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Abstract—Wearable Internet of Things (IoT) devices with
inertial sensors can enable personalized and fine-grained Human
Activity Recognition (HAR). While activity classification on the
Extreme Edge (EE) can reduce latency and maximize user
privacy, it must tackle the unique challenges posed by the
constrained environment. Indeed, Deep Learning (DL) techniques
may not be applicable, and data processing can become burden-
some due to the lack of input systems. In this paper, we address
those issues by proposing, implementing, and validating an EE-
aware HAR system. Our system incorporates a feature selection
mechanism to reduce the data dimensionality in input, and an un-
supervised feature separation and classification technique based
on Self-Organizing Maps (SOMs). We developed the system on
an M5Stack IoT prototype board and implemented a new SOM
library for the Arduino SDK. Experimental results on two HAR
datasets show that our proposed solution is able to overcome
other unsupervised approaches and achieve performance close
to state-of-art DL techniques while generating a model small
enough to fit the limited memory capabilities of EE devices.

Index Terms—Human Activity Recognition, HAR, Unsuper-
vised Learning, Self Organizing Maps, IoT, Edge Computing

I. INTRODUCTION

Human Activity Recognition (HAR) has gained significant
attention in recent years due to its potential to improve the
quality of life of individuals in many different use cases,
including healthcare, fitness, and entertainment [1]. HAR
systems can also facilitate advanced, context-aware services in
smart home and smart city scenarios [2]. These systems aim
to automatically identify and classify human activities using
either cameras [3] or inertial measurement units (IMUs). While
camera-based solutions offer high accuracy, concerns about
privacy and cost limit their applicability on a large scale. Con-
versely, IMU-based solutions leverage low-power sensors such
as accelerometers, gyroscopes, and magnetometers, which are
commonly embedded in mobile and wearable devices [4].
Smartphone-based HAR systems have been extensively stud-
ied in the literature. At the same time, their application is typ-
ically restricted to specific classes of human activities, due to
the device’s orientation variability and pattern of usage. Recent
research has focused on integrating HAR functionalities within
the Internet of Things (IoT) wearable devices [2], whose
market has grown exponentially in the last few years. Besides
well-known devices, such as smart bracelets and smartwatches,
the miniaturization of the hardware circuitry is expected to
open the way to a new generation of Internet of Small Things
(IoST) [5] that supports fine-grained activity monitoring. The

integration of HAR functionalities into such devices is of
paramount importance to support real-time operations, e.g.,
healthcare applications. However, the deployment of IoT-based
HAR systems poses new and significant research challenges
that have not been addressed in other domains. First, the
classification of human activities is often performed using
data-driven approaches, and Deep Learning (DL) architectures
have been widely employed for this task [4]. Nevertheless,
these solutions do not fit the characteristics of power- and
memory-constrained micro-controllers. Although quantization
techniques have been proposed to reduce the size of the trained
DL model, such as reducing the precision of the coefficients
[6] [7], the research on edge intelligence for micro-controllers
can be considered still at a preliminary stage [8]. Second,
supervised learning techniques assume labeled data in input.
The process of data labeling is time-consuming and costly for
human operators and it can become even more burdensome
in the case of IoT wearable devices due to the lack of input
systems. For this reason, recent works have investigated the
usage of semi-supervised or unsupervised techniques, enabling
the automatic detection of patterns associated with different
activities [9]–[12].
In this paper, we investigate the full design and implemen-
tation of a HAR system for resource-constrained IoT micro-
controllers, which we refer to as Extreme Edge (EE) devices.
Our solution involves three stages. First, feature selection is
applied to IMU data, in order to reduce its dimensionality
since only a few of them can be correlated with the activities
to detect. Second, the unlabeled features are first separated
and then classified through Self-Organizing Maps (SOM),
an unsupervised machine learning (ML) technique based on
lightweight artificial neural networks. During the training
phase, the user does not need to label each sample, and
the set of activities to detect can be easily expanded and
personalized. Finally, the trained SOM model is deployed on
an IoT computing board (in our case, a M5Stack embedding
an Espressif ESP32 micro-controller), to run inference on the
EE. Three contributions are proposed in this paper:

• We present a novel architecture for EE-HAR, which
involves offline training and onboard inference. Our ar-
chitecture uses ANOVA-F-based feature reduction and
SOM algorithm for human activities separation and clas-
sification.



