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Abstract

Existing methods for differential network analysis could only infer whether two networks of interest have differences between two
groups of samples, but could not quantify and localize network differences. In this work, a novel method, permutation-based Network
True Discovery Proportions (NetTDP), is proposed to quantify the number of edges (correlations) or nodes (genes) for which the co-
expression networks are different. In the NetTDP method, we propose an edge-level statistic and a node-level statistic, and detect true
discoveries of edges and nodes in the sense of differential co-expression network, respectively, by the permutation-based sumSome
method. Furthermore, the NetTDP method could further localize the differences by inferring the TDPs for edge or gene subsets of
interest, which can be selected post hoc. Our NetTDP method allows inference on data-driven modules or biology-driven gene sets, and
remains valid even when these sub-networks are optimized using the same data. Experimental results on both simulation data sets
and five real data sets show the effectiveness of the proposed method in inferring the quantification and localization of differential
co-expression networks. The R code is available at https://github.com/LiminLi-xjtu/NetTDP.
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Introduction
Networks can characterize interaction patterns of components
in complex systems and explain observed phenomena in various
fields. There has been much recent attention to gene correla-
tion networks in biological systems, which have given valuable
insights into biological phenomena. With the support of next-
generation sequencing technology, the measurement of high-
dimensional biological data has become cheaper and more effi-
cient, allowing large-scale networks that bring computational
challenges to network analysis. Weighted gene co-expression net-
work analysis (WGCNA) [1, 2] is a widely used network estimation
method. In biological network studies, WGCNA aims to cluster
thousands of genes into several synthetic groups (or modules)
of densely interconnected genes. In WGCNA a pair of genes is
connected in the network if their expression is correlated. Net-
works can be both unweighted and weighted, using correlation
values as weights. Correlation distance is then used to group genes
into modules, potentially reducing a large number of genes into
a small number of clusters. The expression of gene clusters can
be quantified by their eigengenes, defined as the first principal
component of the expression values of the cluster. Highly inter-
connected modules can help to understand common biological
processes. WGCNA has been successfully used in various compu-
tational biology problems [3–7].

Time [8], external stimuli [9] or disease status variety [10]
can lead to dynamic changes in the interactions among compo-
nents in biological systems. For example, the onset and progres-
sion of ovarian tumors is regulated by the network of platinum
resistance-related genes [11], protein interaction networks are

associated with cell proliferation in cancer cells [12] and lipid
networks have been successfully used as predictive biomarkers
for chronic kidney disease [13]. There is growing evidence showing
that gene networks can change over time or under external stim-
uli, motivating the study of complex diseases from the perspec-
tive of differential networks. Differential network analysis [14] is
therefore the task of comparing networks between different states
and/or over time, revealing in what way these external factors
affect the behavior of the system.

WGCNA has been applied to compare network topology of
different co-expression networks via consensus module detection
[2]. For instance, the DiffCoEx [15] method applies WGCNA to
identify co-expression network differences by clustering genes
into modules based on the matrix of gene correlation differences.
Coxpress [16] firstly detects co-expression gene modules within
one group samples and then calculates t-statistic to test whether
one group of genes is differentially co-expressed. Yuan et al.
[17] used biweight midcorrelation to measure gene similarity for
gene differential co-expression analysis. GSCA[18] identified gene
sets showing distinct correlation profiles across conditions by
evaluating pairwise co-expression, as opposed to gene-specific
expression, across a gene set. GSNCA[19] identified differentially
co-expressed gene sets, which have to be defined a priori, between
two sample groups. It defined weight vectors from a correlation
network for each sample group. CoGA[20] is an R package for
the identification of groups of differentially associated genes
between two phenotypes. It utilized concepts of Information The-
ory applied to the spectral distributions of the gene co-expression
graphs. For more differential co-expression network methods,
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please see [21]. However, existing methods fail to infer three
aspects: (1) whether any difference of the gene co-expression
network between groups is statistically significant; (2) how large
the difference is, in terms of nodes or edges; (3) where such
significant differences of the gene co-expression network are
located. Quantifying and localizing the gene co-expression net-
work differences between two groups is especially important for
large gene co-expression networks, since the mere existence of a
difference in a large network is not very informative. To localize
the difference, we are interested in one or several selected gene co-
expression sub-networks, which are defined by subsets within the
gene set of interest. To correct for the multiplicity of sub-networks,
a multiple testing procedure is necessary [22, 23]. This multiple
testing problem becomes even more challenging if candidate sub-
networks are selected post hoc, and standard multiple testing
procedures cannot be directly used.

In this work, we present a novel multiple testing method,
named Network True Discovery Proportions (NetTDP). Our
method allows quantification and localization of co-expression
modules, and is valid for modules chosen in a data-driven way.
We quantify differential co-expression by defining TDP for sub-
networks as the proportion of edges or nodes in the sub-network
that is truly differentially co-expressed. For any selected sub-
network, we find a lower (1 − α)-confidence bound for the
TDP based on the statistics of the differential co-expression
network. We say that network differences exist between two
groups in a sub-network if the TDP lower confidence bound
is non-zero, though biologically informative differences should
require larger TDP values. Data-driven (post-hoc) selection of sub-
networks is allowed because the confidence bounds we provide
are simultaneous over all sub-networks [24, 25]. Simultaneity
allows researchers to specify the subset of interest after seeing
the data, while still obtaining valid confidence bounds for the TDP.

Network statistics tend to be highly correlated with each other,
and analysis methods should take such correlations into account.
For differential network analysis we use a permutation-based
procedure to adapt to this correlation structure. In particular, we
use the sumSome method, recently proposed by Vesely et al. [26],
which implements the closed testing framework of [24] and [25]
using sum-based permutation tests. It allows quick construction
of simultaneous lower confidence bounds for the TDP of sub-
networks.

