
24 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Software design as story telling: Reflecting on the work of Italo Calvino / Ciancarini P.; Masyagin S.; Succi
G.. - ELETTRONICO. - (2020), pp. 195-208. (Intervento presentato al convegno 2020 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! SPLASH 2020 tenutosi a usa nel 18 - 20 November 2020) [10.1145/3426428.3426925].

Published Version:

Software design as story telling: Reflecting on the work of Italo Calvino

Published:
DOI: http://doi.org/10.1145/3426428.3426925

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/798021 since: 2021-02-10

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1145/3426428.3426925
https://hdl.handle.net/11585/798021

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Ciancarini, Paolo and Masyagin, Sergey and Succi, Giancarlo, Software Design as

Story Telling: Reflecting on the Work of Italo Calvino. Paper presented at the

Onward! 2020 - Proceedings of the 2020 ACM SIGPLAN International Symposium on

New Ideas, New Paradigms, and Reflections on Programming and Software, p. 195–
208

The final published version is available online at

https://dx.doi.org/10.1145/3426428.3426925

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1145/3426428.3426925

Software Design as Story Telling: Reflecting on the
Work of Italo Calvino

Paolo Ciancarini
Università di Bologna, Italy
Innopolis University, Russia
paolo.ciancarini@unibo.it

Sergey Masyagin
Innopolis University, Russia
s.masyagin@innopolis.ru

Giancarlo Succi
Innopolis University, Russia

g.succi@innopolis.ru

Abstract

Are we really writing software? What do software writers
have in common with other professional writers? What can
we software developers learn from professional writers? This
paper proposes a reflection on such topics using as a refer-
ence the book łSix Memos for the Next Millenniumž, a posthu-
mous essay by the Italian novelist, editor, and literary critic
Italo Calvino. A comparison is drawn between such work
and the current principles ruling how software should be
written and developed, and a claim is made that this is an
area worth further exploration.

CCS Concepts: • Software and its engineering → Soft-

ware design engineering; Requirements analysis.

Keywords: Software design, System metaphors, Quality At-
tributes, Common Practices, Software Professionals, Natural
language analysis of source code artifacts.

ACM Reference Format:

Paolo Ciancarini, Sergey Masyagin, and Giancarlo Succi. 2020. Soft-
ware Design as Story Telling: Reflecting on the Work of Italo
Calvino. In Proceedings of the 2020 ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Pro-

gramming and Software (Onward! ’20), November 18ś20, 2020, Virtual,

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3426428.3426925

1 Introduction

More or less since its early days, software development has
been considered an engineering discipline, see for instance
[19, 63]. However, this has always been a controversial issue,
see for instance the long legal proceedings that arose when
Memorial University of Newfoundland positioned a degree
in Software Engineering in a Faculty of Science[3]. Further-
more, łtraditionalž professional engineers have cast doubts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Onward! ’20, November 18ś20, 2020, Virtual, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8178-9/20/11. . . $15.00
https://doi.org/10.1145/3426428.3426925

on the łintegrityž of the process followed in software writ-
ing and on the łlegalityž of calling engineer a person who
does not execute some hard core construction (whether of a
building, of a mechanical device, or of something anyway
physical).
Software design is more and more a practice needing a

plot, some characters and a narrative point of view.We under-
value storytelling and focus too much on modeling, coding,
and libraries. Reading a piece of code, modeling a system
architecture, or depicting a process workflow can be very
frustrating, without a narrative. It is the story, the rationale
left behind by that code, architecture or workflow, that is
just as important as the artifact itself.

Software development has been recognized as an activity
in which technical issues are strongly intermingled with
social issues. In fact, software development is about reading
and writing code, which is by its nature a socially creative
activity [28]. Programs are not just aimed at computers to
run: they are texts shared among software engineers and
developers, as software systems are typically not written by
individuals alone but by teams of people. Moreover, they
are also a vehicle for maintenance, since often a program is
poorly or unreliably documented, so its code becomes the
best resource for understanding what (a portion of) a system
is about. Moreover, individual pieces of code can become
vehicles for knowledge sharing. Altogether, designing and
writing code is effectively a communication act assuming
a readership and some storytelling, like an essay, a story, a
poem. . . [49].

Needless to say, the code has to bewritten and documented
in a way that is simple for people to read and understand
it. Well, there is not much novelty in this statement taken
alone, since from the very first days of software engineering
researchers have studied how to write programs that could
be clearly understood. A good portion of the work done in
empirical software engineering and in software metrics is
exactly on trying to determine how to organize the code so
that it is more readable, has a lower number of defects, is
easier to maintain, etc. [6, 72].
In a different domain, there are quite ancient disciplines

giving suggestions and prescriptions on how to write, includ-
ing first of all Poetics, named so after the work of Aristoteles
[1], and also Rhetoric and Aesthetics.

195

https://doi.org/10.1145/3426428.3426925
https://doi.org/10.1145/3426428.3426925
https://doi.org/10.1145/3426428.3426925

Onward! ’20, November 18ś20, 2020, Virtual, USA Paolo Ciancarini, Sergey Masyagin, and Giancarlo Succi

Our claim in this paper is that these disciplines have not
been analysed enough in a software development perspec-
tive, even if they have a large relevance on to how software
is described and designed and written as a code, a relevance
that is made evident by the frequent analogies existing be-
tween observations coming from poets and writers and the
recommendations that have come throughout the years from
software engineering scholars and practitioners. An example
is [66].
A notable example of such analogies are the so-called

three Aristotelian unities on how a theatrical play should be
structured. To be precise, even if these units refer to Aris-
toteles in their names and come from the mentioned Poetics,
their current formulation is the result of a re-elaboration of
the work of several scholars during the 16th century, among
them Lodovico Castelvetro (1505-1571) [23]. The three uni-
ties prescribe that a play should be organized in terms of:

• unity of time, meaning that the facts presented in the
play should span a limited period of time, typically one
day, even if it may refer or recall other facts occurred
before or after using flashbacks and flashforwards;

• unity of place, meaning that the facts presented in the
play should occur in a limited location, usually one
city, again, even if they may relate to other locations
using specific rhetoric figures;

• unity of action, meaning that the facts presented in
the play should refer to well defined actions, usually
one single situation, again, even if they may relate to
other situations

A way of interpreting these principles is that, when writ-
ing a play, narrative dependencies should be minimized,
avoiding to complicate the plot in time, space, and actions.
Hence, these three units can be easily referred to principles
on how to write code, here below there are some notable
examples:

• time: a properly written function should have a low
fan-in and fan-out, that is, should limit its dependen-
cies on other pieces of code, to global variables, etc.

• place: a properly written function should span nomore
than one page to be readable, understandable, modifi-
able, reusable, etc.

• action: a properly written function should refer to at
most one functionality of the code to be cohesive and
reusable.

We can find many similar analogies. We can also draw
correspondences between software development and other
artistic activities, like music and visual arts. On these subjects
we have entertained various conversations with colleagues,
so we prefer not to deepen the discussion to prevent ideas
that were not originated by us to emerge as ours, but it
is just worth mentioning that the symmetry between the
improvisations of Bach and agile software development or

between the sketches of Leonardo da Vinci and prototypes
are more than interesting coincidences.
Still, the thesis of this paper is that there is much more

than a pure analogy linking principles of poetics to prin-
ciples of software development, because they share a very
similar kind of creative process and the same medium of
communication, to the point that there should be a poetics
of software development, and we think that not only we
can, after the fact, relate principles of software development
to various principles discovered in poetics, but we can also
proceed in the opposite direction, that it, studying the po-
etics to understand why certain pieces of software appear
łbetter writtenž and thus discover better, more efficient, and
effective ways to write software.
To prove this thesis we focus our analysis on a work by

Italo Calvino, an Italian writer born in Cuba, culturally linked
to both the East and the West of the world, having worked
in Moscow and New York, and many other places around
the world. Specifically, we analyse his posthumous work
łSix Memos for the Next Millenniumž, lectures prepared for
Harvard University, published both in Italian [21] and in
English [22] almost at the same time. This work was intended
to be a collection of six lectures on what he thought the third
millennium should learn from the second, especially from
the 20th century. The lectures were to be given at Harvard
University as part of the łPoetry Lecturesž in 1985, but they
never took place because of Calvino’s death. The Lectures
have inspired some philosophical analysis in mathematics,
as in [50, 51].

In this work we analyse the five fully completed lectures,
which concern the following five properties of literaryworks1:

• Lightness
• Rapidity
• Precision
• Visibility
• Multiplicity

We will not discuss the sixth lecture on Consistency, since it
was not fully elaborated by the author.