• We describe the implementation of the proposed system
on the EE device. To achieve this, we developed a novel
SOM library for the Arduino SDK in C++ language.

• We extensively validate the proposed architecture on
two HAR datasets, i.e. the UCI one and a new dataset
collected through the target EE device. We compared
our solution against state-of-art supervised, DL-based
solutions and another unsupervised technique (K-Means).

The results show that the SOM-based approach greatly over-
comes the K-Means in terms of average accuracy, for both
datasets. Moreover, the performance loss compared to complex
DL approaches is less than 8%, which is a satisfactory result
considering the difference in complexity between the two
approaches. Furthermore, our SOM implementation in C++
language can achieve up to five-time model size reduction
compared to state-of-art approaches [13].

The rest of this paper is organized as follows: Section II
provides an overview of related work in the field of HAR
systems focusing on unsupervised and edge AI solutions.
Section III shows the methodology used for data collection,
processing, and classification. Section IV describes the learn-
ing model. Section V presents the results of our experiments
and compares our proposed approach with existing methods.
Section VI concludes the paper and discusses future work.

II. RELATED WORKS

The research on HAR systems spans more than 15 years
and includes a considerable variety of solutions and appli-
cations. Generally speaking, most approaches fall into two
main categories, i.e. knowledge-based or data-driven ones.
In the first case, semantic correlations among event types
and activity classes are detected [14]. In the second case,
datasets of sensory data are first collected and then mined.
Activity recognition can be considered an instance of pattern-
matching problems, and several DL techniques have been
proposed to tackle it [4]. At the same time, supervised
solutions require labeled data to enable the training phase.
Although several datasets are available for basic activities,
novel use cases of HAR systems continuously demand fine-
grained and personalized data collection, making the labeling
process costly and unfeasible on the large scale. Indeed,
recent studies investigate the issue of user generalization
caused by the unique activity patterns of each individual user
and, consequently, propose unsupervised or semi-supervised
techniques [11]. The authors of [10] describe a DL-based
clustering architecture performing unsupervised learning and
label annotation of multi-dimensional inertial signals. Their
architecture follows a two-step approach: first, a recurrent
auto-encoder extracts the spatiotemporal features of the human
activities, then a clustering technique is applied to predict
unlabeled signals. A survey was conducted in [9] related to
clustering techniques for the recognition of activities of daily
living. Regarding semi-supervised approaches, Unsupervised
Domain Adaption (UDA) techniques allow new users to align
their unlabeled data to the features of labeled datasets. The

SALIENCE architecture described in [11] uses both per-
feature and per-sample discriminators to predict whether an
input sample is from training users or a new user; then,
an attention-based neural network allows to differentiate the
importance of different sensors based on the outputs of the
previous step, so the sensors with strong feature discrimination
are prioritized. In [15], the authors investigate UDA techniques
in heterogeneous feature spaces; the proposed architecture
combines Bi-directional Generative Adversarial Networks (Bi-
GAN) and Kernel Mean Matching (KMM) to enable activity
transfer across heterogeneous HAR datasets, including ac-
celerometer and binary sensors. A key contribution of our
paper is constituted by the implementation of HAR systems on
wearable IoT devices that are resource- and power-constrained
and thus unable to host complex DL models. To this aim, the
emerging edge intelligence paradigm [8] promises to bring the
data analytics tasks as close as possible to the data sources,
e.g., in our case, integrated within wearable IoT devices. The
preliminary study in [6] applies quantization techniques to
reduce the size of a Convolutional Neural Network (CNN)
devoted to human activity classification in order to fit the
memory constraints of a micro-controller unit. Similarly, in
[7] different architectures of binarized neural networks (i.e,
neural networks with weights and functions restricted to binary
values) are compared on HAR datasets. The most similar
works to ours are [12] and [13]. In the first paper, the
authors investigate daily gesture detection from accelerometer
data produced by an IoT bracelet: unsupervised approaches
like K-Means and Gaussian Mixture Model are shown to
produce comparable results to supervised techniques. In [13],
the authors address a similar problem, but employ a SOM
and a CNN for feature extraction; also, they deploy the HAR
system on a micro-controller unit. Our results confirm the
main findings in [13], however, introducing the following
contributions: (i) we present the implementation of a novel
SOM library for the Arduino SDK through which we achieve
a considerable reduction of the model size compared to [13];
(ii) we introduce a pre-processing mechanism, constituted by
the ANOVA-F feature selection, which allows to further reduce
the amount of data processed on the EE; (iii) we evaluate the
trade-off between the SOM accuracy and the model size for
different configurations of both the techniques.