The structure of the work is as follows. We first introduce
WGCNA and the sumSome method that our novel procedure builds
on before introducing the proposed method. The novel method
has two variants, one for a node-level and one for an edge-level
analysis. A simulation study illustrates the proper error control
of the method and its power. We apply the method on five data
sets to demonstrate its usefulness in practice.

Related work
In this section, we will briefly introduce two related methods,
including WGCNA [2] and the sumSome [26] methods, since in our
proposed NetTDP method, WGCNA is used for network construc-
tion and module detection, and the sumSome for TDP inference.

Network construction and module detection
with WGCNA [2]
WGCNA consists of two main steps: network construction and
module detection.

The nodes in the network correspond to genes. The connection
strength of two genes is calculated by the similarity between

them. By default, similarity between gene i and gene j is measured
using their correlation. The element aij of the adjacency matrix is
computed by raising the correlation absolute value to a power β:

aij = |cor(xi, xj)|β , (1)

where β = 6 is the default value. An edge is considered to exist
between genes i and j if the adjacency exceeds a threshold value.
By this way WGCNA constructs large-scale networks.

Next, WGCNA defines gene modules loosely as subgraphs in
which the genes are densely connected. Standard methods used
to identify gene modules include hierarchical clustering based
on the adjacency matrix, combined with branch cutting. For
each module, the first principal component of the corresponding
expression matrix is defined as the module eigengene, and genes
can be reassigned to a different module if they correlate well with
that module’s eigengenes. Gene modules with highly correlated
eigengenes can be further merged to eliminate smaller modules.

True Discovery Proportions inference
with the sumSome [26]
The permutation-based method sumSome is a general closed test-
ing procedure for sum tests, which allows to construct lower (1-α)-
confidence bounds for the TDPs simultaneously over all subsets
of a family of hypotheses. The method is suitable for exploratory
research, as it controls the TDP even when the subset of inter-
est is selected after seeing the data. Furthermore, it adapts to
the unknown joint distribution of the data through permutation
testing. The goal and assumptions of the sumSome method can be
formulated mathematically as follows.

Let H1, . . . , Hm be m univariate hypotheses of interest, indexed
by the set N = {1, 2, . . . , m}. The unknown true hypotheses are
collected in the subset T ⊆ N. Given any subset K ⊆ N, the
corresponding intersection hypothesis

HK =
⋂
i∈K

Hi

is true if and only if Hi is true for all i ∈ K, i.e. K ⊆ T. Let

SK =
∑
i∈K

Si

be a sum test statistic for HK, where Si is a test statistic for the
univariate hypothesis Hi. A critical value of SK can be found using
permutations, under the assumption that the joint distribution
of the statistics for the true hypotheses is invariant under all
permutations of data.

Subsequently, let TDP(K) = |K \ T|/|K|, taken as 0 if K = ∅, be the
unknown proportion of true discoveries in subset K, where |K \ T|
represents the number of elements in subset K but not in subset
T. Goeman et al. [25] proposed a procedure to define simultaneous
lower (1-α)-confidence bounds d(K) for each TDP(K), so that

P
(
TDP(K) ≥ d(K) for allK ⊆ N

) ≥ 1 − α.

In this way, [d(K), 1] is a simultaneous (1 − α)-confidence interval
for TDP(K). In general the confidence bounds d(K) can be com-
puted using closed testing, based on the idea of testing many
subsets of hypotheses by means of a valid α-level test, which
in this case is the permutation test. However, if used as it is
the procedure has exponential complexity in the number m of
hypotheses, and becomes infeasible when m is large [25].
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Figure 1. Flowchart of NetTDP method for differential co-expression network analysis. There are three main parts in our NetTDP, including network
construction, network difference quantification and network difference localization, shown in (a), (b) and (c), respectively. (a) Gene co-expression network
construction: given expression data for two groups of samples with the same m genes, one can construct weighted co-expression networks A1 and A2

based on correlation coefficients. (b) Network difference quantification: we quantify network difference by detecting true discoveries of edges or nodes
in the sets of interest. Edge-level and node-level statistics are proposed and permutation-based sumSome method is used for true discovery inference.
(c) Network difference localization: we further localize network difference by inferring the TDPs in gene sets of interest which can be selected after
seeing the data. Subsets with non-zero TDPs can be identified as differential sub-networks in a network. Post hoc inference on data-driven modules
and biology-driven gene sets is allowed in our proposed method.

The sumSome is a fast algorithm that allows quick calculation of
the confidence bounds for TDP(K) by approximating the value d(K)

from below. For large size problems, the method can be sped up
using truncation-based statistics, i.e. cutting down the statistics
smaller than a given threshold. The method is suitable for testing
problems up to about 106 hypotheses. For details, see [26].

Methods
In this section, we propose the NetTDP method for differential
co-expression network analysis, which includes three steps: co-
expression network construction, network difference quantifica-
tion and network difference localization. The flowchart of the
proposed method NetTDP is shown in Figure 1.

Gene co-expression Network construction
In differential gene co-expression network analysis, we have
expression data for the same m genes in two groups of samples.
The expression data are represented by X1 = {x1,1, x1,2, · · · , x1,n1 } ∈

Rm×n1 and X2 = {x2,1, x2,2, · · · , x2,n2 } ∈ Rm×n2 , with n1 and n2

samples in two groups, respectively.
We will assume that the columns x1,1, . . . , x1,n1 are inde-

pendently drawn from a zero mean normal distribution with
unknown m × m correlation matrix �1. Analogously, we assume
that x2,1, . . . , x2,n2 are independently drawn from a zero mean
normal distribution with unknown m × m correlation matrix �2.
If the means of given expression data are not zero, i.e. there
is differential expression between the groups, we subtract the
mean per group to fulfill this assumption asymptotically. For all
pairs i, j ∈ {1, 2, . . . , m}, let ρ1,ij and ρ2,ij be the true correlation
coefficients between genes i and j in groups 1 and 2, and ρ̂1,ij and
ρ̂2,ij be their estimates.

