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Abstract
We show that every plumbing of disc bundles over surfaces whose genera satisfy a simple
inequality may be embedded as a convex submanifold in some closed hyperbolic four-
manifold. In particular its interior has a geometrically finite hyperbolic structure that covers
a closed hyperbolic four-manifold.
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1 Introduction

We study the following general question. All the manifolds in this paper are assumed implic-
itly to be smooth, connected, and oriented, unless otherwise stated.

Question 1 Let M be a compact smooth n-manifold with non-empty boundary. Is there a
closed hyperbolic n-manifold W containing M as a convex submanifold?

Here convex means that every arc in M is homotopic (relative to its endpoints) in M to
a geodesic. This is in fact a local property of the boundary of M , since M is convex if and
only if it is locally convex [2, Section 1.3].

In dimension n = 2 the answer to this question is positive for any given surface M with
boundary. In dimension n = 3, it is positive preciselywhenM is irreducible and algebraically

S. R. was supported by the SNSF project no. PP00P2-170560, and thanks the Mathematics Department of
the University of Pisa for the hospitality.

B Stefano Riolo
riolo@mail.dm.unipi.it

Bruno Martelli
martelli@dm.unipi.it

Leone Slavich
leone.slavich@gmail.com

1 Dipartimento di Matematica, Largo Pontecorvo 5, 56127 Pisa, Italy

2 Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy

3 Dipartimento di Matematica, Via Ferrata 5, 27100 Pavia, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-020-00557-z&domain=pdf
http://orcid.org/0000-0001-7187-3392


244 Geometriae Dedicata (2021) 212:243–259

atoroidal (that is, π1(M) does not contain Z × Z). This is a manifestation of geometrisation,
see Remark 9.

Why are we interested in convex submanifolds M ⊂ W in closed hyperbolic manifolds?
One motivation is that being convex gives M some privileges. The embedding is necessarily
π1-injective, and the cover W̃ → W associated to the subgroup π1M < π1W is a geo-
metrically finite complete hyperbolic manifold diffeomorphic to the interior of M . So in
particular the interior of M has a geometrically finite hyperbolic structure that covers the
closed hyperbolic W . See Sect. 2.1.

Wewould like to investigate Question 1 in the higher dimensions n ≥ 4, where our knowl-
edge of the topology of hyperbolic manifolds is embarrassingly poor. The main contribution
of this paper is to furnish a family of examples in dimension 4.

1.1 Plumbings

Recall that a plumbing graph is a graphwhere every node is assigned a pair (ei , gi ) of integers
with gi ≥ 0, and every edge is given a sign ε j = ±1. Loops and multiple edges connecting
two nodes are allowed. Given a plumbing graph, one may construct an oriented compact
four-manifold M , called a plumbing, by taking for each vertex the disc bundle with Euler
number ei over the surface with genus gi , and performing for each edge a plumbing along
the corresponding bundles that creates a transverse intersection of the base surfaces with sign
ε j . See [3, Section 4.6.2] for more details.

The regular neighbourhood of a generically immersed closed (possibly disconnected)
surface in a four-manifold is a disjoint union of plumbings. Plumbings are ubiquitous in
dimension four and it is natural to ask whether they can be embedded as convex subsets in
some closed hyperbolic four-manifold. We prove here the following.

Theorem 2 Let M be a plumbing whose graph satisfies

gi ≥ 2
(|ei | + vi + 1)

at every vertex, where vi is its valence. The manifold M is contained as a convex subset in a
closed hyperbolic four-manifold W with

Vol(M) < C1 ·
∑

i

gi and Vol(W ) < C2 · Vol(M),

for some C1,C2 > 0 independent of the plumbing graph. The same result holds for any
manifold M that is a ∂-connected sum of plumbings satisfying the above requirement.

This result is already new (to the best of our knowledge) when the plumbing graph is a
point. In this case the manifold M is a disc bundle, and the theorem says that if g ≥ 2(|e|+1)
then M embeds convexly in some closed hyperbolic four-manifold W .

If the graph consists of a vertex and an edge, then M is a self-plumbed disc bundle, and
the sufficient condition to embed M convexly in some closed hyperbolic four-manifold is
g ≥ 2(|e| + 3). More generally, if M is constructed by self-plumbing k times a disc bundle
(with any signs ±1), the condition is g ≥ 2(|e| + 2k + 1).

We note that the inequality gi ≥ 2 is a necessary condition in general, because on a convex
compact hyperbolic manifold M we have π2(M) = {0} and Z × Z �< π1(M), so neither
spheres nor tori are allowed in the plumbing.

Theorem 2 implies the following.
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Corollary 3 For every symmetric integer matrix Q there is a boundary connected sum of
plumbings M with intersection form Q that embeds as a convex submanifold into a closed
hyperbolic 4-manifold W.