III. SYSTEM ARCHITECTURE

In this Section, we introduce our HAR system for wearable
IoT devices. The proposed architecture tackles the challenges
of EE computing related to limited computational power,
storage, and data processing capabilities. In addition, it has
been designed in order to meet the following requirements:

• flexibility: users can define and add new activities at
runtime;

• customizability: the system is adaptable, allowing users
to personalize the training phase;

• ease of use: the system minimizes the need for manual
data labeling, thereby simplifying the overall user expe-
rience.



To meet these goals, our architecture includes two classes
of computational nodes, the IoT wearable device, and an
external server. Furthermore, we have split the HAR process
into three distinct phases: data gathering, model training, and
HAR inference. The data gathering and HAR inference phases
are executed on the wearable IoT device. Vice versa, the
model training phase is performed on an external server due
to its need for computational and storage resources that the
microcontroller cannot provide.

Fig. 1: The proposed HAR architecture

The proposed HAR architecture is described in Figure 1. In
the following, we provide additional details for each phase.

• Data gathering: during this phase, raw sensor data are
sampled on the IoT device while the user is doing
actions to be detected. The proposed HAR system utilizes
IMU sensors, such as accelerometers, gyroscopes, and
magnetometers, which are sampled at a fixed frequency.
No user feedback is required at this stage to label the data.
Raw IMU data is wirelessly transferred to the external
server where unlabeled HAR dataset(s) are built.

• Model training: this phase involves training an ML model
from the HAR dataset collected from the IoT device(s).
First, the IMU data is pre-processed to remove outliers
and missing values. Also, techniques based on the But-
terworth low-pass filter are employed to filter out the
noise. Next, features are extracted from each sensor in
the frequency and temporal domain, as further detailed in
Section V-B. ML models are then trained from the pre-
processed datasets. In this article, we rely on the SOM
technique described in Section IV-A. The SOM algorithm
separates the data into K classes, where K is either
provided as inputs or dynamically estimated from data
using the elbow method [16]. The association between
the class and its semantics (i.e., the name of the human
activity) can be provided at this stage. We remark that
here we are labeling each cluster after the unsupervised
method has been applied, not each training example as
in supervised learning. We have further optimized the
data pipeline by implementing a feature selection stage
aimed at reducing the number of features in input to the

SOM, and hence the processing load on the EE. The
feature selection is implemented through the ANOVA-
F technique further detailed in Section IV-B. Finally,
the trained model, with the list of selected features,
is transferred back to the IoT device. Multiple SOM
models can be generated for different network sizes, and
the selected model should maximize the accuracy while
fitting the storage size of the IoT device.

• HAR Inference: in operation mode, the trained SOM
model is automatically offloaded to the IoT device. The
features selected in the previous stage are extracted from
the IMU samples and provided as input to the SOM for
the classification of the human activity. The HAR output
can be notified to the user through output peripherals such
as a screen, or to other devices. We do not elaborate on
context dissemination as it is outside the scope of this
paper.

IV. LEARNING MODELS FOR THE EE

In this Section, we present the ML and pre-processing
techniques used in the model training block of Figure 1. We
rely on Self Organizing Maps (SOMs) for human activity clas-
sification and the ANOVA-F technique for feature reduction.

