Supplementary Material

1 Supplementary Table

1.1 Supplementary Table 1: Tool and commands for tools

Tool	Command
Cap3	cap3 <gene_reads.fa>
BLAT	blat - stepSize=10 -repMatch=1024 \} \(-m i n S c o r e=20) -minldentity=100 \} -out=blast8 \} <hg19_reference> <contigs.fa> <outputname>
Fastp	fastp <R1.fastq.gz> <R2.fastq.gz>
STAR- Fusion	STAR-Fusion --left_fq \$\{samplename\}_R1.fastq.gz --right_fq \$\{samplename\}_R2.fastq.gz --output_dir star_output --genome_lib_dir GRCh37_gencode_v19_CTAT_lib_Mar012021.plug-nplay/ctat_genome_lib_build_dir -CPU 1
JAFFA	JAFFA-version-1.09/tools/bin/bpipe run JAFFA-version-1.09/JAFFA_hybrid.groovy <SAMPLEFOLDER>/*.fastq.gz
TOPHAT- Fusion	tophat-2.1.0.Linux_x86_64/tophat --bowtie1 -o <tophat_OUTPUT_folder> -p 1 --fusion-search --keep-fasta-order --no-coverage-search -r 0 --mate-std-dev 500 --max-intron-length 100000 --fusion-min-dist 100000 --fusion-anchor-length 13 --fusion-ignore-chromosomes chrM <hg19_reference> <SAMPLE>_R1.fastq.gz <SAMPLE>_R2.fastq.gz

1.2 Supplementary Table 2: Genes targeted in the neurological oncology panel

NFASC	CLCN6	BRAF	PCDHGA1	MET	MKRN1	CLIP2
TFG	ESR1	FXR1	NAV1	YAP1	EWSR1	GFI1B
PKD1	NRF1	EGFR	RECK	MYB	VCL	JPX
NTRK3	AGBL4	GLI1	BCAN	AFAP1	SRGAP3	ST6GAL1
FAM131B	PDGFRA	MAMLD1	RELA	NDRG1	DIP2C	UBE2J2
MYBL1	ELAVL3	MMP16	DDX31	C11orf95	CXXC5	FOXR2
GFI1	ETV6	NAB2	FYCO1	FGFR3	RNF130	SEPT14
BIRC5	FLI1	NTRK2	FAM118B	KIAA1549	PVT1	
FGFR1	GNAI1	TACC1	BTBD1	PRKCA	BEND2	
STAT6	MN1	TACC3	C8orf34	PTPRZ1		
PCSK5	MST1R	ATG7	SLC44A1	RAF1		
TPM3	MYC	QKI	NSD2	NELFE		
LINC01420	NTRK1	MACF1	NACC2	SLIT1		

1.3 Supplementary Table 3: Gene Targets in Sarcoma assay

ACTB	AHRR	ALK	ASPSCR1	ATF1	ATIC	SQSTM1	SRSF3
BCOR	BRD3	BRD4	CAMTA1	CARS	CCNB3	SS18	STAT6
CDH11	CNBP	COL1A1	COL1A2	COL3A11	COL6A3	TCF12	TFE3

CDXI	CD63	CEP128	CIC	CITED2	CLTC	TPM4	USP6
CREB1	CREB3L1	CREB3L2	CSF1	CXorf67	C11orf95	WWTRI	YWHAE
DDIT3	DUX4	DVL2	EML4	EPC1	EP400	SRF	SSXI
ERG	ETV1	ETV4	ETV6	EWSR1	FEV	SS18L1	SUZ12
FGFR1	FLII	FN1	FOSB	FOXO1	FOXO4	TEAD1	TFG
FUS	GLII	HAS2	HEY1	HMGA2	IRF2BP2	TPR	$V C L$
JAZF1	KIRREL	KLF17	LAMTOR1	LPP	MAML3	YAP1	ZC3H7B
MBTD	MEAF6	MED12	MIR143HG	MKL2	MYH9	ZFP36	ZNF444
NAB2	NCOA1	NCOA2	NFATC2	NFIB	NOTCH1	VGLL2	WT1
NOTCH2	NR4A3	NTRK1	NTRK3	NUMA1	NUTM1	SSX2	SSX4
NUTM2B	$O M D$	OPHN1	PATZ1	PAX3	PAX7	S100A10	TAF15
PBXI	PBX3	PDGFB	PDPN	PHF1	PLAG1	THRAP3	TPM3
PLPP3	POU5F1	PPFIBP1	PRDM10	PRKCA	PRKCB		
PRKCD	RAB2A	RAD51B	RANBP2	RNF213	RRAGB		
SEC31A	SERPINE1	SETBP1	SFMBT1	SMARCA5	SP3		

1.4 Supplementary Table 4: Common transcript events accounted for reporting by the SeekFusion pipeline

GeneA	GeneA	Chromosome	Start	End

Supplementary Material

GLII	GLII	chr12	57854337	57858456
GLII	GLII	chr12	57857574	57858485
BIRC5	BIRC5	chr17	76212862	76218908
PDGFRA	PDGFRA	chr4	55133908	55139704
$E G F R$	$E G F R$	chr7	55229324	55238868
$E G F R$	$E G F R$	chr7	55228031	55240676
$E G F R$	$E G F R$	chr7	55087058	55223523
$E G F R$	$E G F R$	chr7	55268106	55272949
$E G F R$	$E G F R$	chr7	55268106	55270210
$E G F R$	$E G F R$	chr7	55229249	55233060
$E G F R$	$E G F R$	chr7	55087058	55266410
$E G F R$	$E G F R$	chr7	55211181	55218987
EGFR	$E G F R$	chr7	55233130	55237999
$E G F R$	$E G F R$	chr7	55177651	55209979
$E G F R$	$E G F R$	chr7	55087058	55209979
$E G F R$	$E G F R$	chr7	55219055	55220239
$E G F R$	$E G F R$	chr7	55221845	55223523
$E G F R$	$E G F R$	chr7	55238868	55233130