Considering the above list of terms, we observe that some
of these resonate with terms from agile software develop-
ment. In this discussion we discuss this analogy, aiming at
emphasizing what is present in Calvino’s vision that is not
present (yet) in current software engineering practices.

Altogether, the goal of this paper is twofold:

• On one side, to promote further and deeper reflec-
tions on the analogies between writing software and
various creative arts, first of all, writing. Now we are
mostly doing a retrospective, analysing how software
engineers have drown from their thoughts and their

1In the discussion we depart from the typical English translation of the
work of Calvino, which uses łquicknessž and łexactitudež instead of respec-
tively łrapidityž and łprecisionž because we consider the latter terms more
evocative for software writers.

196

Software Design as Story Telling: Reflecting on the Work of Italo Calvino Onward! ’20, November 18ś20, 2020, Virtual, USA

experience similar conclusions as art critics; however,
the ambitious aim would be to improve our discipline
being able not only to do a retrospective thinking but
proactive proposals of changes based on reflections
and comparison with such very large and eminent
body of knowledge.

• On the other side, use Calvino as a case study for our
thesis and also as a concrete reference.

The remaining of this paper is organized as follow. The
next section 2 introduces Calvino’s work and recalls some
issues concerning agile developments and story telling. Sec-
tions 3 to 7 present the five mentioned qualities, first as they
were discussed by Calvino, then contrasting them with cur-
rent software development principles and practices. Section
8 discusses our findings, and Section 9 draws our conclusions
and outlines possible avenues for further investigations.

2 Background

2.1 Calvino

Italo Calvino was born in 1923 and died in 1985. He was a
novelist and essayist. He was especially the former, in fact he
is still considered a master story teller, the most important
Italian story teller of the last century. As a novelist he wrote
among others the novels Cosmicomics (1965), Invisible Cities
(1972), and If on a winter’s night a traveler (1979). As an essay-
ist he wrote among others Six memos for the next millennium,
a book that he left unfinished, published posthumus (1988)
and that we will discuss here in this paper.

Our interest in Calvino’s work stems from some intuitions
he had about computing, that he exposed in his book "Six
memos..."; the most well known is the following:

...then, Computing. It is true that software could
not exercise the power of its lightness except through
the heaviness of the hardware; but it is the soft-
ware that commands, that acts on the external
world and on the machines, which exist only to
support the software, and evolve in order to elabo-
rate increasingly complex programs. The second
industrial revolution does not appear as the first
with overwhelming images such as rolling mill
presses or steel castings, but as the bits of a flow of
information that runs on the circuits in the form of
electronic impulses. The iron machines are always
there, but they obey the weightless bits. "

And again, reflecting on lightness, he anticipated the per-
vasiveness of the digital world:

When the human kingdom seems condemned to
heaviness, as in the current times, I think I should
fly like Perseus in another space. I’m not talking
about escapes into dreams or the irrational. I mean
I have to change my approach. I have to look at
the world from another perspective, another logic,

other methods of knowledge and verification. The
images of lightness that I am looking for must not
allow themselves to dissolve like dreams from the
reality of the present and the future ...

The book discusses the following six concepts related to
story telling:

1) Lightness: meaning lightness of touch, rather than lack
of seriousness: this quality helps both writers and readers
who practice and search for lightness to improve their abil-
ity to know and operate the world. 2) Rapidity: the mental,
essential speed of a story told to entertain. The story should
pull the reader along and not get mired up in questioning
the non-essential parts. 3) Precision: the novel should be
structurally proportioned. Calvino reveals that his guiding
image when composing a literary work is the crystal âĂŤ its
complexity and the fact that it can be held in one hand and
admired despite all that complexity. 4) Visibility: the visual
nature of the literary work is also important. Every story
begins as a visual cue, to which more and more images are
added until he has to summon words to describe this profu-
sion of images. He worries about what will happen to the
originality of the visual imagination in a world saturated by
inessential images. 5) Multiplicity: a literary work should try
to encompass the world as a network of relationships. Every
literary object is related to an infinite set of other objects,
and the writer should be able to master and exploit these
infinite relationships. 6) Consistency: the lecture concerning
this concept was never written.

Each lecture can be linked to some of the author’s novels:
for example, the theme of lightness is dealt with in The
rampant baron; The path of the spider’s nests is instead
linked to rapidity. Proceeding in this way, one can connect
the precision to Cosmicomics and to Ti with zero; Visibility
to Invisible cities, Multiplicity to If a traveler on a winter’s
night.

2.2 Agile Software Development

In this paper we discuss software design as story telling ac-
cording to Calvino from an agile perspective. We assume
that the Agile Manifesto is well known among our read-
ers, who are also software developers or software process
scholars. In short, the Agile movement puts emphasis on peo-
ple interactions, on working code, on conversations among
stakeholders, and on short iterations planned each to release
a working prototype useful for the stakeholders.
The idea of exploiting story telling in Agile is in some

sense natural, however it is not usually related to literary
story telling. We have found only one report dealing with
this issue [25].
Most agile methods are based on user requirements de-

scribed as short stories - these are called user stories but have
a specific format and are restricted to one sentence only.

197

Onward! ’20, November 18ś20, 2020, Virtual, USA Paolo Ciancarini, Sergey Masyagin, and Giancarlo Succi

Another point of contact of agile design with story telling
is the concept of system (or architectural) metaphor. Ac-
cording to K.Beck: "The system metaphor is a story that
everyoneścustomers, programmers, and managersścan tell
about how the system works." [10].
We will discuss these and other issues in the rest of this

paper.

3 Lightness

The first lecture starts with the feelings that Calvino had
when he started to write.

When I started my activity, the duty to represent our time was
the categorical imperative of every young writer. Armed with
good will, I was trying to identify myself with the merciless
energy that is moving the history of our century, its collective
and individual events. I was trying to capture the harmony
existing between the colourful show of the world, sometimes
dramatic, sometime grotesque, and the picaresque and ad-
venturous interior rhythm that was driving my writing. Soon
I realized that between the fact of the life that should have
been my raw material and the dynamic agility that I wanted
to animate my writing there was a gap that was always
more difficult to overcome. Perhaps, then I was discovering
the heaviness, the inertia, the opacity of the world: qualities
that get immediately attached to writing, if we do not find
the way to escape from them.

This text emphasizes the two contradicting aims of writ-
ers:

• to provide a comprehensive description of the world,
and

• to be agile in writing, easy to read, lively, engaging.

3.1 Lightness in the Poetics of Calvino

It is particularly revealing how Calvino handles the concept
of heaviness. Rather than blaming it, he uses a metaphor.
Complexity is like Medusa, who attracts inexorably anyone
trying to contemplate her. Therefore, Perseus kills her cutting
her head looking at a reflection of it on a kind of mirror, but
after doing it, he does not throw the head away. Rather, he
keeps it with him to use it as a weapon against his enemies,
and to this goal puts it in a nice and honorable container,
like a sword in a scabbard.

The heavy burden of complexity is not to be ignored. First,
it has to be tamed, but since it is impossible to do it directly,
the taming occurs through mediation and variable perspec-
tives. Then, once tamed, it has to be always taken care of
and never forgotten. The winning approach is to understand
slowly, acknowledging our limits, which make impossible
an upfront comprehension, and then to take it always with
us, showing it any time someone proposes us to forget about
it.

I hope to have demonstrated that there is a lightness of
thoughtfulness and a lightness of levity, and that the lightness

of thoughtfulness can make the lightness of levity to appear
heavy.

Said differently, we often łlinearizež problems, but then
we are exposed to the risk of forgetting such linearization
and of treating the linear model as the unique reality, which
is not the case.

The second issue follows from using lightness to express
the constant mutability of the reality. Calvino notices that
there are multiple writers that describe a universe in constant
evolution and that the only way to do it in an , which we
could call in software the evolvability of systems.

3.2 Lightness in Writing Software

Needless to say that the reflections that Calvino on his be-
ginning as a writer resemble strongly the situation people
faced when the agile movement arrived, and so we can al-
most claim that the overall description of lightness actually
corresponds to what software engineers defined a few years
later as łagilityž, a term that is also used by Calvino in his
narration. Lightness can also be mapped in other terms in
software, including the prescription to play down what we
develop, to make cohesive classes with limited functionality,
to minimize dependencies, etc.
In particular, it is revealing the difference that was made

between:

• the approach of the big upfront design aiming at a
full and comprehensive description of the reality com-
posed of reusable entities like objects, claiming that
this development strategy would have carried the most
effective approach to software development [65];

• the approach of the incremental design, which consists
in trying to learn the reality and solve problems while
learning with a fast and cutting agility [10, 27].

