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Effective expression of the Lee-Huang-Yang energy functional for heteronuclear mixtures
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We consider a homogeneous heteronuclear Bose mixture with contact interactions at the mean-field collapse,
i.e., with interspecies attraction equal to the mean geometrical intraspecies repulsion. We show that the Lee-
Huang-Yang (LHY) energy functional is accurately approximated by an expression that has the same functional
form as in the homonuclear case. The approximated energy functional is characterized by two exponents, which
can be treated as fitting parameters. We demonstrate that the values of these parameters which preserve the
invariance under permutation of the two atomic species are exactly those of the homonuclear case. Deviations
from the exact expression of the LHY energy functional are discussed quantitatively and a specific application
is described.
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I. INTRODUCTION

Bose-Einstein condensates (BEC) with ultracold gases are
so dilute that interatomic interactions are generally weak,
making the consolidated framework of mean-field (MF) the-
ory a reliable and accurate approach in many cases. However,
even with ultracold gases, there are instances where quantum
fluctuations become relevant, thus producing sizable devia-
tions from the MF theory. Going beyond the MF analysis,
Bogoliubov derived the many-body ground state of a weakly
interacting gas of bosons [1], assuming that most particles
occupy the same quantum state, i.e., belong to the condensed
fraction, except for a small fraction (“quantum depletion”).
The leading correction to the MF energy for identical bosons
with hard-sphere interactions was later obtained by Lee-
Huang-Yang (LHY) [2] in the homogeneous case. These
results were then extended to the case of two-component
bosons by Larsen [3].

A well-known example where quantum fluctuations are
important in ultracold atomic gases is provided by optical
lattices that suppress the single-particle kinetic energy and
increase the interatomic interactions [4–6]. Another case is
when the interatomic interactions are enhanced by increasing
the scattering length in proximity of a Feshbach resonance.
This route was first followed in fermionic condensates, where
accurate measurements of the frequency shifts in collective
oscillations [7] and of density profiles [8,9] showed deviations
from the MF predictions. Similar effects were later observed
in strongly interacting bosonic gases in the excitation spec-
trum of 85Rb [10] and in the equation of state of 7Li [11].
The momentum distribution of the quantum (and thermal)
depletion was measured in a BEC of metastable He [12] and
the total depletion density in a BEC of 39K [13].

Recently, Petrov proposed a new setting where quantum
fluctuations could have striking effects, i.e., a BEC binary
mixture [14]: When both components have repulsive in-
traspecies interactions, but the interspecies interactions are
attractive and sufficiently large, the MF energy may vanish
or even become negative. In this case, the LHY energy cor-
rection dictates the behavior of the system, allowing for the
existence of “quantum droplets,” i.e., stable states self-bound
by interatomic attractive interactions. Such states exhibit the
properties of a liquid even if their density is several orders of
magnitude lower than in ordinary liquids [14–20]. Similarly,
LHY corrections also stabilize droplets with attractive dipolar
forces [21,22].

To describe this novel system, the MF Gross-Pitaevskii
equation (GPE) was modified to incorporate the extra energy
due to quantum fluctuations. For mixtures, the two-component
LHY energy calculated in the homogeneous case is added
to the MF energy functional to obtain a generalized GPE
(g-GPE) that can be also used in the inhomogeneous case
within the local density approximation [16–18,20,23]. While
for a homonuclear mixture of equal mass components the
LHY energy functional is analytically known in a closed and
simple form [14], to date no analytic expression is known for
a heteronuclear mixture and the LHY term must be calculated
numerically [23]. This implies that the LHY energy must be
tabulated for a large number of values of the ratio of two
components densities n2/n1, prior to the numerical integration
of the g-GPE.

In this paper, guided by symmetry considerations and
asymptotic behavior, we derive a simple and appealing func-
tional form for the heteronuclear mixtures at the MF collapse,
as detailed below. We verify that this function accurately
approximates the numerical integral and, as such, can be
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efficiently used in the numerical solution of the g-GPE and
to extend analytical results existing for homonuclear mixtures
to the heteronuclear case.