EGFR	EGFR	chr7	55270210	55269475
EGFR	EGFR	chr7	55270318	55272949
MST1R	MST1R	chr3	49933628	49933313
FGFR1	FGFR1	chr8	38279315	38271155
FGFR1	FGFR1	chr8	38277106	38271149
NELFE	NELFE	chr6	31922472	31922345
PCSK5	PCSK5	chr9	78547399	78682871
RELA	RELA	chr11	65430297	65429559
BCOR	BCOR	chrX	39911365	39911457
BCOR	BCOR	chrX	39911374	39911466
BCOR	BCOR	chrX	39911407	39911493
BCOR	BCOR	chrX	39911419	39911529
BCOR	BCOR	chrX	39911365	39911457
BCOR	BCOR	chrX	39911407	39911493
BCOR	BCOR	chrX	39911407	39911496
FGFR1	FGFR1	chr8	38271436	38275891

1.5 Supplementary Table 5: Common artifacts in tools

```
Tool/ Call
pipeli
ne
                                Reason for false positive
```

STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA10 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STARFusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA11 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STARFusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA12 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA3 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA4 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA5 } \\ & \hline \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA6 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA7 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA8 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGA9 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGB1 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGB2 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGB3 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGB4 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGB6 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STARFusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { PCDHGB7 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)

STAR-	CTD-	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
Fusion	2328D6.1--	
	PCDHGC3	
STAR-	CTD-	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
Fusion	2328D6.1--	
	PCDHGC4	
STAR-	CTD-	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
Fusion	2328D6.1--	
	PCDHGC5	
STAR-	YAP1--HGS	Homology (The HGS end is identical to another region within transcriptome, not a Fusion
confident call)		

STAR- Fusion	MYB-PCDHGA11	Homology (PCDHG family homology call)
STARFusion	MYB-PCDHGA12	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGA3	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGA4	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGA5	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGA6	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGA7	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGA8	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGA9	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGB1	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGB2	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGB3	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGB4	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGB6	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGB7	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGC3	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGC4	Homology (PCDHG family homology call)
STAR- Fusion	MYB-PCDHGC5	Homology (PCDHG family homology call)
STAR- Fusion	FAM131B-BRAFP1	Pseudogene (BRAFP1 homologous to BRAF)
STAR- Fusion	ING5--QKI	Homology (ING5 part maps to multiple regions with high identity)
STAR- Fusion	KIAA1549-- CLDN14	Homology (the part that maps to CLDN14 is identical to a part in KIAA1549)
STAR- Fusion	RNU4ATACRAF1	Homology (the part that maps to RNU4ATAC maps multiply to other parts of transcriptome)
STAR- Fusion	EGFR--PARD3	Low frequency (0.00005\% frequency)

STAR-	CTD-	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
Fusion	2328D6.1--	
	QKI	
STAR-	ACO79949.1--	Low complexity (The AC079949.1 region is GC rich)
Fusion	BRAF	
STAR-	MAN1A2--	Low complexity (MAN1A2 has low complexity with polyA repeats and there is
Fusion	QKI	only one C in the reads aligned to MAN1A2)
STAR-	MOV10L1--	Low complexity (MOV10L1 has low complexity with poly T and poly C repeats)
Fusion	NTRK2	
STAR-	QKI--SCD5	Low complexity (polyA repeats)
Fusion		
STAR-	RMRP--QKI	Homology (The RMRP part is highly identical to other regions in transcriptome)
Fusion		
STAR-	PTPRZ1--	Low frequency (0.00001\%)
Fusion	PSMB1	
STAR-	SMIM4--	Fusion reads do not span SMIM4 gene for more than 5 bases (PCDHG family Fusion
PCDHGA10	homology)	

STAR-	SMIM4--	Fusion reads do not span SMIM4 gene for more than 5 bases (PCDHG family fusion
PCDHGC3	homology)	

STAR- Fusion	$\begin{aligned} & \text { RP11- } \\ & \text { 317B7.2-- } \\ & \text { STAT6 } \end{aligned}$	Low complexity (Poly A repeats)
STAR- Fusion	SRGAP3-AC010642.1	Homology (The AC010642.1 is homologous to a zinc finger motif that has repeats)
STAR- Fusion	SRGAP3-- ZNF8	Homology (part of read mapped to SRGAP3 also maps to ZNF8 due to homology)
STAR- Fusion	BCAN--PGLS	Low complexity (The PGLS part has lot of GC bases)
STAR- Fusion	$\begin{aligned} & \text { GS1- } \\ & \text { 165B14.2-- } \\ & \text { QKI } \end{aligned}$	Low complexity (The GS1-165B14.2 part has lot pf polyA repeats)
STAR- Fusion	$\begin{aligned} & \text { KIAA1549-- } \\ & \text { EVX2 } \end{aligned}$	Low complexity (EVX2 part has lot of T repeats)
STAR- Fusion	$\begin{aligned} & \text { QKI-- } \\ & \text { ALO78585.1 } \end{aligned}$	Homology (The AL078585.1 part is identical to another region in transcriptome)
STAR- Fusion	ARSG-PDGFRA	Low complexity (noisy alignments)
STAR- Fusion	$\begin{aligned} & \text { EGFR-- } \\ & \text { ZFP36L2 } \end{aligned}$	Low complexity (The ZFP36L2 gene has lot of GC content)
STAR- Fusion	FGFR1--PILRB	Low complexity (repetitive region in PILRB side)
STAR- Fusion	PTPRZ1-RN7SL674P	Homology (The RN7SL674P maps to many regions across transcriptome)
STAR- Fusion	$\begin{aligned} & \text { PTPRZ1-- } \\ & \text { SNHG16 } \end{aligned}$	Low complexity (noisy alignments)
STAR- Fusion	QKI--LARP4B	Homology (The LARP4B part maps to multiple regions across transcriptome)
STAR- Fusion	$\begin{aligned} & \text { RP11- } \\ & \text { 168O16.1-- } \\ & \text { QKI } \end{aligned}$	Low complexity (RP11-168016.1 has many repeats)
STAR- Fusion	SNORD119-- FGFR1	Low complexity (polyA repeats)
STAR- Fusion	$\begin{aligned} & \text { SULT1C2-- } \\ & \text { BRAF } \end{aligned}$	Low complexity (The SULT1C2 region has poly A repeats)
STAR- Fusion	TPM3-MRPS21	Homology (The regions mapped to TPM3 and MRPS21 map multiple to other regions in transcriptome)
STAR- Fusion	ETV6-METTL25	Homology (The ETV6 first few bases are homologous to other regions in transcriptome)
STAR- Fusion	HNRNPK-NTRK2	Homology (The HNRNPK part multiply maps to other regions in transcriptome)
STAR- Fusion	SEZ6--NTRK2	Homologous regions and low complexity (The SEZ6 part of mapping is homologous to NTRK2 and due to low complexity its mapping)
STAR- Fusion	SLC44A1-- ACIN1	Low complexity (ACIN1 gene has A and G repeats)
STAR- Fusion	SLC6A4-- PRKCA	Homology (SLC6A4 part is homologous to PRKCA gene part leading to false call)

STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2206N4.4-- } \\ & \text { AC016773.1 } \end{aligned}$	Pseudogene (CTD-2206N4.4 is a classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2206N4.4-- } \\ & \text { TACC3 } \end{aligned}$	Pseudogene (CTD-2206N4.4 is a classified as a pseudogene)
STAR- Fusion	$\begin{aligned} & \text { AC011525.2-- } \\ & \text { QKI } \end{aligned}$	Homology (AC011525.2 part maps multiply to other regions)
STAR- Fusion	RAB2A--QKI	Homology (RAB2A part maps multiple to other regions)
STAR- Fusion	$\begin{aligned} & \text { SRGAP3-- } \\ & \text { AC010642.1 } \end{aligned}$	Homology (Part of AC010642.1 maps identical to SRGAP3 end)
STAR- Fusion	QKI--APP	Homology (Part of APP maps to other regions within transcriptome)
STAR- Fusion	KIAA1549-EGFR	Low complexity (The KIAA1549 is repetitive)
STAR- Fusion	MIR144--QKI	Low complexity (The MIR144 part is repetitive with poly A and poly T repeats)
STAR- Fusion	$\begin{aligned} & \text { SRGAP3-- } \\ & \text { RECQL4 } \end{aligned}$	Low frequency (0.02\%)
STAR- Fusion	BCAN--SOX9	Low complexity (Lot of C repeats on either ends)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & 3148110.1-- \\ & \text { EGFR } \end{aligned}$	Noisy alignments
STAR- Fusion	$\begin{aligned} & \text { EGFR-- } \\ & \text { AC008265.2 } \end{aligned}$	Pseudogene (AC008265.2 is classified as a pseudogene)
STAR- Fusion	EGFR--RTN4	Low complexity (RTN4 has poly A repeats)
STAR- Fusion	FGFR1-MALAT1	Low complexity (Highly repetitive MALAT1 region causing multiple mappings)
STAR- Fusion	HHIP--EGFR	Low complexity (HHIP part of mapping has lot of GA repeats)
STAR- Fusion	QKI--CASK	Low complexity (The CASK part has a lot of poly A and T repeats)
STAR- Fusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { RAF1 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STAR- Fusion	IGF2--RELA	Noisy alignments
STAR- Fusion	$\begin{aligned} & \text { AC009133.14 } \\ & \text {--RELA } \end{aligned}$	Low complexity (AC009133.14 part is highly repetitive)
STAR- Fusion	BCAN--DMD	Low complexity and Homology (DMD part has low complexity and hence aligns multiply across transcriptome)
STAR- Fusion	EGFR-PRMT2	Low complexity (PRMT2 gene has a lot of G repeats)
STAR- Fusion	IGF2--FGFR1	Homology (IGF2 maps multiply to many regions in transcriptome)

STAR- Fusion	RP11- 586K2.1-- PRKAR1A	Noisy alignments
STAR- Fusion	NF1--PRKCA	Low frequency (0.01\%)
STARFusion	$\begin{aligned} & \text { CTD- } \\ & \text { 2328D6.1-- } \\ & \text { NTRK2 } \end{aligned}$	Pseudogene (CTD2328D6.1 is classified as a pseudogene)
STARFusion	$\begin{aligned} & \text { RP11- } \\ & 586 K 2.1-- \\ & \text { APOD } \end{aligned}$	Homology (The RP11-586K2.1 maps identical to other parts of transcriptome)
JAFFA Hybri d	NAV1:MTRNR2	Noisy alignments
JAFFA Hybri d	$\begin{aligned} & \text { OLFM2:PCDH } \\ & \text { GA1 } \end{aligned}$	Low complexity (OLFM2 part has multiple mappings to other parts of transcriptome due to homology)
JAFFA Hybri d	SPTBN1:NTR K2	Low frequency (0.0008\%)
JAFFA Hybri d	$\begin{aligned} & \text { RNF144A:PC } \\ & \text { DHGA1 } \end{aligned}$	Homology (The RNF144A part maps multiple to other regions of transcriptome)
JAFFA Hybri d	DHFR:NTRK2	Noisy alignments with insertion and also homology of DHFR aligned part to other regions
JAFFA Hybri d	QKI:MT- RNR2	Noisy spanning reads with insertion and reads do not span a lot of bases
JAFFA Hybri d	QKI:CREBZF	Low frequency (0.00001\%)
JAFFA Hybri d	PTPRZ1:VAPA	No spanning reads in alignment to fusion construct
JAFFA Hybri d	PTPRZ1:MTRNR2	No spanning reads in alignment to fusion construct
JAFFA	NTRK2:MTRNR2	Noisy spanning reads and reads do not span a lot of bases

```
Hybri
d
JAFFA MYO7A- Homology (Part of read in PCDGH maps multiply to other regions in
- PCDHGA1 transcriptome)
Hybri
d
JAFFA XPNPEP3- Homology (Part of read in PCDGH maps multiply to other regions in
- PCDHGA1 transcriptome)
Hybri
d
JAFFA RTN4-NTRK3 Low frequency (0.002%)
-
Hybri
d
JAFFA ATG7-VGLL4 Low frequency (0.02%)
-
Hybri
d
JAFFA ATG7-TSEN2 Homology (the TSEN2 part aligns multiply to other regions of transcriptome)
Hybri
d
JAFFA ATG7-CLASP2 Homology (the CLASP2 part aligns multiply to other regions of transcriptome)
-
Hybri
d
JAFFA LINC00886- Low frequency and LINCO0886 is non protein coding RNA (0.00003%)
- PCDHGA1
Hybri
d
JAFFA SRGAP3- Homology (The read from SRGAP3 also maps to OXTR)
- OXTR
```

```
Hybri
d
JAFFA PDGFRA-MT- No spanning reads in alignment to fusion construct
- RNR2
Hybri
d
JAFFA PCDHA3- Homology (PCDH family)
- PCDHGA1
Hybri
d
JAFFA RNF130- Homology (RNF part is homologous to other regions in transcriptome)
- DDX46
Hybri
d
```