From these expression data, we can use WGCNA to obtain two
estimated networks, G1 and G2, with the same m nodes (i.e. genes).
The corresponding adjacency matrices are A1 = [a1,ij] = [(ρ̂1,ij)

β ]
and A2 = [a2,ij] = [(ρ̂2,ij)

β ], with i, j ∈ {1, 2, · · · , m}.
In this work, our first goal is to test whether the co-expression

network is significantly differential between groups. Secondly, we
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want to quantify the network difference, and in the third place to
localize the difference in the network.

Network difference quantification
For the first and second goals, we find the lower (1−α)-confidence
bound of the TDP of the full network. This quantifies the
network difference, and if the lower bound is positive, indicates
the presence of a significant difference. For the third goal, to
further identify locations of the difference, we find the TDP in
sub-networks and modules of interest.

The TDP may be defined either at the node or at the edge level.
The edge-level null hypothesis for the edge between node i and
node j, i �= j, may be defined as

Hij : ρ1,ij = ρ2,ij,

i.e. the co-expression pattern between genes i and j is not different
between the two groups. A sensible test statistic to test this
hypothesis is

Tij =
{

|a1,ij − a2,ij| if sign(ρ̂1,ij) = sign(ρ̂2,ij)

|a1,ij + a2,ij| otherwise
. (2)

We can use these null hypotheses and test statistics directly
in sumSome. We define a permutation of the data as a random
reallocation of the n1 + n2 samples over the two groups, and
remarking that under our model the joint distribution of the null
genes is invariant to such a permutation. If the true means are
not zero, the invariance is asymptotic. Alternatively, we can use
rotations instead of permutations [27, 28].

The use of sumSome controls the edge-level TDP, i.e. the pro-
portion of correcty identified differential edges. The number of
hypotheses in this testing problem is m(m − 1)/2.

Alternatively, we can look at the node-level TDP. We can define
the intersection hypothesis of all edge-level hypotheses corre-
sponding to all edges involving node i, as follows

Hi =
⋂
j �=i

Hij : ρ1,ij = ρ2,ij.

This hypothesis is false if the correlation between gene i and at
least one other gene is different between the groups, i.e. if the node
is differentially connected between the two groups. A suitable test
statistic for this formulation of the problem is

Ti =
∑
j �=i

Tij. (3)

We can also use sumSome based on this choice of hypotheses
and test statistics, since the same permutations apply. This will
give lower confidence bounds to the node-level TDP, the proportion
of correctly identified differentially connected nodes. The number
of hypotheses in this testing problem is m.

Note that our NetTDP is not a simple application of sumSome
method. It provides a novel procedure to quantify and localize
the differences between two networks, and the sumSome test is
only one step in the procedure. Furthermore, we proposed novel
edge-level and node-level statistics for two networks, to calculate
differences in genes or correlation of gene co-expression net-
works. Based on the two statistics, the TDP of node (gene) or edge
(correlation) in the subset of interest can be inferred by sumSome.

Network difference localization
For detection and quantification of the network differences we
will simply look at the TDP for the entire network. For local-
ization, however, we need to look at potentially interesting sub-
networks. Depending on whether a node-level or edge-level analysis
is done, we need to look at subsets of the nodes or subsets of the
edges.

Many strategies can be used to detect node subsets, i.e. gene
sets, of interest. For example, one can collect gene sets from the
existing gene set databases, e.g. Gene Ontology (GO) categories or
Kyoto Encyclopedia of Genes and Genomes (KEGG). Alternatively,
data-driven methods can be adopted to detect gene clusters. A
natural choice is WGCNA’s module detection method, identifying
gene clusters for each group alone with the calculated adja-
cency matrix. Inspired by this method, we input the difference
of adjacency matrices over two groups instead, referred to as
�A, with entries formulated as Tij. Then we use hierarchical
clustering to identify gene modules with the network difference
matrix �A.

Edge subsets can be defined from node subsets in two ways.
One is collecting edges between nodes that appear in that node
subset. The other is considering edges between nodes in that node
subset and any other nodes.

Note that our NetTDP is a further analysis tool based on the
WGCNA method, but not a competitor, since the WGCNA method
is to analyze single-gene co-expression networks (to identify gene
modules) or to identify gene modules shared between two gene
co-expression networks, while our NetTDP is proposed for quan-
tifying and localizing differences in the co-expression networks
generated by two groups of samples.

Simulation study
In this section, Monte Carlo simulation is used to examine the
performance of our proposed method. Different co-expression
networks between two groups, characterized by having different
gene correlations or including different number of differential
genes, are constructed.

Data generation and experimental settings
A total of 100 genes and 50 samples from each of the two groups
are considered. We also consider selecting subsets K from the 100
genes, with the size varying within {10, 20, 30, 40, 50, 60, 70, 80, 90,
100}.

For the first group, the data are simulated from a standard
multivariate normal distribution MVN(0, �(η, ρ)), where the first
η genes are correlated to each other with an equal correlation ρ,
while the other genes are assumed to be mutually independent.
Here, η varies between 10, 50 and 90, and ρ is selected within
{0.2, 0.3, 0.4, 0.5}. The simulated data for the second group also
follow a multivariate normal distribution MVN(0, �(η, wρ)), where
w is within {0, 0.3, 0.6, 0.9, 2}. Since zero mean is assumed for
both groups, we do not need to subtract per-group means to
guarantee that the identified network differences are unaffected
by differential gene expression.

