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ABSTRACT: We assess to what extent seven state-of-the-art dynamical prediction systems can retrospectively predict
winter sea surface temperature (SST) in the subpolar North Atlantic and the Nordic seas in the period 1970–2005. We
focus on the region where warm water flows poleward (i.e., the Atlantic water pathway to the Arctic) and on interannual-
to-decadal time scales. Observational studies demonstrate predictability several years in advance in this region, but we find
that SST skill is low with significant skill only at a lead time of 1–2 years. To better understand why the prediction systems
have predictive skill or lack thereof, we assess the skill of the systems to reproduce a spatiotemporal SST pattern based on
observations. The physical mechanism underlying this pattern is a propagation of oceanic anomalies from low to high lati-
tudes along the major currents, the North Atlantic Current and the Norwegian Atlantic Current. We find that the predic-
tion systems have difficulties in reproducing this pattern. To identify whether the misrepresentation is due to incorrect
model physics, we assess the respective uninitialized historical simulations. These simulations also tend to misrepresent the
spatiotemporal SST pattern, indicating that the physical mechanism is not properly simulated. However, the representation
of the pattern is slightly degraded in the predictions compared to historical runs, which could be a result of initialization
shocks and forecast drift effects. Ways to enhance predictions could include improved initialization and better simulation
of poleward circulation of anomalies. This might require model resolutions in which flow over complex bathymetry and the
physics of mesoscale ocean eddies and their interactions with the atmosphere are resolved.

SIGNIFICANCE STATEMENT: In this study, we find that dynamical prediction systems and their respective climate
models struggle to realistically represent ocean surface temperature variability in the eastern subpolar North Atlantic and
Nordic seas on interannual-to-decadal time scales. In previous studies, ocean advection is proposed as a key mechanism in
propagating temperature anomalies along the Atlantic water pathway toward the Arctic Ocean. Our analysis suggests that
the predicted temperature anomalies are not properly circulated to the north; this is a result of model errors that seems to
be exacerbated by the effect of initialization shocks and forecast drift. Better climate predictions in the study region will thus
require improving the initialization step, as well as enhancing process representation in the climate models.

KEYWORDS: Ocean circulation; Climate prediction; Decadal variability

1. Introduction

Slow variations in heat transport of the Gulf Stream’s
extension toward the Arctic Ocean influence western Euro-
pean climate, Arctic sea ice conditions, and northern fisheries
(e.g., Yeager et al. 2015; Årthun et al. 2017, 2019). It would
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accordingly be beneficial if one could skillfully predict the
state of the ocean a few years in advance. Indeed, several
studies have shown the capability of predicting changes in
the subpolar North Atlantic several years in advance (e.g.,
Robson et al. 2012; Yeager et al. 2012; Persechino et al. 2013;
Msadek et al. 2014). On interannual-to-decadal time scales, a
recent study shows that there is little consistency in the pre-
dictive skill of three dynamical prediction systems in the Nor-
dic seas (Langehaug et al. 2017). This is in contradiction to an
observation-based study, demonstrating that it is possible to
predict changes in the sea surface temperature (SST) and
salinity a few years in advance in the eastern Nordic seas
(Årthun et al. 2017; Fig. 1). These observed changes or anom-
alies in temperature and salinity have been found to be pre-
dictable, as they travel from the Gulf Stream region in the
North Atlantic Ocean toward the Arctic Ocean within a time
frame of about 10 years (e.g., Holliday et al. 2008; Chepurin
and Carton 2012; Årthun et al. 2017), and have a periodicity
of about 14 years (Årthun et al. 2017). Moreover, the mech-
anism associated with these thermohaline anomalies, such
as how they are formed and how they develop on their way
north, has recently received increased attention (e.g.,
Årthun and Eldevik 2016; Asbjørnsen et al. 2019; Årthun
et al. 2021).

In this study we differentiate between two types of mecha-
nisms: 1) the mechanisms that generate decadal-scale SST

variability in the North Atlantic, and 2) the mechanisms
responsible for propagating decadal-scale SST anomalies
along the Atlantic water pathway to the Arctic Ocean. In the
study presented here, the Atlantic water pathway is defined as
the route where the Atlantic Water dominates and circulates
(Fig. 1), following the poleward extension of the Gulf Stream,
via the North Atlantic Current and the Norwegian Atlantic
Current. A number of studies have focused on understanding
the first type, and several mechanisms have been suggested to
play an important role in generating decadal-scale SST anom-
alies in the North Atlantic (e.g., Ortega et al. 2015; Marshall
et al. 2001; Muir and Fedorov 2017; Årthun et al. 2021). Our
study is however related to the second type of mechanism,
focusing on the subsequent propagation of SST anomalies
along the Atlantic water pathway on interannual-to-decadal
time scales. This northward propagation is clearly seen in
Hovmöller diagrams of SST (and salinity) anomalies, as alter-
nating cold and warm anomalies, and with a time lag between
the subpolar North Atlantic and the Fram Strait (at the
entrance to the Arctic Ocean; Furevik 2001; Holliday et al.
2008; Yashayaev and Seidov 2015; Årthun et al. 2017). The
time lag suggests that anomalies propagate slowly poleward,
using several years to travel along the Atlantic water pathway.
This spatiotemporal SST pattern is at the core of this study,
where our aim is to assess how model simulations (climate
predictions and historical runs) represent the observation-
based spatiotemporal variability of SST anomalies along the
Atlantic water pathway.

Several mechanisms have been proposed to explain the
decadal-scale propagation and along-path modification of
SST anomalies along the Atlantic water pathway. This
includes advection along the major currents (e.g., Furevik
2000; Krahmann et al. 2001; Årthun et al. 2017), local air–sea
interaction (e.g., Saravanan and McWilliams 1998), Rossby
waves (e.g., Liu 1999), boundary waves (Marshall and
Johnson 2013), and shear-dispersion effects (Broomé and
Nilsson 2018). This study does not aim to assess the relative
importance of these mechanisms. In the discussion, how-
ever, we further elaborate on some of the mechanisms
or factors that can impact the propagation of SST anoma-
lies along the Atlantic water pathway and discuss to
what extent these mechanisms can shed light on model
differences.

Langehaug et al. (2019) tested to what degree a hindcast
ocean model (forced with realistic atmospheric datasets) is
able to represent the poleward propagation of SST anoma-
lies and upper-ocean salinity anomalies. They found that
simulations at 18 and 1/48 horizontal resolutions were both
able to show the repeated propagation of surface anomalies,
with the higher-resolution simulation showing a better tim-
ing of the anomalies along the Atlantic water pathway com-
pared to observation-based data. The spatiotemporal SST
variability described above has nevertheless not yet been
evaluated in dynamical prediction systems. Thus, our main
objective in this study is to investigate the predictive skill of
SST along the Atlantic water pathway in seven different
dynamical prediction systems. To capture potential skill
related to the poleward propagation of SST anomalies, we

FIG. 1. The focus region of this study is the Atlantic water path-
way, from the subpolar North Atlantic to the Fram Strait, dotted by
seven stations (magenta circles). Station 1 (St1) is located in the
subpolar region and Station 7 (St7) in the Fram Strait. Time series
of temperature and salinity from these seven stations are used to
track northward propagation of hydrographic anomalies in the
Atlantic Water. When we refer to the stations in this study, we use
an average value of grid points close to the stations (within a box
with a size of approximately 58 3 58; gray boxes). Colors indicate
the mean winter (January–April) sea surface temperature (SST)
from HadISST2 in the time period 1970–2005. The two black lines
are aligned with temperature isolines for 98 and 38C, and the dashed
black box shows the region called the eastern subpolar North
Atlantic.
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focus on multiyear to decadal time scales. We hypothesize
that predictive skill or lack thereof in the prediction systems
along the Atlantic water pathway is related to models’ abil-
ity to represent the poleward propagation of these SST
anomalies. To test this hypothesis, we compare the climate
models of the prediction systems against the observation-
based benchmark of poleward propagating anomalies}a
mechanism connecting the Atlantic Ocean and the Arctic
Ocean}as articulated in Årthun et al. (2017). Furthermore,
for each forecast year, the spatiotemporal SST variability is
assessed in the different prediction systems. This study
therefore demonstrates a different way of assessing forecast
skill, in addition to the traditional way of calculating anom-
aly correlation coefficients, which focuses on how well the
prediction systems are representing a specific spatiotempo-
ral pattern for each forecast time.

