, shown in Table II. The Hamming

distance computation for classification of binary query vectors

in binarized MI-MANN can be implemented with bit-level

operations (XOR+POPCOUNT); thus, we count the compu-

tation of the Hamming distance of 32 vector elements as one

MAC. Moreover, we make no distinction between random and

learned projection in the binarized MI-MANN, as computations

remain the same. The generation of the random projection on

the device is not dominated by MAC computations and can

be efficiently implemented with dedicated hardware accelera-

tors [49], [50].
The computation of the number of MACs in the feature-

based approach is not straight-forward to compute, mostly due

to the matrix logarithm involved in the Riemannian feature

extraction. We estimate the number of MACs of a matrix

logarithm based on the complexity of an optimized House-

holder transformation (O(8n3
c/3)) [38] and the iterative QR

decomposition using implicit Wilkinson shift (O(6n3
c)) [39].

Table II shows that the computation of the features, in

particular the computation of the covariance matrix, dominates

the number of MACs in the Riemannian+SVM approach;

the linear SVM makes up a negligible part (0.25%) of the

overall computations. Conversely, the linear SVM occupies

most of the memory footprint for storing the model parameters

(80.38%). As already stated in the memory footprint analysis,

the introduction of the sparse bipolar random projection and

binarized SVM reduces the memory footprint of the model;

however, the overall number of MACs increases by 7.14×.

This yields a trade-off between lower complexity in inference

(Riemannian+SVM) and lower memory footprint of the model

(Riemannian+SVM binarized).
Among the considered CNN-based classifiers, TPCT re-

quires 1.73 GMACs per inference, which is more than one

order of magnitude higher than all other classifiers. On

the other side, EEGNet shows the lowest complexity with

13.14 MMACs per inference. Compared to EEGNet, MI-

MANN increases the total number of MACs only by 0.257% in

d=128 and by 0.523% in d=256. The reason is that computa-

tions in EEGNet are dominated by the temporal convolution,

making up 96% of the computations. Consequently, replacing

the fully connected classification layer by a projection layer

of dimension d has a negligible impact on the total number of

MACs.

VI. CONCLUSION

In this paper, we propose to binarize real-valued features in

common feature-based and CNN-based MI-BCI classification
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TABLE II
AVERAGE CLASSIFICATION ACCURACY, MULTIPLY-ACCUMULATE (MAC)

OPERATIONS PER INFERENCE, AND MEMORY FOOTPRINT OF MODEL

WEIGHTS IN FLOAT16.

Architecture Accuracy [%] MAC/inf. Mem. foot. [kB]
Riemannian+SVM 74.82 17.71 M 108.28
Bandpass filter 4 138 750 0.43
Covariance 9 519 125 -
Whitening 41 624 20.81
Matrix logarithm 3 968 155‡ -
Linear SVM 43 516 87.04
Riemannian+SVM binarized 73.55 126.47 M 71.24
Feature extraction 17 667 654 21.24
Projection 108 790 000 0.004∗
Classification 12 500 50.00
TPCT [13] 88.87 1.73 G 15 560
CNN++ [33] 81.10 18.24 M 441.36
Shallow ConvNet [8] 73.59 62.99 M 94.65
EEGNet [14] 72.32 13.14 M 5.26
Temp. Convolution 12 672 000 1.09
Depw. Convolution 396 000 0.83
Sep. Convolution 71 680 1.15
FC 1088 2.18
MI-MANN
RP (LP) d=128 70.41 (75.40) 13.17 M 3.59 (73.22)

Controller 13 139 680 3.07
Projection RP (LP) 34 816 0.004∗ (69.63)
Classification 160 0.51
MI-MANN
RP (LP) d=256 72.31 (76.21) 13.21 M 4.10 (143.36)

Controller 13 139 680 3.07
Projection RP (LP) 69 632 0.004∗ (129.3)
Classification 288 1.02
Q-EEGNet [27] 70.80 13.14 M 2.55†

∗Random projection matrix is regenerated during operation using random number
generator with 32-bit seed.
† Int8 weights.

‡ Estimation based on complexity O
(

27n3
cnb

3

)
.

approaches to reduce their memory footprint for storing model

parameters. In both approaches, random projections are the

key enabler for successful binarization while ensuring similar

accuracy as the full precision model. Yet, random projections

do not increase the memory footprint because the weights in

the projection matrix can be regenerated (rematerialized) by a

random function on the fly.

First, we binarize multi-spectral Riemannian features with

sparse bipolar random projection and classify them with bina-

rized SVM readout. Experimental results on 4-class MI dataset

of BCI Competition IV-2a show that our method binarizes

real-valued features in the same dimensionality with 7.42%

accuracy loss compared to SVM models in float16. Further

increasing the dimensionality in binary space improves the

accuracy of the binary model, which results in 1.27% lower

accuracy but at a 1.31× smaller memory footprint.

Second, we propose MI-MANN, as the first MANN archi-

tecture for MI-BCI, which generates compact binary vectors

using CNN-based feature extractor; it includes EEGNet, the

bipolar random projection, and the binary key-value memory

for classification. It achieves similar accuracy as EEGNet

in float16 precision (72.31% vs. 72.32%), while requiring

a similar number of MAC operations and having a 1.29×
smaller memory footprint. Moreover, the accuracy alleviates to

76.21% by allowing the projection to be learned, but this also

requires 27.28× higher memory footprint. The introduction

of MI-MANN allows for a cheap model update/extension on

the device at the edge without requiring backpropagation

algorithms nor increasing the memory footprint significantly,

thanks to the binary representation of the key memory.
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