The η co-expressed genes indicates all are differentially co-
expressed between the two groups. For the gene subsets of interest
we used the following selection rule: if |K| ≤ η, we randomly select
|K| genes from η dependent genes; if |K| > η, |K| − η genes are
randomly picked from the independent genes in addition to the
η dependent genes. For instance, for a chosen subset of 50 genes,
we first include the η = 10 genes, and then randomly choose 40
genes from the remaining 90 independent genes. This defines the
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Figure 2. NetTDP node-level results for 1000 simulations with w = 2. The box plots are estimated TDP bounds. The green dots mark the ground-truth
TDPs in each gene set, and the dotted lines depict the changes of these TDPs. Different gene sets are presented in different colors. The x-axis provides the
number of genes in the chosen gene set. Each row corresponds to results for each setting of ρ that measures the correlation strength among differentially
related gene pairs. Each column contains results for each η setting measuring how many genes are differentially related.

node-level subsets. For the edge-level sets, we tested edges collected
by the first way, as described in Section Methods.

We conducted 1000 simulations, and the significance level
is specified as 0.05 and for each simulation we performed 200
permutations, as advised in [26].

Results on node-level inference
The node-level estimated TDP bounds are shown in Figure 2, where
w is fixed as 2. Each row corresponds to the results obtained for
each ρ setting, and each column for each η value. The green dots
are the true TDP in each gene set of interest. The dotted lines
depict trends in true TDPs across gene sets. It can be observed
that the estimated TDPs are all lower than the dotted line, that is,
the estimated results are all less than or equal to the ground-truth
TDPs. This shows that the proposed method of NetTDP can control
false positives well. In other words, while the gene set is defined
after seeing the data, NetTDP can also control the probability of
making type I error below a given significance level α.

We observed that the signal strength of co-expression network
differences increases with the increased number of related genes
or enhanced correlation between genes. That is, the larger η

and ρ are, the higher the estimated TDP bounds would be. We
also observed that when all genes in a gene set are network-
differentiated, the estimated TDP bound increases with the size of
the gene set. In other words, when a network differs everywhere
between two groups, increasing the chosen gene set leads to a
higher TDP confidence bound.

Secondly, simulation results for the other w settings are shown
in Figures S1, S3, S5 and S7 in the Supplementary Material. As

the value of parameter w increases from 0.3 to 0.9, one can see a
decreasing trend in the TDP estimated by our method for the gene
set of interest. This is because as parameter w ∈ [0, 1] increases,
the covariance matrix difference between groups shrinks,
resulting in a smaller network difference between groups. In
extreme cases, such as when w = 0.9, the network differences
between groups are very difficult to distinguish, and the TDP
estimated by the proposed method of NetTDP is low. We also check
the power of NetTDP in the case where genes in one group are
independent of each other, while some genes in the other group
are related. The results of Figure S7 show that the performance
of NetTDP for this case is between the performance in the cases
of w = 2 and w = 0.3.

Results on edge-level inference
Similar to node-level inference, we also reported corresponding
simulation results for edges in Figure 3 and Figures S2, S4, S6 and
S8 in the Supplementary Material. In these figures, the dotted
lines with green points show ground-truth TDPs for edges within
gene sets. At edge level we see qualitatively the same conclusions
as at node level. In most cases, we obtain lower TDPs at the edge
level than at the node level (see Figures 2 and 3). This can be
explained by the statistics defined here. The node-level statistic,
defined in equation (3.2), integrates all information of genes co-
expressed with one gene, while the edge-level statistics, defined in
equation (1), looks into each pair of co-expressed genes separately.
That is to say the node-level statistic makes it easier to identify
genes with differences by gathering more edge differences, while
the edge-level statistic value depends on the information of one
edge, which greatly increases the difficulty of identification.
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Figure 3. NetTDP edge-level results for simulation data with w = 2. The box plots are estimated TDP bounds for 1000 simulations. The green dots mark
the ground-truth TDPs in each gene set, and the dotted lines depict the changes of these TDPs. Different gene sets are presented in different colors. The
x-axis provides the number of genes in the chosen gene set. Each row corresponds to results for each setting of ρ that measures the correlation strength
among differentially related gene pairs. Each column contains results for each η setting measuring how many genes are differentially related.

Real data study
Data collection and processing

This section focuses on the collection of real data, including gene
expression data and gene sets of interest, and also describes data
preprocessing.

Gene expression data collection. To evaluate our method of
NetTDP with real biological data, we collected three human dis-
ease gene-expression data sets. These data sets were also applied
in [29] to detect differentially co-expressed gene sets through a
novel probabilistic score. The details of these data sets are shown
in Table 1. As described in [29], only 3000 probes with maximum
variation are firstly selected in each data set. In this way, they
could cut down noise and focus on genes varying across the study.
Then the probes are mapped to Entrez IDs to merge them further.

We also collected two mouse single-cell data sets from brain
and embryo stem cells, shown in Table 1. Mouse brain data [30]
have seven cell types, including astrocytes, endothelial, ependy-
mal, microglia, neurons, oligos and vsm. Mouse embryo stem cells
[31] are grouped into four stages by differentiation days, including
day0, day2, day4 and day7, where day0 means embryo stem cells
have not yet started to differentiate and day2 represents 2 days
after cell differentiation.