The manuscript is organized as follows. In section 2, we
describe the observation-based data, prediction systems, and
methods used. In section 3, we present the main results, and
finally we discuss and conclude our study in sections 4 and 5,
respectively.

2. Observation-based data, model data, and methods

a. Observation-based data

For observation-based SST analyses both version 1.1 and
version 2 of the Hadley Centre Sea Ice and SST dataset
(HadISST1 and HadISST2) are used. These datasets provide
monthly global SST on a 18 latitude–longitude grid from 1870
to the present. A detailed description of HadISST1 and its
production process is given in Rayner et al. (2003). It was
shown in Hirahara et al. (2016) that HadISST2 is suitable for
representing large-scale SST variability.

Predictive skill can vary substantially depending on the ver-
ification time period used (e.g., Brune et al. 2018; Borchert
et al. 2019). In addition, the observation-based dataset used
for verification (e.g., HadISST1, HadISST2) can affect the
predictive skill. For instance, comparing the predictive skill
resulting from using HadISST1 and HadISST2, there is a
large skill discrepancy in the center of the North Atlantic at
∼508N (with a difference of about 0.4 in correlation; not
shown). The two observation-based datasets are only used
here to capture uncertainty in the predictive skill arising
from observations. For forecast verification purposes, on
the other hand, we use only the latest product, HadISST2,
as our reference for all models, focusing on the 1970–2005
period.

In this study we analyze late-winter and early-spring data
(January–April), hereafter simply referred to as “winter”
data. The reason for analyzing winter SST is that this is
assumed to represent the temperature of the winter mixed
layer, and thereby a larger portion than only the surface. In
summertime, typically a shallow mixed layer is present due to
solar heating. In wintertime, the larger vertical extent of the
mixed layer implies that the SST is expected to better reflect
the upper-ocean heat content (e.g., Chepurin and Carton
2012). However, the poleward propagation of anomalies is

also seen when using annual data, and also when analyzing
annual salinity, both at surface and subsurface (at 200 m)
(Årthun et al. 2017; Langehaug et al. 2019).

b. Time filtering

Because we are interested in multiyear to decadal variabil-
ity and not in long-term trends [e.g., global SST change and
Atlantic multidecadal variability (AMV)], we apply a third-
order 3–30-yr bandpass Butterworth filter to all time series,
prior to the calculation of the correlation. This filter removes
both the high-frequency variability and the lower-frequency
signals, including long-term trends, highlighting decadal
pulses as in Nigam et al. (2018). Figure 2 shows that the filter
is phase-preserving. We have also applied the 10-yr running
mean (using HadISST2 data from 1960 to 2010), which repre-
sents multidecadal variability in the time series (Fig. 2). The
variability in this time series clearly differs from the variability
in the bandpass filtered time series. The former (10-yr running
mean) is not a focus of this study, but is only added here for
comparison purposes. The observation-based SST in Fig. 2 is
averaged over the box domain shown in Fig. 1 showing the
eastern subpolar North Atlantic.

We demonstrate the robustness of the filter choice (3–30-yr
bandpass Butterworth) by also applying a 5–40-yr bandpass
filter (Figs. 4 and 6). This filter gives overall similar results,
but with more smoothing of the peaks in the time series. The

FIG. 2. (top) Winter SST for the eastern subpolar (SP) North
Atlantic using HadISST2 original time series and filtered time series
(3–30-yr band pass and 10-yr running mean). SST is averaged over
the domain shown in Fig. 1 (dashed black box; 488–618N, 38–258W).
(bottom) Winter SST from St2, St3, and the box domain. All time
series are band-pass filtered.
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paper describing the observation-based poleward propagation
of anomalies (Årthun et al. 2017), applied a 5-yr Butterworth
low-pass filter, and additionally a 40-yr Butterworth high-pass
filter when removing the AMV.

c. Poleward propagation of SST anomalies in
observation-based data

Observation-based data have previously shown that there
exists a lagged correlation for SST anomalies, and also for
subsurface salinity, between the stations along the Atlantic
water pathway (purple dots in Fig. 1; Årthun et al. 2017;
Langehaug et al. 2019). We estimate the horizontal extent of
the observation-based SST anomalies by calculating the
simultaneous correlation between SST in each grid point with
the SST at one of the stations along the Atlantic water path-
way [for station 3 (St3) in Fig. 3, top panel]. In this way, we
see the extent of the surrounding area that covaries with each
station. HadISST1 shows that a region stretching from Iceland
toward Spain has significant positive correlations with St3,
and a similar region is also seen for HadISST2, but with its
southern extent limited to the British Isles.

The same analysis is repeated for every second station (St1,
St3, St5, and St7), and only locations with a correlation of 0.7
are shown (Fig. 3, bottom panels). We find high and

significant correlations surrounding each station by up to hun-
dreds of kilometers in HadISST1 (similar, but smaller regions
for HadISST2). At the same time, there is little overlap in the
extent of the SST anomalies for these four stations. The rela-
tively large horizontal extent of the anomalies in Fig. 3 sup-
ports the decision of averaging the observational-based data
and model data over a 58 3 58 box in the analysis with lagged
correlations described below.

We calculate the lagged correlations (or cross-correlations)
up to 10 years between the different stations and the north-
ernmost one (St7 in the Fram Strait) for the time period
1970–2005 for both HadISST1 and HadISST2 (Fig. 4), with
St7 always lagging the other ones. Due to the relatively short
observational record (fewer samples increase the significance
level), we show significant correlations at both the 90% and
95% level in Fig. 4. As mentioned previously, we have
expanded each station to a 58 3 58 region instead of using one
single grid point (Fig. 1, gray boxes), which means that several
grid points have been averaged for each station. This analysis
reveals a dipole pattern with positive (negative) correlations
mostly at short (long) time lags. The positive correlations with
St7 decrease upstream (i.e., when correlating with stations far-
ther south) and also the time lag for the maximum correla-
tions increases upstream. For instance, in HadISST2 with the

FIG. 3. (top) Estimating extent of observation-based SST anomalies by correlating the time series at station 3 (here
using a single grid point) with the time series in all other grid points for two different data sets, (left) HadISST1 and
(right) HadISST2. The black line shows significant correlation at the 90% level by the standard two-sided Student’s
t test and taking into account autocorrelation. (bottom) As at in the top row, but considering stations 1, 3, 5, and 7 and
contour is drawn where the correlation equals 0.7. All time series are 3–30-yr band-pass filtered prior to correlation.
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3–30-yr bandpass filter, a significant positive correlation exists
between St7 and St3 with a time lag of 2–3 years (max correla-
tion is 0.63), suggesting that a signal propagates from the
entrance at the Greenland–Scotland Ridge toward the Fram
Strait during that time. The significant negative correlations at
longer time lags show that SST anomalies at St7 are opposite
about 6–7 years earlier (correlation is 20.55 between St7 and
St5 at a time lag of 6 years).