Proof If Q is a k × k matrix, pick a plumbing graph with k vertices such that e j = Q j j and
there are |Qi j | edges connecting the vertices i �= j , all decorated with sign(Qi j ). Pick any
gi that satisfies the inequality of Theorem 2. We get a plumbing M with intersection form Q
that embeds convexly in a closed hyperbolic 4-manifold. If M is disconnected (that is, if Q
is reducible), we priorly connect it with some ∂-connected sums: this operation is allowed
by Theorem 2. ��
Corollary 4 For every symmetric integer matrix Q there is a boundary connected sum of
plumbings M with intersection form Q, whose interior admits a geometrically finite complete
hyperbolic structure that covers a closed hyperbolic manifold W.

All these manifolds M and W are constructed by assembling right-angled 120-cells. In
particular all the closed manifolds W constructed here cover the same Coxeter simplex
orbifold {5, 3, 3, 4}.

1.2 Related work

The first complete hyperbolic structures on the interior of some disc bundles over surfaces
with genus g > 0 and Euler number e �= 0 were exhibited by Gromov – Lawson – Thurston
[4] and Kapovich [5]. Kuiper [9] built specimens for all e, g with |e| ≤ 2/3(g − 1), and
then Luo [11] for all |e| ≤ g − 1. More recently Anan’in and Chiovetto [1] constructed
some examples with |e| = 6/5(g − 1). Gromov – Lawson – Thurston [4] conjectured that
|e| ≤ 2(g − 1) in all cases.

Our contribution is to show that when |e| ≤ 1/2(g − 2) the disc bundle embeds convexly
in a closed hyperbolic four-manifold, and this is a stronger property than having a complete
hyperbolic structure in its interior.

In Theorem 2, if ei is odd for some i then both M and W have odd intersection form
and are hence both non-spin. We find here many examples of non-spin closed hyperbolic
4-manifolds W . We constructed the first such manifolds recently in [14], and the techniques
employed here are an extension of these.

We note that any compact hyperbolic manifold M with geodesic boundary embeds con-
vexly in a closed hyperbolic manifold W , constructed simply by mirroring M along ∂M .
Such manifolds M exist in all dimensions, also with connected boundary [10]. Some explicit
examples were constructed in [8] using the right-angled 120-cell. The holonomy represen-
tations of these manifolds are locally rigid in dimension n ≥ 4, see [7]. A plumbing cannot
have a hyperbolic metric with geodesic boundary because its boundary is a graph manifold
and hence does not admit any hyperbolic metric.

A comprehensive survey on higher dimensional Kleinian groups is [6], a shorter one on
finite-volume hyperbolic 4-manifold is [13].

1.3 Outline of the construction

We define for every triple of integers e, i, g with i ≥ 0 and

g ≥ 2
(|e| + i + 1

)
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an oriented hyperbolic 4-manifold with right-angled corners Me,i,g . The manifold Me,i,g is
diffeomorphic (after smoothing its corners) to the disc bundle over the genus-g surface with
Euler number e. It is tessellated into right-angled 120-cells and contains i islands: these are
some safety zones that will be used to perform the plumbings. The construction of Me,i,g

follows the main theme of [14] with some modifications.
We then plumb the 4-manifolds with corners Me,i,g as prescribed by the given plumbing

graph. The resulting plumbing M has again the structure of a hyperbolic four-manifold
with right-angled corners. By colouring and mirroring its facets we embed it as a convex
submanifold into a closed hyperbolic four-manifold W .

The hyperbolic manifolds with right-angled corners Me,i,g , and then M and W , are all
tessellated into a certain number of right-angled 120-cells. The base surfaces of the disc
bundles form altogether an immersed surface S ⊂ M , pleated along some edges, contained
in the 2-skeleton of M . The immersed surface S is tessellated into right-angled pentagons.

1.4 Further research

We think that the techniques introduced here may be extended to construct many more
compact hyperbolic 4-manifolds with right-angled corners, and hence many more compact
4-manifolds that embed convexly in some closed hyperbolic 4-manifold.

Another natural research theme would consist of studying the deformations of the convex
hyperbolic structures constructed in this paper, and their degenerations, as it has been done
fruitfully in dimension 3 in the last decades.

2 Preliminaries

2.1 Convex submanifolds

We recall some well-known facts on convex hyperbolic manifolds. We refer to [2, Section
1.3] for a detailed introduction.

A smooth manifold M with boundary is hyperbolic if it has constant sectional curvature
−1. Equivalently, it is locally isometric to some n-submanifold with boundary of H

n .
A connected hyperbolic manifold M with boundary is convex if every arc in M is homo-

topic (relative to its endpoints) to a geodesic. This is a local property: the manifold M is
convex if and only if it is locally convex, that is every point has a convex neighbourhood [2,
Corollary 1.3.7].