Gene sets collection. We also collected 25 891 human gene sets
downloaded through http://baderlab.org/GeneSets. It contains all
pathway resources and all three divisions of GO (biological pro-
cess, molecular function, cellular component) excluding annota-
tions that have evidence code IEA (inferred from electronic anno-
tation), ND (no biological data available) and RCA (inferred from
reviewed computational analysis). Then we made an intersection

of these gene sets and genes in the expression data. To reduce
the number of gene subsets of interest in our experiments, we
focused on sets with a size of more than 30. Consequently, we
obtained 1537, 1464 and 1691 gene subsets for the AD, LC and NDD
data sets, respectively. In addition to the biology-derived gene sets,
we also defined gene sets with a data-driven method, i.e. using
the gene module detection described in Section Methods above.
Results are reported in the following subsection, including two
ways to construct gene sets of interest. Similarly, we tested edge
sets defined by the same way in our simulation study.

Mean removal. This work focuses on the identification of genes
with network differences, i.e. genes whose gene–gene relation-
ships are differentially expressed between groups. Notice that
these do not coincide with differentially expressed genes, which
could have the same gene–gene relationships but different means
between groups. In order to eliminate the interference of differen-
tial expression on the goal of this work and further ensure that the
identified genes have network differences, we removed the mean
in the gene expression data to ensure that the mean within the
group is zero, while preserving the inter-gene relationship. One
can also normalize data to have standard deviation and zero mean
before using our method.

Single-cell data preprocessing. The pipeline for analyzing single-
cell data is similar to bulk data in our method, except a data
pre-processing step for single-cell data with high noise. In the
preprocessing step, aggregated expression profiles of single-cell
data are used to conduct ‘pseudocells’ from specific cell popula-
tions. This strategy was also used in the single-cell co-expression
network analysis method in [32]. Specifically, we applied k-nearest
neighbors to compute the mean expression from 10 neighboring
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Table 1. Summary of five data sets used in real data study

Technology Species Data set #Genes #Samples #Classes GEO ID

Bulk RNA-seq Human Alzheimer’s
disease (AD)

2698 363 2 GSE15222

Lung cancer (LC) 2890 187 2 GSE4115
Neuro-
degenerative
disorders (NDD)

2375 118 2 GSE26927

Single cell
RNA-seq

Mouse Brain 24341 2881 7 GSE74672

Embryo stem cells 24175 2717 4 GSE65525

cells. We further reduced the dimension of features with Seurat
toolbox [32] by picking the top 2000 highly variable genes. After
performing the above steps, we obtained 2000 features with 576
cells and 543 cells for mouse brain and mouse embryo stem cells,
respectively. Note that we only reduced the number of cells, the
cell types remained the same as the original single-cell data.

To take over the challenge of various cell types, in turn, we take
one cell type as a case group and the other cell types as a control
group, which is a common strategy in differentially expressed
gene identification. In this way, we could identify specific sub-
networks that distinguish one cell type from the other cell types.

Gene module detection methods
The identification of gene modules is a critical step in differential
gene co-expression analysis. Its goal is to cluster genes on a gene
co-expression network. To illustrate the robustness of our NetTDP
method, we compared other three gene module identification
methods, including DiffCoEx [15], Coxpress [16] and lmQCM [33].

DiffCoEx: similarly to WGCNA, DiffCoEx identified and groups
differentially co-expressed genes that have different partners
between different samples by hierarchical clustering with the
following adjacency difference:

D : dij =
(√

0.5|sign(ρ̂1,ij) ∗ (ρ̂1,ij)
2 − sign(ρ̂2,ij) ∗ (ρ̂2,ij)

2|
)β

Coxpress: It identifies co-expression modules in each sample
group and tests whether the genes within these modules are also
co-expressed in other groups. Coxpress method uses hierarchical
cluster analysis to explore the relationship between genes, cutting
the tree to form groups of genes that are co-expressed.

lmQCM: unlike DiffCoEx and Coxpress, which use hierarchical
clustering and do not allow overlap between modules, lmQCM is
a greedy approach allowing genes to be shared among multiple
modules, consistent with the fact that the genes often participate
in multiple biological processes. Same to Coxpress, only one group
of samples are used to detect gene modules in this method.

Note that NetTDP, DiffCoEx and Coxpress methods all use
hierarchical clusters for gene module detection. The difference
is that Coxpress only inputs a co-expression network from one
group, such as G1 or G2, while NetTDP and DiffCoEx require a
co-expression network difference between two different groups.
In our experiment, for Coxpress and lmQCM, gene modules were
identified by only inputting case samples of AD data set, that is,
disease patients on AD.

Results
In this section, we will present the results of the proposed NetTDP
method on five real datasets, including bulk RNA-seq and single-
cell data, taking as subsets of interest both gene sets clustered

on the data and biologically meaningful gene sets obtained from
databases. In bulk RNA-seq data AD, we also compared gene
modules identified by three other methods with modules detected
by our NetTDP.

Performance on sets defined as modules. After obtaining the
network adjacency matrix within the groups, we used the WGCNA
package to identify gene modules. The input is the difference
between the adjacency matrices corresponding to the two sets of
samples. When using the WGCNA package to identify gene mod-
ules, different parameter selections will result in different gene
clustering results, but our method of NetTDP remains valid even
if many such clustering settings are tried. Here, we choose Ward’s
hierarchical agglomerative clustering [34] method in WGCNA and
we set the size of the module to be no less than 30 for all three real
data sets. Only the results of our method under one clustering are
shown here.