There are some differences in the cross-correlation pattern
when comparing HadISST1 and HadISST2 (Fig. 4). In
HadISST1, the correlation between St7 and the two stations in
the subpolar region (St1 and St2) hints at a connection, but it
is weak and not significant. In HadISST2, the correlation with
the stations in the subpolar region is higher and suggests a link
with anomalies in the edge of the subpolar region and the Nor-
dic seas. On the other hand, the correlation between St7 and
St4 (close to Shetland) is significant in HadISST1, but weak
and not significant in HadISST2 (Fig. 4). Using a 5–40-yr
bandpass filter instead of a 3–30-yr bandpass filter shows over-
all the same pattern but somewhat higher correlations.

d. Dynamical prediction systems

Dynamical prediction systems are fully coupled global cli-
mate models that are initialized with the observed state of the
ocean through different strategies, to start from a realistic

initial state (with respect to the observed phase and amplitude
of internal climate variability) and then simulate future ocean
circulation and climate. For instance, unusually warm subpo-
lar North Atlantic Ocean conditions that are represented at
the correct time could then circulate poleward due to the
modeled ocean dynamics, potentially leading to consistently
higher SST in the Fram Strait some years later.

The decadal hindcasts start at a specific date in each pre-
diction system and the number of ensemble members varies,
but all members are run for 10 years (Table 1). When com-
puting the skill in the decadal prediction systems we use the
same verification time window for all the forecast times
(1970–2005). In this way, all forecast ranges are estimated
consistently, and differences can be attributed to the differ-
ences in the systems (models, initialization methodology,
forecast drift/shock, external forcing), without any contami-
nation due to different verification windows. This approach
implies that not all forecast times will be assessed for all
start years (e.g., for start year 1961 we only use data for the
10-yr forecast time, and for start year 2005 we only use data
for the first year forecast). For each start date, several
ensemble members have been run, depending on the predic-
tion system, and herein the main focus is on the respective
ensemble means for each system. More details on each of
the prediction systems are given in Table 1.

FIG. 4. Cross-correlation of observation-based winter SST between the northernmost station and all seven stations
(Fig. 1). Time series are filtered by a (top) 3–30-yr and (bottom) 5–40-yr Butterworth band-pass filter. Significant cor-
relations are marked by black (gray) circles, calculated at the 90% (95%) level by the standard two-sided Student’s
t test taking into account autocorrelation.
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Five of the models providing decadal hindcasts are from
the EU Blue-Action project partners (CESM1-DPLE, IPSL-
CM5A-LR, MPI-ESM-LR, NorCPM1, CMCC-CM2). The
EC-EARTH (v2.3) hindcasts are available from two predic-
tion systems, with the anomaly initialized system (referred to
herein as EC-EARTH ano) performed by the Swedish Mete-
orological and Hydrological Institute (SMHI) and the full-
field initialized system (herein called EC-EARTH full) per-
formed by Barcelona Supercomputing Center, both within
the EU project Seasonal-to-decadal climate Prediction for the
improvement of European Climate Services (SPECS; IPSL-
CM5A-LR was also part of this project). The prediction sys-
tems used herein represent versions that have been developed
after CMIP5 and some of these have been submitted to
CMIP6. We also use uninitialized historical runs from each of
the fully coupled global climate models (Table 1).

e. Anomaly correlation coefficient

To calculate the anomaly correlation coefficient, we con-
struct a time series from the hindcasts for each forecast time,
remove the winter (January–April) climatological mean over
the 1970–2005 period of this time series, and correlate it with
the corresponding observation-based anomaly time series. To
account for consistent model drift, the climatological mean
that we subtract is dependent on the forecast time; for exam-
ple, if the SST time series at forecast time 5 8 years shows in
general warmer conditions than at forecast time 5 2 years,
then the climatological mean value would be higher at fore-
cast time5 8 years. The anomaly correlation coefficient is cal-
culated for the ensemble mean. When calculating the
correlation skill for averaged forecast times, we average the
bandpass filtered time series for different forecast times
before calculating the correlation.

When assessing skill along the Atlantic water pathway, the
model SST is averaged over specific regions dependent on lati-
tude and the model’s own SST climatology. The exact same
regions are used to average observation-based SST (this is pos-
sible as the HadISST2 data have been interpolated to each of
the specific model grids). The regions vary to some extent from
one model to another due to their different SST climatology.

The statistical significance level is tested by the standard two-
sided Student’s t test (e.g., O’Mahony 1986). The effective
degrees of freedom are calculated after the filtering and we use
the method by Chelton (1983), taking into account the autocor-
relation of the time series. It is thus different for each forecast
time and each averaging region (three regions along the Atlantic
water pathway; Fig. 5). In Fig. 6 (left panel), for each model we
only show the significance level for the averaged effective
degrees of freedomNmean;Nmean is averaged across the different
forecast times and regions. For the multimodel mean (Fig. 6,
right panel), we allow the effective degrees of freedom to vary
with the three regions (but not with forecast time).

f. Comparing the prediction systems and climate models
with the observed propagation

In this study we compare the lag-correlation pattern identi-
fied in observation-based data with its counterpart in each of

the dynamical prediction systems. This means that we treat
the data for each forecast time as a continuous dataset across
hindcasts. In this way, we assess how the SST anomalies at
each station covary with the northernmost station for differ-
ent forecast ranges, which can indicate how the relation
evolves with forecast time.

In addition, we analyze the respective climate models and
their uninitialized historical runs. Single members have been
analyzed to test to which extent a physical propagation of
thermohaline surface anomalies are realistically simulated in
the climate models. In this way, our analysis is twofold: 1) we
assess the skill in reproducing a realistic spatiotemporal SST
pattern in the prediction systems, and 2) we investigate the
existence of a physical propagation in the historical runs.

When we calculate lagged correlations for forecast time of
1 year, we use the following procedure. For each station, a
time series is constructed using the first forecast year in each
hindcast. Then, these time series from stations 1–7 are cross-
correlated with the time series from St7. For longer forecast
years the same procedure is repeated. Before these cross-cor-
relations are calculated, the time series are bandpass filtered
in the same way as for the observations. With this procedure,
we are testing the skill of the prediction system to accurately
predict the spatiotemporal pattern identified in observations.
This analysis is also expanded to the individual members from
the prediction systems, in order to assess the reliability of the
spatiotemporal pattern across the ensemble.

As done with the observational-based data, we have
expanded each station to a 58 3 58 region instead of a single
grid point to produce more robust results. Each model has a

FIG. 5. SST skill is assessed in three different regions along the
Atlantic water pathway: 1) the eastern subpolar region (red), 2) the
inflow region (green), and 3) the Norwegian Sea (blue). These
regions vary slightly from one model to another, as the regions are
based on the models’mean SST: red corresponds to SST . 98C and
between 488 and 618N; green is the same for all models, within a
specific latitude and longitude interval; and blue corresponds to
SST . 38C and between 668 and 758N. Note that IPSL-CM5 (MPI-
ESM) has a cold (warm) bias, and thus, the SST limits are 68 and 08C
(108 and 48C) for the subpolar and Norwegian Sea region, respec-
tively. CMCC-CM2 has a cold bias in the subpolar region (SST limit
is therefore 78C), but not in the Norwegian Sea. See Fig. 1 in the
supplemental material for the model-dependent regions.
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different resolution and models with higher resolution have
more internal variability (e.g., Tang et al. 2019). Averaging
the ensemble reduces this noise. Thus, when changing from
single grid points to small regions, the results are overall the
same for the CESM1-DPLE because it already has so many
ensemble members.