In Sec. II, after summarizing known results to introduce the
notation, we review the known analytical LHY energy in the
special case of a largely imbalanced mixture, where the lighter
species is the majority density component. In other words, this
corresponds to the case of heavy impurities [3]. In Sec. III
we propose an approximated formula for the LHY energy,
which is the main result of this work, and we show its limits
of applicability by comparing it with the exact numerical
results of the LHY integral. In Sec. IV we justify our proposed
approximation by means of a Taylor expansion of the LHY
integral around the homonuclear case. In Sec. V we show the
usefulness of an analytic formula with a concrete example:
We apply our analytic formula to the case of heteronuclear
mixtures in the so-called LHY “quantum fluids” regime, i.e.,
when the MF interaction is null and the mixture is governed
by the LHY term alone.

II. LHY ENERGY FUNCTIONAL

The LHY energy of a Bose mixture can be written as

ELHY =
∫

drELHY[n1(r), n2(r)] , (1)

where ELHY is the energy density given by [14,23]

ELHY = 8

15π2

(
m1

h̄2

)3/2

(g11n1)5/2 f

(
m2

m1
,

g2
12

g11g22
,

g22 n2

g11 n1

)

= κm3/2
1 (g11n1)5/2 f (z, u, x), (2)

with ni(r) (i = 1, 2) being the density of each compo-
nent, and κ ≡ 8/(15π2 h̄3), z ≡ m2/m1, u ≡ g2

12/(g11g22), x ≡
g22n2/(g11n1). The interaction strengths are proportional to
the scattering lengths a11, a22, a12: gii = 4π h̄2aii/mi, g12 =
2π h̄2a12/m12, with m12 the reduced mass. We note that the
LHY energy density is independent of the sign of g12, but the
formation of quantum droplets occurs only for negative g12.
Therefore, as done in Ref. [14], here we consider the case
of a mixture with interspecies attractive interaction, namely
g12 < 0, with g11 > 0 and g22 > 0.

For the homonuclear case z = 1, the function is given in
Ref. [14]

f (1, u, x) =
∑
±

(1 + x ±
√

(1 − x)2 + 4ux)5/2/(4
√

2) (3)

so that f (1, 1, x) = (1 + x)5/2. For the heteronuclear case
z �= 1 a simple expression similar to the one above is not
available and approximate or numerical methods are needed.

The expression of f (z, u, x) for heteronuclear mixtures is
obtained from Refs. [14,23]

f (z, u, x) = 15

32

∫ ∞

0
k2F (k, z, u, x) dk , (4)
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+
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−
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− 1 + z

2z
k2 − (1 + x) + 1

k2

[
1 + x2z + 4ux

z

1 + z

]
. (5)

Since the dimensionless function f (z, u, x) is weakly de-
pendent on u, as shown in Ref. [14], this argument is usually
replaced by its value at MF collapse, where g12 + √

g11g22 =
0, i.e., u = 1:

ELHY � κm3/2
1 (g11n1)5/2 f (z, 1, x). (6)

The expression of f (z, 1, x) coincides with that given
in Ref. [23], where it is remarked that, since the integral
converges due to the cancellation of divergent terms, its
evaluations requires some care.

Limit of heavy impurities

Lacking a closed form like Eq. (3), an analytic expression
of the LHY energy is given in Ref. [3] for the special case
of a repulsive mixture with a11 = a12 = a22 > 0, where the

density of the heavy component is much lower than that of the
light component, i.e., z > 1 and x � 1:

ELHY = 8

15π2

(
m1

h̄2

)3/2

(g11n1)5/2 fL(z, x) (7)

fL(z, x) = 1 + x
15

16

z + 1

z − 1

[
z2

√
z2 − 1

arctan
√

z2 − 1 − 1

]
.

(8)

Even if the above equation was derived for all positive
scattering lengths, we can also apply it to the case of −a12 =
a11 = a22 > 0 since the LHY energy is independent of the
sign of a12, as shown by Eq. (2). Note, however, that the
condition of all equal scattering lengths corresponds to u =
(1 + z)2/(4z), thus u = 1 only for z = 1.

In the general case, however, the numerical integration
of the g-GPE requires the knowledge of the LHY term for
generic values of x, and the above Eq. (7) is obviously
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FIG. 1. Values of f (z, 1, x) as a function of x, for z = 41/87, as
obtained from numerical integration of Eq. (4)

insufficient. However, we will use it to confirm the validity of
our approximated formula proposed below. For the purpose,
it is useful to consider fL(z, x) around z = 1, where it can be
compared to f (z, 1, x):

fL(z, x) � 1 + 5
2 x + 3

2 x(z − 1) + O[z − 1]2. (9)

III. EFFECTIVE ANSATZ

We introduce here the main result of our work, namely
an approximate analytic expression for f (z, 1, x). The exact
function, defined by Eqs. (4) and (5), can only be evalu-
ated by points, through numerically integration of the above
equations. As an example, in Fig. 1 we plot f (41/87, 1, x),
corresponding to the case of a 41K-87Rb mixture.