The allegory of Perseus is also quite revealing. Just trying
to be overly light ends up in creating a heavy chaos. This
concept has also appeared somehow in some agile terms. It
has been overly rediscovered and repeated, for instance by
Van Gogh łHow difficult it is to be simple!ž2 and in software
by most agilists, including Beck [9]. But here there is more
and something we have not yet been able to capture, that
is, the explicit acknowledgment of the need to perceive the
complexity, indeed perceive it like Perseus, through simple
images, but to handle it. In a sense, these was approached
by trying to create simplified views of complex structure,
for instance via tools identifying variability links, but still it
is something not fully exploited. And going to the issue of
łlinearizing problems,ž when we code, we write light classes,
but then we may forget the complexity we have decided to
ignore, the features that are cut, and so on.

2Letter from Vincent van Gogh to Paul Gauguin, 17 June 1890

198

Software Design as Story Telling: Reflecting on the Work of Italo Calvino Onward! ’20, November 18ś20, 2020, Virtual, USA

3.3 Additional Lessons to Learn from the

Reflections of Calvino on Lightness

The description of lightness triggers several reflections on
how we write software, in particular with respect to aspects
of the lightness that may shed new ideas to software develop-
ment especially for what it concerns lightness as deprivation
or lack of resources. In this sense Calvino reflect on Kafka
and says:

The empty bucket, sign of deprivation, desire, and quest,
which elevates you to a point where your humble prayer
cannot any more be answered, paves the way for endless
reflections.

The concept of deprivation to understand what cannot
be written is very deep and not fully understood in writing
software. It is like using an incomplete language and then
taking advantage of the incompleteness to hint implicitly at
what it is impossible to express explicitly due to such incom-
pleteness, and also at much more. It could be an effective
way to manage variability.

And, indeed, lightness a deprivation can be a tool to handle
mutability and variability, exactly like in literature.

4 Rapidity

The second lecture focuses on rapidity. Calvino emphasizes
that it is not a fast random movement but the result of com-
petence, knowledge, and thinking. He refers to rapidity with
the Latin aphorism łFestina lente!ž, that is, łBe fast, slowly!ž
He then describes it with the help of the following tale.

Among the multiple virtues of Chuang-Tzu there was the
ability to draw. The king asked him to draw a crab. Chuang-
Tzu replied that he needed 5 years and a villa with 12 servants.
After five years the drawing was not yet started: łI need five
more yearsž said Chuang-Tzu and the king accepted. At the
end of the ten years Chuang-Tzu took the brush and with a
single movement draw a crab, the most perfect crab ever seen.

4.1 Rapidity in the Poetics of Calvino

Dealing with rapidity Calvino clarifies that in the creation
of a poetics, aiming at achieving (in part) a quality is not
contradictory with achieving its opposite. He refers to a
psychoanalytic analysis of two Gods of the ancient Greek
and Roman mythology:

Mercury and Vulcan represent two inseparable and comple-
mentary vital functions: Mercury the syntony, that is, the
participation to the world around us, and Vulcan the focus,
the constructive concentration. Mercury and Vulcan are both
the sons of Jupiter, whose kingdom is that of the individual
and social conscience. However, from the maternal side Mer-
cury descends from Uranus, whose kingdom was the continu-
ously undifferentiated łcyclothymicž time. Vulcan descends
from Saturn, whose kingdom was of łschizophrenicž time of
the egocentric insulation. Saturn has overthrown Uran, and

then Jupiter has overthrown Saturn himself. At the end in
the harmonious and enlightened kingdom of Jupiter Mercury
and Vulcan bring each their memory of the dark primordial
kingdoms, transforming what was a destructive illness in
positive qualities: the syntony and focus.

So over the concept of rapidity Calvino reasons in two
ways:

• rapidity as the result of a profoundmastery of the disci-
pline and a deep understanding of the problem to face
ś the story of Chuang-Tzu, who łwith a single move-
ment draws a crab, the most perfect crab ever seen,ž
but only after 10 years of meditation and preparation;

• rapidity as one of the two extremes - non mutually
exclusive - that are present in the minds and in the
behaviors of people, that need to be balanced properly
to have an harmonious life.

Taking into consideration these two fundamental views of
rapidity, we can now expand some specific ideas of Calvino’s
about the role of rapidity.

Calvino emphasises that using concrete objects promotes
rapidity in narration:

Around the magic object there is a force field that is the
narration. We can say that the magic object makes explicit the
connection between people and events. . . . And in a narration
an object is always a magic object.

Calvino goes on saying that every object has properties
and these properties help to increase the understanding of
the narration.

The second concept is the importance of the oral narration,
as exemplified by the folktales and fairy tales that are passed
by oral tradition.

If during a time of my work in literature I have been at-
tracted by folktales and fairy tales, it has not been for loyalty
to an ethnic tradition (since my roots are in a modern and
cosmopolitan Italy), neither for nostalgia for child stories (in
my family a child had to read only educational books with
some scientific background), but for stylistic and structural
interest, for the economy, the rhythm, the essential logic used
to tell them.

Lastly, Calvino evidences that it is difficult to keep alive
the attention of people writing long stories, so he prefers
to express concepts in short stories, if needed, related one
another.

4.2 Rapidity in Writing Software

The concept of rapidity, as explained by Calvino, has a sig-
nificant importance also in software.
First of all, it is important to evidence that also in soft-

ware engineering it is not uncommon to aim at achieving
sometimes apparently opposite goals; often, in reality such
opposite goals are not creating a conflict, like in literature,
but represent different views of what to achieve. This boils

199

Onward! ’20, November 18ś20, 2020, Virtual, USA Paolo Ciancarini, Sergey Masyagin, and Giancarlo Succi

down to the need to proper contextualizing goals, as it has
been evidenced strongly by the groundbreaking approach
for setting goals in requirements engineeering [70] and in
the GQM (Goal-Question-Metrics) framework [7]

The double view of rapidity is also largely present in soft-
ware: on one side, as mentioned multiple times by some
agilists like Kent Beck [8, 10, 11, 29], agile process models,
the most prominent class of łrapidž development processes,
require a deep mastery of the art of software development.

On the other side, there is not any single methodology that
fits all situations, like there it not a unique poetics for all sorts
of creative composition. Furthermore, to develop properly
software, it is essential to properly mix rapidity, as the art of
understanding fast, and being in an harmonious łsyntonyž
with the customer and her/his needs, the development team,
the operating environment, the technology to use, etc., and
slowness in the sense of capturing the deep of the need
and to gather the knowledge that is required to carry our
specific projects properly. This has been discussed, even if in
a simplistic way, in the works by Boehm and Turner [15ś17]
and of many others [13, 24, 48, 68].
The role of the łobjectž as the center of narration and of

code writing is very clear when dealing with object oriented
systems, and it is also true that objects contain a sort of
łpowerž to attract the attention of developers, with also the
risk of creating a monstrous amount of code around them,
as it has already been described several times [62].
Furthermore, oral narration is a direct contact between

the author (or the teller, who often becomes a re-writer)
of a novel and the readers who become listeners or even
spectators. This is indeed what the Agile Manifesto refers to
with łIndividuals and interactions over processes and toolsž
[12]. The art of communicating with the customer directly,
concisely, and in a non ambiguous way is indeed a key asset
of the agile approach.
Finally, the concept of describing the reality in terms of

small stories rather than long descriptions is typical also of
agile methods, for instance in the user stories.

4.3 Additional Lessons to Learn from Calvino’s

Reflections on Rapidity

Calvino discusses the importance of knowing how to stop
when telling a story, that is the importance to omits parts of
the description, which is not just hiding the details. Informa-
tion hiding is a cornerstone of software design [58], however,
it represents only one side of the omission of description.
Calvino stresses that this omission of details is instrumental
for interconnecting different parts of a narration without
loosing focus, proceeding with łrhythm.ž And rhythm pro-
motes understanding ś Galileo said that argumenting is like
running. This aspect exhibits also potentials for application
to software; it is already present inside agile methods, when
referring to a constant pace of work, for instance, the 40

hours per week recommended by XP [10] ; however, its ap-
plication not only to the process but also to the code has
further potentials to be explored, especially with reference
to the idea of expressing concepts by omitting descriptions.
Calvino also emphasizes the concept of repetition. This

is also not yet properly covered in describing software de-
velopment even if all the work on reuse, especially that on
design patterns, has strong similarities to it [36].