In their observation-based study, Årthun et al. (2017) found
evidence of predictability related to the poleward propagation
of temperature anomalies, which they used in statistical pre-
diction of Norwegian air temperature. It is important to note
that the predicted signals estimated with dynamical prediction
systems (i.e., those based on climate models, as in this study)

FIG. 6. Anomaly correlation coefficient of winter (January–April) SST for three different regions (see Fig. 5). (left)
Correlation is between HadISST2 data and the ensemble mean of the individual prediction systems at different fore-
cast times. At each forecast time, time series are 3–30-yr band-pass filtered prior to correlation. Correlation at zero
lead time is shown by filled circles. (right) As in the left column at forecast time 1–10 years, but now also including
the skill of the multimodel mean that has been correlated with HadISST2 data (thick line). The dashed lines show
significant correlation at the 95% level by the standard two-sided Student’s t test and taking into account autocorrela-
tion (the 90% level is shown in addition for the multimodel mean). Thin colored lines represent the multimodel
mean filtered with 5–40-yr band pass.
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tend to be a lower bound of the true predictability that can be
achieved in the real world. This is because these prediction
systems are “imperfect” as they are affected by systematic
model errors, observational uncertainties, and other limita-
tions inherent to the initialization procedure. Large ensemble
sizes (which are generally unaffordable for decadal climate
prediction) are also warranted to achieve high predicted sig-
nals, as many members help improving their detectability
over the climate noise. Another aspect potentially degrading
the predicted signals in our analysis is the fact that the multi-
model prediction ensemble mean used herein might not
reflect a coherent physical evolution. This ensemble mean
results from the averaging of members from different models,
which might represent the propagation differently. We also
note that for computing the skill or the spatiotemporal pat-
terns for each lead time we combine predictions from differ-
ent start dates, which, unlike the continuous experiments,
might present discontinuities and/or inhomogeneities, also
degrading the signals. All these limitations thus need to be
kept in mind when interpreting our results from the decadal
climate predictions.

3. Results

a. Skill in predicting winter SST anomalies along the
Atlantic water pathway

We aim to capture skill in regions influenced by the advec-
tion of Atlantic-origin water. We therefore average winter
SST within specific latitude bands and SST intervals along the
Atlantic water pathway to the north, separating into three dif-
ferent regions (colored regions in Fig. 5). The SST intervals
are based on the SST climatology (January–April seasonal
mean) for each individual prediction system, and hence there
are some minor regional differences across the prediction
systems in the latitudinal bands (Fig. 1 in the online
supplemental material). We define the three regions accord-
ingly: 1) the eastern subpolar North Atlantic (hereafter only
subpolar region), defined as SST . 98C and between 488 and
618N; 2) the inflow region to the Nordic seas (hereafter simply
called the inflow region), defined as within the regions of
618–668N, 208W–108E; and 3) the northern Norwegian Sea
(hereafter simply Norwegian Sea), as SST . 38C and between
668 and 758N. In this respect the inflow region is also covering
large parts of the southern Norwegian Sea. A threshold of
38C is chosen as the dividing line in the Nordic seas, as this
represents the typical temperature of Atlantic Water in the
eastern part of the Norwegian Sea (Eldevik et al. 2009). A
threshold of 98C is chosen as the dividing line in the southern-
most region, as this captures the Atlantic Water in the eastern
part of the subpolar North Atlantic.

The skill is calculated using the ensemble mean from the
respective prediction systems and HadISST2 data. Time series
have already been smoothed by bandpass filtering before cal-
culation of skill, as described in section 2b. The results are
synthesized in Fig. 6: In each row we show the results for one
of the regions, and the left column shows all individual

prediction systems. In the right column we show the skill of
multimodel mean for each region.

In Fig. 6, we also show the SST skill at zero lead time (filled
circles in left column). Information about how zero lead time
is extracted from the prediction systems is given in Table 1.
This varies to some extent from one system to another, but
the zero-lead-time data in general reflect the initial state in
predictions or in the data used to initialize the systems. As
most of the prediction systems are initialized during October/
November, we have compared the zero-lead-time data with
HadISST2 data averaged over the months October, Novem-
ber, and December. Overall, we find high correlation at zero
lead time, in particular for the eastern subpolar region and
the Norwegian Sea. There is a larger spread in the correla-
tions for the inflow region compared to the other two regions.

At short forecast times (1–2 years lead), we find skills simi-
lar to or above the one arising from persistence in the subpo-
lar region and the Norwegian Sea. The persistence is here
defined as the autocorrelation of HadISST2 data at time lags
of 1–10 years (further discussed in the following subsection).
Note that 1-yr lead means the first winter after the predictions
are initialized. At longer forecast times, the skill is lower and
not significant (except MPI-ESM in the subpolar region). In
the first three forecast years in the Norwegian Sea, the indi-
vidual predictions show a similar decrease in correlation
(except IPSL-CM5), but at longer forecast times there is a
large spread in the correlation from the different systems.
These results are consistent with a previous study in the Nor-
dic seas and Barents Sea; CMIP5 climate predictions show
skill in predicting SST anomalies on the averaged forecast
time 1–3 years (Langehaug et al. 2017, using linear detrending
before assessing skill).

The skills of the prediction systems differ to a large extent
for all forecast times in the inflow region, indicating that this
region is difficult to predict. The inflow region covers partly
the Greenland–Scotland Ridge, which has a complex bathym-
etry and is where the Atlantic Water interacts with the dense
overflow water from the Nordic seas (e.g., Eldevik and Nilsen
2013). Only MPI-ESM and CMCC-CM2 have initial signifi-
cant skill in the inflow region.

One prediction system shows re-emerging skill at longer
forecast times; MPI-ESM in the subpolar region at forecast
time of 8 years has significant skill. The other prediction sys-
tems also show an increase in skill at longer forecast times at
a level mostly above the persistence, but not reaching signifi-
cant values. The multimodel mean is well above the persis-
tence, reaching significant values in the subpolar region and
the inflow region (at the 90% level). Previous results have
shown that the skill in the subpolar North Atlantic is not from
external forcing (e.g., Matei et al. 2012; Msadek et al. 2014),
which indicates that ocean dynamics contributes to the rise in
skill. This underlines the potential role of ocean circulation in
bringing predictability to the subpolar region and toward the
Nordic seas.

To better understand the predictive skill in the different
prediction systems, we next examine, in each of the prediction
systems, the periodicity of the SST time series in the eastern
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subpolar region and poleward propagation of SST anomalies
along the Atlantic water pathway.

b. Assessing periodicity of SST anomalies using
autocorrelation

By using autocorrelation, we can identify whether a time
series has a dominant period. It has earlier been shown that
observation-based SST in the Norwegian Sea has a dominant
spectral period at 14 years, which rises above the confidence
interval of the red noise spectrum (Årthun et al. 2017). This
dominant period has been related to poleward propagation of
ocean anomalies originating in the North Atlantic Ocean. As
such, a similar dominant period is expected to be found in the
subpolar region studied herein.