When seeking for an approximate expression for f (z, 1, x),
it is useful to recall that in the case of a single component the
LHY correction takes the form [2,24]

ELHY = κm3/2(gn)5/2. (10)

Thus, since for x → 0 the LHY energy has to converge to the
value of the single species 1, in this limit f (z, 1, x) → 1. In
the opposite limit, i.e., for x 	 1, the LHY energy converges
to the value of the single species 2, ELHY → κm3/2

2 (g22n2)5/2,
implying f (z, 1, x) → z3/2x5/2.

Having established the above asymptotic behavior, we also
recall that ELHY must be invariant under permutation of the
two species. It is therefore convenient to rewrite Eq. (2) in a
more symmetric form with respect to the species index:

ELHY = κ (m1m2)3/4(g11n1g22n2)5/4z−3/4x−5/4 f (z, 1, x).

(11)

Now it is easy to see that invariance under permutation of
indices i = 1, 2 implies

f (z, u, x) = z3/2x5/2 f

(
1

z
, u,

1

x

)
. (12)

The above properties suggest that one could approximate
f (z, 1, x) with the following function:

Fq(x, z) = [1 + (z3/2x5/2)1/q]q, (13)

which has a functional form that resembles that of the
homonuclear case Eq. (3), except for the presence of the
factor z3/2, accounting for the mass ratio, and of the exponent
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x
)
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FIG. 2. Numerical values of integrals (points) compared to the
approximate function (1 + z3/5x)5/2 (red dotted-dashed lines), for
z = 0.9, 0.5, 0.1. We restrict to z � 1 without loss of generality.

q(1/q), that is here considered as a fitting parameter. In the
specific case shown of Fig. 1, a best fit to f (z, 1, x) returns
q = 2.4612(2) (with the relative residuals being below 2% for
all values of 0.01 < x < 100). In general the q parameter re-
turned by the fit depends on z, but for a broad range of z values
it is very close to the value q = 5/2, which characterizes the
function f in the homonuclear mixture, Eq. (3) [25]. Thus we
find convenient to approximate f (z, 1, x) with the following,
simple generalization of the expression for the homonuclear
case:

f (z, 1, x) � F5/2(z, x) ≡ (1 + z3/5x)5/2. (14)

As shown in Fig. 2, this form, in spite of its simplicity, pro-
vides a very accurate representation of the exact (numerical)
values of f (z, 1, x), in a wide range of mass ratios. In addition,
as requested, Eq. (14) is consistent with above Eq. (9) when
we consider x, |z − 1| � 1.

Finally, by combining Eqs. (6) and (14), we arrive at the
following effective expression for the LHY energy functional:

ELHY � 8m3/2
1 (g11n1)5/2

15π2 h̄3

[
1 +

(
m2

m1

)3/5 g22n2

g11n1

]5/2

, (15)

which constitutes one of the main results of this work.

IV. PERTURBATIVE EXPANSION

To quantify the deviation of the exact f (z, 1, x) from
F5/2(z, x), we note that the last term is only a function of
ξ ≡ z3/5x (and not of x and z separately). Then we define the
auxiliary function

g(z, ξ ) ≡ f (z, 1, z−3/5ξ ); (16)

if f (z, 1, x) was a function of ξ alone, then g(z, ξ ) would be
independent of z. Although this is not the case in general,
close to z = 1, g(z, ξ ) is almost independent of z. To show
this, we write the Taylor expansion

g(z, ξ ) =
+∞∑
n=0

Gn(ξ )(z − 1)n, (17)
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FIG. 3. Top: Plot of F5/2(z, x) (solid line) and f (3)(z, x) (dashed
line), as defined in text. Bottom: Relative deviation | f (3)(z, x) −
F5/2(z, x)|/ f (3)(z, x) (percentage). Here z = 41/87.

and compute analytically the coefficients Gn from the integral
Eq. (5)

G0(ξ ) = (1 + ξ )5/2, (18)

G1(ξ ) = 0, (19)

G2(ξ ) = −12

35
ξ
√

1 + ξ, (20)