5 Precision

The third Calvino’s lecture is about precision, whose mean-
ing is immediately defined as:

• a well defined and well planned design of a work;
• a recollection of images that are clean, crisp, well de-
fined, easy to memorize, vivid;

• a maximally precise language, both in terms of usage
of the words and of ability to render thoughts and
imaginations.

5.1 Precision in the Poetics of Calvino

Calvino claims that it is as if the humanity has been plagued
now by an epidemic of lack of precision. For defining preci-
sion we use directly Calvinio’s words, as they appear partic-
ularly appropriate:

Often it appears that a pestilential epidemic has plagued the
humankind in the aspect that characterizes it the most: the
use of the word, a pest of the language that manifests itself as
loss of cognitive strength and of spontaneity, as an automation
of forms that tend to level expressions toward more generic,
anonymous, and abstract formulations, to smooth down crisp
expressions, to turn off any sparkle arising when old words
occurs in new circumstances. I do not care here whether the
root of this epidemic are in politics, in ideology, in the bu-
reaucratic uniformity, in the homogenisation of mass-media,
in the scholastic diffusion of middle education. What I am
caring about are the possibility of healing. The literature (and
perhaps only the literature) can create the antibodies that
may contrast such pest of the language.

Furthermore, Calvino argues strongly that precision is not
completeness, emphasizing that his writing has to satisfy
two, apparently divergent constraints:

• on one side, the adherence to a model based on the
story to narrate,

• on the other side, the ability to express in limited space
such complexity, without compromising the precision.

He stresses that the solution for this dilemma is not to łfill
pages with wordsž in a humongous effort to put in places
all such details, rather to separate what is expressed with
words and what is expressed with omissions.

200

Software Design as Story Telling: Reflecting on the Work of Italo Calvino Onward! ’20, November 18ś20, 2020, Virtual, USA

5.2 Precision in Writing Software

Reading this text, immediately we think at how often nowa-
days we encounter code that is quite unjustified and impre-
cise, sometimes copied from the web just because łit worksž
without a full understanding of its meaning, causing scores
of problems in the future. People have often referred to this
problems a łtechnical debtž [47], and in this context we can
assume Calvino as a major supporter of the elimination the
technical debt.
Moreover, Calvino’s reference to the epidemic of coarse

approximations recalls the current situation where some
software engineers take shortcut solutions instead of under-
standing in deep the problems they face. We refer to our
anecdotal experience of some senior professionals claim-
ing to know Android, simply because they could write apps
using an IDE, but still not understanding, for instance, that
layouts are objects created by reflection through dependency
injection [54], or self promoted data scientists able to cre-
ate models through Kera but unable to explain with proper
argumentation the architecture of the network and the val-
ues of the associated hyperparameters [34]. And this not to
mention the even worse situation when professionals claim
to be expert of methodologies, like agile methods, without
any thorough understanding of the corresponding discipline,
just replicating as parrots terms coming from ś one of the
authors discussed this phenomena extensively in previous
works [39, 40].

Altogether, it appears that Calvino’s quest for precision
reflects closely the quest for precise design of proponents of
agile methods, especially when they strongly assert the need
for simplicity, refactoring, technical excellence, and team
and personal reflections. These four components reflect the
Calvino’s quest for precision and for a language that becomes
pure, and we would not be surprised in reading an addendum
of the Agile Manifesto claiming exactly that łAgility (and
perhaps only agility) can create the antibodies that may
contrast such pest of the language.ž

We have to reflect on the fact that probably the last large-
scale controversial discussion in software engineering on
comparing the features of programming languages has oc-
curred decades ago around Aspect Oriented Programming
[46]. Such discussion did not raise in any way flames sim-
ilar to the work by Dijkstra on łgotož [31], by Backus on
assignment and functional languages [2], by Turner on in-
dentations [69], or by Kay on Smalltalk [43]. This does not
mean that using tools is bad or that tools reduce knowledge.
However, tools and frameworks should not become proxies
for knowledge; they are excellent mechanisms for fast proto-
typing or for less educated people to perform pedantic work,
but this is it, and should be very clear.

Finally, the battle between precision and completeness is a
constant struggle when writing software, when features are
added to data structures, to objects, in a quest for precision.

This is indeed always the struggle of software engineers,
between the quest for an absolute and abstract formalization
and the need to express the crucial details of the reality,
which often resist to formalization.

5.3 Additional Lessons to Learn from the

Reflections of Calvino on Precision

Calvino makes an important point on a special form of im-
precision, the vagueness. He claims that vagueness has a
very positive connotation for many poets because it allows
to perceive with a high level of precision (notice the oxy-
moron) the indetermination of several situations. He refers
to the Italian poet and writer Giacomo Leopardi, who in his
Zibaldone of Thoughts on the date of 28th September 1821
annotated: łTo this pleasure contributes the variety, the un-
certainty, the fact that we cannot see everything, and so we
can elaborate with our imagination what we cannot see.ž
Writing programs we have often touched such issue, but

we have never had the courage to accept that a lack of pre-
cision can trigger a better understanding. However, let us
consider a simple example: if we have an index of a loop, is
it more understandable to call it i or indexOfALoop? The
latter is indeed a more precise approach than the former
ś there have been even empirical studies evidencing this
[14]. Overloading names is also indeed an act of vagueness
and it forces the mind to contextualize the term ś however,
indeed, it triggers higher understanding. Not to mention
that specifying only what is strictly needed and deferring
commitments is a key tenet of agile. An appropriate use of
vagueness appears therefore a strong mechanism to increase
understandability and adaptability of code.

A related concept is the appreciation of the impossibility
of generalizing: there are situations that appear to be abso-
lutely unique. Calvino cites Robert Musil in Der Mann ohne
Eigenschaften (1943): łThere are mathematical problems for
which a general solution does not exist but rather individual
solutions, that, together, approach the general solution.ž

Regardless of the truth of Musil’s statement, Calvino em-
phasizes the importance of being specific, of avoiding the
temptation of generalizing and abstracting. He cites Flaubert
łThe good Lord is in the details,ž and connects him with the
cosmology of Giordano Bruno, who imagined the universe
unlimited but not infinite.
This aim is somehow present in some aspects of agile

methods. Still, raising such ideas to an overarching principle
of łlocalityž is totally new. This amounts to saying that there
are situations where not only generalizing is not profitable
and results in a waste of resources, but also is a mistake and
leads to wrong solutions. Calvino elaborates this statement
further:

In reality, always my writing has found itself in front of
two divergent ways that correspond to two different kinds
of knowledge: one that moves itself in the mental space of

201

Onward! ’20, November 18ś20, 2020, Virtual, USA Paolo Ciancarini, Sergey Masyagin, and Giancarlo Succi

unbundled rationality, where we can draw lines that inter-
connect points, projections, abstract forms, vector of forces;
the other that moves itself in a space full of objects and tries
to create an equivalent verbal of the space filling pages with
words . . . They are two different compulsions toward preci-
sion that will never arrive to the absolute satisfaction . . . I
oscillate continuously between these two ways and when I
feel to have completely explored the possibility of one I jump
to the other, and viceversa.

Then, Calvino goes ahead mentioning that the poet should
describe one facet of a crystal representing the reality, where
every side of the crystal provides a different and complemen-
tary views of it. He mentions several authors that followed
this approach, like Paul Valéry, Wallace Stevens, Gottfried
Benn, Fernando Pessoa, Ramòn Gòmez de la Serna, Massimo
Bontempelli, and Jorge Luis Borges.

This is exactly what is important in software development,
to write code covering individual aspects of a problem, but
still being able to be integrated in a whole, and this without
describing the whole.

An attempt on this was done in the past, with the concepts
of modularity and abstract data types. Still such approaches
require a vision of the whole to write the individual, and they
pose constraints in the vision of the whole. The metaphor of
the crystal, on converse, support the idea of writing of the
whole, without putting concerns on the whole.

6 Visibility

Visibility for Calvino is not simply a property of entities that
can be perceived by our eyes, that is, that can be viewed.
Rather, it is the process by which the fantasy elaborates
images of sensations and feelings.

To explain the concept of visibility, Calvino refers to Dantes’s
verse of the 17th Canto of the Purgatory: łIt rained inside the
high fantasy.ž Here there is an emphasis that visibility is the
process of acquiring information from sensations. Calvino
observes that Dante mentions łhigh fantasyž not just łfan-
tasy.ž In Aristotelian terms, we are considering the highest
level of imagination, the one which gets purified from all
possible accidental events. In a word, it is a very łsimplež
vision; in this framework, therefore, there is a demand for
simplicity. Vision is important because is pure, and purity
requires the elimination of everything that is superfluous.