Figure 7 is an attempt to look at the periodicity or fre-
quency of SST anomalies in the subpolar region (i.e., how
often do SST anomalies occur in this region?). The time series
are too short (1970–2005) to adequately address frequency,
but still we find a suggestive difference between forecast time

of 1 year and forecast time of 3 years. We first show the SST
time series from the subpolar region (Fig. 7, top panel). At a
forecast time of 1 year, the prediction systems follow fairly
well the observation-based SST in the subpolar region.
The autocorrelation of these time series is shown in Fig. 7
(bottom-left panel), and the autocorrelation from the predic-
tion systems shows behavior similar to the autocorrelation of
HadISST2 data. However, at forecast time of 3 years, we find
a larger spread in the autocorrelation from the prediction sys-
tems and they fail to reproduce the observation-based auto-
correlation (Fig. 7, bottom-right panel), indicating a degradation
of predictive skill from forecast time of 1 year to forecast time of
3 years. This is the case for most of the prediction systems.
Although the prediction systems show a larger spread, we note
however that they do in general show an increase in autocorrela-
tion with increasing time lag (from a time lag of 5–10 years to a
time lag of about 20 years).

In Fig. 7, we find one dominant peak in the autocorrelation
of observation-based SST in the subpolar region, occurring at

FIG. 7. (top) Time evolution of winter SST for the eastern subpolar region using HadISST2 (black line) and the
ensemble mean of the individual prediction systems having significant skill at forecast time of 1 year (blue lines; see
Fig. 6). The other prediction systems have not significant skill at lead year 1 (dashed lines; NorCPM1 and IPSL-
CM5). All time series are 3–30-yr band-pass filtered. (bottom) The autocorrelation of the time series for 1970–2005 at
forecast time of (left) 1 and (right) 3 years. Dashed horizontal lines indicate significance level.
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long time lags (about 17 years), with a significant correlation
(black curve in bottom panels). At forecast time of 1 year,
this peak is fairly well reproduced by the prediction systems.
However, on longer forecast times, this peak is not repro-
duced to the same extent. We already see this at forecast time
of 2 years, but to a larger degree at forecast time of 3 years.
These results illustrate how the predictions stop reproducing
the correct range of spectral properties as assessed by the
autocorrelation already 3 years into the prediction.

c. Assessing the spatiotemporal SST pattern in the
dynamical prediction systems

In this section, we apply the method described in section 2,
using cross-correlation between the northernmost station and
all other stations. In HadISST2, we have noticed that the SST
time series at St7 has a relatively high and positive correlation
with the stations upstream and with an increasing time lag
(Fig. 8, top panel, repeating the top-right panel of Fig. 4).

In general, we find that the representation of the cross-
correlation differs largely among the prediction systems and
that the cross-correlation pattern varies with forecast time for
each prediction system (Figs. 2–8 in the online supplemental
material). It is, thus, a challenge for the prediction systems to
accurately reproduce the observed spatiotemporal SST pat-
tern. As an example, we show the cross-correlation for each
prediction system for the forecast range of 2–4 years (Fig. 8).
We have chosen to show this forecast range because the pre-
diction systems start to diverge from each other at this range,
in terms of skill, and because of the dropping off of skill start-
ing at this forecast range (Fig. 6). Each of the prediction sys-
tems represents differently the lagged relationships between
the different stations, which tend to differ from the ones
inferred from the observations. The major agreement
between the prediction systems and observations concerns
the stations located in the Nordic seas, while the major dis-
crepancies are seen for the subpolar region, which is farthest
from St7. We note that also the two observation-based data-
sets differ on the connection to the subpolar region (Fig. 4).

The prediction system that shows the most accurate repre-
sentation of some qualitative aspects of the observed lagged
correlation is CESM1-DPLE, as it is the only one showing a
significant link between stations 1–6 and station 7, with the
time lag for the maximum correlation increasing upstream.
This prediction system has the largest number of ensemble
members (Table 1). There are some differences in the specific
time lags, with a longer time lag from St1 to St7 in this predic-
tion system (positive correlation between St1 and St7 at a
time lag of 9–10 years). We note that these correlations do
not represent a physical propagation of anomalies, as in
observation-based data or in historical runs where time series
are continuous. The correlations from the prediction systems
are a result of separate hindcasts put together for a given fore-
cast time.

Likewise, the lagged correlations from NorCPM1 shows a
short time lag compared to observation-based data.
NorCPM1 shows positive correlations between St7 and all
other stations, but mostly on shorter time lags than for

HadISST2. These differences among the prediction systems
with respect to the time lags could be related to different sur-
face velocities in the respective climate models, as will be dis-
cussed later in section 4. Of the remaining prediction systems,
the IPSL-CM5 and EC-EARTH ano models have positive
significant correlations mainly in the Nordic seas (the latter
extend to St3 just south of the Greenland–Scotland Ridge),
while the other three prediction systems have positive signifi-
cant correlations only within a limited region in the Nordic
seas.

Furthermore, we investigate the spatiotemporal SST pat-
tern at a subsurface depth of about 200 m, the typical depth of
the core of the Atlantic water, in three of the prediction sys-
tems (Fig. 9 in the supplemental material). Intermodel differ-
ences discussed above for SST do exist at this depth with
mostly similar characteristics to the surface. An exception
occurs in IPSL-CM5, which shows a somewhat different
cross-correlation pattern at subsurface compared to the sur-
face, with shorter time lags for the maximum correlations.
Both CESM1-DPLE and NorCPM1 show similar results at
surface and subsurface. The similarity in the spatiotemporal
SST pattern at both surface and subsurface for a given predic-
tion system illustrates that the SST anomalies along the
Atlantic water pathway are not only a surface signal, but also
reflect what happens deeper in the water column (within the
Atlantic water layer).

d. Is the misrepresentation due to poor initialization or
incorrect model physics?

We have shown that it is a challenge for the prediction sys-
tems to realistically represent the cross-correlation based on
HadISST2. The difference with the observation-based pattern
could both be due to poor initialization and/or poor model
physics. To better understand the causes for the misrepresen-
tation we have assessed the cross-correlations at zero forecast
time. In this way, we can test whether the misrepresentation is
due to a poor synchronization of the models with observations
at the time of initialization. Particularly poor agreement at
lead time zero would indicate a poor initialization that likely
contributes to the misrepresentation. A good agreement at
lead time zero, however, does not necessarily imply that the
initialization strategy is optimal for predictive purposes once
the models run free, as subsequent initialization shocks
and/or imbalances could quickly degrade the skill (e.g., Bilbao
et al. 2021). Information on how model data are extracted at
zero forecast time is given in Table 1. We find that the cross-
correlation at zero lead time for the different prediction
systems is fairly similar to the cross-correlation based on
HadISST2 (Fig. 9). We note that although IPSL-CM5 has low
SST skill at zero lead time, the spatiotemporal SST pattern is
well reproduced at zero lead time. The latter tells that there is
a link between the variability at the different stations. Overall,
the results in Fig. 9 show that there is good agreement
between observations and prediction systems at zero lead
time in terms of their SST pattern.