A connected hyperbolic manifold M with boundary is complete and convex if and only if
the developing map D : M̃ → H

n is a diffeomorphism onto a convex complete submanifold
C ⊂ H

n , see [2, Proposition 1.4.2]. In this case we may see M directly as M = C/� for
some discrete � < Isom(Hn).

We then use the convexity of C to show that � acts freely. Suppose by contradiction that
� fixes some x ∈ H

n . Let π(x) denote the closest-point projection of x to C . Since the map
π is �-equivariant, π(x) will be a fixed point for the action of � on C , which is absurd.

Therefore M naturally embeds isometrically in a unique complete hyperbolic manifold
M̂ = H

n/� of the same dimension without boundary, such that the inclusion M ↪→ M̂
induces an isomorphism of fundamental groups [2, Theorem 2.4.1]. We call M̂ the extension
of M .
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Proposition 5 Let M be a compact convex hyperbolic manifold with boundary. Its extension
M̂ is geometrically finite and diffeomorphic to the interior of M.

Proof For every x ∈ ∂C and t ∈ [0,+∞) we let f (x, t) ∈ H
n be the point reached at

time t by the unit speed geodesic starting from x orthogonally to ∂C and directed outside
C . We get a diffeomorphism f : ∂C × [0,+∞) → H

n
� C . The leaf f (∂C × {t}) consists

of all the points at distance t from C . Since f is �-equivariant, the function descends to a
diffeomorphism f : ∂M × [0,∞) → M̂ � M . Therefore M̂ is diffeomorphic to the interior
of M .

The extension M̂ of M is geometrically finite, since its convex core is contained in the
compact convex submanifold M . ��
Proposition 6 Let M ⊂ W be a convex compact submanifold of a complete hyperbolic
manifold W without boundary of the same dimension. The induced map π1M → π1W is
injective and the covering of W induced by the subgroup π1M < π1W is isometric to the
extension of M.

Proof The counterimage of M in the universal cover W̃ = H
n of W is a disjoint union of

convex submanifolds. Since convex submanifolds in H
n are contractible and in particular

simply connected, we deduce that M is π1-injective inW . The covering ofW determined by
the subgroup π1M < π1W is the extension of M by construction. ��

2.2 Hyperbolic manifolds with right-angled corners

We recall some of the terminology and techniques introduced in [14].
We represent the hyperbolic space H

n via the disc model Bn ⊂ R
n . Let P ⊂ Bn be the

intersection of the (pairwise orthogonal) half-spaces x1, . . . , xn ≥ 0. A hyperbolic manifold
with right-angled corners is a topological n-manifold M , possibly with boundary, equipped
with an atlas in P and transition maps that are restrictions of isometries ofH

n . We sometimes
drop the words “right-angled” from the definition and simply call M a manifold with corners.

The boundary ∂M of a manifold with corners M is naturally stratified into connected
closed k-dimensional strata called faces, that we call vertices, edges, and facets if k = 0, 1
and n − 1, respectively. Every face is abstractly itself a hyperbolic k-manifold with corners;
note that a face may not be embedded, because it may be incident multiple times to the same
lower-dimensional face.

A hyperbolic manifold M with corners may also be defined as a hyperbolic orbifold with
mirrors, with isotropy groups (Z2)

k generated by k reflections along orthogonal hyperplanes.
We will not need this interpretation, however. Hyperbolic manifolds with geodesic boundary
and right-angled polytopes are particular kinds of hyperbolic manifolds with corners.

Let M be a (possibly disconnected) hyperbolic manifold with corners. If we glue isomet-
rically two disjoint embedded facets of M , we get a new hyperbolic manifold with corners.
This is a crucial property. For instance, we may choose some disjoint embedded facets of M
and mirror M along them (that is, take two copies of M and identify isometrically the pairs
of selected facets).

Proposition 7 Every compact connected hyperbolic manifold M with right-angled corners,
whose facets are all embedded, is contained in a closed connected hyperbolic manifold W
of the same dimension.
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Proof WeconstructW fromM by colouring andmirroring.Assign to each facet ofM a colour
in {1, . . . , k}, so that adjacent facets have different colours. (For instance, assign distinct
colours to distinct facets.) Mirror M iteratively along the facets coloured with 1, 2, . . . , k.
We end up with a closed hyperbolic W tessellated into 2k copies of M . In fact we get an
orbifold covering W → M .

This is equivalent to taking 2k copies Ma1,...,ak of M with ai ∈ {0, 1}, and identify-
ing every facet in Ma1,...,ak coloured with c ∈ {1, . . . , k} with the corresponding facet in
Ma1,...,ac−1,1−ac,ac+1,...,ak .