G3(ξ ) = 4ξ (47ξ + 43)

525
√

ξ + 1
. (21)

The vanishing first derivative, G1(ξ ) = 0, confirms that
g(z, ξ ) depends weakly on z around z = 1. Therefore,

f (z, 1, x) = (1 + z3/5x)5/2 − 12

35
z3/5x

√
1 + z3/5x(z − 1)2

+ 4z3/5x(47z3/5x + 43)

525
√

z3/5x + 1
(z − 1)3 + O((1 − z)4)

≡ f (3)(z, x) + O((z − 1)4). (22)

The above equation shows that our ansatz function
F5/2(z, x) is the zeroth-order term of the Taylor expansion
around z = 1. A comparison between F5/2(z, x) and the third-
order truncated Taylor series f (3)(z, x) is shown in Fig. 3
for z = 41/87. The lower panel shows that the first term,
F5/2(z, x), approximates f (z, 1, x) better for small and large
values of x, as expected since it is determined to match
the asymptotic behaviours. Anyway, the maximum relative
deviation is below 4%, proving that F5/2(z, x) suffices for a
reliable estimation of the LHY integral.

V. LEE-HUANG-YANG FLUID WITH
HETERONUCLEAR MIXTURES

Recently the so-called “Lee-Huang-Yang fluid” was pro-
posed, consisting in a dilute quantum mixture where mutual
interactions and atom numbers are tuned such that the MF
interactions cancel out, and the resulting system is gov-
erned only by quantum fluctuations [26,27]. This system was
studied in the case of a homonuclear mixture (m1 = m2) in

Ref. [26], where explicit expressions for important quanti-
ties such as, e.g., the healing length and the frequency of
monopole oscillation frequency, were obtained.

To prove the usefulness of our analytical, albeit approx-
imate, form for the LHY energy discussed in Sec. III, we
provide here a generalization of results derived in Ref. [26]
to the experimentally relevant case of heteronuclear mixtures,
by explicitly using our ansatz formula Eq. (14).

The total energy of a Bose-Bose binary mixture, with
densities n1, n2 and interacting via contact potentials, is given
by

E =
∫

dr

{∑
i=1,2

[
h̄2

2mi
|∇ψi|2 + Vi|ψi|2 + 1

2
gii|ψi|4

]

+ g12|ψ1|2|ψ2|2 + ELHY

}
, (23)

where ψi and Vi are the wave function and the external
potential of the ith component (i = 1, 2), respectively, and
ELHY is the LHY energy density contribution Eq. (2). We
assume in the following a symmetric harmonic trap V1(r) =
V2(r) = m1ω

2
1r2/2 ≡ Vho. The associated harmonic length is

aho = √
h̄/m1ω1.

The atom numbers and interactions can be tuned to can-
cel completely the mean-field terms in the above energy
functional. In fact, by choosing g12 = −√

g11g22 (namely,
the MF collapse condition), and atom numbers such that
N2/N1 = √

g11/g22, only the LHY energy term remains in
Eq. (23), where the two-component wave functions satisfy the
condition ψ2 = ψ1(g11/g22)1/4.

By defining |ψ |2 = |ψ1|2 + |ψ2|2 and α = √
g11/g22 =

z1/2√a11/a22, one has |ψ1|2 = (1 + α)−1|ψ |2 and |ψ2|2 =
α(1 + α)−1|ψ |2. Thus the total energy functional Eq. (23)
reduces to

E =
∫

dr
[

h̄2

2
|∇ψ |2

(
1

m1(1 + α)
+ α

m2(1 + α)

)

+Vho|ψ |2 + ELHY

]

=
∫

dr
[

h̄2

2m∗ |∇ψ |2 + Vho|ψ |2 + ELHY

]
(24)

where

m∗ = m1

[
1 + √

za11/a22

1 + √
a11/za22

]
. (25)

Then, by approximating ELHY by the effective expression in
Eq. (15), we can write

ELHY = 8

15π2

(
m1

h̄2

)3/2( g11n

1 + α

)5/2

(1 + z3/5α−1/2)5/2

= C∗
LHY|ψ |5, (26)

with

C∗
LHY ≡ 256

√
π

15

h̄2

m1

[
a11

1 + z1/10√a22/a11

1 + √
za11/a22

]5/2

. (27)

The expression in Eq. (26) makes the above Eq. (24) formally
identical to the total energy functional for the homonuclear
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TABLE I. Bose mixtures experimentally realized and amenable
to collapse at g12 = −√

g11g22. For the purpose of comparison, we
assume the same harmonic potential for all species, corresponding
to an harmonic frequency of 100 Hz for 87Rb, i.e., ω j/(2π ) =
100

√
mRb/mj Hz for species j.