To investigate the potential role of incorrect model physics
in the misrepresentation of the spatiotemporal SST pattern,
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FIG. 8. Cross-correlation of winter SST between the northernmost station and all seven stations (shown
in Fig. 1) at forecast time 2–4 years for the period 1970–2005. (top left) HadISST2 is shown for comparison
with (remaining panels) the different prediction systems (names are given in upper-left corner of each
panel). Significant correlations are marked by black circles, calculated at the 90% level by the standard two-
sided Student’s t test (taking into account autocorrelation). Time series are filtered by a 3–30-yr band-pass
filter prior to correlation.
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FIG. 9. As in Fig. 8, but using hindcasts at zero lead time and thus showing the period 1969–2004 for most
prediction systems (Table 1). (top left) Note that HadISST2 cross-correlation uses the October–December
mean for 1969–2004.
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we have additionally computed the pattern in a set of histori-
cal (uninitialized) runs from the different climate models.
These runs have continuous time series, which allows us to
test to what extent the models realistically represent a physi-
cal propagation, without interferences from the drift dynam-
ics present in the predictions. For each model we have three
historical members, with the exception of CMCC, which
only has one member available (Table 1). We have analyzed
the pattern for each historical simulation individually,
where we are only showing one of the three members for
illustrative purposes (Fig. 10). Note that Fig. 10 is based on a sin-
gle member, while Fig. 8 is based on a prediction ensemble. In a
single historical member the effect of the propagation might be
partly masked by atmospheric noise, whose effects can, at least
partly, average out in the prediction ensemble. To quantify how
well each member from each model and experiment represents
this pattern, we calculate the pattern correlation between the
observation-based and the modeled spatiotemporal SST pat-
terns. This is done for the different individual historical mem-
bers, as well as for the ensemble mean of the prediction systems
at different forecast times (Fig. 11).

Initially (at zero forecast time), the prediction systems
have relatively high skill in representing the spatiotemporal
SST pattern (mostly above 0.7), but at higher forecast times
the skill generally decreases, with differences across models.
The skill of the historical members in representing the spa-
tiotemporal SST pattern is also shown in Fig. 11 (each hori-
zontal line represents one member). There is a large spread
in the horizontal lines, showing that the cross-correlation is
sensitive to which member is chosen. In other words, inter-
nal variability can notably affect the cross-correlation. To
assess the skill of the historical members more robustly in
reproducing the spatiotemporal SST pattern, we assess lon-
ger time periods for all members (Fig. 12, red curve). For
each historical member, we produce the spatiotemporal pat-
tern several times by using a running window with a length
of 36 years (same time length as for HadISST2 data;
1970–2005). The length of the historical runs differs among
the models (see caption of Fig. 12), and thus the number of
repeating spatiotemporal SST patterns differs from one
model to another. The red curve presents all correlations
based on the historical members. In addition, we show the
distribution when only looking at the period 1970–2005
(Fig. 12, red dashed curve). This is spikier as it contains only
16 correlations (compared to the red solid line that contains
1352 correlations when using the longer time periods). The
red dashed line aligns well with the thick red line, suggesting
that the distribution is not sensitive to the window consid-
ered. Both distributions show a large spread in the correla-
tions and most of them are lower than the observation-
based distribution (HadISST2, black curve). The observa-
tion-based distribution describes the sensitivity of the
observed pattern to the temporal window, and thus to inter-
nal variability noise. To test the significance, we have built a
set of synthetic time series with the same spectral properties
of the observations to produce a random distribution of spa-
tiotemporal SST patterns. For this, first, we produce 500
random white noise time series for each station (i.e.,

7 3 500 time series with a temporal length of 36 years).
Second, we use the first-order autoregressive coefficient of
the observed HadISST2 time series to generate 7 3 500 red
noise synthetic time series, which are then used to create
500 different spatiotemporal SST patterns. Finally, we com-
pute the pattern correlation 500 times between the observa-
tion-based SST pattern and the synthetic SST patterns. In
Fig. 12, we use the 95th percentile of the synthetic distribu-
tion to define our significance threshold (vertical blue
dashed line).

We now look into the representation of the spatiotemporal
SST pattern by the individual members of all the prediction
systems, to better understand the ensemble spread. In this
way, we can learn something about the reliability of the pre-
dictions, such as how the ensemble spread (i.e., in terms of
how well the spatiotemporal observed SST pattern is repre-
sented) evolves with forecast time. In Fig. 12, we show the
skill of individual members to represent the observed spatio-
temporal SST pattern (gray curves). The dark gray curve rep-
resents all forecast times (1–10 years), whereas the light gray
curve only represents forecast time 5 1 year. We find that the
average correlations for all forecast times are generally low
(compared to HadISS2; black curve), with the distribution for
forecast time 5 1 year showing slightly higher values, which
could suggest a small growth of uncertainty at the longer lead
times. More interestingly, this analysis shows that already at
short forecast times (1 year), the prediction systems show a
relatively large ensemble spread, very similar to the one
observed for the historical simulations when sampled over dif-
ferent temporal windows.

Overall, the results in Figs. 11 and 12 suggest that the misrep-
resentation of the SST pattern at longer forecast times is not
due to too weak climate synchronization at initialization time. It
could rather arise from initialization shocks/adjustments as well
as from the development of biases due to incorrect model phys-
ics in representing the propagation of SST anomalies from the
subpolar North Atlantic to the Fram Strait.

Although most members have low correlations, there are
several members in the high end of the distribution with sig-
nificant and relatively high correlations. In a follow-up study,
it would be interesting to investigate these members more
closely to determine which factors explain their improved rep-
resentation of the SST pattern, and to assess whether if sub-
sampled together they yield higher predictive skill in the
North Atlantic and Arctic regions. Other studies have shown
that a careful selection of the ensemble members based on
their realism according to some observed metrics or proper-
ties can substantially enhance skill (e.g., Smith et al. 2020;
Acosta Navarro et al. 2020).

4. Discussion

a. Skill and limits of current dynamical climate
predictions in the northern North
Atlantic–Arctic region

Dynamical climate prediction systems show promising
results, demonstrating the capability of predicting changes
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FIG. 10. As in Fig. 8, but using one historical member from the climate models (Table 1). The historical
member with highest pattern correlation with HadISST2 is shown. EC-EARTHCMIP5 is used in both EC-
EARTH ano and EC-EARTH full. Note that only one member is available from CMCC-CM2.
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in ocean surface temperature several years in advance in the
subpolar North Atlantic (e.g., Robson et al. 2012; Yeager
et al. 2012; Hazeleger et al. 2013a; Msadek et al. 2014). The
source of predictive skill in this region is related to the
northward advection of warm (and saline) subtropical water
by ocean circulation (e.g., Matei et al. 2012; Yeager and
Robson 2017).

Farther north, in the Norwegian Sea, dynamical climate
predictions show capability of predicting ocean surface tem-
perature only 1–2 years in advance (Langehaug et al. 2017,
using CMIP5 models). This is also the case in the newer-gen-
eration climate predictions used in this study. For longer lead
times (i.e., when predicting several years ahead), our results
indicate that the skill in the eastern subpolar region and the
Norwegian Sea is more limited and weaker than in the central
part of the subpolar North Atlantic (e.g., Yeager 2020). We
have found that only a few prediction systems show some skill
when predicting ocean surface temperature several years
ahead, and we have shown that the results are highly model
dependent with large differences in the timing, region, and
skill of anomaly propagation. As a result, the systems seem to
be unable to capitalize on the potential predictability that has
been demonstrated by observational data (Årthun et al.
2017).