If M is compact, oriented and connected, then W also is by construction. ��
By smoothing its boundary we can transform every hyperbolic manifold with corners into

a convex hyperbolic manifold. By combining this fact with Proposition 7 we get a class of
manifolds for which Question 1 has a positive answer.

Corollary 8 Let M be a compact connected hyperbolic n-manifold with right-angled corners,
whose facets are all embedded. By smoothing ∂M, we get a smooth manifold that embeds as
a convex submanifold into a closed hyperbolic n-manifold.

Remark 9 For a given compact manifoldM with non-empty boundary, the property of having
a hyperbolic structure with right-angled corners may look more restrictive than having a
convex hyperbolic structure. Contrary to that impression, in dimension 2 and 3 any compact
manifold M with boundary that has a convex hyperbolic structure also has a hyperbolic
structure with right-angled corners.

Indeed every compact surface with boundary has both structures, and a consequence of
geometrisation is that in dimension 3 the manifold M has any of the two structures if and
only if M is irreducible and algebraically atoroidal (that is, π1(M) does not contain Z × Z).
These conditions are certainly necessary for M having a convex hyperbolic structure, and are
also sufficient to equip M with a hyperbolic structure with right-angled corners: it suffices
to decorate ∂M with a sufficiently complicated trivalent graph � ⊂ ∂M to ensure that M
has a hyperbolic structure with right-angled corners bent precisely at �, see [15, Page 83 and
Proposition 7.2].

2.3 Regular right-angled polytopes and thickenings

In dimension 3 the abundance of right-angled polytopes is regulated by Andreev’s Theorem.
In dimension 4our knowledge ismuchmore limited, and themain tools used in the literature to
construct manifolds are the regular right-angled polytopes: the ideal 24-cell and the compact
120-cell. Their facets are ideal right-angled octahedra and compact right-angled dodecahedra,
respectively. The 2-faces of the latter are right-angled pentagons.

The existence of such regular polytopes allows us to define a thickening of manifolds
with right-angled corners in particular cases, as follows. This procedure was first described
in [12].

Suppose that N is a hyperbolic n-manifold with right-angled corners, tessellated into
right-angled regular pentagons, dodecahedra, or ideal octahedra. Of course we have n = 2,
3, or 3, respectively. The thickening of N is the hyperbolic (n+1)-manifold with right-angled
corners M , defined from N by attaching to each pentagon (or dodecahedron, octahedron)
P two regular right-angled dodecahedra (or 120-cells, 24-cells), one “above” and the other
“below” P . Two dodecahedra (or 120-cells, 24-cells) attached from the same side (above
or below) to two pentagons (or dodecahedra, octahedra) P1 and P2 that intersect in some
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edge (or face) f should be attached correspondingly along their faces (or facets) incident
to f via the unique possible isometry that matches with f . This is possible because all the
objects involved are regular, so every self-isometry of any facet extend to a self-isometry of
the object.

The thickening M of N is a hyperbolic (n + 1)-manifold with corners that deformation
retracts onto N . If N is tessellated into k pentagons (or dodecahedra, octahedra), then M is
tessellated into 2k dodecahedra (or 120-cells, 24-cells). The facets of M are of three kinds:
the vertical ones that contain (and correspond to) the facets of N , and the top and bottom
ones that are contained in the dodecahedra (or 120-cells, 24-cells) that were attached above
or below, and are not adjacent to the original N .

3 The construction

We prove here Theorem 2, expanding some of the ideas of [14].
We define for every triple of integers e, i, g with i ≥ 0 and

g ≥ 2
(|e| + i + 1

)

an oriented hyperbolic 4-manifold with cornersMe,i,g . ThemanifoldMe,i,g is diffeomorphic
(after smoothing its corners) to the disc bundle over the genus-g surface with Euler number e.
It is tessellated into right-angled 120-cells and contains i islands, some zones (to be defined
below) that will be used to perform the plumbings. Its facets are all embedded, so that
Proposition 7 can be applied.

To improve clarity, we subdivide the construction of Me,i,g in some steps in the next
sections. We perform the plumbing in Sect. 3.6, and conclude the proof of Theorem 2 in
Sect. 3.7 by estimating the volume of M and W .

3.1 The surface with corners 6

The starting point of our construction is the hyperbolic surface with corners � tessellated
into 8 right-angled pentagons shown in Fig. 1-(left). The surface � is topologically a torus
with one hole. Its boundary has four vertices, two edges of length 2�, and two edges of length
4�, where � is the length of the side of the right-angled regular pentagon.

The 1-skeleton of � contains a θ -graph 
, onto which � deformation retracts. The θ -
graph is the union of three oriented curves γ1, γ2, γ3, whose sum γ1 + γ2 + γ3 = 0 vanishes
homologically. The curves γ0 and γ1 are shown in Fig. 2.