A. Self-Organizing Map

The self-organizing map (SOM) [17] is a type of unsuper-
vised learning algorithm that can be used for dimensionality
reduction and clustering. SOMs are a form of artificial neural
network that can map high-dimensional input data onto a
lower-dimensional output space while preserving the topo-
logical properties of the input data. SOMs are lightweight
and computationally efficient, making them well-suited for
deployment on constrained devices [13]. In our HAR system,
we used SOMs as ML techniques to address the HAR task
for multiple reasons. Firstly, they are lightweight and compu-
tationally efficient, making them well-suited for deployment
on constrained devices with limited computational power and
storage capacity. This is in contrast to other models such
as KNN, FNN, and SVM, which can have high storage
requirements and long computational times. KNN, for ex-
ample, requires storing all training data, making it unsuit-
able for large datasets or constrained devices with limited
storage capacity. FNN, on the other hand, has a complex
implementation of the transfer function, which can result in
high computational times and energy consumption. Similarly,
SVM has a complex implementation of the kernel function,
which can make it unsuitable for deployment on constrained
devices [18]. Secondly, SOMs are well-suited for unsupervised
learning, which is particularly useful for HAR systems, where
labeled training data may be scarce or expensive to collect,
or simply not tailored to the device owner. Finally, SOMs
can be easily customized for specific sensor data formats or
feature reduction methods, which is essential for deployment
on constrained wearable devices. By optimizing the SOM
model for the specific constraints of the device, we can achieve



high performance while minimizing energy consumption and
storage usage.

More in detail, a SOM is a distinct type of artificial neural
network that employs competitive learning for training. In this
approach, nodes compete for the opportunity to respond to
specific subsets of input data, as opposed to error-correction
learning methods (e.g., backpropagation with gradient descent)
utilized by other artificial neural networks. Like most artificial
neural networks, SOMs function in two primary modes: train-
ing and mapping. The training phase uses an input data set,
or “input space”, to create a lower-dimensional representation
known as the “map space”. The mapping phase then employs
this generated map to classify additional input data. Typically,
the training process aims to represent an input space with p
dimensions as a two-dimensional map space. An input space
consists of p features, each representing a dimension. The map
space is composed of nodes or neurons, which are organized
in a two-dimensional rectangular grid of size N × N . Each
node ni in the map space in the grid can be hence identified
via its coordinates ⟨xi, yi⟩, with 0 < i < N . The node
ni is linked to a weight vector wi of p dimensions, that
signifies the node’s position in the input space. Although
nodes in the map space remain stationary, the training process
involves adjusting weight vectors towards the input data (by
minimizing a distance metric such as Euclidean distance)
without disrupting the topology derived from the map space.
Once trained, the map can classify additional observations in
the input space by identifying the node with the nearest weight
vector (i.e., the smallest distance metric) to the input space.
During the initialization of the SOM algorithm, the neurons’
weights are assigned random values. Then, iterating over the
input data, for each training example a, the Best Matching
Unit (BMU) is calculated:

bmu = argmin
i
{||a− wi||}

The weight of the BMU node, and its neighborhood, is then
updated as follows:

wi = wi + η(t) · hi,bmu(t) · (a− wi)

Here, η(t) is the learning rate at learning iteration t defined
with a learning rate decay rule η(t) = η0 · e(−t/η̂), with η0
and η̂ as custom parameters. The neighborhood kernel function
hi,bmu(t) defines the neighborhood size and is defined by:

hi,bmu(t) = e
−

d2i,bmu

2·θ2(t)

where θ(t) = θ0 · e−t/θ̂ defines the neighborhood size decay
rule, with θ0 and θ̂ as custom parameters. The distance di,j
between two nodes is calculated as a Manhattan distance, i.e.,
di,j = |xi − xj |+ |yi − yj |.

The critical factors for deployment on a constrained EE
device are determined by the number of weights wi. The size
of the SOM map is thus defined by the number of neurons, i.e.,
the grid N ×N , and the number of features p. Consequently,
the total learning model deployment size is O(N2 · p). In

the following section, we will discuss a feature reduction
mechanism to decrease the value of p. Additionally, in Section
V-E, we will assess various SOM sizes to attain satisfactory
classification outcomes while enabling model deployment on
constrained EE devices.