We note that we have focused on interannual-to-decadal
variability in the models. Other studies, focusing on more
long-term changes, have found higher skill related to the

poleward heat transport toward the Arctic (e.g., Yeager et al.
2015). Recent results with seasonal climate predictions in the
Nordic seas also show promising results (Wang et al. 2019).

What about skill elsewhere in the Nordic seas and the Arctic
Ocean? Johnson et al. (2018) demonstrate potential for decadal
predictability of freshwater content in the Arctic Ocean related
to long-term changes in sea level pressure. On the other hand,
predictability related to the export of sea ice and liquid freshwa-
ter from the Arctic Ocean is limited (Schmith et al. 2018). Other
studies using dynamical prediction systems (Germe et al. 2014;
Kimmritz et al. 2019; Dai et al. 2020) show some skill in predict-
ing sea ice extent in the Nordic seas (also for the pan-Arctic
region) up to one year ahead. Higher predictability is shown for
winter sea ice in the Barents Sea, as it is highly influenced by
Atlantic water inflow (e.g., Årthun et al. 2017).

b. Process-oriented approach to understand why there is
skill or lack thereof

We have found that climate models have difficulties in
reproducing a realistic spatiotemporal SST pattern. This sug-
gests that the mechanism that is identified to be a source of
predictability along the Atlantic water pathway is not prop-
erly represented in the models. This feature seems to be trans-
lated into the prediction systems, which show low accuracy in
predicting the spatiotemporal SST pattern, in particular at

FIG. 11. Correlation between simulated and observation-based
SST pattern (HadISST2). Simulated SST patterns are based on
three different data sets: 1) historical runs (thin horizontal lines), 2)
hindcasts at different forecast times (solid curves), and 3) hindcasts
at zero lead time (filled circles). Significant correlations at the 90%
level (black circles) by the standard two-sided Student’s t test and
taking into account autocorrelation. All correlations at zero lead
time are significant. Note that HadISST2 cross-correlation uses the
October–December mean (1969–2004) for most correlations at
zero lead time, and otherwise the January–April mean (1970–2005).
See Table 1 for more details.

FIG. 12. Skill in representing the spatio-temporal SST pattern for
individual members from all prediction systems for different forecast
times (year 1 in light gray and all forecast times in dark gray). For
each forecast time from each system, SST time series are constructed
by choosing the same member for each time step. Skill of individual
members from the historical runs from all models (red curve) is
based on slightly different time periods with a running window of 36
years over these periods: MPI-ESM (1850–2005; 363 correlations),
EC-EARTH (1850–2005; 363), IPSL-CM5 (1850–2005; 363), CESM-
LE (1920–2005; 153), NorESM (1950–2014; 90), and CMCC-CM2
(1960–2014; 20). Skill for the historical runs only for the period
1970–2005 is shown as a red dashed line. Skill for the ensemble-
mean predictions at zero forecast time is shown as green circles
(shown as colored circles in Fig. 11). All model data are correlated
with the ensemble mean of HadISST2 for 1970–2005. Skill of 10 indi-
vidual members from HadISST2 over slightly different time periods
(running window of 36 years over 1960–2010) is also shown (black
curve). The significance threshold line, i.e., 95th percentile of the dis-
tribution when using white noise time series, is the vertical line.
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longer forecast times. A common problem in most of the
models and prediction systems is the linkage between anoma-
lies in the eastern subpolar region and the Nordic seas. Sev-
eral models and systems show lagged correlations between
the Fram Strait and upstream until the Greenland–Scotland
Ridge. However, south of the ridge, the lagged correlations
are poor or do not exist. It thus appears difficult for the mod-
els to circulate ocean anomalies from the eastern subpolar
region and across the Greenland–Scotland Ridge. We note
that also the two observation-based datasets differ on the con-
nection to the subpolar region, highlighting a region where
the propagation seems more uncertain.

A natural follow-up question then is this: Why is it difficult
for the models to realistically represent the spatiotemporal
SST variability along the Atlantic water pathway? Although
advection is proposed to be a key mechanism in poleward
propagation of SST anomalies (Krahmann et al. 2001; Årthun
et al. 2017)}supported by the propagation speed of SST
anomalies matching that of radioactive tracers (Karcher et al.
2004; Gao et al. 2005)}there are several factors or mecha-
nisms that can influence or modify the propagation. Such pos-
sible contributions could come through ocean feedback
mechanisms (e.g., Huck et al. 1999; te Raa and Dijkstra 2002),
exchanges between the subtropical and the subpolar North
Atlantic (Lozier 2010), interactions between Atlantic Water
and Arctic Water in the Norwegian Sea (Mork et al. 2019), or
the non-Doppler effect related to Rossby waves (e.g., Liu
1999). Westward propagating Rossby waves are known to be
important features in propagating information across the
wide North Atlantic basin (Rossby et al. 1939; Killworth et al.
1997). These large-scale planetary waves, inducing anomalous
currents, can lead to adjustments of the subpolar gyre circula-
tion and Atlantic meridional overturning circulation, and
thereby generate SST anomalies in the North Atlantic (e.g.,
Muir and Fedorov 2017; Årthun et al. 2021). However, the
impact of Rossby waves in our study region, the Atlantic
water pathway, appears to be relevant only on interannual
time scales, contributing to the variable volume transport of
the Norwegian Atlantic Current (Orvik and Skagseth 2003).
A detailed investigation into the dominant mechanisms of prop-
agation in each model is beyond the scope of this study. In the
following, we have therefore chosen to concentrate on two
aspects that we believe can provide first answers to our question
above, regarding the representation of the poleward propaga-
tion of decadal-scale SST anomalies in climate models.

First, the propagation of the SST anomalies is dependent
on the ocean currents carrying the signals downstream.
Global climate models have long-standing issues in their rep-
resentations of the Gulf Stream and its subsequent path as the
North Atlantic Current (e.g., Langehaug et al. 2012). Further-
more, the Greenland–Scotland Ridge, separating the North
Atlantic basin and the Nordic seas, is relatively shallow com-
pared to the surrounding basins and the topography and cir-
culation pattern around the ridge is complex. The Atlantic
inflow across the ridge takes place through narrow channels,
and the flow is characterized by high mesoscale activity, lead-
ing to high transport variability (Zhao et al. 2018). Higher-res-
olution climate models and prediction systems might

therefore help to better represent processes related to Atlan-
tic Water close to the Greenland–Scotland Ridge (e.g., Guo
et al. 2016), and thus the circulation of anomalies along the
Atlantic water pathway.

To assess intermodel differences in surface currents Fig. 13
shows the mean surface velocity along the Atlantic water
pathway in the different models (the surface speed is aver-
aged over the same 58 3 58 boxes as when analyzing SST
anomalies). The models show large differences in surface
velocities. However, a robust relationship between the simu-
lated surface velocities and the time lags in the simulated spa-
tio-temporal SST pattern is not found. One reason could be
that there are additional factors that impact the propagation
along the Atlantic water pathway, as described above. In
addition, the models have difficulties in representing the pat-
tern, and thus it is difficult to identify the time lags. Further
investigations, for instance using a subset of the individual
prediction members, would be very interesting but might be
complex and require a dedicated study, which is therefore
beyond the scope of this study. We here underline that there
are large intermodel differences, and that the circulation
of Atlantic Water appears challenging for the models to
represent.