Firstly, we reported the node-level and edge-level results for
gene modules in Figure 4 and Figure S9 in Supplementary Mate-
rial, respectively. For each data set, we present the results in a
pie chart. Each sector presents the results for one gene module.
The size of the sector corresponds to the number of genes in the
module. The larger the sector, the larger the gene module. The
color of the sector corresponds to the estimated TDP: the darker
the color, the larger the TDP value. White indicates that the TDP
is 0. The TDP and the number of genes across the entire data set
are listed in the title of each subplot.

For node-level results in Figure 4, the global TDP is quite dif-
ferent between the three data sets. It exceeds 70% in AD, is
close to 50% in LC and is less than 10% in NDD. The higher the
global TDP, the easier it is to find locally differentiated networks
with differences. In the gene module division of the AD data set,
modules with a size of more than 200 genes have non-zero TDPs;
the module with 382 genes has the highest TDP, although it is
not the largest of all modules. For the LC data set, the estimated
TDP for the largest gene module (48.48%) is the highest, and even
higher than the global TDP (42.44%). It indicates that most genes
with network differences are likely to be clustered in this module.
Interestingly, in the NDD data set, the TDPs of the modules are all
0, which means that the local differences are not in these sub-
networks. Another way of grouping genes may be able to find
different local network structures.

For edge-level results in Figure S9 in Supplementary Material, we
explored differences in edges between genes in each gene module.
Compared with the node level, the global TDP of the three data
sets is greatly reduced, and the LC data set has the highest TDP of
7.53%. In the module division discussed here, only the LC data set
finds a set with a non-zero TDP.

Technically, we compared different module detection methods
used in the framework of our NetTDP to show the robustness of
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Figure 4. NetTDP node-level results for bulk RNA-seq data in gene modules. The TDP and the number of genes across the entire data set are listed in
the title of each column. Each pie chart presents results for each data set.Each sector presents the results for one gene module. The size of the sector
corresponds to the number of genes in the module: the larger the sector, the larger the gene module. The color of the sector corresponds to the estimated
TDP: the darker the color, the larger the TDP value. White indicates that the TDP is 0.

Figure 5. Co-expression networks for 18 shared genes identified by all gene module detection methods discussed here. (a) and (b) are networks for
control and case samples in AD data set, respectively. Nodes size represents degree of node. Edge thickness represents weight scale: the thicker the edge,
the stronger the correlation. These genes differ in degree of node or weight of edge. For example, correlation among FBXW4, KIF1C and TRAK2 genes
are different between groups. And degree of S100A12 gene in cases is zero, significantly different from controls, where S100A12 are linked to two other
genes.

our NetTDP in network difference quantification. We analyzed
the consistency of NetTDP results using different gene modules
detected by different module-based methods on AD data set.
Specifically, we first inferred TDPs by our NetTDP for modules
identified by each method, and further calculated true discoveries
of node. Then for each method we selected the top module with
the most node true discovery (223, 352, 326 and 618 genes, respec-
tively, for NetTDP, DiffCoEx, Coxpress and lmQCM). We reported
the Venn chart (shown in Figure S10) of these top modules, and
over 200 genes are shared between the top modules, showing that
our NetTDP could obtain consistent results by different module
detection methods. The results further imply the robustness of
our method with regard to module detection methods. Intuitively,
in Figure 5, we visualized the co-expression network of AD and
control samples, where all 18 genes share among all modules
and many differences exist between these two networks (degree
of node or weight of edge). This figure shows that our NetTDP
method can indeed find differences between two co-expression
networks. Based on observations above, we verified the robustness
and rationality of our NetTDP method.

Next, in Figure S11, we reported node-level results of our NetTDP
in gene modules for single-cell data sets, where sub-figures a) and
b) present results for mouse brain data, and sub-figures c), d) and
e) show results for mouse embryo stem cells data, respectively. For
both these two single-cell data, their absent cell types had zero
TDPs of the whole networks, that is, no statistically significant
network difference existed between the two groups. It is likely

that the co-expression network of the 2000 genes we selected is
not different between groups. If more genes are analyzed here it
may help us to discover network differences in these single-cell
data. For cell types shown in this figure, we believe that their co-
expression network difference could be found in current modules
with the largest TDPs at least. In Figure 6 and Figure S12 in Sup-
plementary Material, we also visualized the network differences
found for specific cell types, including mouse brain neurons and
mouse d4 embryo stem cells, respectively. In the detected gene
module with the largest TDP value, we randomly selected 20 genes
to exhibit co-expression networks constructed in our method.
As we can see in these two figures, many obvious differences
exist between the two compared co-expression networks, showing
that our method can also handle differential gene co-expression
network analysis on single-cell data well.

Performance on gene sets defined biologically. We also tested
the efficacy of our method of NetTDP on biologically meaningful
gene sets collected in Section Data collection and processing. Results
are reported for node-level statistic in Figure 7 (left-hand side) and
edge-level statistic in Figure S13 (left-hand side) in Supplementary
Material. For both figures, the x-axis shows the size of gene sets
and different colors represent different gene expression data sets.
As we can see, the trends of all curves are all upwards, that
is, the estimated TDP increases with the size of the gene set.
This phenomenon is similar to a pattern observed in simulation
experiments when the network differences between groups are
small but widespread. This suggests that the three data sets could
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Figure 6. Co-expression networks for 20 genes identified by NetTDP for mouse brain data. (a) and (b) are networks for non-neurons and neurons,
respectively. Nodes size represents the degree of the node. Edge thickness represents weight scale: the thicker the edge, the stronger the correlation.
These genes differ in the weight of edge linked to the other genes. For example, the correlation between Crocc and Ppil6 is stronger in neurons than that
in non-neurons.

also have widespread small differences in their networks, rather
than sparsely focused differences. As in the simulation results,
the TDP estimated at the edge level is much lower than the TDP
estimated at the node level.