Software is invisible but our imagination makes it visible
via diagrams, metrics, all mental elaborations where the ideas
łrain inside our fantasyž and become concrete. Such diagrams
can be wildly different, as a product of the imagination of
different people; consider as an example Object Oriented sys-
tems: there have been many proposals of strongly different
diagrams, before UML took over [37].

Likewise, the poetry handles invisible ideas and feelings
and makes them visible. Calvino links visibility to imagina-
tion and fantasy, that are able to create ideal images that
capture essential but yet difficult parts of the reality.
Therefore, all the following discussion refers not just to

the abstract concept of visibility, but to how such concept
triggers clear images of the reality and stimulates the fantasy
to capture even deeper how our world is structured.

6.1 Visibiliy in the Poetics of Calvino

To explain his view on Poetics, Calvino refers back to the 17th
Canto of the Purgatory: łOh imagination, you who capture
our attention so strongly that even 1000 trumpets could not
distract us from you, who move moves you even when what
our senses do not instruct you?ž In the view of Dante (and of
Calvino) this abstraction process is so strong that it is able to
create new solid models of the reality that go beyond what
we can simply sense or perceive.

Calvino clarifies that visibility plays a dual role in the
overall understanding process:

• the first is when we provide a visual representation
of the reality, so we go from discussing or reading to
images or diagrams;

• the second is whenwe see an image andwe reconstruct
the reality in a verbal form, like when we discuss over
diagrams that we have analysed.

Then, Calvino refers to the role of fantasy for mystics and
ascetic quoting Ignatius of Loyola, who recommended during
prayers to build concrete images of Christ. This is indeed an
essential component of software development; which goes
beyond the simple role of building abstractions. The ability
to create images of the running software is a pillar of agile
methods; sometimes we refer to this with the

The next important point that Calvino targets is how the
imagination and visual models are generated. Going back to
the experiences of Jean Starobinski in his work łThe Empire
of Imaginaryž (from the essay łThe Critical Relationshipž
[67]), and also drawing from Freud and Jung, he discusses
how images gets generated and presents his approach in
writing novels. Here he outlines that actually he starts from
an image and then elaborates from the image writing down a
story, and this story then suggests another image. Therefore,
the narration is:

• a tool to understand,
• and a way to provide additional insights and ask for
an additional understanding,

• but importantly also as a collection of possible hy-
potheses of what could be.

Then Calvino makes a prophecy about the evolution of
images, as he foresees:

• on one side, the standardization of the images that are
being

202

Software Design as Story Telling: Reflecting on the Work of Italo Calvino Onward! ’20, November 18ś20, 2020, Virtual, USA

• on the other side, a complete restart of the image cre-
ation process, especially for new and more challenging
tasks.

6.2 Visibility in Writing Software

The overall idea of how the imagination works according
to Dante and Calvino define a clear essential guideline in
coding, to create simple and powerful abstractions able to
generate new ideas. As in Calvino, in software development
practically there is a general awareness that images have a
superior ability to represent the reality than simple words.
Moreover, what Calvino refers to as the dual role of vis-

ibility in understanding occurs in coding and in software
development. This is exactly the the whole work on repre-
senting software architectures or models via sets of diagrams
and then move from the diagrams down to written descrip-
tions as in PlantUML is a clear example of this [52, 56], so
to make diagrams accessible to łblind peoplež. These two
directions have taken sometimes the name of łroundtrip
engineeringž [30].
With respect to the example of Ignatius of Loyola, we

know that visibility facilitates agility through the creation of
vivid images of what we are developing. Systemmetaphors in
XP are an example: the XP practice of metaphors is strongly
connected to user stories; these are simple enough to make
them understandable for the customer and final users, at
the same time they fully describe the functionality of the
software product [45].
Furthermore, visibility helps to promote continuous im-

provement. By openly sharing successes and failures the
teams, and thus their organization, can steadily evolve how
they work which will help to promote individual growth
and the creation of better technical solutions. Visibility also
via Dashboard, on a continuous basis, enables an organiza-
tion to make key adjustments based on customer or market
feedback, technology changes, and more.
Through collaboration, with both internal and external

team members and stakeholders, agile developers can ex-
ploit the opportunities to inspect their process and make
adjustments to improve efficiency and productivity. Process
inspection occurs daily beginning with the łdaily scrumž (or
standup) and continues through to the sprint review and
retrospective. Each day, team members and other stakehold-
ers will inspect project indicators, such as burndown charts,
cumulative flow diagrams, and other metrics. This visibility
help to expose process issues as they occur and allow for
swift adjustment.
With respect to how imagination and visual models are

created, we can see that there is a clear iterative process that
resembles quite strongly the agile process of writing user
stories elaborating scenarios and then creating other user
stories. Moreover, using the narration as a major tool for
discovering what need to develop is fully coherent with the
incremental development typical of agile methods, where

the requirements are better understood and explored further
while the system is being developed and released to cus-
tomers, incorporating the feedback from the customers on
the new development. Altogether, we can say that quite like
narration, the agile way to develop software incrementally
is (text in italics is copied verbatim from above):

• a tool to understand,
• and a way to provide additional insights and ask for an
additional understanding, for instance for the customer,

• but importantly also as a collection of possible hypothe-
ses of what could be further developed.

Needless to say, user stories are very effective means toward
this goal.

Interestingly, also the evolution of images reflects the sit-
uation in software engineering.

• the standardization of the images has been apparent on
the standardisation of user interfaces and of icons that
has taken places for handheld and mobile devices in
the last 20 years

• a complete restart of the image creation process is also
clearly present in all the field of dashboarding and
business analytics.

6.3 Additional Lessons to Learn from the

Reflections of Calvino on Visibility

Additionally, the ideas of Calvino on visibility provide us
additional insight on how to write software. Referring back
to how images are generated, Calvino outlines two possible
interpretation of the process of building representations of
the world:

• as communication of internal state of minds
• as emergence of knowledge archetypes

In other terms, with the second approach it is as if there are
a set of predefined skeletons of models present in the mind
that emerge to form the visual images of the reality.
All these concepts almost completely new in software

engineering. There are limited studies on how images get
formed and the latter approach is like taking one step up the
concept of design patterns. However, a better understanding
of how images are formed would significantly shed new and
interesting lights on how to write efficient software. More
than something to learn from poetic, is a research endeavour
to copy from them.

Linked to this, Calvino reviews of the łphysicalž exercises
to stimulate the creation of the visual images. Referring to
Ignatius of Loyola, he describes how specific exercises can
help promoting visual images. This is not anything new in
meditation, where people learn to meditate always better via
regular exercises [71], but it is definitely something unseen
in literature before, and definitely not present in software en-
gineering. Calvino promotes a pedagogy of imagination, that
foster the creation of abstract models but also helps avoiding
the random production of unordered pieces of elements.

203

Onward! ’20, November 18ś20, 2020, Virtual, USA Paolo Ciancarini, Sergey Masyagin, and Giancarlo Succi

7 Multiplicity

According to Calvino the concept of multiplicity is at the
root of literature and arts. He writes:

Excessive ambitions can be blamed in many areas of human
endeavours, but not in literature. The literature lives only if it
sets humongous objective’s, even beyond what is conceivable.
Only if poets and writers will aim at achieving enterprises
that none else even dare to dream the literature will continue
to have a purpose. At the time at which the science is wary
of general explanations and of solutions that are not sectorial
and specialized, the big challenge for literature is to be able
to weave together the different knowledge and the different
codes within a plural and multifaceted view of the world.

Multiplicity is inherent in software: multiple authors, mul-
tiple languages, multiple platforms, multiple - possibly infi-
nite - interactions. Moreover, multiplicity brings together a
core issue common in software development and in poetry:
the level of granularity needed in a representation. The prob-
lem is how many details of the world are needed to describe
a situation or scenario and how such details refer or link to
other situations or scenarios.

7.1 Multiplicity in the Poetics of Calvino

In the description of how multiplicity has been handled by
story tellers, Calvino identifies two extremes, but without
being able to define what is for sure the best approach:

• on one side there is a tendency of provide a plenitude
of details (like Carlo Emilio Gadda) and

• on the other side, there is an approach to minimize the
possible information flow (as it is done, for instance,
by Robert Musil).