B. ANOVA-F Feature Reduction
Feature reduction is an essential step in building efficient

ML models for HAR. Indeed, complex ML models tend to
use all possible features as inputs because they are designed
to run on computers or other devices that are not constrained
to low resources. In fact, most of the ML algorithms are
designed to internally disregard features that have little to
no influence in discriminating the predicted class. However,
since wearable devices have limited computational power and
storage capacity, it is crucial to reduce the number of features
before building the final model without compromising its
accuracy. Numerous methods can be employed for feature re-
duction, such as Principal Component Analysis (PCA), which
transforms the feature space by combining the original features
into distinct aggregations. However, this approach demands
additional computation and storage during the final inference
stage. In the proposed HAR system illustrated in Figure 1,
this phase would have to take place on the wearable device,
rendering it unsuitable for extreme edge deployment.

In the EE scenario, we chose a static method that is
able to reduce offline the number of features: the ANOVA-F
technique, which can be conducted a priori and not during the
inference phase, making it suitable to run outside the device.
This technique is a statistical method used for feature selection
that can identify the most significant features for the model
[19]. As a matter of fact, in HAR scenarios, we could achieve
the same accuracy of a complete model by only selecting a
subset of highly significant features. In order to calculate the
ANOVA-F value of a feature f we first calculate, for each of
the K classes, the variance of that feature within such class,
then we divide it by the variance of such feature over the whole
dataset. More formally, The ANOVA-F value of feature f for
class c ∈ K is given by:

Anc(f) =
σ2(f)c
σ2(f)

Ideally, a low value of Anc(f) means that f is highly
discriminant for class c, because the values of f do not change
significantly among the members of class c compared to how
much they change normally in the dataset. Conversely, values
of Anc(f) that approach 1.0 or above signify that feature f
is likely to just add noise for class c. Next, we would need to
come up with a single ANOVA-F value for each feature f , for
this reason, we run an aggregation function over all instances
of ANOVA-F values of f for all K classes. We conducted
our experiments by selecting the average and the minimum as
aggregation functions, which are defined as follows:

Anavg(f) =

∑
c∈C Anc(f)

K
,

Anmin(f) = min{Anc(f)|c ∈ K}



The first associates each feature with an ANOVA-F value by
taking into account its overall influence over all classes, while
the second only considers the class for which the feature is
most influential. Once calculated, we would ideally rank all
the p features in ascending order by their ANOVA-F value and
keep only the ones ranked best. Therefore, we introduce the
ANOVA-F Threshold (Anthr), which is the ANOVA-F value
below which we keep all the features. This variable becomes a
parameter of our system, which depends on the available space
on the device and has to be balanced with other parameters
in order to achieve the best possible accuracy. The ANOVA-F
technique can then be executed offline, so that the considered
features are known a priori and, in the inference phase, only
such features are computed by the device.

V. PERFORMANCE EVALUATION

In this Section, we evaluate the performance of the pro-
posed HAR system for resource-constrained IoT devices. The
evaluation includes five stages: (i) implementing the system
on the microcontroller, (ii) defining the HAR datasets, (iii)
analyzing the supervised learning techniques on the HAR
datasets to establish a reference baseline, (iv) assessing the
effectiveness of the ANOVA-F technique for feature reduction,
and (v) analyzing the SOM on the two datasets, to evaluate
the accuracy and memory size occupation for different map
sizes.

A. Implementation on the IoT device

The deployment of the HAR system depicted in Figure 1
is based on the M5Stack1, which is a modular, stackable, and
programmable device designed to support pervasive IoT appli-
cations. It is equipped with multiple IMU sensors, including an
accelerometer, gyroscope, and magnetometer, making it ideal
for HAR data collection tasks. The computational unit is based
on the popular ESP32 microcontroller with 240MHz dual-
core processors and 320KB of RAM memory. We choose this
device to validate our HAR architecture due to its compact
and energy-efficient profile; however, we emphasize that our
firmware can be easily adapted for other IoT boards that
support the Arduino SDK.