JAFFA Hybri d	$\begin{aligned} & \text { CTD- } \\ & \text { 2007H13.3- } \\ & \text { PCDHGA1 } \end{aligned}$	Pseudogene (CTD-2007H13.3 is a processed pseudogene)
JAFFA Hybri d	PACRG-QKI	Low frequency (0.00003\%)
JAFFA Hybri d	QKI-MT- RNR1	Noisy spanning reads with insertion and reads do not span a lot of bases
JAFFA Hybri d	PTPRZ1-RNY4	Homology (The part that aligns to RNY1 is highly homologous to various regions across transcriptome)
JAFFA Hybri d	PTPRZ1-RNY3	Homology (The part that aligns to RNY3 is highly homologous to various regions across transcriptome)
JAFFA Hybri d	PTPRZ1-RNY1	Homology (The part that aligns to RNY4 is highly homologous to various regions across transcriptome)
JAFFA Hybri d	PTPRZ1- KIAA2026	Low complexity (KIAA2026 is highly repetitive)
JAFFA Hybri d	VOPP1-EGFR	Homology (VOPP1 part is 100\% identical to other regions of transcriptome)
JAFFA Hybri d	FGFR1-	Low complexity (The part of AHSA2 is composed of repeats)
JAFFA Hybri d	LINC00476PCDHGA1	Low freqeuncy (0.002\%) and LINC00476 is non protein coding RNA
JAFFA Hybri d	MT-RNR2NTRK2	Noisy alignments with insertion
JAFFA Hybri d	LINC01420FAAH2	No spanning reads in alignment to fusion construct

```
JAFFA JPX-KTN1 Low complexity in KTN1 region (KTN1 gene has T and A repeats)
Hybri
d
JAFFA JPX-XIST Low complexity (XIST part has a lot of T repeats)
-
Hybri
d
JAFFA UBE2J2- Homology (EEF1D part is 100% identical to other regions in transcriptome)
- EEF1D
Hybri
d
JAFFA ZNF813- Noisy alignments
- NTRK1
Hybri
d
JAFFA RSRC1-EGFR Low complexity (The RSRC1 has a lot of AG repeats)
Hybri
d
JAFFA QKI-PACRG Low complexity (PACRG part is highly repetitive)
-
Hybri
d
JAFFA RPS18- Low complexity (RPS18 part is highly repetitive)
- PCDHGA1
Hybri
d
JAFFA EGFR-PARD3 Low frequency (0.00006%)
Hybri
d
JAFFA EGFR-MT- No spanning reads in alignment to fusion construct
- RNR2
Hybri
d
JAFFA GNAI1-ISPD Low complexity and repeats in ISPD part
-
Hybri
d
JAFFA GNAI1-PTK2 Low complexity and repeats around breakpoint and GNAI1-PTK2 part
Hybri
d
JAFFA UBE2J2-USP4 No spanning reads in alignment to fusion construct
-
Hybri
d
```

JAFFA Hybri d	THBS1PCDHGA1	Low complexity (THBS1 is highly repetitive)
JAFFA Hybri d	PRKCA- RNA5-8S5	No spanning reads in alignment to fusion construct
JAFFA Hybri d	RAF1-ACTG1	No spanning reads in alignment to fusion construct
JAFFA Hybri d	SMIM4PCDHGA1	Low frequency (0.005\%)
JAFFA Hybri d	PCDHGA1- LILRB4	No spanning reads in alignment to fusion construct
JAFFA Hybri d	MYB-PARG	Noisy alignments
JAFFA Hybri d	QKI-MT- RNR2	Noisy alignments
JAFFA Hybri d	QKI-SOX10	Noisy alignment with insertion
JAFFA Hybri d	QKI-RBM4	Low complexity (Poly A repeats)
JAFFA Hybri d	QKI-ZNF595	Homology (The ZNF595 part is highly identical to other regions in transcriptome)
JAFFA Hybri d	QKI-SCAF8	No spanning reads in alignment to fusion construct
JAFFA Hybri d	PTPRZ1- SAMD4A	Homology (The SAMD4A part is identical to other regions in transcriptome)

```
JAFFA PTPRZ1- Low complexity (T repeats in the PSMB1 region)
- PSMB1
Hybri
d
JAFFA PTPRZ1- Low frequency (0.00025%)
- TCAF1
Hybri
d
JAFFA BRAF-MT- No spanning reads in alignment to fusion construct
- RNR2
Hybri
d
JAFFA FGFR1-MT- No spanning reads in alignment to fusion construct
- RNR2
Hybri
d
JAFFA MT-RNR2- No spanning reads in alignment to fusion construct
- NTRK2
Hybri
d
JAFFA MT-RNR2- Noisy alignments
- QKI
Hybri
d
JAFFA JPX- Homology (AC026150.8 is highly homologous to other regions in transcriptome)
- ACO26150.8
Hybri
d
JAFFA TPM3:MRPS2 Homology (TPM3 and MRPS21 part maps to other regions in transcriptome)
- 1
Hybri
d
JAFFA QKI:MT- No spanning reads in alignment to fusion construct
- RNR2
Hybri
d
JAFFA QKI:LARP4B Homology (The LARP4B part maps to other regions in transcriptome)
-
Hybri
d
JAFFA PTPRZ1:ZNF8 Homology (The ZNF81 part also maps to other regions non specific mappings)
- 1
Hybri
d
JAFFA PTPRZ1:RNY4 Homology (Mapping in PTPRZ1 and RNY4 multiple map to several regions across
-
                                    transcriptome)
Hybri
d
```



```
JAFFA QKI:MT- Homology (The MT-RNR2 maps multiply to several regions)
- RNR2
Hybri
d
JAFFA HLA-C:HLA-A Homology (HLA genes)
Hybri
d
JAFFA BRAF:MT- No spanning reads in alignment to fusion construct
- ND2
Hybri
d
JAFFA FGFR1:RNA5- No spanning reads in alignment to fusion construct
- 8S5
Hybri
d
JAFFA MMP16:MT- No spanning reads in alignment to fusion construct
- CO1
Hybri
d
JAFFA NTRK2:RNY1 No spanning reads in alignment to fusion construct
-
Hybri
d
JAFFA JPX:STAG2 Homology and Low complexity (STAG2 part)
Hybri
d
JAFFA SLC7A11- Homology (SLC7A11 part maps multiply to other regions)
- AS1:QKI
Hybri
d
JAFFA PTPRZ1:Y_RN Homology (The Y_RNA part maps multiply to other regions)
- A
Hybri
d
SEEKF QKI-CASK Homology (QKI and CASK parts map multiply to other regions)
USIO
N
SEEKF QKI:APP Homology (RAB2A part maps multiple to other regions)
USIO
N
SEEKF RAB2A:QKI Homology (Part of APP maps to other regions within transcriptome)
USIO
N
```