Calvino, then, evidences that a non trivial number of writ-
ers across centuries and languages have the tendency of not
concluding their work. Just to give an idea we can list Vir-
gilio (Latin, 70BC-20BC), Dante (Italian, 1265-1321), Goethe
(German, 1748-1832), Proust (French, 1871-1922), and many
others. Such tendency of not concluding and of aiming at
always better and more accurate representations of the re-
ality or a higher quality of the writeup refers back to the
issue of precision, which we discussed in Section 5; More-
over, it is clearly linked to the fact that it is hard to define a
stopping criteria when writing a book and it is always pos-
sible to enrich a volume or a history also after its apparent
completion.
This fact is well exploited also in a writer that Calvino

could not have known, Joanne Rowling. If we notice the
history of Harry Potter started and then spanned several
books, probably well beyond the original desire of the writer,
and went even further elaborating corollary works around
her original idea, taking advantage of the success that she
had.

Finally, Calvino organises the management of multiplicity
in literature in four classes:

1. texts following a single inspiration, but that can then
be understood at multiple levels; already Dante in the
outset of the 14th century wrote in the second chapter
of his book łConviviož an essay outlining 4 levels at
which to interpret a poetry; however, such essay stayed
predominantly within a theological framework. Here
Calvino goes beyond such boundaries and refers to
the work of surrealistic writers, such as Alfred Jarry;

2. works where multiple narrations intersect strongly
within a well defined context, but without providing
an overall unifying vision; this is like the Comedy
of Art of the 16th and 17th century ś the structure
of comedies before the unifying revolution lead by
Carlo Goldoni, where different masks like Arlecchino,
Pulcinella, and other interacted in a general play with
coherent action but without a strong line connecting
the beginning to the end;

3. attempts to create a single and unifying vision of the
whole work, that then is very likely to never be com-
pleted; we have already evidenced the numbers of au-
thors that, across centuries, were not able to complete
their work;

4. collections of non contradictory aphorisms, which do
not give a comprehensive and explicit view of the sub-
ject of discussion, but shed lights on aspects of it, aim-
ing at finding the simple and small cores of narration;
to clarify this Calvino cites a writer of such short book-
lets of aphorisms, Valéry, saying łI have looked, I am
looking, and I will be looking for what I call the Total
Phenomenon, that is the essence of conscience, rela-
tions, conditions, possibilities, and impossibilities.ž

7.2 Multiplicity in Writing Software

Multiplicity is a core problem in software writing, sometimes
referred to as łvariabilityž [59]. In this context the two ex-
treme approaches described by Calvino are well represented
also in software development:

• there are methods that attempts to create comprehen-
sive models of the systems to develop, presenting all
the conceivable details, and such approaches were un-
derneath, even if not necessarily made explicit, not
only the traditional waterfall methods but also object
orientation during its infancy, like for instance in [5]
and in [18];

• on the contrary, there are alternative ideas that soft-
ware should be minimalistically designed, focusing
only on the minimal aspects providing the essential
required functionality to the users, as clearly stated in
all the works related to agile methods, like the ones of
Kent Beck [9]

After the initial enthusiasm for agile methods, there is now
the understanding that is not clear toward which end should
software development lean. Typically some methodologists

204

Software Design as Story Telling: Reflecting on the Work of Italo Calvino Onward! ’20, November 18ś20, 2020, Virtual, USA

suggest heuristics on where to lean avoiding the (perhaps
impossible) answer to the overall question [15]; such heuris-
tics are often so obvious that they imply that there are not
clear criteria on what to do, and that the software engineers
in charge of the project should base the decisions on their
own experience, indeed, at their own risk.

Likewise, especially in the time of the waterfalls, software
development has the natural tendency of never ending, or
to end only when the budget expired ś like books ending
only when the author died. Also in software there is a risk
that endeavours never conclude, as it is widely documented
both in scientific documents, such as [39, 41], and in a large
amount of grey literature [4, 38, 60, 64].
Furthermore, software is also exposed at the expansion

of its original intention well beyond the initial ideas, as it
is evident for instance in the history of PowerPoint, well
described by Brock [20].

Finally, software development has also then been exposed
to the four fundamental approaches to handle multiplicity:

1. single inspiration but multiple interpretations: this re-
flects the idea of describing a system as a set of different
and coherent views, as it was done, for instance, in
the mid-90s with the methodologies developed around
the newly defined UML[61], since UML allows to have
multiple diagrams on the system being developed, such
as class diagram, object diagram, interaction diagram,
etc; moreover, UML supports some partial checking of
the coherence existing among these diagrams;

2. multiple narrations proceeding in parallel: this appears
to be quite present in agent-based systems, like the
ones advocated since the beginning of the appearance
of the theory of agents [26]; also nowadays approaches
based on swarm intelligence and genetic algorithms
resemble strongly this approach;

3. single and universal description: this is what happens
when we try to build an omni-comprehensive system;
as already mentioned, it is not a prerogative of only
waterfall methods, but, for instance, it applies also to
the mentioned early object oriented approaches, the
ones occurring before the advent of agile methods;

4. collection of non contradictory simple models: this re-
sembles strongly agilemethods collecting requirements
in the forms of simple users stories, as very well de-
scribed by Kelly [44] and then developing incremen-
tally the minimal amount of functionality needed to
satisfy the stakeholders of such user stories.

7.3 Additional Lessons to Learn from the

Reflections of Calvino on Multiplicity

During this discussion Calvino mentions the concept of the
łhyper-romance,ž that is a romance that is a combination
of multiple plots, also with multiple starting points or end-
ing points. This structure could be an interesting reference

point for what we have in software as frameworks for creat-
ing different applications, and could provide and interesting
reference for them.

At the end of the discussion of multiplicity, Calvino men-
tion that he would like to perceive the romance as a network
of ideas, and even of contributions from different people, like
an emerging entity. In software, agile methods have empha-
sized the concept of emerging architectures. Open source
communities have created software based on various con-
tributions of different people. Still, much more reflections
could be done in this area, also taking advantages of less
structured languages.

8 Discussion

At the end of this review of the work of Calvino we can say
that definitely several recommendations, prescriptions, and
guidelines that have been proposed to software writers were
already present in the work of a literary critic as Calvino.
Moreover, from his work we can identify several issues that
cross his lectures and that could be profitably considered in
our discipline.
The first, is about the description by under-specification

and by vagueness; across his lectures Calvino goes over this
concept many time. With respect to computer science, we
know that in formal models non determinism allows some-
times simpler, lighter, and more understandable descriptions
than fully deterministic structures, e.g., considering non de-
terministic finite state machines vs. their counterparts [32].
Also in machine learning it has been found that random
gradient descent approaches can be more effective than de-
terministic approaches [57]. We already are fully aware that
limiting the description facilitates variability, however we
could move further, focusing on the łpower of not saying;ž
such approach could appear counterintuitive, going against
decades of claims that requirements need to be fully spec-
ified, or, at least, specified in an incremental way, but still
appears quite promising.
The next point is about rapidity in writing. It is already

well known that it is difficult to conclude software projects,
that it is important to shorten the time tomarkets of products,
that we need to reduce the effort to save resources. However,
Calvino mentions something innovative: being fast is a valu-
able resource, in the sense that certain activities cannot be
performed slowly. In other terms, if we cannot do them fast,
we will never be able to do even with an infinite amount
of time. Sometimes people call this inspiration, Plato wrote
an entire dialogue on this (the Crito); it something that has
to be captured while it is łflying.ž However, we have never
considered this in software, and also this is counterintuitive.
We have always considered time as an additive resource, the
more we have, the more we can do.
Calvino also emphasises in multiple ways that general-

izing is intrinsically a bogus process. We may aim at some

205

Onward! ’20, November 18ś20, 2020, Virtual, USA Paolo Ciancarini, Sergey Masyagin, and Giancarlo Succi

forms of abstractions, however, only detailed descriptions
can capture the reality. Agile evangelists have warned about
the łsuper generalizationsž of the early era of object orienta-
tion, that typically lead to failures. However, Calvino goes
further: like for speed in development, he claims that there
are properties can can be captured only by focused and not
general descriptions. Perhaps, in writing software we should
put a similar warning.

Calvino then promotes the creations of visual models and
of metaphors beyond what is typical of software engineering.
On one side he describes the emergence of visual represen-
tation as a community and social process that is always
ongoing, and it should be so for the health of the discipline.
On the other, it promotes a discipline in itself of creating
vivid images of the reality, not amorphous abstractions, as
a way to gather a better understanding of what we need to
model.