During the experiments, we positioned the device on users’
ankles as this location provides optimal gait analysis, as
reported by [20]. Generally speaking, the development of ML
models, including the SOM, on micro-controllers is highly
challenging and requires optimizing the code in order to fit
the memory constraints, which, for the case of the M5Stack, is
less than 400 KB. Traditional approaches involve quantization
techniques [8], which aim to reduce the size of an ML trained
out of the microcontroller by reducing the precision of floating
point coefficients [6]. To this aim, frameworks like TensorFlow
Lite [21] support the quantization process and the exportation
of the model in a binary format; the latter is loaded by an
interpreter running on the microcontroller. However, we were
unable to follow such an approach as the generated code
exceeded the memory capacity of the M5Stack device.

1https://docs.m5stack.com/en/core/gray

To overcome these challenges, we opted to implement a
SOM library from scratch in C++ for micro-controller, by
taking into account the hardware characteristics of the latter.
The SOM library for the Arduino SDK is available online2 and
can be easily customized to support different micro-processors
than the ESP-32 one.

Through our implementation, the size of the final deployed
SOM model is restricted to several tens of kilobytes. The
M5Stack has 320 KB of RAM memory, and after an initial
code optimization phase that encompasses sensor reading and
wireless communication, the maximum memory available
for the SOM model is 140 KB only. As described in
Section IV-A, the SOM size depends on two variables: the
number of features and the map size. In Figure 2a we depict
the relationship between these two variables and the final size
of the SOM model to be installed in the wearable device.
In the Figure, only feasible configurations are shown. In
Section V-E we investigate the trade-off between number of
input features, map size and overall accuracy of the HAR task.

B. Description of datasets

We evaluated our proposed HAR system on two different
datasets, one from the literature and a custom one gathered by
using the M5Stack device.
Regarding the first, we used the well-known University of
California Irvine (UCI) HAR dataset [22]. It was collected
from the accelerometer and gyroscope sensors of a smartphone
carried by volunteers performing six different activities: walk-
ing, walking upstairs, walking downstairs, sitting, standing,
and laying down. The dataset includes time-series data for
the three axes of each sensor, as well as the corresponding
activity label. The dataset has been widely used in research
for developing and evaluating HAR models based on ML
techniques. More in detail, each record in the dataset is
provided with a 561-feature vector with time and frequency
domain variables. The database’s features were sourced from
the accelerometer and gyroscope 3-axial raw signals and were
captured at a constant rate of 50Hz. To eliminate noise, a
median filter and a 3rd-order low pass Butterworth filter with
a corner frequency of 20Hz were employed. Another low-
pass Butterworth filter with a corner frequency of 0.3Hz was
used to split the acceleration signal into body and gravity
acceleration signals. After that, the body’s linear acceleration
and angular velocity were used to derive Jerk signals in
time. The magnitude of these three-dimensional signals was
determined using the Euclidean norm. Finally, a Fast Fourier
Transform (FFT) was applied to some of these signals.
However, not all of these features are equally essential for ac-
curate HAR systems. Some may be redundant or noisy, while
others may be more informative. Our study evaluated the UCI
dataset’s performance using different feature subsets and found
that the frequency-based features did not significantly improve
our HAR system’s performance. Figure 2b demonstrates that

2https://github.com/UniBO-PRISMLab/extreme-edge-som



(a) (b) (c)

Fig. 2: 2a shows the impact of the SOM size and the number of features on the deployed firmware. 2b compares the accuracy for the UCI dataset, when
using all 561 features or a subset of 265 features only. 2c shows a comparison between different supervised techniques over the two datasets.

the prediction accuracy using the entire set of 561 features and
a subset of 265 features, which excludes frequency-domain
inputs, behaved quite similarly for classification accuracy. As
a result, we decided to remove the frequency-based features
and focus solely on time-domain and statistical features in our
deployment.

We used the same selected features and built our custom
dataset by collecting data from our wearable device installed
on multiple users. The M5Stack device was installed on the
user’s ankle with a sampling rate of 40Hz to collect sensor
data. We applied the same procedures used on the UCI dataset,
such as Butterworth filters and Jerk calculation. For the custom
dataset, in order to perform a meaningful comparison, we used
the exact same classes as the UCI dataset.