1.6 Supplementary Table 6: Gene Fusions validated

Assay Type Neurological cancer	Expected KIAA1549-BRAF	Observed KIAA1549-BRAF E16-E9
Neurological cancer	FGFR3-TACC3	FGFR3-TACC3 E17-E8
Neurological cancer	$\begin{gathered} E G F R- \\ E G F R \text { E1-E8 } \end{gathered}$	EGFR-EGFR E1-E8
Neurological cancer		EGFR-PSPH E24-E8
Neurological cancer		EGFR-FKBP9L E7-E4
Neurological cancer		EGFR-SEPT14 E24-E10
Neurological cancer	KIAA1549-BRAF	KIAA1549-BRAF E15-E9
Neurological cancer	KIAA1549-BRAF	KIAA1549-BRAF E16-E11
Neurological cancer	SRGAP3-RAF1	SRGAP3-RAF1 E10-E9
Neurological cancer	EGFR-SEPT14	EGFR-SEPT14 E24-E10
Neurological cancer	KIAA1549-BRAF	KIAA1549-BRAF E16-E9
Neurological cancer	KIAA1549-BRAF	KIAA1549-BRAF E15-E9
Neurological cancer	EGFR-EGFR E1-E8	EGFR-EGFR E1-E8
Neurological cancer	KIF21B-NTRK1	KIF21B-NTRK1 E14-E10
Neurological cancer	YAP1 rearrangement	YAP1-FAM118B E7-E3
Neurological cancer	EGFR-EGFR E1-E8	EGFR-EGFR E1-E8
Neurological cancer	C11orf95-RELA	C11orf95-RELA E3-E3
Neurological cancer	C11orf95-RELA	C11orf95-RELA E3-E3
Neurological cancer	FGFR1-TACC1	FGFR1-TACC1 E18-E7
Neurological cancer	KIAA1549-BRAF	KIAA1549-BRAF E16-E9

Expected	bserved
PRR12-FOXO1	PRR12-FOXO1 (11-2)
NAB2-STAT6	NAB2-STAT6 (4-2)
NAB2-STAT6	NAB2-STAT6 (4-2)
NAB2-STAT6	NAB2-STAT6 (4-2)
NAB2-STAT6	NAB2-STAT6 (6-17)
NAB2-STAT6	NAB2-STAT6 (6-17)
NAB2-STAT5	NAB2-STAT5 (6-16)
NAB2-STAT6	NAB2-STAT6 (6-16)
SRSF3-USP6	SRSF3-USP6 (1-10)
CDH11-USP6	CDH11-USP6 (1-9)
EWSR1-CREB1	EWSR1-CREB1 (7-6)
ASPSCR1-TFE3	ASPSCR1-TFE3 (7-5)
EWSR1-ATF1	EWSR1-ATF1 (7-5)
EWSR1-ATF1	EWSR1-ATF1 (11-3)
WWTR1-CAMTA1	WWTR1-CAMTA1 (3-8)
WWTR1-CAMTA1	WWTR1-CAMTA1 (3-8)
ETV6-NTRK3	ETV6-NTRK3 (5-15)
ETV6-NTRK3	ETV6-NTRK3 (5-15)

Supplementary Material

Neurological cancer	PDE4B-NTRK2	PDE4B-NTRK1 E9-E15
Neurological cancer	KIAA1549-BRAF	KIAA1549-BRAF E15-E11
Neurological cancer	KIAA1549-BRAF	KIAA1549-BRAF E16-E9
Neurological cancer	QKI-RAF1	QKI-RAF1 E3-E8
Neurological cancer	FGFR3-TACC3	FGFR3-TACC3 E17-E10
$\begin{gathered} \text { Neurological } \\ \text { cancer } \\ \hline \end{gathered}$	EGFR-EGFR E1-E8	EGFR-EGFR E1-E8
Neurological cancer	FGFR1-TACC1	FGFR1-TACC1 E18-E7
Neurological cancer	FGFR3-TACC3	FGFR3-TACC3 E17-E11
Neurological cancer	EGFR-EGFR E1-E8	EGFR-EGFR E1-E8
Neurological cancer	QKI-NTRK2	QKI-NTRK2 E6-E15
Neurological cancer	KIAA1549-BRAF	KIAA1549-BRAF E16-E9
Neurological cancer	NAB2-STAT6	NAB2-STAT6 E4-E2
Neurological cancer	NAB2-STAT6	NAB2-STAT6 E4-E2
Neurological cancer	NAB2-STAT6	NAB2-STAT6 E4-E2
Neurological cancer	EWSR1-FLI1 E7-E6	EWSR1-FLII E7-E6
Neurological cancer	EWSR1-FLI1 E7-E6	EWSR1-FLI1 E7-E6
Neurological cancer	EWSR1-FLI1	EWSR1-FLII E7-E6
Neurological cancer	$\begin{gathered} \hline \text { SRGAP3-RAF1 } \\ \text { E10-E9 } \end{gathered}$	SRGAP3-RAF1 E10-E9
Neurological cancer	KIAA1549-BRAF E16-E9	KIAA1549-BRAF E16-E9
Neurological cancer	MYB-QKI E10-E5	MYB-QKI E10-E5