Finally, Calvino acknowledges that narrations are like live
entities, they often never end and have a life on their own,
well beyond the initial intentions of the writer(s), and even
sometimes with a structure that is not predefined and it
emerges as the writing progresses. This is also very true
for software and we have evidences of such evolution, and
even a specific area of software engineering named exactly
software evolution. Still, the idea of planning software for
its never ending completion or its evolution is still at its
infancy, and this does not relate purely on how architecting
and designing software systems, but also with reference to
organization of the teams, licensing and revenue schemas,
maintenance, and several other [35, 42, 53].

9 Conclusion

In this paper we have made two major points. The first one
is that literature in general, and, specifically, the discipline
of Poetics can provide inspiration for the advancement of
software engineering, and we have argued this after an ini-
tial reference on Aristoteles, analysing the work of Calvino
łSix Memos for the Next Millennium.ž The second one is
that such work raises several points that have been partially
covered (mostly later) by software engineering in general,
and especially by the recent agile movement, and in part are
still unexplored.

Needless to say, the present work is a collection of reflec-
tions, hence the title. It is the proposal for avenues for new
investigations, and, as such, it is intended as the start of a
deeper and more pervasive exploration of the implications
and the contributions that may come from Poetics, and also
Rhetoric, Aesthetic, etc. In this work we do not focus on
such aspects because a full review of the influences that the
discipline of poetic (may) have on software development is a
very large work, definitely beyond the scope of this analysis.
Rather, we focus on one specific work, the one by an Italian

writer of the 20th century who appears to have a strong cor-
relation, and perhaps somehow also influence, on the latest
trends of software development.
Additional interesting and relevant input may also from

other artistic disciplines, such as Visual Arts, Dancing, Act-
ing, Music, and so on, that have already shown potentials
for beneficial contributions to software [33, 55], and should
be subject of a very careful scrutiny.

Acknowledgments

The authors thanks Innopolis University for generously sup-
porting this research. The first author thanks CINI for partial
support under contract AMINSEP. The third author thanks
Francesco Martinelli for explaining the overarching role of
this Calvino’s work, namely Six memos for the next millen-
nium.

References
[1] Aristotles. 335BC. Poetics. (335BC).
[2] John Backus. 1978. Can Programming Be Liberated from the Von

Neumann Style?: A Functional Style and Its Algebra of Programs.
Commun. ACM 21, 8 (1978), 613ś641.

[3] Donald Bagert and Nancy Mead. 2001. Software Engineering as a
Professional Discipline. Computer Science Education 11 (01 2001), 73ś
87. DOI:http://dx.doi.org/10.1076/csed.11.1.73.3841

[4] Ian Bagost. 2015. Programmers: Stop Calling Yourselves Engineers.
(Nov 2015). https://www.theatlantic.com/technology/archive/2015/11/

programmers-should-not-call-themselves-engineers/414271/ Visited
on 20 August 2020.

[5] A. James Baroody, Jr. and David J. DeWitt. 1981. An Object-oriented
Approach to Database System Implementation. ACM Trans. Database

Syst. 6, 4 (1981), 576ś601.
[6] V. Basili, L. Briand, and others. 1996. Understanding and predicting

the process of software maintenance releases. In Proc. 18th Int. Conf.

on Software Engineering. IEEE, 464ś474.
[7] V. Basili, G. Caldiera, and H. Dieter Rombach. 1994. The Goal Question

Metric Approach. In Encyclopedia of Software Engineering. Wiley.
[8] Kent Beck. 1997. Smalltalk Best Practice Patterns. Prentice Hall.
[9] Kent Beck. 1999. Extreme Programming: A Discipline of Software

Development. In Proceedings of the 7th European Software Engineering

Conference Held Jointly with the 7th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (ESEC/FSE-7). Springer-
Verlag, Berlin, Heidelberg, 1ś. http://dl.acm.org/citation.cfm?id=

318773.318778

[10] Kent Beck. 2000. Extreme Programming Explained: Embrace Change.
Addison-Wesley, Boston, MA, USA.

[11] Kent Beck. 2003. Test-driven Development: By Example. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[12] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith,
Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Mar-
tin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.
1999. Manifesto for Agile Software Development. (1999). Online:
http://www.agilemanifesto.org, on 8th October 2020.

[13] L. Benedicenti. 2017. Chapter 6 - Introducing Ubiquity in Noninvasive
Measurement Systems for Agile Processes. In Adaptive Mobile Com-

puting, Mauro Migliardi, Alessio Merlo, and Sherenaz Al-Haj Baddar
(Eds.). Academic Press, Boston, 109 ś 126.

[14] G. Beniamini, S. Gingichashvili, A. Orbach, and D. Feitelson. 2017.
Meaningful identifier names: the case of single-letter variables. In Proc.

206

http://dx.doi.org/10.1076/csed.11.1.73.3841
https://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
https://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://dl.acm.org/citation.cfm?id=318773.318778
http://dl.acm.org/citation.cfm?id=318773.318778
http://www.agilemanifesto.org,

Software Design as Story Telling: Reflecting on the Work of Italo Calvino Onward! ’20, November 18ś20, 2020, Virtual, USA

25th Int. Conf. on Program Comprehension (ICPC). IEEE, 45ś54.
[15] B. Boehm and R. Turner. 2003. Balancing Agility and Discipline: A

Guide for the Perplexed. Addison-Wesley, Boston, MA, USA.
[16] B. Boehm and R. Turner. 2003. Observations on balancing discipline

and agility. In Proc. of the Agile Development Conference. IEEE, 32ś39.
[17] B. Boehm and R. Turner. 2003. Using risk to balance agile and plan-

driven methods. Computer 36, 6 (2003), 57ś66.
[18] Grady Booch. 1982. Object-oriented Design. Ada Lett. I, 3 (1982),

64ś76.
[19] G. Booch. 2018. The History of Software Engineering. IEEE Software

35, 5 (2018), 108ś114.
[20] D. C. Brock. 2017. The improbable origins of Powerpoint. IEEE Spec-

trum 54, 11 (November 2017), 42ś49. DOI:http://dx.doi.org/10.1109/
MSPEC.2017.8093800

[21] Italo Calvino. 1988. Lezioni americane. Sei proposte per il prossimo

millennio. Garzanti.
[22] Italo Calvino. 1988. Six Memos for the Next Millennium (translated by

P. Creagh). Harvard University Press.
[23] Lodovico Castelvetro. 1563. Poetica d’Aristotele vulgarizzata, et sposta

(The Poetics of Aristoteles, translated and explained). Laterza.
[24] Roderick Chapman, Neil White, and Jim Woodcock. 2017. What Can

Agile Methods Bring to High-integrity Software Development? Com-

mun. ACM 60, 10 (2017), 38ś41.
[25] Raffaele Fabio Ciriello, Alexander Richter, and Gerhard Schwabe. 2017.

When prototyping meets storytelling: practices and malpractices in
innovating software firms. In 2017 IEEE/ACM 39th Int. Conf. on Software

Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE,
Buenos Aires, Argentina, 163ś172.

[26] William D Clinger. 1981. Foundations of Actor Semantics. Ph.D. Disser-
tation. MIT, Cambridge, MA, USA.

[27] A. Cockburn. 2001. Agile software development. Pearson.
[28] M. Conway. 1968. How do committees invent. Datamation 14, 4 (1968),

28ś31.
[29] James O. Coplien and Gertrud Bjùrnvig. 2010. Lean Architecture: For

Agile Software Development. Wiley, Chichester, UK.
[30] Stephan Diehl. 2007. Software visualization: visualizing the structure,

behaviour, and evolution of software. Springer Science & Business
Media.

[31] Edsger W. Dijkstra. 1968. Letters to the Editor: Go to Statement Con-
sidered Harmful. Commun. ACM 11, 3 (1968), 147ś148.

[32] M. Domaratzki, A. Okhotin, K. Salomaa, and S. Yu (Eds.). 2004. . Lecture
Notes in Computer Science, Vol. 3317. Springer, Kingston, Canada.

[33] I. Erofeeva, V. Ivanov, S. Masyagin, and G. Succi. 2020. Learning agility
from dancers ś experience and lesson learnt. In Devops2020. Springer.

[34] Matthias Feurer and FrankHutter. 2019. Hyperparameter Optimization.
In Automated Machine Learning: Methods, Systems, Challenges, Frank
Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). Springer, 3ś33.