C. Supervised learning for HAR

In this Section, we show the performance of supervised
learning methods for HAR applications. These techniques rely
on labeled training data to build a model that can predict the
activity performed by the user, while unsupervised learning
techniques aim to discover patterns or structures in the data
without any labeled information. Due to the constraints of the
EE device used in our HAR system, we will focus primar-
ily on evaluating the performance of unsupervised learning
techniques in the following Sections. However, to have a
meaningful comparison perspective, we now analyze different
supervised learning techniques for HAR applications as a
baseline. Specifically, we evaluated: long short-term memory
(LSTM), convolutional neural network (CNN), CNN-LSTM,
and convolutional LSTM (CONVLSTM).

Figure 2c shows that supervised learning techniques are very
effective in classifying human activities, with all four models
achieving high accuracy. In the Figure are depicted the results
for both datasets. Here, the CNN-LSTM model achieved the
highest overall performance, with an accuracy of 99% with our
custom dataset. This evaluation shows also the effectiveness of
placing the sensors in the right position, i.e., the ankle, instead
of using the sensors inside the smartphone. The results of the
supervised learning techniques over the UCI dataset are around

8% less accurate than the one executed on our dataset.
However, while supervised learning methods are highly ef-
fective in the classification of HAR systems, they are not
suitable for deployment in EE devices. Our M5Stack device, in
fact, has 140KB available memory only. On the contrary, the
supervised learning models require significant computational
resources and storage capacity.

D. Features reduction with ANOVA-F

In this Section, we present the results of the ANOVA-F
feature reduction method on both the UCI HAR dataset and
our custom dataset. We analyzed the two different variations
of the ANOVA-F method described in Section IV-B: one using
the average as the aggregation function and another using the
minimum as the aggregation function, in the following called
AVG and MIN, respectively. The aim of this analysis was to
identify the most relevant features for our ML model and
reduce their number to minimize storage usage, as requested in
previous Section V-A. Our results show that both variations of
the ANOVA-F method were effective in reducing the number
of features used in our classification model. Figures 3a and
3b display the outcomes of features reduction obtained by
applying distinct Anthr on both the UCI and our custom
datasets. It should be noted that the scales on the x-axes are
different in the Figures (UCI dataset in Figure 3a and our
dataset in Figure 3b). This disparity in scaling is due to the
fact that in our custom dataset, setting the Anthr to 0.5 resulted
in almost all of the input features being included without any
feature reduction. Therefore, in order to evaluate our dataset,
we used exponential steps for the Anthr.
The results show that the variation using AVG as the aggre-
gation function resulted in a greater reduction in the number
of features with respect to the MIN version, especially for
low levels of the Anthr. Based on these results, we selected
the AVG variation of the ANOVA-F method for the next
evaluations. This is because by using this method we can
achieve a significant reduction in the number of features used
in our model.



(a) (b) (c)

Fig. 3: Feature reduction using AVG and MIN for different value of Anthr applied to the UCI dataset (3a) and for our dataset (3b). The accuracy evaluated
with K-Means, different SOM sizes by varying Anthr for the Uci dataset is shown in Figure 3c.

E. SOM for Extreme Edge Devices

In this Section, we present the evaluation process undertaken
to determine the optimal configuration for the SOM and the
ANOVA-F threshold (Anthr) in our HAR model. Our primary
goal was to achieve a satisfactory classification performance
while maintaining a compact model size that is suitable for de-
ployment on the M5Stack device. To ensure the robustness and
generalizability of our model, we used the two datasets for the
evaluation process. Additionally, we analyze the performance
of SOMs with the legacy K-Means algorithm for comparison
purposes. We conducted a series of experiments to assess the
performance of our HAR model by varying the size of the
SOM and the Anthr. The SOM sizes tested ranged from small
(e.g., 10x10) to larger maps (e.g., 30x30), while the Anthr
values were varied between 0.0001 and 1 for our dataset and
between 0.1 and 1 for the UCI dataset. This range of values
was chosen to cover a wide spectrum of model complexities,
thereby providing a comprehensive understanding of the trade-
off between model size and performance.