To further demonstrate the reliability of our NetTDP method,
we applied NetTDP, CoGA and GSNCA, on AD gene sets collected
in Data collection and processing section with less than 500 genes
(totally 1451 gene sets). The overlap of the identified differential
gene sets by NetTDP (non-zero TDP), CoGA (P-value less than
0.05) and GSNCA (P-value less than 0.05) methods is shown in
Figure S14 in Supplementary Material. Over 88% of gene sets
identified by our method can be also identified by GSNCA method,
while over 13% by CoGA method. There are 51 common gene sets
detected by all the three methods. Since our method could further
quantify the differential networks by TDP, we also reported the
gene sets with more than 20% TDP in Table S1 in Supplemen-
tary Material. Most of the reported 15 gene sets are related to
Alzheimer’s disease. For example, the immune system is a major
factor in Alzheimer Disease (AD)[35], showing that positive regu-
lation of immune system process (GO:0002684) may be associated
with AD. Grant et al. [36] proved topographic regulation of kinase
activity in Alzheimer’s disease brains, indicating that positive
regulation of kinase activity (GO:0033674) has close relationship
with AD. Cell-substrate junction (GO:0030055) is also discovered
by John et al. [37] related to AD. Mariana et al. [38] claimed that
Alzheimer’s disease is a result of stimulus reduction in a GABA-
A-deficient brain, which supports positive regulation of response
to stimulus (GO:0048584) and response to extracellular stimulus
(GO:0009991) may play important roles in Alzheimer’s disease.

Discussion
In this section, we will discuss the proposed method, NetTDP, in
depth from four aspects, including network construction, statistic
calculation, biological interpretation and batch effects.

Multiple network construction ways
The method of NetTDP proposed in this work is based on a
weighted, signed gene correlation network for analyzing differ-
ential co-expression networks. Next, we discuss and compare

some other networks, including distance networks, unweighted
networks and unsigned networks.

Correlation network versus Distance network. The gene co-
expression network can also be characterized by the distance
of the spatial location, e.g. Euclidean distance. We call this type
of network a distance network, and its adjacency matrix can be
expressed as the normalized distances among genes by

A = 1 − (dist/max(dist))2,

where dist is a distance matrix of genes.
Distance network-based methods are more sensitive to differ-

entially expressed genes. If a gene is not differentially expressed
between groups, distance network-based methods cannot identify
the gene, even if the gene’s co-expression network is different
between groups. In real data studies, in order to eliminate the
effect of differential expression, the within-group means were
pre-processed to 0. Interestingly, the TDP estimated by the dis-
tance network-based method is everywhere 0. It shows that the
method based on distance network cannot capture the funda-
mental co-expression relationship between genes. When the dif-
ferential expression between groups is weakened, the genes iden-
tified by the method based on the correlation network are more
reliable, that is, there is a higher confidence that the network in
which the gene is located is different between groups.

Weighted network versus Unweighted network. When a
weighted network is constructed, given a threshold, it is easy
to obtain an unweighted network. Weights greater than the
threshold are set to 1, otherwise 0. However, the binary network
will lose a lot of useful information, which determines that the
performance of the weighted network will be better than the
corresponding unweighted network. Therefore, we preserve all
edge information and input a weighted network in the proposed
method.

Signed network versus Unsigned network. The Pearson corre-
lation coefficient is signed, with a positive sign representing a
positive correlation and a negative sign representing a negative
correlation. The statistic in this work takes the sign information
of the correlation coefficient into account, and captures the dif-
ferences between the networks more finely. Of course, readers can
also ignore the sign and simply consider the difference between
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Figure 7. NetTDP node-level results for real data with absolute statistic (left) and square statistic (right) in gene sets defined biologically. Absolute
(square) statistic means absolute (squared) difference is calculated in our method. The x-axis represents the size of these gene sets. The different colors
are different data sets.

the absolute values of the correlation coefficients, although this
will reduce the difference between networks to a certain extent.

Two statistic calculation ways
The statistic proposed in this work takes the absolute difference
of the network, but the squared difference can also be considered.
We compared these two definitions of the statistics on real data.
For the square statistics, both node-level and edge-level results for
gene modules and biological sets are reported in Figure 7 (right-
hand side) and Figures S13 (right-hand side), S15 and S16 in
Supplementary Material. We found that the absolute statistics
tend to give higher TDPs than the squared statistics. For example,
in the AD data set, the global TDP given by absolute statistics is
25% higher than that given by square statistics.

Biological interpretation
In this section, we firstly discuss non-localized network difference
case, and then explain our findings in AD and LC data sets,
respectively.

Non-localized network difference case. In differential co-
expression network analysis, our goal is to identify local differ-
ences in the network. It would be most informative, biologically, if
the true biological differences between two comparable networks
are concentrated in a few local sub-networks. In practice, it may
happen that the true biological differences between networks
are widespread, that is, differences exist almost everywhere in
the network. We investigated the behavior of our method in this
situation in a simulation study (e.g. Figure S7 in Supplemental
Material). Taking η = 90 as an example, it can be seen that in this
situation of widespread effects, the estimated TDP will be larger
for larger gene sets. In contrast, if the true biological differences
are local, there is much less association between gene set size and
TDP. Our results therefore suggest that the biological differences
in the networks in the three real data sets are widespread, rather
than local.

Identified genes related to AD and LC. In AD and LC data sets, we
explained our findings by discussing relationships between spe-
cific diseases and genes in the differential co-expression modules
identified by out NetTDP method.