Species 1,2 a11/a0 a22/a0 z 107B n0/N4/13[cm−3] Ref.

39K 39K 86 34 1 2.4 4.0 × 1013 [16],[18]
23Na 39K 52 13 1.7 0.32 8.9 × 1013 [28]
41K 87Rb 65 100.4 2.1 8.2 3.1 × 1013 [20]
39K 87Rb 10 100.4 2.2 0.76 7.9 × 1013 [29]
23Na 87Rb 54.5 100.4 3.8 5.0 3.0 × 1013 [30]

LHY fluid of Ref. [26], the only difference being that the
coefficient 256

√
π h̄2|a12|5/2/(15m) ≡ CLHY is replaced by

C∗
LHY, m by m∗, and ω1 by ω∗ ≡ √

m1/m∗ ω1.
With the above replacements the results of the authors of

Ref. [26] can be easily generalized to the case of different
masses, z �= 1. For instance, we readily obtain the healing
length in the homogeneous case, Vho(r) = 0,

ξ−2
LHY = 256

√
πn3/2a5/2

11

3

[
1 + √

za11/a22

1 + √
a11/za22

]

×
[

1 + z1/10√a22/a11

1 + √
za11/a22

]5/2

, (28)

and the frequency ω of monopole collective oscillation in
the weakly interacting limit, i.e., N3/2|a12/aho|5/2 � 1 (where
N = N1 + N2 is the total atom number):

ω/ω∗ = 2 + 64
√

2N3/2

5
√

5 π7/4

(
a11

aho

)5/2[1 + √
za11/a22

1 + √
a11/za22

]13/8

×
[

1 + z1/10√a22/a11

1 + √
za11/a22

]5/2

. (29)

As expected, in the case of equal masses z = 1 the above
expressions reduce to the corresponding expressions (10) and
(15) of Ref. [26].

To estimate the effect of mass imbalances on the properties
of the LHY fluid, we evaluate the deviation of the monopole
oscillation frequency from the case of ideal gases, defined as
(ω/ω∗ − 2)/N3/2 ≡ B, for various heteronuclear Bose mix-
tures which are currently realized in experiments of tunable
dual-species condensates, as summarized in Table I. Experi-
mentally, the frequencies of collective modes oscillations are
measured with high accuracy and have been used throughout
as a powerful tool to study many-body dynamics. With typical

atom numbers of N ∼ 104, the deviations ω/ω∗ − 2 should be
readily measurable.

In the Thomas-Fermi regime, i.e., the opposite limit
N3/2|a12/aho|5/2 	 1, we obtain the total peak density from
Eq. (9) of Ref. [26]:

n0 = A4/332/3

32(2π )1/3

(
N

a∗6
ho

)4/13(15m∗C∗
LHY

256
√

π h̄2

)−6/13

� 0.078

(
N

a6
ho

)4/13[
a11

1 + z1/10√a22/a11

1 + √
za11/a22

]−15/13

, (30)

where A � 1.815. This quantity is relevant for the lifetime
of the atomic LHY quantum fluid that is limited by 3-body
inelastic collisions, whose rate is proportional to n2

0. In Table I
we report also the peak densities evaluated for the different
Bose mixtures.

VI. CONCLUSION

We show that the Lee-Huang-Yang energy functional for
a heteronuclear Bose mixture at the MF collapse can be ac-
curately approximated by an expression that has a functional
form similar to the simple expression of the homonuclear
case, see Eq. (15). Two different ansatz functions, with one
or two exponents as fitting parameters, are considered [25].
Remarkably, we find that the values of these fitting parameters
which preserve the invariance under permutation of the two
species are exactly those of the homonuclear case. A quanti-
tative analysis of the deviations from the exact expression of
LHY energy functional indicates that the simple expression
we propose is effective in a wide range of mass ratios, and
may be useful for describing current and future experiments.
Our formula greatly simplifies the numerical integration of
the generalized GPE’s and allows further analytic study, as
demonstrated in the case of a Lee-Huang-Yang fluid with
heteronuclear mixtures.
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