Upon analyzing the results in Figures 3c and 4a from both
the UCI HAR dataset and the custom dataset, we observed
that the HAR model’s performance improved with increasing
SOM size. However, for sizes greater than 15×15, the increase
in accuracy is not so evident. Regarding Anthr, we notice a
decrease in performance for low values in both datasets and
for high values only in our custom dataset. Here, we have that
the optimal performance is different for the two datasets. The
UCI dataset performs well starting from Anthr of 0.5, i.e.,
from a number of features of 209 (see Figure 3a). Our custom
dataset performs well with Anthr values between 0.0005 and
0.1, i.e., with a number of features between 110 and 183. It is
clear that with larger SOMs and higher Anthr, and hence more
features, the model would also demand more computational
resources and storage, which may not be available on the
M5Stack device.

Taking these considerations into account, we determined
that the optimal configuration for our HAR model is a SOM
size of 15 × 15 and Anthr of 0.005. For the deployment,
we considered the results from our custom dataset. This con-
figuration demonstrated a satisfactory balance between model

SOM size Anthr # of features Accuracy Size in KB
10× 10 1 243 0.81 95.4
15× 15 0.005 150 0.905 132.1
15× 15 0.01 163 0.905 143.6
15× 15 0.05 179 0.91 157.7
20× 20 0.0001 4 0.784 6.2
20× 20 0.0005 110 0.893 172.1

TABLE I: Detailed results for accuracy and model deployment
size with different configurations. Green and red colors in the last
column indicate if the model can or cannot be deployed in our device,
respectively.

accuracy and computational complexity, making it well-suited
for deployment on our wearable device which has a limit of
140KB. Table I presents the accuracy values and deployment
sizes for distinctive configuration values for SOM map size
and the number of features, using only our custom dataset.

Lastly, comparing the performance of SOMs to that of the
K-Means algorithm, we found that SOMs outperformed K-
Means for both datasets in terms of accuracy. This is likely due
to the ability of SOMs to preserve the topological structure of
the data, allowing for more effective clustering and recognition
of human activities. In Figures 4b-4c are shown a graphical
view of the resulting SOM after the training phase for both
datasets, using a SOM of size 20 × 20. It is clear how this
method is able to topologically divide the different classes
into two dimensions. These results emphasize the potential
of SOMs as a suitable ML model for HAR applications on
constrained wearable devices.

VI. CONCLUSIONS

In this paper, we have presented the design, implementation
and validation of an Extreme Edge (EE)-aware Human Activ-
ity Recognition (HAR) system. The system aims at detecting
human activity on micro-controlled based, wearable IoT de-
vices equipped with inertial sensor, by taking into account the
unique challenges posed by the computational environment,
such as the constrained resources and the impracticability of
a data labeling phase. Our HAR system incorporates a feature
selection mechanism, based on the ANOVA-F technique, to
reduce the dimensionality of HAR features at the input stage.
Then, it utilizes an unsupervised classification technique based
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Fig. 4: The accuracy evaluated with K-Means, different SOM sizes by varying Anthr for our custom dataset is shown in Figure 4a. Figures 4b and 4c show
a visual 2D representation of the SOM neurons, for the UCI dataset and our custom dataset, respectively. Here, darker areas define the separation between
different classes.

on Self-Organizing Maps (SOMs) to enable data separation
and effective activity classification. We developed a C++ SOM
library for the Arduino SDK, and validated our system through
an M5Stack IoT wearable board. The experimental results
on two HAR datasets, the UCI HAR dataset and a custom
dataset built through our IoT prototype, demonstrated that
the proposed SOM solution is capable of outperforming other
unsupervised approaches. Furthermore, our system achieved
performance close to state-of-the-art DL techniques while
generating a model small enough to fit the limited memory
capabilities of EE devices. Future work may involve further
optimization of the system, exploration of alternative feature
selection techniques, and the adaptation of our approach to
other wearable devices and application domains.
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