We assign to � the orientation of Fig. 1. There is an orientation-reversing isometry of �

sending γ1 to γ2.

3.2 The 3-manifold with corners N

We now construct an oriented hyperbolic 3-manifold with corners N that has one face iso-
metric to �.

Figure 3 shows a right-angled polyhedron P ⊂ H
3 obtained by taking the eight dodeca-

hedra adjacent to a single vertex v in the tessellation of H
3 into right-angled dodecahedra.

The polyhedron P has the symmetries of a cube with centre v.
We take two copies of P and identify isometrically some of their faces as prescribed by

Fig. 4. Six pairs of faces, numbered from 1 to 6, are identified. The result is a hyperbolic
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Fig. 1 A hyperbolic holed torus with corners � tessellated into 8 right-angled pentagons. Edges marked with
the same letters should be identified isometrically following the arrows (left). The holed torus deformation
retracts onto a θ -graph 
, drawn in red, which is in turn the union of three oriented simple closed curves γ0,
γ1, γ2 (right)

Fig. 2 The curves γ0 and γ1 in �

Fig. 3 A right-angled hyperbolic
polyhedron P tessellated into
eight right-angled dodecahedra

3-manifold with corners. Note that the two octagonal yellow faces shown in the figure are
glued along their sides, to form a face isometric to �.

This 3-manifold with corners just constructed is almost fine for our purposes, except that
unfortunately it has some non-embedded faces, a fact that we want to avoid. Indeed, the four
pentagons marked with a green dot in Fig. 4 are attached along their boundaries to form a
single non-embedded octagonal face. We already faced this issue in [14]. There, we solved it
by mirroring the polyhedron along some faces. Here we follow another strategy that is more
suited to the present setting.

To resolve this problem we use a bigger polyhedron Q ⊃ P instead of P , built as follows.
Let e be the edge separating the two green-dotted faces in P . We attach three dodecahedra
to e, in the only possible way: we first attach one dodecahedron to each green-dotted face,
and then a third one to cap off the resulting forbidden concave angle of 270 degrees at e.
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Fig. 4 Two copies of P . We identify isometrically six pairs of facets, numbered here as 1, . . . , 6, following the
arrows. The result is a hyperbolic 3-manifold with corners that contains � as a face (made of the two yellow
octagons). Unfortunately the hyperbolic 3-manifold with corners contains a non-embedded face (marked here
with green dots), so a more complicated construction is needed

Fig. 5 We attach three dodecahedra to an external edge e separating two boundary pentagons. The boundary
pattern of the corners changes as shown here. The dashed lines (which are not corners) separate the three
dodecahedra

This operation enlarges P to a bigger convex polyhedron in H
3, tessellated into 8 + 3 = 11

dodecahedra. The edge e lies in the interior of the new polyhedron. By a careful analysis we
find that the boundary pattern of the corners changes as shown in Fig. 5.

We do this enlargement in a more symmetric way, not only on the pair of green-dotted
faces of P , but also simultaneously on 7 more pairs of faces of similar kind, so on 8 pairs
overall. We do this to the other pair of adjacent pentagons incident to the face marked with a
5 in Fig. 4-(left), because these have the same problem noted above (they become the same
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v

Fig. 6 A hyperbolic surface of genus two with two boundary components, tessellated into 16 right-angled
pentagons. The surface Se,i,g contains i portions of this type

Fig. 7 A hyperbolic surface with k boundary components and genus 1, tessellated into 4k right-angled pen-
tagons. We show here the cases k = 1, 2, 3, the picture for a general k is easily deduced

face after the identification). We also do it the other 6 pairs of adjacent pentagons obtained
from these two by applying all symmetries of P that preserve the yellow octagon. Let Q
be the resulting convex hyperbolic polyhedron, tessellated in 8 + 3 · 8 = 32 dodecahedra.
We take two copies of Q and identify the faces as suggested in Fig. 4. These identifications
were defined for P , but they also extend uniquely to Q because Q has been enlarged in a
symmetric way. These identifications produce a hyperbolic 3-manifold with corners N .

We have constructed our 3-manifold with corners N . We now study its topology. Figure
4 shows in each copy of P a red closed curve α, contained in the 1-skeleton of the boundary.
The cone over α with centre v is a disc D contained in the 2-skeleton of the tessellation
of P . The disc D is tessellated into 3 pentagons and is pleated at right angles along three
orthogonal edges exiting from v. The two such discs D and D′ in the two copies of P glue
to form a torus with one hole F ⊂ N .

The boundary ∂F lies in the yellow face that is isometric to �, and coincides there with
either the curve γ1 or γ2, depending on the chosen identification between the yellow face and
�. We fix once for all an identification that sends ∂F to γ1. We orient N coherently with the
orientation of �.