We have discussed the importance of having a realistic rep-
resentation of the surface circulation. To further elucidate the
picture, we here also briefly discuss the travel speed (or prop-
agation speed) of temperature and salinity anomalies in the
northern North Atlantic (e.g., Sundby and Drinkwater 2007;
Årthun et al. 2017; Broomé and Nilsson 2018). The propaga-
tion speed is found to be much smaller than the actual current
speed (e.g., the Norwegian Atlantic Current), where the

FIG. 13. Winter mean surface speed along the Atlantic water
pathway (same stations as in Fig. 1) for the historical runs over the
time period 1970–2005. Each curve represent one member from the
historical run, and the thick line is the same member as displayed in
Fig. 10.
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average propagation speed of SST anomalies along the Atlan-
tic water pathway from the subpolar North Atlantic to the
Fram Strait is found to be about 2 cm s21 (Årthun et al.
2017). It has been shown that this difference in propagation
speed and speed of the main current is a result of shear dis-
persion (Broomé and Nilsson 2018). According to their calcu-
lations that take eddy mixing into account, a current with a
core speed of about 15 cm s21 would result in a tracer advec-
tion speed of 2 cm s21, consistent with the average propaga-
tion speed proposed by Årthun et al. (2017). These results
suggest that the propagation speed of the SST anomalies in
the different models is dependent on both the speed of the
main poleward current (i.e., the models’ representation of the
Norwegian Atlantic Current) and the parameterization of
eddy mixing across the current. If we relate the averaged
speed in Fig. 13 with the time lag of the cross-correlations for
some of the prediction systems (Fig. 8), we find some relation-
ships. For instance, NorESM and CESM-LE have similar
velocity in the Nordic Seas, but largely differ in the subpolar
North Atlantic with NorESM having the highest velocities.
This seems to be consistent with the cross-correlation in their
prediction systems, with a large time lag in CESM-DPLE and
short time lag in NorCPM1. These two systems are the only
ones with significant correlations between St7 and St2 in
Fig. 8. Another example is NorESM with an overall higher
velocity than IPSL-CM5. This seems to be consistent with the
cross-correlation in their prediction systems; in the Nordic
seas, there is a large time lag in IPSL-CM5 and a short time
lag in NorCPM. However, as noted above, it is difficult to cal-
culate a statistically robust relationship between surface veloc-
ity and time lags in the cross-correlation.

Second, the atmospheric influence on SST anomalies can
be large. Atmospheric forcing has, for example, been shown
to alter the along-path modification of SST anomalies by
changing the current speed or by changing the air–sea heat
fluxes (e.g., Furevik 2001). We emphasize that the SST propa-
gation as demonstrated in Årthun et al. (2017) explains 55%
of the variance of the bandpass filtered data. This indicates
that although the propagation dominates a large portion of
the SST variability along the Atlantic water pathway, other
factors also influence the SST variability. Based on a heat
budget analysis, Asbjørnsen et al. (2019) demonstrated that
air–sea heat fluxes play an important role for Norwegian
Sea heat content anomalies, acting to limit the predictabil-
ity along the Atlantic water pathway in the Nordic seas. It
is a major challenge for current state-of-the-art coupled
global climate models to properly simulate ocean–atmo-
sphere interactions (e.g., Feser et al. 2011), which could
therefore be a potential source of intermodel differences in
propagation speed.

c. Model differences and large spread in predictive skill

The global climate models have biases and differ substan-
tially from each other in many aspects. This is shown both
in this study (e.g., the characteristics of the Atlantic water
pathway) and in other CMIP5 comparison studies investigat-
ing variability in sea ice extent and SST in the Nordic seas

(Langehaug et al. 2017) and decadal variability in the North
Atlantic (Ba et al. 2014; Menary et al. 2015). A study by Lan-
gehaug et al. (2012), which included both IPSL-CM4 and
MPI-M ESM, showed that there are large model differences
in the position of the North Atlantic Current and also in water
mass transformation in the eastern subpolar region. A later
study (Deshayes et al. 2014), also assessing IPSL-CM5A-LR
and MPI-M ESM, documented that the models have clear
differences in the extent of Atlantic Water both horizon-
tally and with depth in the subpolar region. These model
differences can contribute to the spread in skill that we see
in this study.

The climate models and predictions systems used in this
study differ in their spatial resolutions and their initialization
approaches (Table 1). Most of the models have a similar reso-
lution and use both surface and subsurface observations in
the initialization of their ocean components, except for IPSL-
CM5A-LR with its lower resolution (about 28) and initializa-
tion of only SST. We have clearly seen that all of the models
and systems differ largely, and it is rather challenging to iden-
tify specific settings or approaches that can lead to improved
prediction skill for the North Atlantic–Arctic region. We
note, however, that the prediction system (CESM1-DPLE)
that most resembles the observed spatiotemporal SST pattern
also has the highest number of ensemble members. This may
suggest that a large ensemble is important to identify predict-
able signals as suggested in several studies (e.g., Scaife et al.
2019; Smith et al. 2019).

d. How to enhance climate prediction in the North
Atlantic–Arctic region

There are several factors that are key to enhancing cli-
mate prediction, such as more ensemble members, higher
model resolution, better understanding of the mechanisms
taking place in our study region, more observations to feed
into the initialization, and deeper investigations into the
effects of different initialization methods. Furthermore, the
recent study by Smith et al. (2020) shows the importance of
postprocessing climate predictions to extract the predictable
signal. In this study, we assessed how both models and pre-
diction systems represent a spatiotemporal SST pattern
identified in observations. This analysis helps us to better
understand how the models and systems behave. More process-
based or mechanistic ways than applied herein of assessing
models and systems are important. Such approaches give us
greater understanding of what is happening in the models and
point to specific areas where models need to be improved.
Improving the poleward propagation of anomalies could poten-
tially enhance skill in the Atlantic water pathway toward the
Arctic.

5. Conclusions

A key result from this study is that most of the climate
models and dynamical decadal prediction systems have diffi-
culties in representing the observed spatiotemporal SST vari-
ability along the Atlantic water pathway. In particular, the
variability from the subpolar region, across the Greenland–
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Scotland Ridge and into the Nordic seas, is challenging to sim-
ulate. This means that the mechanism that is identified to be a
source of predictability along the Atlantic water pathway is
not properly represented in the models, and hence limits their
predictive capacity in this region on interannual to decadal
time scales. In the eastern subpolar region, south of the
Greenland–Scotland Ridge, the predictive skill is overall
higher than farther north with significant skill at forecast
times of 1–3 and 7–8 years. Farther north, the dynamical cli-
mate predictions show capability of predicting SST changes
only at forecast time of 1 year (up to 2 years for some
models).

A few prediction systems show re-emerging skill at longer
forecast times. The multimodel mean is well above the persis-
tence and reaching significant values in the eastern subpolar
region, suggesting an important role of ocean circulation in
bringing predictability to the subpolar region and toward the
Arctic. If the predictive skills were high along the Atlantic
water pathway for all forecast times (i.e., if the system was
able to predict most variations in SST), we would expect that
the system also reproduces the poleward propagation of
anomalies for all forecast lead times. However, this relation-
ship would not necessarily hold the other way around; a well-
represented poleward propagation might enhance skill, but
other model biases could still hamper predictive skill along
the Atlantic water pathway.

Observational studies demonstrate predictability several
years in advance along the Atlantic water pathway, thus sug-
gesting a great potential for improvement of dynamical cli-
mate predictions. As this is currently a challenge for state-of-
the-art dynamical prediction systems, one essential question
for future research is how propagation of SST anomalies and
their circulation with the ocean surface currents can be
improved in dynamical prediction systems.
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