Neurological cancer	$\begin{gathered} \text { FAM131B-BRAF } \\ \text { E2-E9 } \end{gathered}$	FAM131B-BRAF E2-E9	Sarcoma	EP400-PHF1	EP400-PHF1 (37-2) EP400- PHF1 (37-2)
Neurological cancer	PVT1-MYC E3-E2	PVT1-MYC E4-E2	Sarcoma	JAZF1-SUZ12	JAZF1-SUZ12 (3-2)
Neurological cancer	$\begin{gathered} \text { FGFR1-TACC1 } \\ \text { E18-E7 } \end{gathered}$	FGFR1-TACC1 E18-E7	Sarcoma	JAZF1-PHF1	JAZF1-PHF1 (3-2)
Neurological cancer	$\begin{gathered} \text { DDX31-GFIIB } \\ \text { E19-E2 } \end{gathered}$	DDX31-GFIIB E19-E2	Sarcoma		JAZF -
Neurological cancer	$\begin{gathered} \text { SLC44A1-PRKCA } \\ \text { E15-E9 } \end{gathered}$	SLC44A1-PRKCA E15-E9	Sarcoma	RANBP2-ALK	RANBP2-ALK (18-20)
Neurological cancer	MYB-ESR1 E15-E6	MYB-ESR1 E14-NA	Sarcoma	TRAF3-ALK	TRAF3-ALK (11-20)
Neurological cancer	$\begin{aligned} & \hline \text { PTPRZ1-MET E1- } \\ & \text { E2 } \end{aligned}$	PTPRZ1-MET E1-E2	Sarcoma	IGFBP5-ALK	IGFBP5-ALK (1-19)
Neurological cancer	TPM3-NTRK1 E7E10	TPM3-NTRK1 E7-E10	Sarcoma	MPRIP-ALK	MPRIP-ALK (21-20)
Neurological cancer	$\begin{gathered} M Y B-P C D H G A 1 \\ \mathrm{E} 9-\mathrm{E} 2 \end{gathered}$	MYB-PCDHGA1 E9-E2	Sarcoma	AHRR-NCOA2	AHRR-NCOA2 (9-11)
Neurological cancer	FGFR1-FGFR1 E9E19	FGFR1-FGFR1 E9-E19*	Sarcoma	AHRR-NCOA2	AHRR-NCOA2 (10-13)
Sarcoma	MIR143HG-NOTCH2	MIR143HG-NOTCH2 (1-	Sarcoma	EWSR1-ETV1	EWSR1-ETV1 (7-10)
Sarcoma			Sarcoma	EWSR1-CREB3L1	EWSR1-CREB3L1 (8-6)
Sarcoma	GLII-ACTB	GLI1-ACTB (6-3)	Sarcoma	FUS-CREB3L1	FUS-CREB3L1 (int 6-6)
Sarcoma	HMGA2-LPP	HMGA2-LPP (3-9)			

1.7 Supplementary Table 7: Fusions reported in sarcoma and neurological cancer clinical cases

EGFR VIII	WWTR1-CAMTA1	BCR-NTRK2	EIF1-USP6
KIAA1549-BRAF	PAX3-MAML3	ARHGEF2-NTRK1	FUS-ERG
FGFR3-TACC3	FUS-CREB3L2	MN1-MOB3B	RAB2A-BCS1L
PTPRZ1-MET	ACTB-GLI1	MDM4-GLI1	PRRC2B-ALK
C11orf95-RELA	EP400-PHF1	EML4-NTRK3	CIC-FOXO4
FGFR1-TACC1	ZC3H7B-BCOR	CAND1-EGFR	CALD1-USP6
EGFR-SEPT14	PHF1-TFE3	TRIM24-MET	ATIC-ALK
CAPZA2-MET	MYH9-USP6	PTTG1IP-BRAF	GLI1-ACTB
NAB2-STAT6	EML4-ALK	FGFR3-FAM184B	HMGA2-RAB3IP
GTF2I-BRAF	EWSR1-CREB3L1	FGFR3-PLEC	EWSR1-BEND2
ATG7-RAF1	EWSR1-NR4A3	TPR-NTRK1	CIC-DUX4L4
GKAP1-NTRK2	EWSR1-PBX3	MBNL1-RAF1	CNBP-PDCD11

Supplementary Material

SLC44A1-PRKCA	PAX7-FOXO1	EVI5-BRAF	MYBL1-NFIB
AFAP1-NTRK2	TAF15-NR4A3	PID1-BRAF	TFG-NTRK3
GNAI1-BRAF	RNF213-ALK	FGFR1-FGFR1	TFG-ZBTB10
ZSCAN21-MET	MXD4-NUTM1	EWSR1-FLI1	YAP1-C15orf55
EWSR1-CREB1	MIR143HG-NOTCH2	EWSR1-ERG	NCOA2-SPIDR
TRIO-NTRK2	JAZF1-SUZ12	SS18-SSX1	SRF-NCOA2
LACE1-QKI	ETV6-NTRK3	EWSR1-WT1	EWSR1-GFI1B
EWSR1-ETV1	BCOR-ZC3H7B	PAX3-FOXO1	EWSR1-CREB3L2
MN1-BEND2	AHRR-NCOA2	EWSR1-ATF1	HMGA2-LEMD3
YAP1-MAML2	YWHAE-NUTM2B	COL1A1-PDGFB	EWSR1-POU5F1P3
ST7-MET	EWSR1-NFATC2	FUS-DDIT3	RBM10-TFE3
BCAN-NTRK1	LMNA1-TFCP2	BCOR-CCNB3	FBXO32-PLAG1
PRKAR2B-BRAF			

2 Supplementary methods

2.1 Specimen requirements:

This assay requires at least 10% tumor nuclei. Preferred amount of tumor area with sufficient percent tumor nuclei: tissue $144 \mathrm{~mm}(2)$. Minimum amount of tumor area: tissue $36 \mathrm{~mm}(2)$. These amounts are cumulative over up to 10 unstained slides and must have adequate percent tumor nuclei.Tissue fixation: 10% neutral buffered formalin, not decalcified

2.2 Preferred Specimen Type:

Specimen Type: Formalin-fixed, paraffin-embedded (FFPE) tissue. Container/Tube: Tissue block. Collection Instructions: Submit a formalin-fixed, paraffin-embedded tissue block.