It is important to note that N deformation retracts onto F ∪ 
. This can be proved by
looking at Fig. 4.

3.3 The 3-manifold with corners Xe,i,g

We now construct another oriented hyperbolic 3-manifold with corners Xe,i,g , that depends
on the initial parameters e, i, g. Recall that g ≥ 2

(|e| + i + 1
)
.

We first build a surface Se,i,g tessellated into pentagons, as follows. We start with a row of
i copies of the surface shown in Fig. 6, to which we attach some pieces as in Fig. 7 in order to
ensure that Se,i,g has exactly |e| boundary components and genus g − 2|e|. This is possible
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since g − 2|e| ≥ 2(i + 1). The surface has χ(Se,i,g) = 2 + 3|e| − 2g and is tessellated into
8g − 12|e| − 8 right-angled pentagons.

We construct a hyperbolic 3-manifoldwith corners Xe,i,g
0 by thickening Se,i,g as described

in Sect. 2.3. Clearly Xe,i,g
0 deformation retracts onto Se,i,g . Each of the |e| boundary com-

ponents of Se,i,g has length 4� (again, � is the edge length of the right-angled pentagon) and

is contained in an annular face of Xe,i,g
0 tessellated into 8 right-angled pentagons. This face

is like � from Fig. 1, except that the edges labeled with B are not identified. By identifying
isometrically two pentagonal faces of Xe,i,g

0 incident to these two B edges we transform
this face into a new face that is isometric with �. We apply one such identification at every
boundary component of Xe,i,g

0 . To be more precise, we do this in an orientation-coherent
way: we fix an orientation for Se,i,g , and choose the B edges coherently everywhere, so that
with the induced orientation on Xe,i,g these |e| new faces will all be orientation-preservingly
isometric to �.

The result is an oriented hyperbolic 3-manifold with corners Xe,i,g . It has |e| faces
�1, . . . , �|e|, each orientation-preservingly isometric to�. It is tessellated into 16g−24|e|−
16 right-angled dodecahedra. By construction, it deformation retracts onto Se,i,g ∪
1∪· · ·∪

|e| where 
i ⊂ �i is the corresponding θ -graph.

3.4 The skeleton Ye,i,g and the surface S

We combine all the objects defined in the previous sections to build a 3-dimensional object
Y e,i,g tessellated by right-angled dodecahedra, called the skeleton (since the desired 4-
manifold with corners Me,i,g will be a thickening of Y e,i,g).

Recall that N and Xe,i,g have respectively one and |e| faces that are orientation-
preservingly identified with �, and that � has an orientation-reversing isometric involution
ϕ sending γ1 to γ2. The skeleton Y e,i,g is constructed by taking Xe,i,g and then attaching to
each face � j , j = 1, . . . , |e| two copies N j , N ′

j of N along their faces identified with �. We
identify N j via the identity and N ′

j via ϕ.

The skeleton Y e,i,g is a 3-dimensional object. If e �= 0 it is not a manifold, because it is
singular at the surfaces �1, . . . , �|e|, to each of which three manifolds with boundary are
locally attached.

Let Fj ⊂ N j , F ′
j ⊂ N ′

j be the holed tori introduced in Sect. 3.2. The crucial fact here is
that the surfaces Fj , F ′

j , and Se,i,g are attached to the curves γ1, γ2, and γ0 of
 j , respectively.
Therefore

S = Se,i,g ∪ F1 ∪ F ′
1 ∪ · · · ∪ F|e| ∪ F ′|e|

is a surface of genus g. For instance, for (e, i, g) = (2, 0, 6) we get a surface S of genus 6 as
in Fig. 8. Note that Se,i,g is totally geodesic, while each Fj and F ′

j is pleated along some arcs

and vertices. Another important fact is that by construction the skeleton Y e,i,g deformation
retracts onto S.

3.5 The 4-manifold with cornersMe,i,g

We now construct the hyperbolic 4-manifold with corners Me,i,g by appropriately thickening
the skeleton Y e,i,g , as sketched in Fig. 9-(left). This is done rigorously as follows. For every
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Fig. 8 The surface S ⊂ M2,0,6