For the AD data set, we focused on 17 gene sets defined
biologically with TDPs estimated by our method over 60%. Based
on existing literature, we validated the association between
Alzheimer’s disease (AD) and six genes, including APOE, BIN1,
CLU, FERMT2, PTK2B and ABCA1. These six genes are included
in all 17 gene sets we focused on here. Van Cauwenberghe et al.
[39] identified that APOE, BIN1, CLU, FERMT2 and PTK2B could
influence the risk of late onset AD (LOAD). Specially, APOE, BIN1
and CLU are widely known as the three greatest genetic risk
factors for LOAD. Jiao et al. [40] used the LMR analysis method to
identify three SNP pairs significantly associated with LOAD risk,
including PTK2B-CR1, PTK2B-CD33 CD33-CR1. The ATP-binding
cassette, sub-family A, member 1 gene (ABCA1) is a candidate
risk gene for LOAD as a consequence of its role in cholesterol
transport and metabolism, which is implicated in LOAD risk [41].
All evidence above strongly supports the relationship between
these six genes and Alzheimer’s disease.

For the LC data set, 13 gene sets biologically defined, whose
TDPs are over 40%, caught our attention. We found seven genes
linked to LC disease according in literature, including PIK3CA,
PRKAR1A, DDX3Y, CXCR4, MARCKS, IDO1 and EGR1. All of these
seven genes are contained in the 13 gene sets we are interested
in. Most of the primary lung malignancies can be grouped into
four major subtypes including adenocarcinoma, squamous cell
carcinoma, large cell carcinoma and non-small cell lung cancer
(NSCLC) [42]. Zhang et al. [43] found a significant role of PIK3CA
in lung adenocarcinoma. They showed that PIK3CA mutations
H1047R and H1047L are significant genetic alterations in lung
adenocarcinoma and related to survival for lung adenocarcinoma
patients who underwent curative resection. Protein Kinase cAMP-
Dependent Regulatory Type I Alpha (PRKAR1A) is a tissue-specific
extinguisher that transduces a signal through phosphorylation of
different target proteins. Wang et al. [44] first found that PRKAR1A
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was downregulated in lung adenocarcinoma patients. Lin [45]
reported that patients expressing high DDX3Y associated with
poor outcomes in multiple cancers, including lung cancer. Liu et
al. [46] claimed that ERβ can promote NSCLC cell invasion via
altering the ERβ/circ-TMX4/miR-622/CXCR4 signaling. Sekhar et
al. [47] concluded that MARCKS is marked in combating lung
cancer growthand acquired resistan. Tang et al. said that [48]
IDO1 expression increased more in lung cancer compared with
their corresponding non-tumor tissues. The over-expression of
IDO1 significantly encouraged the metastasis and invasion of lung
cancer cells, and IDO1 could promote metastasis formation in
vivo. Zinc finger transcription factor early growth response gene 1
(EGR1) is underexpressed in NSCLC compared with normal lung.
EGR1 expression has been linked to tumor suppression. Lower
levels of EGR1 correlate with poor postoperative NSCLC outcomes.
The patient’s risk of disease recurrence can be diagnosed based on
the expression of EGR1 [49]. The evidence above clearly shows the
close relationship between these seven genes and lung cancer.

In total, the discussion here on the AD and LC data sets
indicates the reliability of the results of our NetTDP method.

Batch effects
A differential analysis method could give false positives in the
case of batch effects, if the experimental design is not well enough
designed to counter such batch effects. If batches were not well
distributed over cases and controls, there could be a difference
in network between cases and controls. This is a problem for
differential co-expression as for differential expression. In all
analyses batch effects need to be corrected for if they are not
properly balanced between cases and controls.

Conclusion
In this work, we promote the TDP as an important mathemat-
ical concept in differential co-expression network analysis. It
helps researchers measure and localize the difference for a cor-
relation based co-expression network, extending existing differ-
ential gene co-expression network analysis methods, such as
WCGNA. We realize TDP inference in networks with sumSome, a
permutation-based true discovery proportion estimation method
in a closed testing framework. The method gives lower (1-α)-
confidence bounds for the TDP simultaneously over all gene
subsets, so that the confidence bounds remain valid even when
the gene subsets of interest are selected post hoc.

Our method of NetTDP performs well in both simulation study
and real data sets for inferring differential co-expression network.
In biological applications, we validated that the proposed method
has advantages when the differences are localized in the co-
expression network.

The NetTDP method has a certain scope for use. Overall,
although our NetTDP is technically applicable for any data type
which WGCNA method could analyze, it may lose power for two
extreme cases when the differences between two networks are
too weak or spread everywhere. When the differences between the
two networks are very weak, e.g. around 6% for the NDD data set,
it is a great challenge to figure out where the differences are and
it is reasonable that most of the annotated gene sets have zero
TDPs. On the other hand, when the differences are widespread
between two networks, that is, differences can not be localized in
a small area, our NetTDP tend to obtain higher TDPs for larger
gene sets.

Various methods have been proposed for inferring a network
from the data, e.g. linear regression-based method [50–52]. Inter-
esting future work could be to generalize the proposed method for
linear regression coefficient-based networks.

Key Points

• We improve differential co-expression network analysis
based on the WGCNA method by using true discovery
proportions (TDP) to quantify and localize network dif-
ferences. Especially in large networks it is useful to infer
the strength and location of differences found.

• Our method of NetTDP allows inference on data-driven
modules or biology-driven gene sets, and remains valid
even when these sub-networks are optimized using the
same data.

• In the proposed method, we test the difference with
edge-level and node-level statistics to detect true discov-
eries of edges and nodes in the sense of differential co-
expression network.

• Both simulation study and real data sets indicate that
the proposed method has great power to analyze net-
work differential structures for correlation based co-
expression networks.
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