[35] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou. 2014.
Variability in Software SystemsâĂŤA Systematic Literature Review.
IEEE Transactions on Software Engineering 40, 3 (March 2014), 282ś306.
DOI:http://dx.doi.org/10.1109/TSE.2013.56

[36] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[37] B. Hungerford, A. Hevner, and R. Collins. 2004. Reviewing software
diagrams: A cognitive study. IEEE Transactions on Software Engineering
30, 2 (2004), 82ś96.

[38] Mirona Iliescu. 2012. Software development never ends,
unless you are doing it all wrong. (Dec 2012). https:

//metabroadcast.com/blog/software-development-never-ends-

unless-you-re-doing-it-all-wrong/ Visited on 14th August 2020.
[39] Andrea Janes and Giancarlo Succi. 2014. Lean Software Development

in Action. Springer, Heidelberg, Germany. DOI:http://dx.doi.org/10.
1007/978-3-642-00503-9

[40] Andrea A. Janes and Giancarlo Succi. 2012. The Dark Side of Agile
Software Development. In Proce. ACM Int. Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software (Onward!

2012). ACM, 215ś228.
[41] Ron Jeffries. 2015. The Nature of Software Development: Keep It Simple,

Make It Valuable, Build It Piece by Piece (1st ed.). Pragmatic Bookshelf.
[42] Haruhiko Kaiya, Ryohei Sato, Atsuo Hazeyama, Shinpei Ogata,

Takao Okubo, Takafumi Tanaka, Nobukazu Yoshioka, and Hironori
Washizaki. 2017. Preliminary Systematic Literature Review of Soft-
ware and Systems Traceability. Procedia Computer Science 112 (2017),
1141âĂŞ1150.

[43] Alan C. Kay. 1993. The Early History of Smalltalk. SIGPLAN Not. 28, 3
(1993), 69ś95.

[44] A. Kelly. 2017. A Little Book of Requirements & User Stories. Software
Strategy Limited.

[45] Rilla Khaled, Pippin Barr, James Noble, and Robert Biddle. 2004. System
metaphor in Extreme Programming: A semiotic approach. In Proc. 7th

Int. Workshop Organisational Semiotics. 1ś24.
[46] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-
oriented programming. In ECOOP’97 Ð Object-Oriented Programming,
Mehmet Akşit and Satoshi Matsuoka (Eds.). Springer, Berlin, Heidel-
berg, 220ś242.

[47] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. 2012. Technical
debt: From metaphor to theory and practice. IEEE Software 29, 6 (2012),
18ś21.

[48] Alexander Laufer, Terry Little, Jeffrey Russell, and Bruce Maas. 2018.
The Agility Practice: Be Responsive and Action Oriented. Springer Inter-
national Publishing, Cham, 31ś54. DOI:http://dx.doi.org/10.1007/978-
3-319-66724-9_3

[49] Peter Lloyd. 2000. Storytelling and the development of discourse in
the engineering design process. Design Studies 21, 4 (2000), 357ś373.

[50] Gabriele Lolli. 2011. Discorso sulla matematica: una rilettura delle

Lezioni americane di Italo Calvino. Bollati Boringhieri. https://books.
google.ru/books?id=KtJGAQAAIAAJ

[51] Gabriele Lolli. 2013. Mathematics according to Italo Calvino. In
Imagine Math 2: Between Culture and Mathematics, Michele Emmer
(Ed.). Springer, Milan, 49ś56.

[52] L Luque, E d S Veriscimo, G d C Pereira, and LVL Filgueiras. 2014.
Can we work together? on the inclusion of blind people in uml model-
based tasks. In Inclusive Designing Joining Usability, Accessibility, and

Inclusion. Springer, 223ś233.
[53] Ruchika Malhotra and Anuradha Chug. 2016. Software Maintainabil-

ity: Systematic Literature Review and Current Trends. International
Journal of Software Engineering and Knowledge Engineering 26 (10
2016), 1221ś1253. DOI:http://dx.doi.org/10.1142/S0218194016500431

[54] Robert C Martin. 1996. The dependency inversion principle. C++

Report 8, 6 (1996), 61ś66.
[55] S. Masyagin, M. Nurgalieva, and G. Succi. 2019. Kent Beck or Pablo

Picasso? ś Speculations of the relationships between artists in software
and painting. In TOOLS50+1 2019.

[56] Karin Müller. 2012. How to make UML diagrams accessible for blind
students. In Proc. Int. Conf. on Computers for Handicapped Persons

(LNCS), Vol. 7382. Springer, 186ś190.
[57] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. 2009. Robust

Stochastic Approximation Approach to Stochastic Programming. SIAM
Journal on Optimization 19, 4 (2009), 1574ś1609.

[58] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems
into Modules. Commun. ACM 15, 12 (1972), 1053ś1058.

[59] Klaus Pohl and Andreas Metzger. 2006. Variability management in
software product line engineering. In Proc. 28th Int. Conf. on Software

Engineering. IEEE/ACM, 1049ś1050.
[60] Daniel Riedel. 2015. Why Software Development Is Never Over. (Sept

2015). https://www.corpmagazine.com/industry/technology/software-

207

http://dx.doi.org/10.1109/MSPEC.2017.8093800
http://dx.doi.org/10.1109/MSPEC.2017.8093800
http://dx.doi.org/10.1109/TSE.2013.56
https://metabroadcast.com/blog/software-development-never-ends-unless-you-re-doing-it-all-wrong/
https://metabroadcast.com/blog/software-development-never-ends-unless-you-re-doing-it-all-wrong/
https://metabroadcast.com/blog/software-development-never-ends-unless-you-re-doing-it-all-wrong/
http://dx.doi.org/10.1007/978-3-642-00503-9
http://dx.doi.org/10.1007/978-3-642-00503-9
http://dx.doi.org/10.1007/978-3-319-66724-9_3
http://dx.doi.org/10.1007/978-3-319-66724-9_3
https://books.google.ru/books?id=KtJGAQAAIAAJ
https://books.google.ru/books?id=KtJGAQAAIAAJ
http://dx.doi.org/10.1142/S0218194016500431
https://www.corpmagazine.com/industry/technology/software-development-never/
https://www.corpmagazine.com/industry/technology/software-development-never/

Onward! ’20, November 18ś20, 2020, Virtual, USA Paolo Ciancarini, Sergey Masyagin, and Giancarlo Succi

development-never/ Visited on 20 August 2020.
[61] J. Rumbaugh, I. Jacobson, and G. Booch. 1998. The Unified Modeling

Language Reference Manual. Addison Wesley, Reading, MA, USA.
[62] E. Schonberg, N. Mitchell, and G. Sevitsky. 2010. Four Trends Leading

to Java Runtime Bloat. IEEE Software 27, 01 (2010), 56ś63.
[63] M. Shaw. 1990. Prospects for an Engineering Discipline of Software.

IEEE Software 6, 7 (1990), 15ś24.
[64] Shamoon Siddiqui. 2014. Why developers never finish their projects.

(Mar 2014). https://medium.com/things-developers-care-about/why-

developers-never-finish-their-projects-bf39d3424114/ Visited on 14th
August 2020.

[65] J. Spolsky. 2005. The Project Aardvark Spec. Wite Paper, Fog Creek,
published on Joel on Software’s blog. (2005).

[66] B. Srinivasan. 2012. A for Agile, A for Aristotle.
https://www.agileconnection.com/article/agile-aristotle. (2012).

[67] Jean Starobinski. 2001. La Relation critique. Gallimard.

[68] Sven Theobald and Philipp Diebold. 2017. Beneficial and Harmful Agile
Practices for Product Quality. In Procs. 18th Int. Conf. Product-Focused

Software Process Improvement (PROFES), M. Felderer and others (Eds.).
Springer, 586ś593.

[69] David Turner. 1986. An Overview of Miranda. SIGPLAN Not. 21, 12
(1986), 158ś166.

[70] A. VanLamsweerde. 2001. Goal-oriented requirements engineering: A
guided tour. In Procs. 5th Int. Symposium on Requirements Engineering.
IEEE, 249ś262.

[71] Joseph White. 2013. St. Therese of Lisieux: Meditations with the Little

Flower. Our Sunday Visitor. https://www.xarg.org/ref/a/1612785913/
[72] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and

G. Ruhe. 2015. Cost, benefits and quality of software development
documentation: A systematicmapping. Journal of Systems and Software

99 (2015), 175ś198.

208

https://www.corpmagazine.com/industry/technology/software-development-never/
https://medium.com/things-developers-care-about/why-developers-never-finish-their-projects-bf39d3424114/
https://medium.com/things-developers-care-about/why-developers-never-finish-their-projects-bf39d3424114/
https://www.xarg.org/ref/a/1612785913/