Fig. 9 We thicken the skeleton Ye,i,g to a hyperbolic 4-manifold with corners by attaching 120-cells. Here we
draw the construction in dimension 2, with segments and pentagons instead of dodecahedra and 120-cells (left).
This may be seen rigorously as a two-step procedure, where we first thicken Ni ∪ N ′

i and Xe,i,g separately
and then we identify the grey 120-cells (right)

j = 1, . . . , |e| we consider the oriented hyperbolic 3-manifold with corners N j ∪ϕ N ′
j and

thicken it as described in Sect. 2.3. We also thicken Xe,i,g . All these thickenings are oriented.
Now we identify in pairs (in an orientation-preserving way) the sixteen 120-cells in the

thickening of Xe,i,g incident to � j with the sixteen 120-cells in the thickening of N j ∪ϕ N ′
j

that are incident to � j from below, as in Fig. 9-(right). There is a natural unambiguous way
to do this, as suggested by the figure. Note that by construction all the 120-cells involved are
distinct. The fact that such an identification produces indeed a manifold with corners (and in
particular does not produce any forbidden concave angle of 270 degrees) is due to hyperbolic
geometry (this would not be true in Euclidean geometry). The absence of forbidden concave
angles was proved in [14, Lemma 2.5] and the same argument applies here.
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If we perform this identification for every j = 1, . . . , |e| we get at the end an oriented
hyperbolic 4-manifold with corners Me,i,g . By construction Me,i,g deformation retracts onto
its skeleton Y e,i,g , and hence onto S. After smoothing its corners, the manifold Me,i,g is a
disc bundle over S.

Proposition 10 The disc bundle Me,i,g over the genus-g surface S has Euler number ±e.

Proof The Euler number may be calculated using a formula of Gromov – Lawson – Thurston
[4] as a sum of contributions of the vertices of S. As shown in [14], all the vertices contribute
with zero, except two vertices in each 
 j , that contribute with ± 1

2 each (with the same sign
everywhere). Therefore we get ± 1

2 |e| · 2 = ±e. ��
We could in principle determine the precise sign of the Euler number, but we do not need

to do this. We assign once for all to Me,i,g the orientation that gives the bundle the Euler
number e.

The parameter i is there to ensure that Me,i,g is large enough to be plumbed geometrically
simultaneously in i distinct zones. By construction, the surface Se,i,g contains i portions as in
Fig. 6. In each such portion there is a central vertex v as in the figure. The vertex v is adjacent
to four distinct embedded pentagons in Se,i,g , and then to 16 distinct embedded 120-cells
in Me,i,g . These 16 distinct 120-cells form altogether a big right-angled polytope Z that is
the four-dimensional analogue of the polyhedron P shown in Fig. 3. We get Z if we pick
all the sixteen 120-cells adjacent to a fixed vertex in the tessellation of H

4 into right-angled
120-cells. We call each of the disjoint Z1, . . . , Zi ⊂ Me,i,g obtained in this way an island.

3.6 The plumbingM

We can now prove the main part of Theorem 2.

Theorem 11 Let M be a ∂-connected sum of plumbings, each whose graph satisfies the
inequality

gi ≥ 2
(|ei | + vi + 1)

at every vertex, where vi is it valence. Then M admits a hyperbolic structure with right-angled
corners.

Proof Consider a plumbing graph satisfying the requirement. For each vertex j , pick the
hyperbolic manifold with corners Mj = Mej ,v j ,g j , that exists thanks to the assumed inequal-
ity. It comes equipped with a genus-g j surface S j ⊂ Mj and v j disjoint islands.

Each edge of the plumbing graph is decorated with a sign ε = ±1. If it connects the
vertices j and j ′, we choose two islands in Mj and Mj ′ , and identify them in a way that
makes S j and S j ′ intersect orthogonally with the sign ε. See a picture in dimension two in
Fig. 10. We do this for every edge of the plumbing graph.

The result is a new hyperbolic four-manifold with corners. This follows from the fact that
the identifications of islands do not produce forbidden concave angles of 270 degrees. To
verify this fact, one has to look more closely at the combinatorics of the 120-cell. We perform
an analysis analogous to that of [14, Section 4.3].

Consider the centre v of two identified islands, and let C be one of the 120-cells incident
to v. There is precisely one pentagon P ⊂ C lying in S j and one pentagon P ′ ⊂ C lying
in S j ′ . These two pentagons intersect each other only in the vertex v. Equivalently, they
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Fig. 10 Two islands (coloured in grey) can be plumbed to produce a new hyperbolic manifold with corners.
Here we draw segments and pentagons instead of pentagons and 120-cells

correspond to opposite edges in the tetrahedral vertex figure of v in C . There are five distinct
dodecahedra in C which intersect the pentagon P in an edge. Of these five dodecahedra, two
contain the vertex v and the other three, denoted by Dk , k = 1, 2, 3 do not. Similarly, there
are five dodecahedra which intersect P ′, and three of these, denoted by D′

k , k = 1, 2, 3 do
not contain the vertex v. The crucial property is that no two dodecahedra of the form Dk , D′

l
are adjacent in C . This is sufficient to ensure the absence of a concave angle of 270 degrees,
as such phenomenon in our setting can only arise when a 120-cell C1 is glued to C along
some dodecahedron Dk , and another 120-cell C2 is glued to C along some D′