2.3 Acceptable Specimen Type:

Specimen Type: FFPE Tissue. Slides: 1 Stained and 10 unstained. Collection Instructions: Submit 1 slide stained with hematoxylin and eosin and 10 unstained, nonbaked slides with 5-micron thick sections of the tumor tissue. Specimen Type: Cytology slide (direct smears or ThinPrep). Slide: 1 to 3 slides. Collection Instructions: Submit 1 to 3 slides stained and coverslipped with a preferred total of 5000 nucleated cells or a minimum of at least 3000 nucleated cells. Note: Glass coverslips are preferred; plastic coverslips are acceptable but will result in longer turnaround times.

2.4 Deduping methods:

The UMI consensus is built as follows:

Say, we denote the real (but unknown) base as $R \in S$ where $S=[A, T, G, C]$ is our alphabet. Denote the observed bases $O_{n} \in S, n=1, \ldots, N$ and their corresponding quality $\operatorname{scores} Q_{n} \in$ $R_{+} n=1, \ldots, N$. The quality scores can be converted into their corresponding error probabilities $P_{n}^{e r r}=10^{\frac{-Q_{n}}{10}}, n=1, \ldots N$. Then we use Bayes' theorem to iteratively update our knowledge about the real base R. Specifically, we assign a prior distribution $P[R=A]=$ $P[R=T]=\frac{1-P^{G C}}{2}$ and $P[R=G]=P[R=C]=P^{G C} / 2$, where the GC percent of the region $P^{G C}$ can be computed genome-wide. Then for each observation we apply Bayes' theorem to update our knowledge, starting with the first observation:

$$
P\left[R=r \mid O_{1}=o_{1}\right]=\frac{P\left[O_{1}=o_{1} \mid R=r\right] P[R=r]}{\sum_{x \in S} P\left[O_{1}=o_{1} \mid R=x\right] P[R=x]}, r \in S, o 1 \in S
$$

Where the likelihood probabilities can be computed from $P_{1}^{e r r}$ as

$$
P\left[O_{1}=o_{1} \mid R=r\right]=\left[1-P_{1}^{e r r}\right] \delta_{o_{1}, r}+\frac{P_{1}^{e r r}\left[1-\delta_{o_{1}, r}\right]}{3}, r \in S, o_{1} \in S
$$

Where $\delta_{o_{1}, r}$ is the Kronicker delta that equals one when its subscripts are equal and zero otherwise. Then at stage n where $P\left[r \mid o_{1}, \ldots, o_{n}\right]$ is computed, the next observation o_{n+1} for each $r \in S$ using assumption that observations of sequences are independent of each other.

$$
\begin{gathered}
P\left[r \mid o_{1} \ldots, o_{n+1}\right]=\frac{\left(P\left[o_{n+1} \mid r, o_{1} \ldots, o_{n}\right] P\left[r \mid o_{1} \ldots, o_{n}\right]\right)}{\sum_{x \in S}\left(P\left[o_{n+1} \mid x, o_{1} \ldots, o_{n}\right] P\left[x \mid o_{1} \ldots, o_{n}\right]\right)} \\
=\frac{P\left[o_{n+1} \mid r\right] P\left[r \mid o_{1} \ldots, o_{n}\right]}{\sum_{x \in S}\left(P\left[o_{n+1} \mid x\right] P\left[x \mid o_{1} \ldots, o_{n}\right]\right)}
\end{gathered}
$$

Finally, once we have iterated through all our observations, we make a consensus estimate for the real base \hat{R} using the maximum a posteriori (MAP) estimate: $\hat{R}=\operatorname{argmax}_{R \in S} P\left[r \mid o_{1} \ldots o_{n}\right]$ and the corresponding updated error probability estimate is given by: $\widehat{P^{e r r}}=1-P\left[\hat{R} \mid o_{1} \ldots o_{n}\right]$ which provides updated score estimate: $\widehat{Q_{n}}=-10 \log _{10}\left(\widehat{P^{e r r}}\right)$.

Mononucleotide repeat ratio calculation:

Say there is a sequence where there are 3 mononucleotides that are repeated

$$
\begin{gathered}
\left(X_{i}, X_{i+1}, X_{i+2}, X_{i+3}, X_{i+4}, X_{i+5} \ldots X_{n}\right) \text { where } X_{i}, \cdots, X_{n} \in[A, T, G, C] \text { and } X_{i+2}=X_{i+3}= \\
X_{i+4} \text { are the repeated mononucleotides }
\end{gathered}
$$

Each nucleotide is assigned a score, $S=1$ and for the above sequence the mononucleotide repeat ratio is defined by the formula:

$$
M R R=\frac{\left\{S_{i}^{2}+S_{i+1}^{2}+\left(S_{i+2}+S_{i+3}+S_{i+4}\right)^{2}+S_{i+5}^{2}+\cdots+S_{n}^{2}\right\}}{n}
$$

For a region with no mononucleotide repeats, the MRR value is equal to 1 . For a region with high repeats the value increases based on the length of mononucleotide repeat signatures. For every assembled contig that mapped to a region in the genome, the region is assessed for mononucleotide repeat ratio and the regions with ratio greater than an empirically chosen threshold of 10 are not considered as potential fusion partners.

2.5 UMI and Adapter sequence trimming

UMIs are $1^{\text {st }} 12$ bases of read 2 in the chemistry.

```
>R1_adapter
AGGACTCCAAT
>R2_adaper
CAAAACGCAATACTGTACATT
>R2_adapter_rev
AATGTACAGTATTGCGTTTTG
>polyA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
>polyT
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
```

The adapter and UMIs were trimmed using FASTP.

3 Raw data availability

All benchmarking raw data has been uploaded to NCBI's SRA website.

NCBI SRA ID	URL	SampleID in study
21386667	https//www.ncbi.nlm.nih.gov/sra/21386667	pos_S1_KIAA1549fusionBRAF
21386668	https//www.ncbi.nlm.nih.gov/sra/21386668	pos_S11_QKIfusionRAF1
21386669	https//www.ncbi.nlm.nih.gov/sra/21386669	pos_S10_PDE4BfusionNTRK2
21386670	https//www.ncbi.nlm.nih.gov/sra/21386670	pos_S12_NAB2fusionSTAT6

Supplementary Material

21386671	https//www.ncbi.nlm.nih.gov/sra/21386671	pos_S7_MN1fusionMOB3B
21386672	https//www.ncbi.nlm.nih.gov/sra/21386672	pos_S6_FGFR3fusionTACC3
21386673	https//www.ncbi.nlm.nih.gov/sra/21386673	pos_S4_EWSR1fusionFLI1
21386674	https//www.ncbi.nlm.nih.gov/sra/21386674	pos_S2_EGFRfusionSEPT14
21386675	https//www.ncbi.nlm.nih.gov/sra/21386675	pos_S3_EGFR1fusionEGFR8
21386676	https//www.ncbi.nlm.nih.gov/sra/21386676	pos_S9_C11ORF95fusionRELA
21386677	https//www.ncbi.nlm.nih.gov/sra/21386677	pos_S5_BRAFfusionFAM131B
21386678	https//www.ncbi.nlm.nih.gov/sra/21386678	pos_S13_POSITIVEfusionCONTROL
21386679	https//www.ncbi.nlm.nih.gov/sra/21386679	pos_S8_SRGAP3fusionRAF1
21386680	https//www.ncbi.nlm.nih.gov/sra/21386680	pos_S14_Insilico
21386681	https//www.ncbi.nlm.nih.gov/sra/21386681	neg_S1_sample1
21386682	https//www.ncbi.nlm.nih.gov/sra/21386682	neg_S2_sample2
21386683	https//www.ncbi.nlm.nih.gov/sra/21386683	neg_S3_sample3
21386684	https//www.ncbi.nlm.nih.gov/sra/21386684	neg_S4_sample4
21386685	https//www.ncbi.nlm.nih.gov/sra/21386685	neg_S5_sample5
21386686	https//www.ncbi.nlm.nih.gov/sra/21386686	neg_S6_sample6
21386687	https//www.ncbi.nlm.nih.gov/sra/21386687	neg_S7_sample7
21386688	https//www.ncbi.nlm.nih.gov/sra/21386688	neg_S8_sample8
21386689	https//www.ncbi.nlm.nih.gov/sra/21386689	neg_S9_sample9

4 Docker Accessiblity and instructions to run pipeline in docker

4.1 Instructions to use it in linux machine/mac/windows:

- Create a new account if you don't have one here - https://hub.docker.com/signup
- Download and install docker as per operating system use
- Make sure that in the docker config the memory is set to at least 6GB
- Open terminal, and pull from seekfusion docker-
- docker pull jagadhesh89/seekfusion
- Ensure that you are running jagadhesh89/seekfusion
- docker run -i -t jagadhesh89/seekfusion
- Run the pipeline with files in the docker image (this command also available on dockerhub page)
- pipeline/v2.00.00/src/NGS_UMIFUSION/main/shell/runFusion.sh -i /pipeline/test_data/ -m local
- The outputs are available in /pipeline/test_data under umifusion directory.
- The vcf file output is under under /pipeline/test_data/umifusion/reports/*.vcf
- The sample data contains the EWSR1-NR4A3 fusion and NTRK2-VCL fusion.
- The sample output directory needs to be backed up, renamed or removed while testing.

4.2 Screenshots

ORDERED SERVICE DATA

TEST_DEF_HOME:	/testDefinition
RECIPE:	TEST
MASTER_PANEL:	
PROJECT_NAME:	TESTRUN
OS_CONFIG:	/pipeline/test_data/umifusion/configs/os.cfg
OS_PIPELINE_DIR:	/pipeline/test_data/ordered_service/pipelines/umifusion
WDL DATA	
JSON_INPUT:	/pipeline/test_data/umifusion/configs/inputs.json
JSON_CONFIG:	/pipeline/test_data/umifusion/configs/configs.json
CROMWELL_FOLDER:	/temp/cromwell
CROMWELL_LOGS:	/logs/umifusion
SGE_CONFIG:	/pipeline/v2.00.00/configs/local.conf
OUTPUT_JSON:	/pipeline/test_data/umifusion/configs/outputs.json
RESULTS	
OUTPUT_DIR:	
CONFIG_DIR:	/pipeline/test_data/umifusion
DEVICE_NAME:	/pipeline/test_data/umifusion/configs

[2021-09-16T18:25:58+0000] [INFO] [runFusion.sh]
[2021-09-16T18:25:58+0000] [INFO] [runFusion.sh]
[2021-09-16T18:25:58+0000] [INFO] [runFusion.sh] /usr/bin/java -Dbackend.providers.SGE.config.root=/temp/cromwell -Dworkflow-options.workflow-
log-dir=/logs/umifusion -Dconfig.file=/pipeline/v2.00.00/configs/local.conf -Xmx8G -Xms4G -Xss4M -jar /biotools/cromwell/cromwell-49.jar run /pipeline/v2.00.00/src/NGS_UMIFUSION/main/wdl/fusion.wdl -p/pipeline/v2.00.00/src/NGS_UMIFUSION/src.zip -i /pipeline/test_data/umifusion/con figs/inputs.json -o/pipeline/test_data/umifusion/configs/configs.json -m/pipeline/test_data/umifusion/configs/outputs.json | tee -a /pipeline/test_ data/umifusion/logs/main.log