l , with Dk and
D′
l adjacent in C . We have thus proved that the resulting object is a hyperbolic 4-manifold

with right-angled corners.
We have constructed a hyperbolic structure with right-angled corners on every plumb-

ing satisfying the requirements. We may then connect distinct plumbings via geometric
∂-connected sums as follows: we select for each connected component an embedded dodec-
ahedral facet, and glue in pairs through arbitrary isometries these facets. Such dodecahedral
facets clearly exist, since we left unpaired many facets of each 120-cell in the construction
of Mj . For instance, consider a pentagon P which lies in S j but not in an island, choose
a 120-cell C of which P is a face, and consider the opposite pentagon P ′ in C . The two
dodecaheda adjacent to P ′ are embedded.

The proof is complete by Proposition 7. ��

Remark 12 Byconstruction, eachmanifoldwith cornersMe,i,g is tessellated into right-angled
120-cells and the base surface S ⊂ Me,i,g is contained in its 2-skeleton. The surface S is
tessellated into right-angled pentagons, that are pleated along some edges and vertices. The
pleating can be described locally as follows. Every vertex v ∈ S is adjacent to sixteen
120-cells of the tessellation, whose link at v is the standard triangulation of S3 into sixteen
right-angled tetrahedra. The link of S at v is contained in the 1-skeleton of such a triangulation
of S3. By construction, the vertices of S have three possible types of links, shown in Fig.
11-(1, 2, 3). These contribute to the self-intersection S · S respectively with 0, 0, and ± 1

2 , via
a formula of [4]. The vertices of type (3) are precisely those of 
 j . See also [14].

All these surfaces form altogether an immersed surface in M , still contained in the 2-
skeleton, onto which M deformation retracts. The vertices where the immersed surface self-
intersect have the Hopf link shown in Fig. 11-(4).
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Fig. 11 The immersed base surface in M have vertices with four types of links. The vertices of type (3) are
those of 
 j and contribute to the Euler numbers. Those of type (4) are the self-intersections

3.7 Volume estimates

We conclude here the proof of Theorem 2 by computing the volume of M and estimating
that of W .

By construction, the skeleton Y e,i,g is tessellated into ye,g dodecahedra, where

ye,g = 2 · 64|e| + 16g − 24|e| − 16 = 16g + 104|e| − 16.

The addendum 16g − 24|e| − 16 is simply the number of dodecahedra of the 3-manifold
with corners Xe,i,g . The other addendum arises because we glue to each of the |e| boundary
components of Xe,i,g two copies of the 3-manifold with corners N , with each copy consisting
of 64 dodecahedra.

So Me,i,g is tessellated into me,g 120-cells, where

me,g = 2ye,g − 16|e| = 32g + 192|e| − 32.

This is true because the thickening of Y e,i,g to Me,i,g can be seen as a two-step procedure:
we first thicken each of Xe,i,g and the |e| copies of N separately (thus obtaining a total of
2ye,g distinct 120-cells) and then identify sixteen 120-cells from the thickening of each copy
of N to sixteen 120-cells from the thickening of Xe,i,g as in Fig. 9.

Let now V and E be the number of vertices and edges of the plumbing graph, respectively.
Then M is tessellated into m distinct 120-cells, where

m =
∑

j

me j ,g j − 16E =
∑

j

(
32g j + 192|e j |

) − 32V − 16E .

Again, this holds true because each of the E plumbings which we perform as in Fig. 10
identifies two distinct sets of sixteen 120-cells from the various Me,i,g’s into a single one.
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Since the right-angled 120-cell has volume 34π2/3, we have

Vol(M) = 34π2

3
m ≤ 34π2

3

∑

j

128g j ≈ 14317.50
∑

j

g j .

The inequality follows from |e j | ≤ g j/2, which is true since g j ≥ 2(|e j | + v j + 1) by
hypothesis. We have proved the first inequality of Theorem 2 with C1 = 14318.

To estimate the volume ofW , we notice that the same argument of [12, Lemma 7] applies
in this setting. We briefly recall it.

It is not difficult to show that the number of isometry classes of the facets of M is bounded
by a constant that does not depend on the plumbing graph. In particular, each facet of M has
at most f faces, for some universal f . (A willing reader may explicitly compute or estimate
f .) In other words, each vertex of the adjacency graph of the facets of M has valence at most
f . Since every finite graph without loops and with valence ≤ k can be vertex-coloured with
at most k + 1 colours, we can colour the facets of M with at most f + 1 colours.

By the proof of Proposition 7, we thus can choose W so that

Vol(W ) ≤ 2 f +1 · Vol(M),

and the proof of Theorem 2 is complete with C2 = 2 f +1.
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